catch2/tests/SelfTest/UsageTests/MatchersRanges.tests.cpp

917 lines
34 KiB
C++
Raw Permalink Normal View History

// Copyright Catch2 Authors
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE.txt or copy at
// https://www.boost.org/LICENSE_1_0.txt)
// SPDX-License-Identifier: BSL-1.0
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_container_properties.hpp>
#include <catch2/matchers/catch_matchers_contains.hpp>
#include <catch2/matchers/catch_matchers_range_equals.hpp>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
2020-12-08 00:23:54 +01:00
#include <catch2/matchers/catch_matchers_quantifiers.hpp>
#include <catch2/matchers/catch_matchers_predicate.hpp>
2020-12-08 00:23:54 +01:00
#include <catch2/matchers/catch_matchers_string.hpp>
#include <helpers/range_test_helpers.hpp>
#include <cmath>
#include <list>
#include <map>
#include <type_traits>
#include <vector>
#include <memory>
struct MoveOnlyTestElement {
int num = 0;
MoveOnlyTestElement(int n) :num(n) {}
MoveOnlyTestElement(MoveOnlyTestElement&& rhs) = default;
MoveOnlyTestElement& operator=(MoveOnlyTestElement&& rhs) = default;
friend bool operator==(MoveOnlyTestElement const& lhs, MoveOnlyTestElement const& rhs) {
return lhs.num == rhs.num;
}
friend std::ostream& operator<<(std::ostream& out, MoveOnlyTestElement const& elem) {
out << elem.num;
return out;
}
};
TEST_CASE("Basic use of the Contains range matcher", "[matchers][templated][contains]") {
using Catch::Matchers::Contains;
SECTION("Different argument ranges, same element type, default comparison") {
std::array<int, 3> a{ { 1,2,3 } };
std::vector<int> b{ 0,1,2 };
std::list<int> c{ 4,5,6 };
// A contains 1
REQUIRE_THAT(a, Contains(1));
// B contains 1
REQUIRE_THAT(b, Contains(1));
// C does not contain 1
REQUIRE_THAT(c, !Contains(1));
}
SECTION("Different argument ranges, same element type, custom comparison") {
std::array<int, 3> a{ { 1,2,3 } };
std::vector<int> b{ 0,1,2 };
std::list<int> c{ 4,5,6 };
auto close_enough = [](int lhs, int rhs) { return std::abs(lhs - rhs) <= 1; };
// A contains 1, which is "close enough" to 0
REQUIRE_THAT(a, Contains(0, close_enough));
// B contains 0 directly
REQUIRE_THAT(b, Contains(0, close_enough));
// C does not contain anything "close enough" to 0
REQUIRE_THAT(c, !Contains(0, close_enough));
}
SECTION("Different element type, custom comparisons") {
std::array<std::string, 3> a{ { "abc", "abcd" , "abcde" } };
REQUIRE_THAT(a, Contains(4, [](auto&& lhs, size_t sz) {
return lhs.size() == sz;
}));
}
SECTION("Can handle type that requires ADL-found free function begin and end") {
unrelated::needs_ADL_begin<int> in{1, 2, 3, 4, 5};
REQUIRE_THAT(in, Contains(1));
REQUIRE_THAT(in, !Contains(8));
}
SECTION("Initialization with move only types") {
std::array<MoveOnlyTestElement, 3> in{ { MoveOnlyTestElement{ 1 }, MoveOnlyTestElement{ 2 }, MoveOnlyTestElement{ 3 } } };
REQUIRE_THAT(in, Contains(MoveOnlyTestElement{ 2 }));
REQUIRE_THAT(in, !Contains(MoveOnlyTestElement{ 9 }));
}
SECTION("Matching using matcher") {
std::array<double, 4> in{ {1, 2, 3} };
REQUIRE_THAT(in, Contains(Catch::Matchers::WithinAbs(0.5, 0.5)));
}
}
namespace {
struct has_empty {
bool empty() const { return false; }
};
} // end unnamed namespace
TEST_CASE("Basic use of the Empty range matcher", "[matchers][templated][empty]") {
using Catch::Matchers::IsEmpty;
SECTION("Simple, std-provided containers") {
std::array<int, 0> empty_array{};
std::array<double, 1> non_empty_array{};
REQUIRE_THAT(empty_array, IsEmpty());
REQUIRE_THAT(non_empty_array, !IsEmpty());
std::vector<std::string> empty_vec;
std::vector<char> non_empty_vec{ 'a', 'b', 'c' };
REQUIRE_THAT(empty_vec, IsEmpty());
REQUIRE_THAT(non_empty_vec, !IsEmpty());
std::list<std::list<std::list<int>>> inner_lists_are_empty;
inner_lists_are_empty.push_back({});
REQUIRE_THAT(inner_lists_are_empty, !IsEmpty());
REQUIRE_THAT(inner_lists_are_empty.front(), IsEmpty());
}
SECTION("Type with empty") {
REQUIRE_THAT(has_empty{}, !IsEmpty());
}
SECTION("Type requires ADL found empty free function") {
REQUIRE_THAT(unrelated::ADL_empty{}, IsEmpty());
}
}
namespace {
class LessThanMatcher final : public Catch::Matchers::MatcherBase<size_t> {
size_t m_target;
public:
explicit LessThanMatcher(size_t target):
m_target(target)
{}
bool match(size_t const& size) const override {
return size < m_target;
}
std::string describe() const override {
return "is less than " + std::to_string(m_target);
}
};
LessThanMatcher Lt(size_t sz) {
return LessThanMatcher{ sz };
}
struct has_size {
size_t size() const {
return 13;
}
};
} // end unnamed namespace
TEST_CASE("Usage of the SizeIs range matcher", "[matchers][templated][size]") {
using Catch::Matchers::SizeIs;
SECTION("Some with stdlib containers") {
std::vector<int> empty_vec;
REQUIRE_THAT(empty_vec, SizeIs(0));
REQUIRE_THAT(empty_vec, !SizeIs(2));
REQUIRE_THAT(empty_vec, SizeIs(Lt(2)));
std::array<int, 2> arr{};
REQUIRE_THAT(arr, SizeIs(2));
REQUIRE_THAT(arr, SizeIs( Lt(3)));
REQUIRE_THAT(arr, !SizeIs(!Lt(3)));
std::map<int, int> map{ {1, 1}, {2, 2}, {3, 3} };
REQUIRE_THAT(map, SizeIs(3));
}
SECTION("Type requires ADL found size free function") {
REQUIRE_THAT(unrelated::ADL_size{}, SizeIs(12));
}
SECTION("Type has size member") {
REQUIRE_THAT(has_size{}, SizeIs(13));
}
}
2020-12-08 00:23:54 +01:00
TEST_CASE("Usage of AllMatch range matcher", "[matchers][templated][quantifiers]") {
2020-12-08 00:23:54 +01:00
using Catch::Matchers::AllMatch;
using Catch::Matchers::Predicate;
SECTION("Basic usage") {
using Catch::Matchers::Contains;
using Catch::Matchers::SizeIs;
std::array<std::array<int, 5>, 5> data{{
{{ 0, 1, 2, 3, 5 }},
{{ 4,-3,-2, 5, 0 }},
{{ 0, 0, 0, 5, 0 }},
{{ 0,-5, 0, 5, 0 }},
{{ 1, 0, 0,-1, 5 }}
}};
REQUIRE_THAT(data, AllMatch(SizeIs(5)));
REQUIRE_THAT(data, !AllMatch(Contains(0) && Contains(1)));
2020-12-08 00:23:54 +01:00
}
SECTION("Type requires ADL found begin and end") {
unrelated::needs_ADL_begin<int> needs_adl{ 1, 2, 3, 4, 5 };
REQUIRE_THAT( needs_adl, AllMatch( Predicate<int>( []( int elem ) {
return elem < 6;
} ) ) );
}
SECTION("Shortcircuiting") {
with_mocked_iterator_access<int> mocked{ 1, 2, 3, 4, 5 };
SECTION("All are read") {
auto allMatch = AllMatch(Predicate<int>([](int elem) {
return elem < 10;
}));
REQUIRE_THAT(mocked, allMatch);
REQUIRE(mocked.m_derefed[0]);
REQUIRE(mocked.m_derefed[1]);
REQUIRE(mocked.m_derefed[2]);
REQUIRE(mocked.m_derefed[3]);
REQUIRE(mocked.m_derefed[4]);
}
SECTION("Short-circuited") {
auto allMatch = AllMatch(Predicate<int>([](int elem) {
return elem < 3;
}));
REQUIRE_THAT(mocked, !allMatch);
REQUIRE(mocked.m_derefed[0]);
REQUIRE(mocked.m_derefed[1]);
REQUIRE(mocked.m_derefed[2]);
REQUIRE_FALSE(mocked.m_derefed[3]);
REQUIRE_FALSE(mocked.m_derefed[4]);
}
}
}
2020-12-08 00:23:54 +01:00
TEST_CASE("Usage of AnyMatch range matcher", "[matchers][templated][quantifiers]") {
using Catch::Matchers::AnyMatch;
using Catch::Matchers::Predicate;
SECTION("Basic usage") {
using Catch::Matchers::Contains;
using Catch::Matchers::SizeIs;
std::array<std::array<int, 5>, 5> data{ {
{{ 0, 1, 2, 3, 5 }},
{{ 4,-3,-2, 5, 0 }},
{{ 0, 0, 0, 5, 0 }},
{{ 0,-5, 0, 5, 0 }},
{{ 1, 0, 0,-1, 5 }}
} };
REQUIRE_THAT(data, AnyMatch(SizeIs(5)));
REQUIRE_THAT(data, !AnyMatch(Contains(0) && Contains(10)));
}
SECTION( "Type requires ADL found begin and end" ) {
unrelated::needs_ADL_begin<int> needs_adl{ 1, 2, 3, 4, 5 };
REQUIRE_THAT( needs_adl, AnyMatch( Predicate<int>( []( int elem ) {
return elem < 3;
} ) ) );
}
2020-12-08 00:23:54 +01:00
SECTION("Shortcircuiting") {
with_mocked_iterator_access<int> mocked{ 1, 2, 3, 4, 5 };
SECTION("All are read") {
auto anyMatch = AnyMatch(
Predicate<int>( []( int elem ) { return elem > 10; } ) );
REQUIRE_THAT( mocked, !anyMatch );
REQUIRE( mocked.m_derefed[0] );
REQUIRE( mocked.m_derefed[1] );
REQUIRE( mocked.m_derefed[2] );
REQUIRE( mocked.m_derefed[3] );
REQUIRE( mocked.m_derefed[4] );
}
SECTION("Short-circuited") {
auto anyMatch = AnyMatch(
Predicate<int>( []( int elem ) { return elem < 3; } ) );
REQUIRE_THAT( mocked, anyMatch );
REQUIRE( mocked.m_derefed[0] );
REQUIRE_FALSE( mocked.m_derefed[1] );
REQUIRE_FALSE( mocked.m_derefed[2] );
REQUIRE_FALSE( mocked.m_derefed[3] );
REQUIRE_FALSE( mocked.m_derefed[4] );
}
2020-12-08 00:23:54 +01:00
}
}
2020-12-08 00:23:54 +01:00
TEST_CASE("Usage of NoneMatch range matcher", "[matchers][templated][quantifiers]") {
using Catch::Matchers::NoneMatch;
using Catch::Matchers::Predicate;
SECTION("Basic usage") {
using Catch::Matchers::Contains;
using Catch::Matchers::SizeIs;
std::array<std::array<int, 5>, 5> data{ {
{{ 0, 1, 2, 3, 5 }},
{{ 4,-3,-2, 5, 0 }},
{{ 0, 0, 0, 5, 0 }},
{{ 0,-5, 0, 5, 0 }},
{{ 1, 0, 0,-1, 5 }}
} };
REQUIRE_THAT(data, NoneMatch(SizeIs(6)));
REQUIRE_THAT(data, !NoneMatch(Contains(0) && Contains(1)));
}
2020-12-08 00:23:54 +01:00
SECTION( "Type requires ADL found begin and end" ) {
unrelated::needs_ADL_begin<int> needs_adl{ 1, 2, 3, 4, 5 };
REQUIRE_THAT( needs_adl, NoneMatch( Predicate<int>( []( int elem ) {
return elem > 6;
} ) ) );
}
2020-12-08 00:23:54 +01:00
SECTION("Shortcircuiting") {
with_mocked_iterator_access<int> mocked{ 1, 2, 3, 4, 5 };
SECTION("All are read") {
auto noneMatch = NoneMatch(
Predicate<int>([](int elem) { return elem > 10; }));
REQUIRE_THAT(mocked, noneMatch);
REQUIRE(mocked.m_derefed[0]);
REQUIRE(mocked.m_derefed[1]);
REQUIRE(mocked.m_derefed[2]);
REQUIRE(mocked.m_derefed[3]);
REQUIRE(mocked.m_derefed[4]);
}
SECTION("Short-circuited") {
auto noneMatch = NoneMatch(
Predicate<int>([](int elem) { return elem < 3; }));
REQUIRE_THAT(mocked, !noneMatch);
REQUIRE(mocked.m_derefed[0]);
REQUIRE_FALSE(mocked.m_derefed[1]);
REQUIRE_FALSE(mocked.m_derefed[2]);
REQUIRE_FALSE(mocked.m_derefed[3]);
REQUIRE_FALSE(mocked.m_derefed[4]);
}
2020-12-08 00:23:54 +01:00
}
}
namespace {
struct ConvertibleToBool
{
bool v;
explicit operator bool() const
{
return v;
}
};
}
namespace Catch {
template <>
struct StringMaker<ConvertibleToBool> {
static std::string
convert( ConvertibleToBool const& convertible_to_bool ) {
return ::Catch::Detail::stringify( convertible_to_bool.v );
}
};
} // namespace Catch
TEST_CASE("Usage of AllTrue range matcher", "[matchers][templated][quantifiers]") {
using Catch::Matchers::AllTrue;
SECTION( "Basic usage" ) {
SECTION( "All true evaluates to true" ) {
std::array<bool, 5> const data{ { true, true, true, true, true } };
REQUIRE_THAT( data, AllTrue() );
}
SECTION( "Empty evaluates to true" ) {
std::array<bool, 0> const data{};
REQUIRE_THAT( data, AllTrue() );
}
2023-04-25 20:14:27 +02:00
SECTION( "One false evaluates to false" ) {
std::array<bool, 5> const data{ { true, true, false, true, true } };
REQUIRE_THAT( data, !AllTrue() );
}
SECTION( "All false evaluates to false" ) {
std::array<bool, 5> const data{
{ false, false, false, false, false } };
REQUIRE_THAT( data, !AllTrue() );
}
}
SECTION( "Contained type is convertible to bool" ) {
SECTION( "All true evaluates to true" ) {
std::array<ConvertibleToBool, 5> const data{
{ { true }, { true }, { true }, { true }, { true } } };
REQUIRE_THAT( data, AllTrue() );
}
2023-04-25 20:14:27 +02:00
SECTION( "One false evaluates to false" ) {
std::array<ConvertibleToBool, 5> const data{
{ { true }, { true }, { false }, { true }, { true } } };
REQUIRE_THAT( data, !AllTrue() );
}
SECTION( "All false evaluates to false" ) {
std::array<ConvertibleToBool, 5> const data{
{ { false }, { false }, { false }, { false }, { false } } };
REQUIRE_THAT( data, !AllTrue() );
}
}
SECTION( "Shortcircuiting" ) {
SECTION( "All are read" ) {
with_mocked_iterator_access<bool> const mocked{
true, true, true, true, true };
REQUIRE_THAT( mocked, AllTrue() );
REQUIRE( mocked.m_derefed[0] );
REQUIRE( mocked.m_derefed[1] );
REQUIRE( mocked.m_derefed[2] );
REQUIRE( mocked.m_derefed[3] );
REQUIRE( mocked.m_derefed[4] );
}
SECTION( "Short-circuited" ) {
with_mocked_iterator_access<bool> const mocked{
true, true, false, true, true };
REQUIRE_THAT( mocked, !AllTrue() );
REQUIRE( mocked.m_derefed[0] );
REQUIRE( mocked.m_derefed[1] );
REQUIRE( mocked.m_derefed[2] );
REQUIRE_FALSE( mocked.m_derefed[3] );
REQUIRE_FALSE( mocked.m_derefed[4] );
}
}
}
TEST_CASE( "Usage of NoneTrue range matcher", "[matchers][templated][quantifiers]" ) {
using Catch::Matchers::NoneTrue;
SECTION( "Basic usage" ) {
SECTION( "All true evaluates to false" ) {
std::array<bool, 5> const data{ { true, true, true, true, true } };
REQUIRE_THAT( data, !NoneTrue() );
}
SECTION( "Empty evaluates to true" ) {
std::array<bool, 0> const data{};
REQUIRE_THAT( data, NoneTrue() );
}
2023-04-25 20:14:27 +02:00
SECTION( "One true evaluates to false" ) {
std::array<bool, 5> const data{
{ false, false, true, false, false } };
REQUIRE_THAT( data, !NoneTrue() );
}
SECTION( "All false evaluates to true" ) {
std::array<bool, 5> const data{
{ false, false, false, false, false } };
REQUIRE_THAT( data, NoneTrue() );
}
}
SECTION( "Contained type is convertible to bool" ) {
SECTION( "All true evaluates to false" ) {
std::array<ConvertibleToBool, 5> const data{
{ { true }, { true }, { true }, { true }, { true } } };
REQUIRE_THAT( data, !NoneTrue() );
}
2023-04-25 20:14:27 +02:00
SECTION( "One true evaluates to false" ) {
std::array<ConvertibleToBool, 5> const data{
{ { false }, { false }, { true }, { false }, { false } } };
REQUIRE_THAT( data, !NoneTrue() );
}
SECTION( "All false evaluates to true" ) {
std::array<ConvertibleToBool, 5> const data{
{ { false }, { false }, { false }, { false }, { false } } };
REQUIRE_THAT( data, NoneTrue() );
}
}
SECTION( "Shortcircuiting" ) {
SECTION( "All are read" ) {
with_mocked_iterator_access<bool> const mocked{
false, false, false, false, false };
REQUIRE_THAT( mocked, NoneTrue() );
REQUIRE( mocked.m_derefed[0] );
REQUIRE( mocked.m_derefed[1] );
REQUIRE( mocked.m_derefed[2] );
REQUIRE( mocked.m_derefed[3] );
REQUIRE( mocked.m_derefed[4] );
}
SECTION( "Short-circuited" ) {
with_mocked_iterator_access<bool> const mocked{
false, false, true, true, true };
REQUIRE_THAT( mocked, !NoneTrue() );
REQUIRE( mocked.m_derefed[0] );
REQUIRE( mocked.m_derefed[1] );
REQUIRE( mocked.m_derefed[2] );
REQUIRE_FALSE( mocked.m_derefed[3] );
REQUIRE_FALSE( mocked.m_derefed[4] );
}
}
}
TEST_CASE( "Usage of AnyTrue range matcher", "[matchers][templated][quantifiers]" ) {
using Catch::Matchers::AnyTrue;
SECTION( "Basic usage" ) {
SECTION( "All true evaluates to true" ) {
std::array<bool, 5> const data{ { true, true, true, true, true } };
REQUIRE_THAT( data, AnyTrue() );
}
SECTION( "Empty evaluates to false" ) {
std::array<bool, 0> const data{};
REQUIRE_THAT( data, !AnyTrue() );
}
2023-04-25 20:14:27 +02:00
SECTION( "One true evaluates to true" ) {
std::array<bool, 5> const data{
{ false, false, true, false, false } };
REQUIRE_THAT( data, AnyTrue() );
}
SECTION( "All false evaluates to false" ) {
std::array<bool, 5> const data{
{ false, false, false, false, false } };
REQUIRE_THAT( data, !AnyTrue() );
}
}
SECTION( "Contained type is convertible to bool" ) {
SECTION( "All true evaluates to true" ) {
std::array<ConvertibleToBool, 5> const data{
{ { true }, { true }, { true }, { true }, { true } } };
REQUIRE_THAT( data, AnyTrue() );
}
2023-04-25 20:14:27 +02:00
SECTION( "One true evaluates to true" ) {
std::array<ConvertibleToBool, 5> const data{
{ { false }, { false }, { true }, { false }, { false } } };
REQUIRE_THAT( data, AnyTrue() );
}
SECTION( "All false evaluates to false" ) {
std::array<ConvertibleToBool, 5> const data{
{ { false }, { false }, { false }, { false }, { false } } };
REQUIRE_THAT( data, !AnyTrue() );
}
}
SECTION( "Shortcircuiting" ) {
SECTION( "All are read" ) {
with_mocked_iterator_access<bool> const mocked{
false, false, false, false, true };
REQUIRE_THAT( mocked, AnyTrue() );
REQUIRE( mocked.m_derefed[0] );
REQUIRE( mocked.m_derefed[1] );
REQUIRE( mocked.m_derefed[2] );
REQUIRE( mocked.m_derefed[3] );
REQUIRE( mocked.m_derefed[4] );
}
SECTION( "Short-circuited" ) {
with_mocked_iterator_access<bool> const mocked{
false, false, true, true, true };
REQUIRE_THAT( mocked, AnyTrue() );
REQUIRE( mocked.m_derefed[0] );
REQUIRE( mocked.m_derefed[1] );
REQUIRE( mocked.m_derefed[2] );
REQUIRE_FALSE( mocked.m_derefed[3] );
REQUIRE_FALSE( mocked.m_derefed[4] );
}
}
}
TEST_CASE("All/Any/None True matchers support types with ADL begin",
"[approvals][matchers][quantifiers][templated]") {
using Catch::Matchers::AllTrue;
using Catch::Matchers::NoneTrue;
using Catch::Matchers::AnyTrue;
SECTION( "Type requires ADL found begin and end" ) {
unrelated::needs_ADL_begin<bool> const needs_adl{
true, true, true, true, true };
REQUIRE_THAT( needs_adl, AllTrue() );
}
SECTION( "Type requires ADL found begin and end" ) {
unrelated::needs_ADL_begin<bool> const needs_adl{
false, false, false, false, false };
REQUIRE_THAT( needs_adl, NoneTrue() );
}
SECTION( "Type requires ADL found begin and end" ) {
unrelated::needs_ADL_begin<bool> const needs_adl{
false, false, true, false, false };
REQUIRE_THAT( needs_adl, AnyTrue() );
}
}
// Range loop iterating over range with different types for begin and end is a
// C++17 feature, and GCC refuses to compile such code unless the lang mode is
// set to C++17 or later.
#if defined(CATCH_CPP17_OR_GREATER)
TEST_CASE( "The quantifier range matchers support types with different types returned from begin and end",
"[matchers][templated][quantifiers][approvals]" ) {
using Catch::Matchers::AllMatch;
using Catch::Matchers::AllTrue;
using Catch::Matchers::AnyMatch;
using Catch::Matchers::AnyTrue;
using Catch::Matchers::NoneMatch;
using Catch::Matchers::NoneTrue;
using Catch::Matchers::Predicate;
SECTION( "AllAnyNoneMatch" ) {
has_different_begin_end_types<int> diff_types{ 1, 2, 3, 4, 5 };
REQUIRE_THAT( diff_types, !AllMatch( Predicate<int>( []( int elem ) {
return elem < 3;
} ) ) );
REQUIRE_THAT( diff_types, AnyMatch( Predicate<int>( []( int elem ) {
return elem < 2;
} ) ) );
REQUIRE_THAT( diff_types, !NoneMatch( Predicate<int>( []( int elem ) {
return elem < 3;
} ) ) );
}
SECTION( "AllAnyNoneTrue" ) {
has_different_begin_end_types<bool> diff_types{ false, false, true, false, false };
REQUIRE_THAT( diff_types, !AllTrue() );
REQUIRE_THAT( diff_types, AnyTrue() );
REQUIRE_THAT( diff_types, !NoneTrue() );
}
}
TEST_CASE( "RangeEquals supports ranges with different types returned from begin and end",
"[matchers][templated][range][approvals] ") {
using Catch::Matchers::RangeEquals;
using Catch::Matchers::UnorderedRangeEquals;
has_different_begin_end_types<int> diff_types{ 1, 2, 3, 4, 5 };
std::array<int, 5> arr1{ { 1, 2, 3, 4, 5 } }, arr2{ { 2, 3, 4, 5, 6 } };
REQUIRE_THAT( diff_types, RangeEquals( arr1 ) );
REQUIRE_THAT( diff_types, RangeEquals( arr2, []( int l, int r ) {
return l + 1 == r;
} ) );
REQUIRE_THAT( diff_types, UnorderedRangeEquals( diff_types ) );
}
TEST_CASE( "RangeContains supports ranges with different types returned from "
"begin and end",
"[matchers][templated][range][approvals]" ) {
using Catch::Matchers::Contains;
has_different_begin_end_types<size_t> diff_types{ 1, 2, 3, 4, 5 };
REQUIRE_THAT( diff_types, Contains( size_t( 3 ) ) );
REQUIRE_THAT( diff_types, Contains( LessThanMatcher( size_t( 4 ) ) ) );
}
#endif
TEST_CASE( "Usage of RangeEquals range matcher", "[matchers][templated][quantifiers]" ) {
using Catch::Matchers::RangeEquals;
// In these tests, the types are always the same - type conversion is in the next section
SECTION( "Basic usage" ) {
SECTION( "Empty container matches empty container" ) {
const std::vector<int> empty_vector;
CHECK_THAT( empty_vector, RangeEquals( empty_vector ) );
}
SECTION( "Empty container does not match non-empty container" ) {
const std::vector<int> empty_vector;
const std::vector<int> non_empty_vector{ 1 };
CHECK_THAT( empty_vector, !RangeEquals( non_empty_vector ) );
// ...and in reverse
CHECK_THAT( non_empty_vector, !RangeEquals( empty_vector ) );
}
SECTION( "Two equal 1-length non-empty containers" ) {
const std::array<int, 1> non_empty_array{ { 1 } };
CHECK_THAT( non_empty_array, RangeEquals( non_empty_array ) );
}
SECTION( "Two equal-sized, equal, non-empty containers" ) {
const std::array<int, 3> array_a{ { 1, 2, 3 } };
CHECK_THAT( array_a, RangeEquals( array_a ) );
}
SECTION( "Two equal-sized, non-equal, non-empty containers" ) {
const std::array<int, 3> array_a{ { 1, 2, 3 } };
const std::array<int, 3> array_b{ { 2, 2, 3 } };
const std::array<int, 3> array_c{ { 1, 2, 2 } };
CHECK_THAT( array_a, !RangeEquals( array_b ) );
CHECK_THAT( array_a, !RangeEquals( array_c ) );
}
SECTION( "Two non-equal-sized, non-empty containers (with same first "
"elements)" ) {
const std::vector<int> vector_a{ 1, 2, 3 };
const std::vector<int> vector_b{ 1, 2, 3, 4 };
CHECK_THAT( vector_a, !RangeEquals( vector_b ) );
}
}
SECTION( "Custom predicate" ) {
auto close_enough = []( int lhs, int rhs ) {
return std::abs( lhs - rhs ) <= 1;
};
SECTION( "Two equal non-empty containers (close enough)" ) {
const std::vector<int> vector_a{ { 1, 2, 3 } };
const std::vector<int> vector_a_plus_1{ { 2, 3, 4 } };
CHECK_THAT( vector_a, RangeEquals( vector_a_plus_1, close_enough ) );
}
SECTION( "Two non-equal non-empty containers (close enough)" ) {
const std::vector<int> vector_a{ { 1, 2, 3 } };
const std::vector<int> vector_b{ { 3, 3, 4 } };
CHECK_THAT( vector_a, !RangeEquals( vector_b, close_enough ) );
}
}
SECTION( "Ranges that need ADL begin/end" ) {
unrelated::needs_ADL_begin<int> const
needs_adl1{ 1, 2, 3, 4, 5 },
needs_adl2{ 1, 2, 3, 4, 5 },
needs_adl3{ 2, 3, 4, 5, 6 };
REQUIRE_THAT( needs_adl1, RangeEquals( needs_adl2 ) );
REQUIRE_THAT( needs_adl1, RangeEquals( needs_adl3, []( int l, int r ) {
return l + 1 == r;
} ) );
}
SECTION("Check short-circuiting behaviour") {
with_mocked_iterator_access<int> const mocked1{ 1, 2, 3, 4 };
SECTION( "Check short-circuits on failure" ) {
std::array<int, 4> arr{ { 1, 2, 4, 4 } };
REQUIRE_THAT( mocked1, !RangeEquals( arr ) );
REQUIRE( mocked1.m_derefed[0] );
REQUIRE( mocked1.m_derefed[1] );
REQUIRE( mocked1.m_derefed[2] );
REQUIRE_FALSE( mocked1.m_derefed[3] );
}
SECTION("All elements are checked on success") {
std::array<int, 4> arr{ { 1, 2, 3, 4 } };
REQUIRE_THAT( mocked1, RangeEquals( arr ) );
REQUIRE( mocked1.m_derefed[0] );
REQUIRE( mocked1.m_derefed[1] );
REQUIRE( mocked1.m_derefed[2] );
REQUIRE( mocked1.m_derefed[3] );
}
}
}
TEST_CASE( "Usage of UnorderedRangeEquals range matcher",
"[matchers][templated][quantifiers]" ) {
using Catch::Matchers::UnorderedRangeEquals;
// In these tests, the types are always the same - type conversion is in the
// next section
SECTION( "Basic usage" ) {
SECTION( "Empty container matches empty container" ) {
const std::vector<int> empty_vector;
CHECK_THAT( empty_vector, UnorderedRangeEquals( empty_vector ) );
}
SECTION( "Empty container does not match non-empty container" ) {
const std::vector<int> empty_vector;
const std::vector<int> non_empty_vector{ 1 };
CHECK_THAT( empty_vector,
!UnorderedRangeEquals( non_empty_vector ) );
// ...and in reverse
CHECK_THAT( non_empty_vector,
!UnorderedRangeEquals( empty_vector ) );
}
SECTION( "Two equal 1-length non-empty containers" ) {
const std::array<int, 1> non_empty_array{ { 1 } };
CHECK_THAT( non_empty_array,
UnorderedRangeEquals( non_empty_array ) );
}
SECTION( "Two equal-sized, equal, non-empty containers" ) {
const std::array<int, 3> array_a{ { 1, 2, 3 } };
CHECK_THAT( array_a, UnorderedRangeEquals( array_a ) );
}
SECTION( "Two equal-sized, non-equal, non-empty containers" ) {
const std::array<int, 3> array_a{ { 1, 2, 3 } };
const std::array<int, 3> array_b{ { 2, 2, 3 } };
CHECK_THAT( array_a, !UnorderedRangeEquals( array_b ) );
}
SECTION( "Two non-equal-sized, non-empty containers" ) {
const std::vector<int> vector_a{ 1, 2, 3 };
const std::vector<int> vector_b{ 1, 2, 3, 4 };
CHECK_THAT( vector_a, !UnorderedRangeEquals( vector_b ) );
}
}
SECTION( "Custom predicate" ) {
auto close_enough = []( int lhs, int rhs ) {
return std::abs( lhs - rhs ) <= 1;
};
SECTION( "Two equal non-empty containers (close enough)" ) {
const std::vector<int> vector_a{ { 1, 10, 20 } };
const std::vector<int> vector_a_plus_1{ { 11, 21, 2 } };
CHECK_THAT( vector_a,
UnorderedRangeEquals( vector_a_plus_1, close_enough ) );
}
SECTION( "Two non-equal non-empty containers (close enough)" ) {
const std::vector<int> vector_a{ { 1, 10, 21 } };
const std::vector<int> vector_b{ { 11, 21, 3 } };
CHECK_THAT( vector_a,
!UnorderedRangeEquals( vector_b, close_enough ) );
}
}
SECTION( "Ranges that need ADL begin/end" ) {
unrelated::needs_ADL_begin<int> const
needs_adl1{ 1, 2, 3, 4, 5 },
needs_adl2{ 1, 2, 3, 4, 5 };
REQUIRE_THAT( needs_adl1, UnorderedRangeEquals( needs_adl2 ) );
}
}
/**
* Return true if the type given has a random access iterator type.
*/
template <typename Container>
static constexpr bool ContainerIsRandomAccess( const Container& ) {
using array_iter_category = typename std::iterator_traits<
typename Container::iterator>::iterator_category;
return std::is_base_of<std::random_access_iterator_tag,
array_iter_category>::value;
}
TEST_CASE( "Type conversions of RangeEquals and similar",
"[matchers][templated][quantifiers]" ) {
using Catch::Matchers::RangeEquals;
using Catch::Matchers::UnorderedRangeEquals;
// In these test, we can always test RangeEquals and
// UnorderedRangeEquals in the same way, since we're mostly
// testing the template type deductions (and RangeEquals
// implies UnorderedRangeEquals)
SECTION( "Container conversions" ) {
SECTION( "Two equal containers of different container types" ) {
const std::array<int, 3> array_int_a{ { 1, 2, 3 } };
const int c_array[3] = { 1, 2, 3 };
CHECK_THAT( array_int_a, RangeEquals( c_array ) );
CHECK_THAT( array_int_a, UnorderedRangeEquals( c_array ) );
}
SECTION( "Two equal containers of different container types "
"(differ in array N)" ) {
const std::array<int, 3> array_int_3{ { 1, 2, 3 } };
const std::array<int, 4> array_int_4{ { 1, 2, 3, 4 } };
CHECK_THAT( array_int_3, !RangeEquals( array_int_4 ) );
CHECK_THAT( array_int_3, !UnorderedRangeEquals( array_int_4 ) );
}
SECTION( "Two equal containers of different container types and value "
"types" ) {
const std::array<int, 3> array_int_a{ { 1, 2, 3 } };
const std::vector<int> vector_char_a{ 1, 2, 3 };
CHECK_THAT( array_int_a, RangeEquals( vector_char_a ) );
CHECK_THAT( array_int_a, UnorderedRangeEquals( vector_char_a ) );
}
SECTION( "Two equal containers, one random access, one not" ) {
const std::array<int, 3> array_int_a{ { 1, 2, 3 } };
const std::list<int> list_char_a{ 1, 2, 3 };
// Verify these types really are different in random access nature
STATIC_REQUIRE( ContainerIsRandomAccess( array_int_a ) !=
ContainerIsRandomAccess( list_char_a ) );
CHECK_THAT( array_int_a, RangeEquals( list_char_a ) );
CHECK_THAT( array_int_a, UnorderedRangeEquals( list_char_a ) );
}
}
SECTION( "Value type" ) {
SECTION( "Two equal containers of different value types" ) {
const std::vector<int> vector_int_a{ 1, 2, 3 };
const std::vector<char> vector_char_a{ 1, 2, 3 };
CHECK_THAT( vector_int_a, RangeEquals( vector_char_a ) );
CHECK_THAT( vector_int_a, UnorderedRangeEquals( vector_char_a ) );
}
SECTION( "Two non-equal containers of different value types" ) {
const std::vector<int> vector_int_a{ 1, 2, 3 };
const std::vector<char> vector_char_b{ 1, 2, 2 };
CHECK_THAT( vector_int_a, !RangeEquals( vector_char_b ) );
CHECK_THAT( vector_int_a, !UnorderedRangeEquals( vector_char_b ) );
}
}
SECTION( "Ranges with begin that needs ADL" ) {
unrelated::needs_ADL_begin<int> a{ 1, 2, 3 }, b{ 3, 2, 1 };
REQUIRE_THAT( a, !RangeEquals( b ) );
REQUIRE_THAT( a, UnorderedRangeEquals( b ) );
}
SECTION( "Custom predicate" ) {
auto close_enough = []( int lhs, int rhs ) {
return std::abs( lhs - rhs ) <= 1;
};
SECTION( "Two equal non-empty containers (close enough)" ) {
const std::vector<int> vector_a{ { 1, 2, 3 } };
const std::array<char, 3> array_a_plus_1{ { 2, 3, 4 } };
CHECK_THAT( vector_a,
RangeEquals( array_a_plus_1, close_enough ) );
CHECK_THAT( vector_a,
UnorderedRangeEquals( array_a_plus_1, close_enough ) );
}
}
}