catch2/extras/catch_amalgamated.cpp

11517 lines
400 KiB
C++
Raw Permalink Normal View History

2023-12-11 00:55:40 +01:00
// Copyright Catch2 Authors
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE.txt or copy at
// https://www.boost.org/LICENSE_1_0.txt)
// SPDX-License-Identifier: BSL-1.0
2024-03-01 22:07:10 +01:00
// Catch v3.5.3
// Generated: 2024-03-01 22:05:56.038084
// ----------------------------------------------------------
// This file is an amalgamation of multiple different files.
// You probably shouldn't edit it directly.
// ----------------------------------------------------------
#include "catch_amalgamated.hpp"
2022-10-17 19:57:58 +02:00
#ifndef CATCH_WINDOWS_H_PROXY_HPP_INCLUDED
#define CATCH_WINDOWS_H_PROXY_HPP_INCLUDED
#if defined(CATCH_PLATFORM_WINDOWS)
// We might end up with the define made globally through the compiler,
// and we don't want to trigger warnings for this
#if !defined(NOMINMAX)
# define NOMINMAX
#endif
#if !defined(WIN32_LEAN_AND_MEAN)
# define WIN32_LEAN_AND_MEAN
#endif
#include <windows.h>
#endif // defined(CATCH_PLATFORM_WINDOWS)
#endif // CATCH_WINDOWS_H_PROXY_HPP_INCLUDED
2022-07-17 20:18:44 +02:00
namespace Catch {
namespace Benchmark {
namespace Detail {
ChronometerConcept::~ChronometerConcept() = default;
} // namespace Detail
} // namespace Benchmark
} // namespace Catch
2023-12-11 00:55:40 +01:00
// Adapted from donated nonius code.
#include <vector>
namespace Catch {
namespace Benchmark {
namespace Detail {
SampleAnalysis analyse(const IConfig &cfg, FDuration* first, FDuration* last) {
if (!cfg.benchmarkNoAnalysis()) {
std::vector<double> samples;
samples.reserve(static_cast<size_t>(last - first));
for (auto current = first; current != last; ++current) {
samples.push_back( current->count() );
}
auto analysis = Catch::Benchmark::Detail::analyse_samples(
cfg.benchmarkConfidenceInterval(),
cfg.benchmarkResamples(),
samples.data(),
samples.data() + samples.size() );
auto outliers = Catch::Benchmark::Detail::classify_outliers(
samples.data(), samples.data() + samples.size() );
auto wrap_estimate = [](Estimate<double> e) {
return Estimate<FDuration> {
FDuration(e.point),
FDuration(e.lower_bound),
FDuration(e.upper_bound),
e.confidence_interval,
};
};
std::vector<FDuration> samples2;
samples2.reserve(samples.size());
for (auto s : samples) {
samples2.push_back( FDuration( s ) );
}
return {
CATCH_MOVE(samples2),
wrap_estimate(analysis.mean),
wrap_estimate(analysis.standard_deviation),
outliers,
analysis.outlier_variance,
};
} else {
std::vector<FDuration> samples;
samples.reserve(static_cast<size_t>(last - first));
FDuration mean = FDuration(0);
int i = 0;
for (auto it = first; it < last; ++it, ++i) {
2024-03-01 22:07:10 +01:00
samples.push_back(*it);
mean += *it;
2023-12-11 00:55:40 +01:00
}
mean /= i;
return SampleAnalysis{
CATCH_MOVE(samples),
Estimate<FDuration>{ mean, mean, mean, 0.0 },
Estimate<FDuration>{ FDuration( 0 ),
FDuration( 0 ),
FDuration( 0 ),
0.0 },
OutlierClassification{},
0.0
};
}
}
} // namespace Detail
} // namespace Benchmark
} // namespace Catch
2022-07-17 20:18:44 +02:00
namespace Catch {
namespace Benchmark {
namespace Detail {
BenchmarkFunction::callable::~callable() = default;
} // namespace Detail
} // namespace Benchmark
} // namespace Catch
2023-07-13 13:37:30 +02:00
2022-07-17 20:18:44 +02:00
#include <exception>
namespace Catch {
namespace Benchmark {
namespace Detail {
struct optimized_away_error : std::exception {
const char* what() const noexcept override;
};
const char* optimized_away_error::what() const noexcept {
return "could not measure benchmark, maybe it was optimized away";
}
void throw_optimized_away_error() {
Catch::throw_exception(optimized_away_error{});
}
} // namespace Detail
} // namespace Benchmark
} // namespace Catch
// Adapted from donated nonius code.
2023-12-11 00:55:40 +01:00
#include <algorithm>
#include <cassert>
2023-12-11 00:55:40 +01:00
#include <cmath>
2022-04-20 23:46:07 +02:00
#include <cstddef>
2023-07-13 13:37:30 +02:00
#include <numeric>
#include <random>
#if defined(CATCH_CONFIG_USE_ASYNC)
#include <future>
#endif
2023-07-13 13:37:30 +02:00
namespace Catch {
namespace Benchmark {
namespace Detail {
namespace {
template <typename URng, typename Estimator>
static sample
resample( URng& rng,
unsigned int resamples,
2023-12-11 00:55:40 +01:00
double const* first,
double const* last,
2023-07-13 13:37:30 +02:00
Estimator& estimator ) {
auto n = static_cast<size_t>( last - first );
2024-01-15 14:13:53 +01:00
std::uniform_int_distribution<size_t> dist( 0, n - 1 );
2023-07-13 13:37:30 +02:00
sample out;
out.reserve( resamples );
std::vector<double> resampled;
resampled.reserve( n );
for ( size_t i = 0; i < resamples; ++i ) {
resampled.clear();
for ( size_t s = 0; s < n; ++s ) {
2024-01-15 14:13:53 +01:00
resampled.push_back( first[dist( rng )] );
2023-07-13 13:37:30 +02:00
}
const auto estimate =
2023-12-11 00:55:40 +01:00
estimator( resampled.data(), resampled.data() + resampled.size() );
2023-07-13 13:37:30 +02:00
out.push_back( estimate );
}
std::sort( out.begin(), out.end() );
return out;
}
2023-07-13 13:37:30 +02:00
static double outlier_variance( Estimate<double> mean,
Estimate<double> stddev,
int n ) {
double sb = stddev.point;
double mn = mean.point / n;
double mg_min = mn / 2.;
double sg = (std::min)( mg_min / 4., sb / std::sqrt( n ) );
double sg2 = sg * sg;
double sb2 = sb * sb;
auto c_max = [n, mn, sb2, sg2]( double x ) -> double {
double k = mn - x;
double d = k * k;
double nd = n * d;
double k0 = -n * nd;
double k1 = sb2 - n * sg2 + nd;
double det = k1 * k1 - 4 * sg2 * k0;
return static_cast<int>( -2. * k0 /
( k1 + std::sqrt( det ) ) );
};
auto var_out = [n, sb2, sg2]( double c ) {
double nc = n - c;
return ( nc / n ) * ( sb2 - nc * sg2 );
};
return (std::min)( var_out( 1 ),
var_out(
(std::min)( c_max( 0. ),
c_max( mg_min ) ) ) ) /
sb2;
}
2023-07-13 13:37:30 +02:00
static double erf_inv( double x ) {
// Code accompanying the article "Approximating the erfinv
// function" in GPU Computing Gems, Volume 2
double w, p;
w = -log( ( 1.0 - x ) * ( 1.0 + x ) );
if ( w < 6.250000 ) {
w = w - 3.125000;
p = -3.6444120640178196996e-21;
p = -1.685059138182016589e-19 + p * w;
p = 1.2858480715256400167e-18 + p * w;
p = 1.115787767802518096e-17 + p * w;
p = -1.333171662854620906e-16 + p * w;
p = 2.0972767875968561637e-17 + p * w;
p = 6.6376381343583238325e-15 + p * w;
p = -4.0545662729752068639e-14 + p * w;
p = -8.1519341976054721522e-14 + p * w;
p = 2.6335093153082322977e-12 + p * w;
p = -1.2975133253453532498e-11 + p * w;
p = -5.4154120542946279317e-11 + p * w;
p = 1.051212273321532285e-09 + p * w;
p = -4.1126339803469836976e-09 + p * w;
p = -2.9070369957882005086e-08 + p * w;
p = 4.2347877827932403518e-07 + p * w;
p = -1.3654692000834678645e-06 + p * w;
p = -1.3882523362786468719e-05 + p * w;
p = 0.0001867342080340571352 + p * w;
p = -0.00074070253416626697512 + p * w;
p = -0.0060336708714301490533 + p * w;
p = 0.24015818242558961693 + p * w;
p = 1.6536545626831027356 + p * w;
} else if ( w < 16.000000 ) {
w = sqrt( w ) - 3.250000;
p = 2.2137376921775787049e-09;
p = 9.0756561938885390979e-08 + p * w;
p = -2.7517406297064545428e-07 + p * w;
p = 1.8239629214389227755e-08 + p * w;
p = 1.5027403968909827627e-06 + p * w;
p = -4.013867526981545969e-06 + p * w;
p = 2.9234449089955446044e-06 + p * w;
p = 1.2475304481671778723e-05 + p * w;
p = -4.7318229009055733981e-05 + p * w;
p = 6.8284851459573175448e-05 + p * w;
p = 2.4031110387097893999e-05 + p * w;
p = -0.0003550375203628474796 + p * w;
p = 0.00095328937973738049703 + p * w;
p = -0.0016882755560235047313 + p * w;
p = 0.0024914420961078508066 + p * w;
p = -0.0037512085075692412107 + p * w;
p = 0.005370914553590063617 + p * w;
p = 1.0052589676941592334 + p * w;
p = 3.0838856104922207635 + p * w;
} else {
w = sqrt( w ) - 5.000000;
p = -2.7109920616438573243e-11;
p = -2.5556418169965252055e-10 + p * w;
p = 1.5076572693500548083e-09 + p * w;
p = -3.7894654401267369937e-09 + p * w;
p = 7.6157012080783393804e-09 + p * w;
p = -1.4960026627149240478e-08 + p * w;
p = 2.9147953450901080826e-08 + p * w;
p = -6.7711997758452339498e-08 + p * w;
p = 2.2900482228026654717e-07 + p * w;
p = -9.9298272942317002539e-07 + p * w;
p = 4.5260625972231537039e-06 + p * w;
p = -1.9681778105531670567e-05 + p * w;
p = 7.5995277030017761139e-05 + p * w;
p = -0.00021503011930044477347 + p * w;
p = -0.00013871931833623122026 + p * w;
p = 1.0103004648645343977 + p * w;
p = 4.8499064014085844221 + p * w;
}
return p * x;
}
static double
2023-12-11 00:55:40 +01:00
standard_deviation( double const* first, double const* last ) {
2023-07-13 13:37:30 +02:00
auto m = Catch::Benchmark::Detail::mean( first, last );
double variance =
std::accumulate( first,
last,
0.,
[m]( double a, double b ) {
double diff = b - m;
return a + diff * diff;
} ) /
( last - first );
return std::sqrt( variance );
}
2023-12-11 00:55:40 +01:00
static sample jackknife( double ( *estimator )( double const*,
double const* ),
double* first,
double* last ) {
const auto second = first + 1;
sample results;
results.reserve( static_cast<size_t>( last - first ) );
for ( auto it = first; it != last; ++it ) {
std::iter_swap( it, first );
results.push_back( estimator( second, last ) );
}
return results;
}
2023-07-13 13:37:30 +02:00
} // namespace
} // namespace Detail
} // namespace Benchmark
} // namespace Catch
namespace Catch {
namespace Benchmark {
namespace Detail {
2023-12-11 00:55:40 +01:00
double weighted_average_quantile( int k,
int q,
double* first,
double* last ) {
auto count = last - first;
double idx = (count - 1) * k / static_cast<double>(q);
int j = static_cast<int>(idx);
double g = idx - j;
std::nth_element(first, first + j, last);
auto xj = first[j];
2023-12-11 00:55:40 +01:00
if ( Catch::Detail::directCompare( g, 0 ) ) {
2022-05-17 22:13:36 +02:00
return xj;
}
auto xj1 = *std::min_element(first + (j + 1), last);
return xj + g * (xj1 - xj);
}
2023-07-13 13:37:30 +02:00
OutlierClassification
2023-12-11 00:55:40 +01:00
classify_outliers( double const* first, double const* last ) {
2023-07-13 13:37:30 +02:00
std::vector<double> copy( first, last );
2023-12-11 00:55:40 +01:00
auto q1 = weighted_average_quantile( 1, 4, copy.data(), copy.data() + copy.size() );
auto q3 = weighted_average_quantile( 3, 4, copy.data(), copy.data() + copy.size() );
2023-07-13 13:37:30 +02:00
auto iqr = q3 - q1;
auto los = q1 - ( iqr * 3. );
auto lom = q1 - ( iqr * 1.5 );
auto him = q3 + ( iqr * 1.5 );
auto his = q3 + ( iqr * 3. );
OutlierClassification o;
for ( ; first != last; ++first ) {
const double t = *first;
if ( t < los ) {
++o.low_severe;
} else if ( t < lom ) {
++o.low_mild;
} else if ( t > his ) {
++o.high_severe;
} else if ( t > him ) {
++o.high_mild;
}
++o.samples_seen;
}
return o;
}
2023-12-11 00:55:40 +01:00
double mean( double const* first, double const* last ) {
2023-07-13 13:37:30 +02:00
auto count = last - first;
double sum = 0.;
while (first != last) {
sum += *first;
++first;
}
return sum / static_cast<double>(count);
}
2023-12-11 00:55:40 +01:00
double normal_cdf( double x ) {
return std::erfc( -x / std::sqrt( 2.0 ) ) / 2.0;
}
double erfc_inv(double x) {
return erf_inv(1.0 - x);
}
double normal_quantile(double p) {
static const double ROOT_TWO = std::sqrt(2.0);
double result = 0.0;
assert(p >= 0 && p <= 1);
if (p < 0 || p > 1) {
return result;
}
result = -erfc_inv(2.0 * p);
// result *= normal distribution standard deviation (1.0) * sqrt(2)
result *= /*sd * */ ROOT_TWO;
// result += normal disttribution mean (0)
return result;
}
2023-12-11 00:55:40 +01:00
Estimate<double>
bootstrap( double confidence_level,
double* first,
double* last,
sample const& resample,
double ( *estimator )( double const*, double const* ) ) {
auto n_samples = last - first;
double point = estimator( first, last );
// Degenerate case with a single sample
if ( n_samples == 1 )
return { point, point, point, confidence_level };
sample jack = jackknife( estimator, first, last );
double jack_mean =
mean( jack.data(), jack.data() + jack.size() );
double sum_squares = 0, sum_cubes = 0;
for ( double x : jack ) {
auto difference = jack_mean - x;
auto square = difference * difference;
auto cube = square * difference;
sum_squares += square;
sum_cubes += cube;
}
2023-12-11 00:55:40 +01:00
double accel = sum_cubes / ( 6 * std::pow( sum_squares, 1.5 ) );
long n = static_cast<long>( resample.size() );
double prob_n =
std::count_if( resample.begin(),
resample.end(),
[point]( double x ) { return x < point; } ) /
static_cast<double>( n );
// degenerate case with uniform samples
if ( Catch::Detail::directCompare( prob_n, 0. ) ) {
return { point, point, point, confidence_level };
}
double bias = normal_quantile( prob_n );
double z1 = normal_quantile( ( 1. - confidence_level ) / 2. );
2023-12-11 00:55:40 +01:00
auto cumn = [n]( double x ) -> long {
return std::lround( normal_cdf( x ) *
static_cast<double>( n ) );
};
auto a = [bias, accel]( double b ) {
return bias + b / ( 1. - accel * b );
};
double b1 = bias + z1;
double b2 = bias - z1;
double a1 = a( b1 );
double a2 = a( b2 );
auto lo = static_cast<size_t>( (std::max)( cumn( a1 ), 0l ) );
auto hi =
static_cast<size_t>( (std::min)( cumn( a2 ), n - 1 ) );
return { point, resample[lo], resample[hi], confidence_level };
}
bootstrap_analysis analyse_samples(double confidence_level,
unsigned int n_resamples,
double* first,
double* last) {
2023-07-13 13:37:30 +02:00
auto mean = &Detail::mean;
auto stddev = &standard_deviation;
#if defined(CATCH_CONFIG_USE_ASYNC)
2023-12-11 00:55:40 +01:00
auto Estimate = [=](double(*f)(double const*, double const*)) {
std::random_device rd;
auto seed = rd();
return std::async(std::launch::async, [=] {
2023-12-11 00:55:40 +01:00
SimplePcg32 rng( seed );
auto resampled = resample(rng, n_resamples, first, last, f);
return bootstrap(confidence_level, first, last, resampled, f);
});
};
auto mean_future = Estimate(mean);
auto stddev_future = Estimate(stddev);
auto mean_estimate = mean_future.get();
auto stddev_estimate = stddev_future.get();
#else
2023-12-11 00:55:40 +01:00
auto Estimate = [=](double(*f)(double const* , double const*)) {
std::random_device rd;
auto seed = rd();
SimplePcg32 rng( seed );
auto resampled = resample(rng, n_resamples, first, last, f);
return bootstrap(confidence_level, first, last, resampled, f);
};
auto mean_estimate = Estimate(mean);
auto stddev_estimate = Estimate(stddev);
#endif // CATCH_USE_ASYNC
2023-12-11 00:55:40 +01:00
auto n = static_cast<int>(last - first); // seriously, one can't use integral types without hell in C++
double outlier_variance = Detail::outlier_variance(mean_estimate, stddev_estimate, n);
return { mean_estimate, stddev_estimate, outlier_variance };
}
} // namespace Detail
} // namespace Benchmark
} // namespace Catch
#include <cmath>
#include <limits>
namespace {
// Performs equivalent check of std::fabs(lhs - rhs) <= margin
// But without the subtraction to allow for INFINITY in comparison
bool marginComparison(double lhs, double rhs, double margin) {
return (lhs + margin >= rhs) && (rhs + margin >= lhs);
}
}
namespace Catch {
Approx::Approx ( double value )
2024-03-01 22:07:10 +01:00
: m_epsilon( static_cast<double>(std::numeric_limits<float>::epsilon())*100. ),
m_margin( 0.0 ),
m_scale( 0.0 ),
m_value( value )
{}
Approx Approx::custom() {
return Approx( 0 );
}
Approx Approx::operator-() const {
auto temp(*this);
temp.m_value = -temp.m_value;
return temp;
}
std::string Approx::toString() const {
ReusableStringStream rss;
rss << "Approx( " << ::Catch::Detail::stringify( m_value ) << " )";
return rss.str();
}
bool Approx::equalityComparisonImpl(const double other) const {
// First try with fixed margin, then compute margin based on epsilon, scale and Approx's value
// Thanks to Richard Harris for his help refining the scaled margin value
return marginComparison(m_value, other, m_margin)
|| marginComparison(m_value, other, m_epsilon * (m_scale + std::fabs(std::isinf(m_value)? 0 : m_value)));
}
void Approx::setMargin(double newMargin) {
CATCH_ENFORCE(newMargin >= 0,
"Invalid Approx::margin: " << newMargin << '.'
<< " Approx::Margin has to be non-negative.");
m_margin = newMargin;
}
void Approx::setEpsilon(double newEpsilon) {
CATCH_ENFORCE(newEpsilon >= 0 && newEpsilon <= 1.0,
"Invalid Approx::epsilon: " << newEpsilon << '.'
<< " Approx::epsilon has to be in [0, 1]");
m_epsilon = newEpsilon;
}
namespace literals {
2023-12-11 00:55:40 +01:00
Approx operator ""_a(long double val) {
return Approx(val);
}
2023-12-11 00:55:40 +01:00
Approx operator ""_a(unsigned long long val) {
return Approx(val);
}
} // end namespace literals
std::string StringMaker<Catch::Approx>::convert(Catch::Approx const& value) {
return value.toString();
}
} // end namespace Catch
namespace Catch {
AssertionResultData::AssertionResultData(ResultWas::OfType _resultType, LazyExpression const & _lazyExpression):
lazyExpression(_lazyExpression),
resultType(_resultType) {}
std::string AssertionResultData::reconstructExpression() const {
if( reconstructedExpression.empty() ) {
if( lazyExpression ) {
ReusableStringStream rss;
rss << lazyExpression;
reconstructedExpression = rss.str();
}
}
return reconstructedExpression;
}
2023-01-29 23:18:57 +01:00
AssertionResult::AssertionResult( AssertionInfo const& info, AssertionResultData&& data )
: m_info( info ),
2023-01-29 23:18:57 +01:00
m_resultData( CATCH_MOVE(data) )
{}
// Result was a success
bool AssertionResult::succeeded() const {
return Catch::isOk( m_resultData.resultType );
}
// Result was a success, or failure is suppressed
bool AssertionResult::isOk() const {
return Catch::isOk( m_resultData.resultType ) || shouldSuppressFailure( m_info.resultDisposition );
}
ResultWas::OfType AssertionResult::getResultType() const {
return m_resultData.resultType;
}
bool AssertionResult::hasExpression() const {
return !m_info.capturedExpression.empty();
}
bool AssertionResult::hasMessage() const {
return !m_resultData.message.empty();
}
std::string AssertionResult::getExpression() const {
// Possibly overallocating by 3 characters should be basically free
std::string expr; expr.reserve(m_info.capturedExpression.size() + 3);
if (isFalseTest(m_info.resultDisposition)) {
expr += "!(";
}
expr += m_info.capturedExpression;
if (isFalseTest(m_info.resultDisposition)) {
expr += ')';
}
return expr;
}
std::string AssertionResult::getExpressionInMacro() const {
2023-02-27 15:12:35 +01:00
if ( m_info.macroName.empty() ) {
return static_cast<std::string>( m_info.capturedExpression );
}
2023-02-27 15:12:35 +01:00
std::string expr;
expr.reserve( m_info.macroName.size() + m_info.capturedExpression.size() + 4 );
expr += m_info.macroName;
expr += "( ";
expr += m_info.capturedExpression;
expr += " )";
return expr;
}
bool AssertionResult::hasExpandedExpression() const {
return hasExpression() && getExpandedExpression() != getExpression();
}
std::string AssertionResult::getExpandedExpression() const {
std::string expr = m_resultData.reconstructExpression();
return expr.empty()
? getExpression()
: expr;
}
2022-01-03 23:16:39 +01:00
StringRef AssertionResult::getMessage() const {
return m_resultData.message;
}
SourceLineInfo AssertionResult::getSourceInfo() const {
return m_info.lineInfo;
}
StringRef AssertionResult::getTestMacroName() const {
return m_info.macroName;
}
} // end namespace Catch
2022-11-16 16:06:45 +01:00
#include <fstream>
namespace Catch {
namespace {
static bool enableBazelEnvSupport() {
#if defined( CATCH_CONFIG_BAZEL_SUPPORT )
return true;
2022-07-17 20:18:44 +02:00
#else
2022-11-16 16:06:45 +01:00
return Detail::getEnv( "BAZEL_TEST" ) != nullptr;
#endif
}
2022-07-17 20:18:44 +02:00
2022-11-16 16:06:45 +01:00
struct bazelShardingOptions {
unsigned int shardIndex, shardCount;
std::string shardFilePath;
};
2022-07-17 20:18:44 +02:00
2022-11-16 16:06:45 +01:00
static Optional<bazelShardingOptions> readBazelShardingOptions() {
const auto bazelShardIndex = Detail::getEnv( "TEST_SHARD_INDEX" );
const auto bazelShardTotal = Detail::getEnv( "TEST_TOTAL_SHARDS" );
const auto bazelShardInfoFile = Detail::getEnv( "TEST_SHARD_STATUS_FILE" );
const bool has_all =
bazelShardIndex && bazelShardTotal && bazelShardInfoFile;
if ( !has_all ) {
// We provide nice warning message if the input is
// misconfigured.
auto warn = []( const char* env_var ) {
Catch::cerr()
<< "Warning: Bazel shard configuration is missing '"
<< env_var << "'. Shard configuration is skipped.\n";
};
if ( !bazelShardIndex ) {
warn( "TEST_SHARD_INDEX" );
}
if ( !bazelShardTotal ) {
warn( "TEST_TOTAL_SHARDS" );
}
if ( !bazelShardInfoFile ) {
warn( "TEST_SHARD_STATUS_FILE" );
}
return {};
}
2022-07-17 20:18:44 +02:00
2022-11-16 16:06:45 +01:00
auto shardIndex = parseUInt( bazelShardIndex );
if ( !shardIndex ) {
Catch::cerr()
<< "Warning: could not parse 'TEST_SHARD_INDEX' ('" << bazelShardIndex
<< "') as unsigned int.\n";
return {};
}
auto shardTotal = parseUInt( bazelShardTotal );
if ( !shardTotal ) {
Catch::cerr()
<< "Warning: could not parse 'TEST_TOTAL_SHARD' ('"
<< bazelShardTotal << "') as unsigned int.\n";
return {};
}
return bazelShardingOptions{
*shardIndex, *shardTotal, bazelShardInfoFile };
}
} // end namespace
2022-07-17 20:18:44 +02:00
2022-01-03 23:16:39 +01:00
2022-04-20 23:46:07 +02:00
bool operator==( ProcessedReporterSpec const& lhs,
ProcessedReporterSpec const& rhs ) {
return lhs.name == rhs.name &&
lhs.outputFilename == rhs.outputFilename &&
lhs.colourMode == rhs.colourMode &&
lhs.customOptions == rhs.customOptions;
2022-01-03 23:16:39 +01:00
}
Config::Config( ConfigData const& data ):
2022-04-20 23:46:07 +02:00
m_data( data ) {
// We need to trim filter specs to avoid trouble with superfluous
// whitespace (esp. important for bdd macros, as those are manually
// aligned with whitespace).
for (auto& elem : m_data.testsOrTags) {
elem = trim(elem);
}
for (auto& elem : m_data.sectionsToRun) {
elem = trim(elem);
}
2023-07-13 13:37:30 +02:00
// Insert the default reporter if user hasn't asked for a specific one
2022-04-20 23:46:07 +02:00
if ( m_data.reporterSpecifications.empty() ) {
m_data.reporterSpecifications.push_back( {
#if defined( CATCH_CONFIG_DEFAULT_REPORTER )
CATCH_CONFIG_DEFAULT_REPORTER,
#else
"console",
#endif
{}, {}, {}
} );
}
2022-11-16 16:06:45 +01:00
if ( enableBazelEnvSupport() ) {
readBazelEnvVars();
}
// Bazel support can modify the test specs, so parsing has to happen
// after reading Bazel env vars.
TestSpecParser parser( ITagAliasRegistry::get() );
if ( !m_data.testsOrTags.empty() ) {
m_hasTestFilters = true;
for ( auto const& testOrTags : m_data.testsOrTags ) {
parser.parse( testOrTags );
2022-07-17 20:18:44 +02:00
}
2022-11-16 16:06:45 +01:00
}
m_testSpec = parser.testSpec();
2022-04-20 23:46:07 +02:00
// We now fixup the reporter specs to handle default output spec,
// default colour spec, etc
bool defaultOutputUsed = false;
for ( auto const& reporterSpec : m_data.reporterSpecifications ) {
// We do the default-output check separately, while always
// using the default output below to make the code simpler
// and avoid superfluous copies.
if ( reporterSpec.outputFile().none() ) {
CATCH_ENFORCE( !defaultOutputUsed,
"Internal error: cannot use default output for "
"multiple reporters" );
defaultOutputUsed = true;
2022-01-03 23:16:39 +01:00
}
2022-04-20 23:46:07 +02:00
m_processedReporterSpecs.push_back( ProcessedReporterSpec{
reporterSpec.name(),
reporterSpec.outputFile() ? *reporterSpec.outputFile()
: data.defaultOutputFilename,
reporterSpec.colourMode().valueOr( data.defaultColourMode ),
reporterSpec.customOptions() } );
2022-01-03 23:16:39 +01:00
}
}
Config::~Config() = default;
bool Config::listTests() const { return m_data.listTests; }
bool Config::listTags() const { return m_data.listTags; }
bool Config::listReporters() const { return m_data.listReporters; }
2022-05-17 22:13:36 +02:00
bool Config::listListeners() const { return m_data.listListeners; }
std::vector<std::string> const& Config::getTestsOrTags() const { return m_data.testsOrTags; }
std::vector<std::string> const& Config::getSectionsToRun() const { return m_data.sectionsToRun; }
2022-04-20 23:46:07 +02:00
std::vector<ReporterSpec> const& Config::getReporterSpecs() const {
2022-01-03 23:16:39 +01:00
return m_data.reporterSpecifications;
}
2022-04-20 23:46:07 +02:00
std::vector<ProcessedReporterSpec> const&
Config::getProcessedReporterSpecs() const {
return m_processedReporterSpecs;
2022-01-03 23:16:39 +01:00
}
TestSpec const& Config::testSpec() const { return m_testSpec; }
bool Config::hasTestFilters() const { return m_hasTestFilters; }
bool Config::showHelp() const { return m_data.showHelp; }
// IConfig interface
bool Config::allowThrows() const { return !m_data.noThrow; }
2022-01-03 23:16:39 +01:00
StringRef Config::name() const { return m_data.name.empty() ? m_data.processName : m_data.name; }
bool Config::includeSuccessfulResults() const { return m_data.showSuccessfulTests; }
2022-01-03 23:16:39 +01:00
bool Config::warnAboutMissingAssertions() const {
return !!( m_data.warnings & WarnAbout::NoAssertions );
}
bool Config::warnAboutUnmatchedTestSpecs() const {
return !!( m_data.warnings & WarnAbout::UnmatchedTestSpec );
}
bool Config::zeroTestsCountAsSuccess() const { return m_data.allowZeroTests; }
ShowDurations Config::showDurations() const { return m_data.showDurations; }
double Config::minDuration() const { return m_data.minDuration; }
TestRunOrder Config::runOrder() const { return m_data.runOrder; }
2022-01-03 23:16:39 +01:00
uint32_t Config::rngSeed() const { return m_data.rngSeed; }
unsigned int Config::shardCount() const { return m_data.shardCount; }
unsigned int Config::shardIndex() const { return m_data.shardIndex; }
2022-04-20 23:46:07 +02:00
ColourMode Config::defaultColourMode() const { return m_data.defaultColourMode; }
bool Config::shouldDebugBreak() const { return m_data.shouldDebugBreak; }
int Config::abortAfter() const { return m_data.abortAfter; }
bool Config::showInvisibles() const { return m_data.showInvisibles; }
Verbosity Config::verbosity() const { return m_data.verbosity; }
2022-05-17 22:13:36 +02:00
bool Config::skipBenchmarks() const { return m_data.skipBenchmarks; }
bool Config::benchmarkNoAnalysis() const { return m_data.benchmarkNoAnalysis; }
2022-01-03 23:16:39 +01:00
unsigned int Config::benchmarkSamples() const { return m_data.benchmarkSamples; }
double Config::benchmarkConfidenceInterval() const { return m_data.benchmarkConfidenceInterval; }
unsigned int Config::benchmarkResamples() const { return m_data.benchmarkResamples; }
std::chrono::milliseconds Config::benchmarkWarmupTime() const { return std::chrono::milliseconds(m_data.benchmarkWarmupTime); }
2022-11-16 16:06:45 +01:00
void Config::readBazelEnvVars() {
// Register a JUnit reporter for Bazel. Bazel sets an environment
// variable with the path to XML output. If this file is written to
// during test, Bazel will not generate a default XML output.
// This allows the XML output file to contain higher level of detail
// than what is possible otherwise.
const auto bazelOutputFile = Detail::getEnv( "XML_OUTPUT_FILE" );
if ( bazelOutputFile ) {
m_data.reporterSpecifications.push_back(
{ "junit", std::string( bazelOutputFile ), {}, {} } );
}
const auto bazelTestSpec = Detail::getEnv( "TESTBRIDGE_TEST_ONLY" );
if ( bazelTestSpec ) {
// Presumably the test spec from environment should overwrite
// the one we got from CLI (if we got any)
m_data.testsOrTags.clear();
m_data.testsOrTags.push_back( bazelTestSpec );
}
const auto bazelShardOptions = readBazelShardingOptions();
if ( bazelShardOptions ) {
std::ofstream f( bazelShardOptions->shardFilePath,
std::ios_base::out | std::ios_base::trunc );
if ( f.is_open() ) {
f << "";
m_data.shardIndex = bazelShardOptions->shardIndex;
m_data.shardCount = bazelShardOptions->shardCount;
}
}
}
} // end namespace Catch
2022-10-17 19:57:58 +02:00
namespace Catch {
std::uint32_t getSeed() {
return getCurrentContext().getConfig()->rngSeed();
}
}
#include <cassert>
#include <stack>
namespace Catch {
////////////////////////////////////////////////////////////////////////////
2023-01-29 23:18:57 +01:00
ScopedMessage::ScopedMessage( MessageBuilder&& builder ):
m_info( CATCH_MOVE(builder.m_info) ) {
m_info.message = builder.m_stream.str();
getResultCapture().pushScopedMessage( m_info );
}
ScopedMessage::ScopedMessage( ScopedMessage&& old ) noexcept:
2022-01-03 23:16:39 +01:00
m_info( CATCH_MOVE( old.m_info ) ) {
old.m_moved = true;
}
ScopedMessage::~ScopedMessage() {
if ( !uncaught_exceptions() && !m_moved ){
getResultCapture().popScopedMessage(m_info);
}
}
2023-07-13 13:37:30 +02:00
Capturer::Capturer( StringRef macroName,
SourceLineInfo const& lineInfo,
ResultWas::OfType resultType,
StringRef names ):
m_resultCapture( getResultCapture() ) {
auto trimmed = [&] (size_t start, size_t end) {
while (names[start] == ',' || isspace(static_cast<unsigned char>(names[start]))) {
++start;
}
while (names[end] == ',' || isspace(static_cast<unsigned char>(names[end]))) {
--end;
}
return names.substr(start, end - start + 1);
};
auto skipq = [&] (size_t start, char quote) {
for (auto i = start + 1; i < names.size() ; ++i) {
if (names[i] == quote)
return i;
if (names[i] == '\\')
++i;
}
CATCH_INTERNAL_ERROR("CAPTURE parsing encountered unmatched quote");
};
size_t start = 0;
std::stack<char> openings;
for (size_t pos = 0; pos < names.size(); ++pos) {
char c = names[pos];
switch (c) {
case '[':
case '{':
case '(':
// It is basically impossible to disambiguate between
// comparison and start of template args in this context
// case '<':
openings.push(c);
break;
case ']':
case '}':
case ')':
// case '>':
openings.pop();
break;
case '"':
case '\'':
pos = skipq(pos, c);
break;
case ',':
if (start != pos && openings.empty()) {
m_messages.emplace_back(macroName, lineInfo, resultType);
m_messages.back().message = static_cast<std::string>(trimmed(start, pos));
m_messages.back().message += " := ";
start = pos;
}
2024-03-01 22:07:10 +01:00
default:; // noop
}
}
assert(openings.empty() && "Mismatched openings");
m_messages.emplace_back(macroName, lineInfo, resultType);
m_messages.back().message = static_cast<std::string>(trimmed(start, names.size() - 1));
m_messages.back().message += " := ";
}
Capturer::~Capturer() {
if ( !uncaught_exceptions() ){
assert( m_captured == m_messages.size() );
for( size_t i = 0; i < m_captured; ++i )
m_resultCapture.popScopedMessage( m_messages[i] );
}
}
void Capturer::captureValue( size_t index, std::string const& value ) {
assert( index < m_messages.size() );
m_messages[index].message += value;
m_resultCapture.pushScopedMessage( m_messages[index] );
m_captured++;
}
} // end namespace Catch
2023-07-13 13:37:30 +02:00
#include <exception>
namespace Catch {
namespace {
class RegistryHub : public IRegistryHub,
public IMutableRegistryHub,
private Detail::NonCopyable {
public: // IRegistryHub
RegistryHub() = default;
2023-07-13 13:37:30 +02:00
ReporterRegistry const& getReporterRegistry() const override {
return m_reporterRegistry;
}
ITestCaseRegistry const& getTestCaseRegistry() const override {
return m_testCaseRegistry;
}
IExceptionTranslatorRegistry const& getExceptionTranslatorRegistry() const override {
return m_exceptionTranslatorRegistry;
}
ITagAliasRegistry const& getTagAliasRegistry() const override {
return m_tagAliasRegistry;
}
StartupExceptionRegistry const& getStartupExceptionRegistry() const override {
return m_exceptionRegistry;
}
public: // IMutableRegistryHub
void registerReporter( std::string const& name, IReporterFactoryPtr factory ) override {
2022-01-03 23:16:39 +01:00
m_reporterRegistry.registerReporter( name, CATCH_MOVE(factory) );
}
2022-04-20 23:46:07 +02:00
void registerListener( Detail::unique_ptr<EventListenerFactory> factory ) override {
2022-01-03 23:16:39 +01:00
m_reporterRegistry.registerListener( CATCH_MOVE(factory) );
}
void registerTest( Detail::unique_ptr<TestCaseInfo>&& testInfo, Detail::unique_ptr<ITestInvoker>&& invoker ) override {
2022-01-03 23:16:39 +01:00
m_testCaseRegistry.registerTest( CATCH_MOVE(testInfo), CATCH_MOVE(invoker) );
}
2022-01-03 23:16:39 +01:00
void registerTranslator( Detail::unique_ptr<IExceptionTranslator>&& translator ) override {
m_exceptionTranslatorRegistry.registerTranslator( CATCH_MOVE(translator) );
}
void registerTagAlias( std::string const& alias, std::string const& tag, SourceLineInfo const& lineInfo ) override {
m_tagAliasRegistry.add( alias, tag, lineInfo );
}
void registerStartupException() noexcept override {
#if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
m_exceptionRegistry.add(std::current_exception());
#else
CATCH_INTERNAL_ERROR("Attempted to register active exception under CATCH_CONFIG_DISABLE_EXCEPTIONS!");
#endif
}
IMutableEnumValuesRegistry& getMutableEnumValuesRegistry() override {
return m_enumValuesRegistry;
}
private:
TestRegistry m_testCaseRegistry;
ReporterRegistry m_reporterRegistry;
ExceptionTranslatorRegistry m_exceptionTranslatorRegistry;
TagAliasRegistry m_tagAliasRegistry;
StartupExceptionRegistry m_exceptionRegistry;
Detail::EnumValuesRegistry m_enumValuesRegistry;
};
}
using RegistryHubSingleton = Singleton<RegistryHub, IRegistryHub, IMutableRegistryHub>;
IRegistryHub const& getRegistryHub() {
return RegistryHubSingleton::get();
}
IMutableRegistryHub& getMutableRegistryHub() {
return RegistryHubSingleton::getMutable();
}
void cleanUp() {
cleanupSingletons();
cleanUpContext();
}
std::string translateActiveException() {
return getRegistryHub().getExceptionTranslatorRegistry().translateActiveException();
}
} // end namespace Catch
#include <algorithm>
2022-01-03 23:16:39 +01:00
#include <cassert>
2023-07-13 13:37:30 +02:00
#include <exception>
#include <iomanip>
#include <set>
namespace Catch {
namespace {
const int MaxExitCode = 255;
2022-04-20 23:46:07 +02:00
IEventListenerPtr createReporter(std::string const& reporterName, ReporterConfig&& config) {
auto reporter = Catch::getRegistryHub().getReporterRegistry().create(reporterName, CATCH_MOVE(config));
2022-01-03 23:16:39 +01:00
CATCH_ENFORCE(reporter, "No reporter registered with name: '" << reporterName << '\'');
return reporter;
}
2022-04-20 23:46:07 +02:00
IEventListenerPtr prepareReporters(Config const* config) {
2022-01-03 23:16:39 +01:00
if (Catch::getRegistryHub().getReporterRegistry().getListeners().empty()
2022-04-20 23:46:07 +02:00
&& config->getProcessedReporterSpecs().size() == 1) {
auto const& spec = config->getProcessedReporterSpecs()[0];
return createReporter(
spec.name,
ReporterConfig( config,
makeStream( spec.outputFilename ),
spec.colourMode,
spec.customOptions ) );
}
2022-04-20 23:46:07 +02:00
auto multi = Detail::make_unique<MultiReporter>(config);
2022-01-03 23:16:39 +01:00
auto const& listeners = Catch::getRegistryHub().getReporterRegistry().getListeners();
for (auto const& listener : listeners) {
2022-04-20 23:46:07 +02:00
multi->addListener(listener->create(config));
}
2022-01-03 23:16:39 +01:00
2022-04-20 23:46:07 +02:00
for ( auto const& reporterSpec : config->getProcessedReporterSpecs() ) {
multi->addReporter( createReporter(
reporterSpec.name,
ReporterConfig( config,
makeStream( reporterSpec.outputFilename ),
reporterSpec.colourMode,
reporterSpec.customOptions ) ) );
2022-01-03 23:16:39 +01:00
}
return multi;
}
class TestGroup {
public:
2022-04-20 23:46:07 +02:00
explicit TestGroup(IEventListenerPtr&& reporter, Config const* config):
m_reporter(reporter.get()),
m_config{config},
2022-01-03 23:16:39 +01:00
m_context{config, CATCH_MOVE(reporter)} {
2022-01-03 23:16:39 +01:00
assert( m_config->testSpec().getInvalidSpecs().empty() &&
"Invalid test specs should be handled before running tests" );
2022-01-03 23:16:39 +01:00
auto const& allTestCases = getAllTestCasesSorted(*m_config);
auto const& testSpec = m_config->testSpec();
if ( !testSpec.hasFilters() ) {
for ( auto const& test : allTestCases ) {
if ( !test.getTestCaseInfo().isHidden() ) {
m_tests.emplace( &test );
}
}
} else {
2022-01-03 23:16:39 +01:00
m_matches =
testSpec.matchesByFilter( allTestCases, *m_config );
for ( auto const& match : m_matches ) {
m_tests.insert( match.tests.begin(),
match.tests.end() );
}
}
2022-01-03 23:16:39 +01:00
m_tests = createShard(m_tests, m_config->shardCount(), m_config->shardIndex());
}
Totals execute() {
Totals totals;
for (auto const& testCase : m_tests) {
if (!m_context.aborting())
totals += m_context.runTest(*testCase);
else
m_reporter->skipTest(testCase->getTestCaseInfo());
}
for (auto const& match : m_matches) {
if (match.tests.empty()) {
2022-01-03 23:16:39 +01:00
m_unmatchedTestSpecs = true;
m_reporter->noMatchingTestCases( match.name );
}
}
return totals;
}
2022-01-03 23:16:39 +01:00
bool hadUnmatchedTestSpecs() const {
return m_unmatchedTestSpecs;
}
2022-01-03 23:16:39 +01:00
private:
2022-04-20 23:46:07 +02:00
IEventListener* m_reporter;
Config const* m_config;
RunContext m_context;
2022-01-03 23:16:39 +01:00
std::set<TestCaseHandle const*> m_tests;
TestSpec::Matches m_matches;
2022-01-03 23:16:39 +01:00
bool m_unmatchedTestSpecs = false;
};
void applyFilenamesAsTags() {
for (auto const& testInfo : getRegistryHub().getTestCaseRegistry().getAllInfos()) {
testInfo->addFilenameTag();
}
}
} // anon namespace
Session::Session() {
static bool alreadyInstantiated = false;
if( alreadyInstantiated ) {
CATCH_TRY { CATCH_INTERNAL_ERROR( "Only one instance of Catch::Session can ever be used" ); }
CATCH_CATCH_ALL { getMutableRegistryHub().registerStartupException(); }
}
// There cannot be exceptions at startup in no-exception mode.
#if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
const auto& exceptions = getRegistryHub().getStartupExceptionRegistry().getExceptions();
if ( !exceptions.empty() ) {
config();
getCurrentMutableContext().setConfig(m_config.get());
m_startupExceptions = true;
2022-04-20 23:46:07 +02:00
auto errStream = makeStream( "%stderr" );
auto colourImpl = makeColourImpl(
ColourMode::PlatformDefault, errStream.get() );
auto guard = colourImpl->guardColour( Colour::Red );
errStream->stream() << "Errors occurred during startup!" << '\n';
// iterate over all exceptions and notify user
for ( const auto& ex_ptr : exceptions ) {
try {
std::rethrow_exception(ex_ptr);
} catch ( std::exception const& ex ) {
2022-04-20 23:46:07 +02:00
errStream->stream() << TextFlow::Column( ex.what() ).indent(2) << '\n';
}
}
}
#endif
alreadyInstantiated = true;
m_cli = makeCommandLineParser( m_configData );
}
Session::~Session() {
Catch::cleanUp();
}
void Session::showHelp() const {
Catch::cout()
2022-04-20 23:46:07 +02:00
<< "\nCatch2 v" << libraryVersion() << '\n'
2022-01-03 23:16:39 +01:00
<< m_cli << '\n'
<< "For more detailed usage please see the project docs\n\n" << std::flush;
}
void Session::libIdentify() {
Catch::cout()
<< std::left << std::setw(16) << "description: " << "A Catch2 test executable\n"
<< std::left << std::setw(16) << "category: " << "testframework\n"
2022-04-20 23:46:07 +02:00
<< std::left << std::setw(16) << "framework: " << "Catch2\n"
2022-01-03 23:16:39 +01:00
<< std::left << std::setw(16) << "version: " << libraryVersion() << '\n' << std::flush;
}
int Session::applyCommandLine( int argc, char const * const * argv ) {
if( m_startupExceptions )
return 1;
auto result = m_cli.parse( Clara::Args( argc, argv ) );
2022-01-03 23:16:39 +01:00
if( !result ) {
config();
getCurrentMutableContext().setConfig(m_config.get());
2022-04-20 23:46:07 +02:00
auto errStream = makeStream( "%stderr" );
auto colour = makeColourImpl( ColourMode::PlatformDefault, errStream.get() );
errStream->stream()
<< colour->guardColour( Colour::Red )
<< "\nError(s) in input:\n"
<< TextFlow::Column( result.errorMessage() ).indent( 2 )
<< "\n\n";
2022-04-20 23:46:07 +02:00
errStream->stream() << "Run with -? for usage\n\n" << std::flush;
return MaxExitCode;
}
if( m_configData.showHelp )
showHelp();
if( m_configData.libIdentify )
libIdentify();
2022-01-03 23:16:39 +01:00
m_config.reset();
return 0;
}
#if defined(CATCH_CONFIG_WCHAR) && defined(_WIN32) && defined(UNICODE)
int Session::applyCommandLine( int argc, wchar_t const * const * argv ) {
char **utf8Argv = new char *[ argc ];
for ( int i = 0; i < argc; ++i ) {
int bufSize = WideCharToMultiByte( CP_UTF8, 0, argv[i], -1, nullptr, 0, nullptr, nullptr );
utf8Argv[ i ] = new char[ bufSize ];
WideCharToMultiByte( CP_UTF8, 0, argv[i], -1, utf8Argv[i], bufSize, nullptr, nullptr );
}
int returnCode = applyCommandLine( argc, utf8Argv );
for ( int i = 0; i < argc; ++i )
delete [] utf8Argv[ i ];
delete [] utf8Argv;
return returnCode;
}
#endif
void Session::useConfigData( ConfigData const& configData ) {
m_configData = configData;
m_config.reset();
}
int Session::run() {
if( ( m_configData.waitForKeypress & WaitForKeypress::BeforeStart ) != 0 ) {
2022-01-03 23:16:39 +01:00
Catch::cout() << "...waiting for enter/ return before starting\n" << std::flush;
static_cast<void>(std::getchar());
}
int exitCode = runInternal();
if( ( m_configData.waitForKeypress & WaitForKeypress::BeforeExit ) != 0 ) {
2022-01-03 23:16:39 +01:00
Catch::cout() << "...waiting for enter/ return before exiting, with code: " << exitCode << '\n' << std::flush;
static_cast<void>(std::getchar());
}
return exitCode;
}
Clara::Parser const& Session::cli() const {
return m_cli;
}
void Session::cli( Clara::Parser const& newParser ) {
m_cli = newParser;
}
ConfigData& Session::configData() {
return m_configData;
}
Config& Session::config() {
if( !m_config )
m_config = Detail::make_unique<Config>( m_configData );
return *m_config;
}
int Session::runInternal() {
if( m_startupExceptions )
return 1;
if (m_configData.showHelp || m_configData.libIdentify) {
return 0;
}
2022-01-03 23:16:39 +01:00
if ( m_configData.shardIndex >= m_configData.shardCount ) {
Catch::cerr() << "The shard count (" << m_configData.shardCount
<< ") must be greater than the shard index ("
<< m_configData.shardIndex << ")\n"
<< std::flush;
return 1;
}
CATCH_TRY {
config(); // Force config to be constructed
seedRng( *m_config );
if (m_configData.filenamesAsTags) {
applyFilenamesAsTags();
}
// Set up global config instance before we start calling into other functions
getCurrentMutableContext().setConfig(m_config.get());
// Create reporter(s) so we can route listings through them
2022-04-20 23:46:07 +02:00
auto reporter = prepareReporters(m_config.get());
2022-01-03 23:16:39 +01:00
auto const& invalidSpecs = m_config->testSpec().getInvalidSpecs();
if ( !invalidSpecs.empty() ) {
for ( auto const& spec : invalidSpecs ) {
reporter->reportInvalidTestSpec( spec );
}
return 1;
}
// Handle list request
if (list(*reporter, *m_config)) {
return 0;
}
2022-01-03 23:16:39 +01:00
TestGroup tests { CATCH_MOVE(reporter), m_config.get() };
auto const totals = tests.execute();
2022-01-03 23:16:39 +01:00
if ( tests.hadUnmatchedTestSpecs()
&& m_config->warnAboutUnmatchedTestSpecs() ) {
return 3;
}
if ( totals.testCases.total() == 0
&& !m_config->zeroTestsCountAsSuccess() ) {
return 2;
2022-01-03 23:16:39 +01:00
}
2023-01-22 19:43:11 +01:00
if ( totals.testCases.total() > 0 &&
totals.testCases.total() == totals.testCases.skipped
&& !m_config->zeroTestsCountAsSuccess() ) {
return 4;
}
// Note that on unices only the lower 8 bits are usually used, clamping
// the return value to 255 prevents false negative when some multiple
// of 256 tests has failed
2022-04-20 23:46:07 +02:00
return (std::min) (MaxExitCode, static_cast<int>(totals.assertions.failed));
}
#if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
catch( std::exception& ex ) {
2022-01-03 23:16:39 +01:00
Catch::cerr() << ex.what() << '\n' << std::flush;
return MaxExitCode;
}
#endif
}
} // end namespace Catch
2022-07-17 20:18:44 +02:00
namespace Catch {
RegistrarForTagAliases::RegistrarForTagAliases(char const* alias, char const* tag, SourceLineInfo const& lineInfo) {
CATCH_TRY {
getMutableRegistryHub().registerTagAlias(alias, tag, lineInfo);
} CATCH_CATCH_ALL {
// Do not throw when constructing global objects, instead register the exception to be processed later
getMutableRegistryHub().registerStartupException();
}
}
}
#include <cassert>
#include <cctype>
#include <algorithm>
namespace Catch {
namespace {
using TCP_underlying_type = uint8_t;
static_assert(sizeof(TestCaseProperties) == sizeof(TCP_underlying_type),
"The size of the TestCaseProperties is different from the assumed size");
TestCaseProperties operator|(TestCaseProperties lhs, TestCaseProperties rhs) {
return static_cast<TestCaseProperties>(
static_cast<TCP_underlying_type>(lhs) | static_cast<TCP_underlying_type>(rhs)
);
}
TestCaseProperties& operator|=(TestCaseProperties& lhs, TestCaseProperties rhs) {
lhs = static_cast<TestCaseProperties>(
static_cast<TCP_underlying_type>(lhs) | static_cast<TCP_underlying_type>(rhs)
);
return lhs;
}
TestCaseProperties operator&(TestCaseProperties lhs, TestCaseProperties rhs) {
return static_cast<TestCaseProperties>(
static_cast<TCP_underlying_type>(lhs) & static_cast<TCP_underlying_type>(rhs)
);
}
bool applies(TestCaseProperties tcp) {
static_assert(static_cast<TCP_underlying_type>(TestCaseProperties::None) == 0,
"TestCaseProperties::None must be equal to 0");
return tcp != TestCaseProperties::None;
}
TestCaseProperties parseSpecialTag( StringRef tag ) {
if( !tag.empty() && tag[0] == '.' )
return TestCaseProperties::IsHidden;
else if( tag == "!throws"_sr )
return TestCaseProperties::Throws;
else if( tag == "!shouldfail"_sr )
return TestCaseProperties::ShouldFail;
else if( tag == "!mayfail"_sr )
return TestCaseProperties::MayFail;
else if( tag == "!nonportable"_sr )
return TestCaseProperties::NonPortable;
else if( tag == "!benchmark"_sr )
2022-05-17 22:13:36 +02:00
return TestCaseProperties::Benchmark | TestCaseProperties::IsHidden;
else
return TestCaseProperties::None;
}
bool isReservedTag( StringRef tag ) {
return parseSpecialTag( tag ) == TestCaseProperties::None
&& tag.size() > 0
&& !std::isalnum( static_cast<unsigned char>(tag[0]) );
}
void enforceNotReservedTag( StringRef tag, SourceLineInfo const& _lineInfo ) {
CATCH_ENFORCE( !isReservedTag(tag),
"Tag name: [" << tag << "] is not allowed.\n"
<< "Tag names starting with non alphanumeric characters are reserved\n"
<< _lineInfo );
}
std::string makeDefaultName() {
static size_t counter = 0;
return "Anonymous test case " + std::to_string(++counter);
}
StringRef extractFilenamePart(StringRef filename) {
size_t lastDot = filename.size();
while (lastDot > 0 && filename[lastDot - 1] != '.') {
--lastDot;
}
2024-03-01 22:07:10 +01:00
// In theory we could have filename without any extension in it
if ( lastDot == 0 ) { return StringRef(); }
2024-03-01 22:07:10 +01:00
--lastDot;
size_t nameStart = lastDot;
while (nameStart > 0 && filename[nameStart - 1] != '/' && filename[nameStart - 1] != '\\') {
--nameStart;
}
return filename.substr(nameStart, lastDot - nameStart);
}
// Returns the upper bound on size of extra tags ([#file]+[.])
size_t sizeOfExtraTags(StringRef filepath) {
// [.] is 3, [#] is another 3
const size_t extras = 3 + 3;
return extractFilenamePart(filepath).size() + extras;
}
2022-01-03 23:16:39 +01:00
} // end unnamed namespace
bool operator<( Tag const& lhs, Tag const& rhs ) {
Detail::CaseInsensitiveLess cmp;
return cmp( lhs.original, rhs.original );
}
bool operator==( Tag const& lhs, Tag const& rhs ) {
Detail::CaseInsensitiveEqualTo cmp;
return cmp( lhs.original, rhs.original );
}
Detail::unique_ptr<TestCaseInfo>
2022-01-03 23:16:39 +01:00
makeTestCaseInfo(StringRef _className,
NameAndTags const& nameAndTags,
SourceLineInfo const& _lineInfo ) {
return Detail::make_unique<TestCaseInfo>(_className, nameAndTags, _lineInfo);
}
2022-01-03 23:16:39 +01:00
TestCaseInfo::TestCaseInfo(StringRef _className,
NameAndTags const& _nameAndTags,
SourceLineInfo const& _lineInfo):
name( _nameAndTags.name.empty() ? makeDefaultName() : _nameAndTags.name ),
className( _className ),
lineInfo( _lineInfo )
{
StringRef originalTags = _nameAndTags.tags;
// We need to reserve enough space to store all of the tags
// (including optional hidden tag and filename tag)
auto requiredSize = originalTags.size() + sizeOfExtraTags(_lineInfo.file);
backingTags.reserve(requiredSize);
// We cannot copy the tags directly, as we need to normalize
// some tags, so that [.foo] is copied as [.][foo].
size_t tagStart = 0;
size_t tagEnd = 0;
bool inTag = false;
for (size_t idx = 0; idx < originalTags.size(); ++idx) {
auto c = originalTags[idx];
if (c == '[') {
2023-07-13 13:37:30 +02:00
CATCH_ENFORCE(
!inTag,
"Found '[' inside a tag while registering test case '"
<< _nameAndTags.name << "' at " << _lineInfo );
inTag = true;
tagStart = idx;
}
if (c == ']') {
2023-07-13 13:37:30 +02:00
CATCH_ENFORCE(
inTag,
"Found unmatched ']' while registering test case '"
<< _nameAndTags.name << "' at " << _lineInfo );
inTag = false;
tagEnd = idx;
assert(tagStart < tagEnd);
// We need to check the tag for special meanings, copy
// it over to backing storage and actually reference the
// backing storage in the saved tags
StringRef tagStr = originalTags.substr(tagStart+1, tagEnd - tagStart - 1);
2023-07-13 13:37:30 +02:00
CATCH_ENFORCE( !tagStr.empty(),
"Found an empty tag while registering test case '"
<< _nameAndTags.name << "' at "
<< _lineInfo );
enforceNotReservedTag(tagStr, lineInfo);
properties |= parseSpecialTag(tagStr);
// When copying a tag to the backing storage, we need to
// check if it is a merged hide tag, such as [.foo], and
// if it is, we need to handle it as if it was [foo].
if (tagStr.size() > 1 && tagStr[0] == '.') {
tagStr = tagStr.substr(1, tagStr.size() - 1);
}
// We skip over dealing with the [.] tag, as we will add
// it later unconditionally and then sort and unique all
// the tags.
internalAppendTag(tagStr);
}
}
2023-07-13 13:37:30 +02:00
CATCH_ENFORCE( !inTag,
"Found an unclosed tag while registering test case '"
<< _nameAndTags.name << "' at " << _lineInfo );
// Add [.] if relevant
if (isHidden()) {
internalAppendTag("."_sr);
}
// Sort and prepare tags
2022-01-03 23:16:39 +01:00
std::sort(begin(tags), end(tags));
tags.erase(std::unique(begin(tags), end(tags)),
end(tags));
}
bool TestCaseInfo::isHidden() const {
return applies( properties & TestCaseProperties::IsHidden );
}
bool TestCaseInfo::throws() const {
return applies( properties & TestCaseProperties::Throws );
}
bool TestCaseInfo::okToFail() const {
return applies( properties & (TestCaseProperties::ShouldFail | TestCaseProperties::MayFail ) );
}
bool TestCaseInfo::expectedToFail() const {
return applies( properties & (TestCaseProperties::ShouldFail) );
}
void TestCaseInfo::addFilenameTag() {
std::string combined("#");
combined += extractFilenamePart(lineInfo.file);
internalAppendTag(combined);
}
std::string TestCaseInfo::tagsAsString() const {
std::string ret;
// '[' and ']' per tag
std::size_t full_size = 2 * tags.size();
for (const auto& tag : tags) {
full_size += tag.original.size();
}
ret.reserve(full_size);
for (const auto& tag : tags) {
ret.push_back('[');
ret += tag.original;
ret.push_back(']');
}
return ret;
}
void TestCaseInfo::internalAppendTag(StringRef tagStr) {
backingTags += '[';
const auto backingStart = backingTags.size();
backingTags += tagStr;
const auto backingEnd = backingTags.size();
backingTags += ']';
2022-01-03 23:16:39 +01:00
tags.emplace_back(StringRef(backingTags.c_str() + backingStart, backingEnd - backingStart));
}
2022-01-03 23:16:39 +01:00
bool operator<( TestCaseInfo const& lhs, TestCaseInfo const& rhs ) {
// We want to avoid redoing the string comparisons multiple times,
// so we store the result of a three-way comparison before using
// it in the actual comparison logic.
const auto cmpName = lhs.name.compare( rhs.name );
if ( cmpName != 0 ) {
return cmpName < 0;
}
const auto cmpClassName = lhs.className.compare( rhs.className );
if ( cmpClassName != 0 ) {
return cmpClassName < 0;
}
return lhs.tags < rhs.tags;
}
TestCaseInfo const& TestCaseHandle::getTestCaseInfo() const {
return *m_info;
}
} // end namespace Catch
#include <algorithm>
#include <string>
#include <vector>
2022-11-16 16:06:45 +01:00
#include <ostream>
namespace Catch {
TestSpec::Pattern::Pattern( std::string const& name )
: m_name( name )
{}
TestSpec::Pattern::~Pattern() = default;
std::string const& TestSpec::Pattern::name() const {
return m_name;
}
TestSpec::NamePattern::NamePattern( std::string const& name, std::string const& filterString )
: Pattern( filterString )
, m_wildcardPattern( toLower( name ), CaseSensitive::No )
{}
bool TestSpec::NamePattern::matches( TestCaseInfo const& testCase ) const {
return m_wildcardPattern.matches( testCase.name );
}
2022-11-16 16:06:45 +01:00
void TestSpec::NamePattern::serializeTo( std::ostream& out ) const {
out << '"' << name() << '"';
}
TestSpec::TagPattern::TagPattern( std::string const& tag, std::string const& filterString )
: Pattern( filterString )
2022-01-03 23:16:39 +01:00
, m_tag( tag )
{}
bool TestSpec::TagPattern::matches( TestCaseInfo const& testCase ) const {
2022-01-03 23:16:39 +01:00
return std::find( begin( testCase.tags ),
end( testCase.tags ),
Tag( m_tag ) ) != end( testCase.tags );
}
2022-11-16 16:06:45 +01:00
void TestSpec::TagPattern::serializeTo( std::ostream& out ) const {
out << name();
}
bool TestSpec::Filter::matches( TestCaseInfo const& testCase ) const {
bool should_use = !testCase.isHidden();
for (auto const& pattern : m_required) {
should_use = true;
if (!pattern->matches(testCase)) {
return false;
}
}
for (auto const& pattern : m_forbidden) {
if (pattern->matches(testCase)) {
return false;
}
}
return should_use;
}
2022-11-16 16:06:45 +01:00
void TestSpec::Filter::serializeTo( std::ostream& out ) const {
bool first = true;
for ( auto const& pattern : m_required ) {
if ( !first ) {
out << ' ';
}
out << *pattern;
first = false;
}
2022-11-16 16:06:45 +01:00
for ( auto const& pattern : m_forbidden ) {
if ( !first ) {
out << ' ';
}
out << *pattern;
first = false;
}
}
2022-11-16 16:06:45 +01:00
std::string TestSpec::extractFilterName( Filter const& filter ) {
Catch::ReusableStringStream sstr;
sstr << filter;
return sstr.str();
}
bool TestSpec::hasFilters() const {
return !m_filters.empty();
}
bool TestSpec::matches( TestCaseInfo const& testCase ) const {
return std::any_of( m_filters.begin(), m_filters.end(), [&]( Filter const& f ){ return f.matches( testCase ); } );
}
2023-07-13 13:37:30 +02:00
TestSpec::Matches TestSpec::matchesByFilter( std::vector<TestCaseHandle> const& testCases, IConfig const& config ) const {
Matches matches;
matches.reserve( m_filters.size() );
for ( auto const& filter : m_filters ) {
std::vector<TestCaseHandle const*> currentMatches;
2023-07-13 13:37:30 +02:00
for ( auto const& test : testCases )
if ( isThrowSafe( test, config ) &&
filter.matches( test.getTestCaseInfo() ) )
currentMatches.emplace_back( &test );
2023-07-13 13:37:30 +02:00
matches.push_back(
FilterMatch{ extractFilterName( filter ), currentMatches } );
}
return matches;
}
2022-01-03 23:16:39 +01:00
const TestSpec::vectorStrings& TestSpec::getInvalidSpecs() const {
return m_invalidSpecs;
}
2022-11-16 16:06:45 +01:00
void TestSpec::serializeTo( std::ostream& out ) const {
bool first = true;
for ( auto const& filter : m_filters ) {
if ( !first ) {
out << ',';
}
out << filter;
first = false;
}
}
}
#include <chrono>
namespace Catch {
namespace {
2022-01-03 23:16:39 +01:00
static auto getCurrentNanosecondsSinceEpoch() -> uint64_t {
return std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::high_resolution_clock::now().time_since_epoch()).count();
}
2022-01-03 23:16:39 +01:00
} // end unnamed namespace
void Timer::start() {
m_nanoseconds = getCurrentNanosecondsSinceEpoch();
}
auto Timer::getElapsedNanoseconds() const -> uint64_t {
return getCurrentNanosecondsSinceEpoch() - m_nanoseconds;
}
auto Timer::getElapsedMicroseconds() const -> uint64_t {
return getElapsedNanoseconds()/1000;
}
auto Timer::getElapsedMilliseconds() const -> unsigned int {
return static_cast<unsigned int>(getElapsedMicroseconds()/1000);
}
auto Timer::getElapsedSeconds() const -> double {
return getElapsedMicroseconds()/1000000.0;
}
} // namespace Catch
#include <cmath>
#include <iomanip>
namespace Catch {
namespace Detail {
namespace {
const int hexThreshold = 255;
struct Endianness {
enum Arch { Big, Little };
static Arch which() {
int one = 1;
// If the lowest byte we read is non-zero, we can assume
// that little endian format is used.
auto value = *reinterpret_cast<char*>(&one);
return value ? Little : Big;
}
};
template<typename T>
std::string fpToString(T value, int precision) {
if (Catch::isnan(value)) {
return "nan";
}
ReusableStringStream rss;
rss << std::setprecision(precision)
<< std::fixed
<< value;
std::string d = rss.str();
std::size_t i = d.find_last_not_of('0');
if (i != std::string::npos && i != d.size() - 1) {
if (d[i] == '.')
i++;
d = d.substr(0, i + 1);
}
return d;
}
} // end unnamed namespace
2024-03-01 22:07:10 +01:00
std::string convertIntoString(StringRef string, bool escapeInvisibles) {
2022-01-03 23:16:39 +01:00
std::string ret;
// This is enough for the "don't escape invisibles" case, and a good
// lower bound on the "escape invisibles" case.
ret.reserve(string.size() + 2);
2024-03-01 22:07:10 +01:00
if (!escapeInvisibles) {
2022-01-03 23:16:39 +01:00
ret += '"';
ret += string;
ret += '"';
return ret;
}
ret += '"';
for (char c : string) {
switch (c) {
case '\r':
ret.append("\\r");
break;
case '\n':
ret.append("\\n");
break;
case '\t':
ret.append("\\t");
break;
case '\f':
ret.append("\\f");
break;
default:
ret.push_back(c);
break;
}
}
ret += '"';
return ret;
}
std::string convertIntoString(StringRef string) {
return convertIntoString(string, getCurrentContext().getConfig()->showInvisibles());
}
std::string rawMemoryToString( const void *object, std::size_t size ) {
// Reverse order for little endian architectures
int i = 0, end = static_cast<int>( size ), inc = 1;
if( Endianness::which() == Endianness::Little ) {
i = end-1;
end = inc = -1;
}
unsigned char const *bytes = static_cast<unsigned char const *>(object);
ReusableStringStream rss;
rss << "0x" << std::setfill('0') << std::hex;
for( ; i != end; i += inc )
rss << std::setw(2) << static_cast<unsigned>(bytes[i]);
return rss.str();
}
} // end Detail namespace
//// ======================================================= ////
//
// Out-of-line defs for full specialization of StringMaker
//
//// ======================================================= ////
std::string StringMaker<std::string>::convert(const std::string& str) {
2022-01-03 23:16:39 +01:00
return Detail::convertIntoString( str );
}
#ifdef CATCH_CONFIG_CPP17_STRING_VIEW
std::string StringMaker<std::string_view>::convert(std::string_view str) {
2022-01-03 23:16:39 +01:00
return Detail::convertIntoString( StringRef( str.data(), str.size() ) );
}
#endif
std::string StringMaker<char const*>::convert(char const* str) {
if (str) {
2022-01-03 23:16:39 +01:00
return Detail::convertIntoString( str );
} else {
return{ "{null string}" };
}
}
2024-03-01 22:07:10 +01:00
std::string StringMaker<char*>::convert(char* str) { // NOLINT(readability-non-const-parameter)
if (str) {
2022-01-03 23:16:39 +01:00
return Detail::convertIntoString( str );
} else {
return{ "{null string}" };
}
}
#ifdef CATCH_CONFIG_WCHAR
std::string StringMaker<std::wstring>::convert(const std::wstring& wstr) {
std::string s;
s.reserve(wstr.size());
for (auto c : wstr) {
s += (c <= 0xff) ? static_cast<char>(c) : '?';
}
return ::Catch::Detail::stringify(s);
}
# ifdef CATCH_CONFIG_CPP17_STRING_VIEW
std::string StringMaker<std::wstring_view>::convert(std::wstring_view str) {
return StringMaker<std::wstring>::convert(std::wstring(str));
}
# endif
std::string StringMaker<wchar_t const*>::convert(wchar_t const * str) {
if (str) {
return ::Catch::Detail::stringify(std::wstring{ str });
} else {
return{ "{null string}" };
}
}
std::string StringMaker<wchar_t *>::convert(wchar_t * str) {
if (str) {
return ::Catch::Detail::stringify(std::wstring{ str });
} else {
return{ "{null string}" };
}
}
#endif
#if defined(CATCH_CONFIG_CPP17_BYTE)
#include <cstddef>
std::string StringMaker<std::byte>::convert(std::byte value) {
return ::Catch::Detail::stringify(std::to_integer<unsigned long long>(value));
}
#endif // defined(CATCH_CONFIG_CPP17_BYTE)
std::string StringMaker<int>::convert(int value) {
return ::Catch::Detail::stringify(static_cast<long long>(value));
}
std::string StringMaker<long>::convert(long value) {
return ::Catch::Detail::stringify(static_cast<long long>(value));
}
std::string StringMaker<long long>::convert(long long value) {
ReusableStringStream rss;
rss << value;
if (value > Detail::hexThreshold) {
rss << " (0x" << std::hex << value << ')';
}
return rss.str();
}
std::string StringMaker<unsigned int>::convert(unsigned int value) {
return ::Catch::Detail::stringify(static_cast<unsigned long long>(value));
}
std::string StringMaker<unsigned long>::convert(unsigned long value) {
return ::Catch::Detail::stringify(static_cast<unsigned long long>(value));
}
std::string StringMaker<unsigned long long>::convert(unsigned long long value) {
ReusableStringStream rss;
rss << value;
if (value > Detail::hexThreshold) {
rss << " (0x" << std::hex << value << ')';
}
return rss.str();
}
std::string StringMaker<signed char>::convert(signed char value) {
if (value == '\r') {
return "'\\r'";
} else if (value == '\f') {
return "'\\f'";
} else if (value == '\n') {
return "'\\n'";
} else if (value == '\t') {
return "'\\t'";
} else if ('\0' <= value && value < ' ') {
return ::Catch::Detail::stringify(static_cast<unsigned int>(value));
} else {
char chstr[] = "' '";
chstr[1] = value;
return chstr;
}
}
std::string StringMaker<char>::convert(char c) {
return ::Catch::Detail::stringify(static_cast<signed char>(c));
}
2024-03-01 22:07:10 +01:00
std::string StringMaker<unsigned char>::convert(unsigned char value) {
return ::Catch::Detail::stringify(static_cast<char>(value));
}
int StringMaker<float>::precision = 5;
std::string StringMaker<float>::convert(float value) {
return Detail::fpToString(value, precision) + 'f';
}
int StringMaker<double>::precision = 10;
std::string StringMaker<double>::convert(double value) {
return Detail::fpToString(value, precision);
}
} // end namespace Catch
namespace Catch {
Counts Counts::operator - ( Counts const& other ) const {
Counts diff;
diff.passed = passed - other.passed;
diff.failed = failed - other.failed;
diff.failedButOk = failedButOk - other.failedButOk;
2023-01-22 19:43:11 +01:00
diff.skipped = skipped - other.skipped;
return diff;
}
Counts& Counts::operator += ( Counts const& other ) {
passed += other.passed;
failed += other.failed;
failedButOk += other.failedButOk;
2023-01-22 19:43:11 +01:00
skipped += other.skipped;
return *this;
}
2022-01-03 23:16:39 +01:00
std::uint64_t Counts::total() const {
2023-01-22 19:43:11 +01:00
return passed + failed + failedButOk + skipped;
}
bool Counts::allPassed() const {
2023-01-22 19:43:11 +01:00
return failed == 0 && failedButOk == 0 && skipped == 0;
}
bool Counts::allOk() const {
return failed == 0;
}
Totals Totals::operator - ( Totals const& other ) const {
Totals diff;
diff.assertions = assertions - other.assertions;
diff.testCases = testCases - other.testCases;
return diff;
}
Totals& Totals::operator += ( Totals const& other ) {
assertions += other.assertions;
testCases += other.testCases;
return *this;
}
Totals Totals::delta( Totals const& prevTotals ) const {
Totals diff = *this - prevTotals;
if( diff.assertions.failed > 0 )
++diff.testCases.failed;
else if( diff.assertions.failedButOk > 0 )
++diff.testCases.failedButOk;
2023-01-22 19:43:11 +01:00
else if ( diff.assertions.skipped > 0 )
++ diff.testCases.skipped;
else
++diff.testCases.passed;
return diff;
}
}
2023-07-13 13:37:30 +02:00
namespace Catch {
namespace Detail {
void registerTranslatorImpl(
Detail::unique_ptr<IExceptionTranslator>&& translator ) {
getMutableRegistryHub().registerTranslator(
CATCH_MOVE( translator ) );
}
} // namespace Detail
} // namespace Catch
#include <ostream>
namespace Catch {
Version::Version
( unsigned int _majorVersion,
unsigned int _minorVersion,
unsigned int _patchNumber,
char const * const _branchName,
unsigned int _buildNumber )
: majorVersion( _majorVersion ),
minorVersion( _minorVersion ),
patchNumber( _patchNumber ),
branchName( _branchName ),
buildNumber( _buildNumber )
{}
std::ostream& operator << ( std::ostream& os, Version const& version ) {
os << version.majorVersion << '.'
<< version.minorVersion << '.'
<< version.patchNumber;
// branchName is never null -> 0th char is \0 if it is empty
if (version.branchName[0]) {
os << '-' << version.branchName
<< '.' << version.buildNumber;
}
return os;
}
Version const& libraryVersion() {
2024-03-01 22:07:10 +01:00
static Version version( 3, 5, 3, "", 0 );
return version;
}
}
2022-05-17 22:13:36 +02:00
namespace Catch {
const char* GeneratorException::what() const noexcept {
return m_msg;
}
} // end namespace Catch
namespace Catch {
IGeneratorTracker::~IGeneratorTracker() = default;
namespace Generators {
namespace Detail {
[[noreturn]]
void throw_generator_exception(char const* msg) {
Catch::throw_exception(GeneratorException{ msg });
}
} // end namespace Detail
GeneratorUntypedBase::~GeneratorUntypedBase() = default;
2023-01-22 19:43:11 +01:00
IGeneratorTracker* acquireGeneratorTracker(StringRef generatorName, SourceLineInfo const& lineInfo ) {
return getResultCapture().acquireGeneratorTracker( generatorName, lineInfo );
}
2023-01-22 19:43:11 +01:00
IGeneratorTracker* createGeneratorTracker( StringRef generatorName,
SourceLineInfo lineInfo,
GeneratorBasePtr&& generator ) {
return getResultCapture().createGeneratorTracker(
generatorName, lineInfo, CATCH_MOVE( generator ) );
}
} // namespace Generators
} // namespace Catch
2023-12-11 00:55:40 +01:00
#include <random>
namespace Catch {
namespace Generators {
namespace Detail {
std::uint32_t getSeed() { return sharedRng()(); }
} // namespace Detail
struct RandomFloatingGenerator<long double>::PImpl {
PImpl( long double a, long double b, uint32_t seed ):
rng( seed ), dist( a, b ) {}
Catch::SimplePcg32 rng;
std::uniform_real_distribution<long double> dist;
};
RandomFloatingGenerator<long double>::RandomFloatingGenerator(
long double a, long double b, std::uint32_t seed) :
m_pimpl(Catch::Detail::make_unique<PImpl>(a, b, seed)) {
static_cast<void>( next() );
}
2023-12-11 00:55:40 +01:00
RandomFloatingGenerator<long double>::~RandomFloatingGenerator() =
default;
bool RandomFloatingGenerator<long double>::next() {
m_current_number = m_pimpl->dist( m_pimpl->rng );
return true;
}
} // namespace Generators
} // namespace Catch
namespace Catch {
2022-07-17 20:18:44 +02:00
IResultCapture::~IResultCapture() = default;
}
namespace Catch {
2022-07-17 20:18:44 +02:00
IConfig::~IConfig() = default;
}
2022-01-03 23:16:39 +01:00
namespace Catch {
2022-07-17 20:18:44 +02:00
IExceptionTranslator::~IExceptionTranslator() = default;
IExceptionTranslatorRegistry::~IExceptionTranslatorRegistry() = default;
}
2022-05-17 22:13:36 +02:00
#include <string>
namespace Catch {
namespace Generators {
bool GeneratorUntypedBase::countedNext() {
auto ret = next();
if ( ret ) {
m_stringReprCache.clear();
++m_currentElementIndex;
}
return ret;
}
StringRef GeneratorUntypedBase::currentElementAsString() const {
if ( m_stringReprCache.empty() ) {
m_stringReprCache = stringifyImpl();
}
return m_stringReprCache;
}
} // namespace Generators
} // namespace Catch
2022-07-17 20:18:44 +02:00
namespace Catch {
IRegistryHub::~IRegistryHub() = default;
IMutableRegistryHub::~IMutableRegistryHub() = default;
}
2022-04-20 23:46:07 +02:00
#include <cassert>
namespace Catch {
2022-04-20 23:46:07 +02:00
ReporterConfig::ReporterConfig(
IConfig const* _fullConfig,
Detail::unique_ptr<IStream> _stream,
ColourMode colourMode,
std::map<std::string, std::string> customOptions ):
m_stream( CATCH_MOVE(_stream) ),
m_fullConfig( _fullConfig ),
m_colourMode( colourMode ),
m_customOptions( CATCH_MOVE( customOptions ) ) {}
2022-04-20 23:46:07 +02:00
Detail::unique_ptr<IStream> ReporterConfig::takeStream() && {
assert( m_stream );
return CATCH_MOVE( m_stream );
}
IConfig const * ReporterConfig::fullConfig() const { return m_fullConfig; }
2022-04-20 23:46:07 +02:00
ColourMode ReporterConfig::colourMode() const { return m_colourMode; }
std::map<std::string, std::string> const&
ReporterConfig::customOptions() const {
return m_customOptions;
}
ReporterConfig::~ReporterConfig() = default;
2022-01-03 23:16:39 +01:00
AssertionStats::AssertionStats( AssertionResult const& _assertionResult,
std::vector<MessageInfo> const& _infoMessages,
Totals const& _totals )
: assertionResult( _assertionResult ),
infoMessages( _infoMessages ),
totals( _totals )
{
if( assertionResult.hasMessage() ) {
// Copy message into messages list.
// !TBD This should have been done earlier, somewhere
MessageBuilder builder( assertionResult.getTestMacroName(), assertionResult.getSourceInfo(), assertionResult.getResultType() );
2023-01-29 23:18:57 +01:00
builder.m_info.message = static_cast<std::string>(assertionResult.getMessage());
2023-01-29 23:18:57 +01:00
infoMessages.push_back( CATCH_MOVE(builder.m_info) );
}
}
2023-01-29 23:18:57 +01:00
SectionStats::SectionStats( SectionInfo&& _sectionInfo,
Counts const& _assertions,
double _durationInSeconds,
bool _missingAssertions )
2023-01-29 23:18:57 +01:00
: sectionInfo( CATCH_MOVE(_sectionInfo) ),
assertions( _assertions ),
durationInSeconds( _durationInSeconds ),
missingAssertions( _missingAssertions )
{}
TestCaseStats::TestCaseStats( TestCaseInfo const& _testInfo,
Totals const& _totals,
2023-02-27 15:12:35 +01:00
std::string&& _stdOut,
std::string&& _stdErr,
bool _aborting )
: testInfo( &_testInfo ),
totals( _totals ),
2023-02-27 15:12:35 +01:00
stdOut( CATCH_MOVE(_stdOut) ),
stdErr( CATCH_MOVE(_stdErr) ),
aborting( _aborting )
{}
TestRunStats::TestRunStats( TestRunInfo const& _runInfo,
Totals const& _totals,
bool _aborting )
: runInfo( _runInfo ),
totals( _totals ),
aborting( _aborting )
{}
2022-04-20 23:46:07 +02:00
IEventListener::~IEventListener() = default;
} // end namespace Catch
2022-07-17 20:18:44 +02:00
namespace Catch {
IReporterFactory::~IReporterFactory() = default;
EventListenerFactory::~EventListenerFactory() = default;
}
namespace Catch {
ITestCaseRegistry::~ITestCaseRegistry() = default;
}
namespace Catch {
AssertionHandler::AssertionHandler
2022-01-03 23:16:39 +01:00
( StringRef macroName,
SourceLineInfo const& lineInfo,
StringRef capturedExpression,
ResultDisposition::Flags resultDisposition )
: m_assertionInfo{ macroName, lineInfo, capturedExpression, resultDisposition },
m_resultCapture( getResultCapture() )
2023-07-13 13:37:30 +02:00
{
m_resultCapture.notifyAssertionStarted( m_assertionInfo );
}
void AssertionHandler::handleExpr( ITransientExpression const& expr ) {
m_resultCapture.handleExpr( m_assertionInfo, expr, m_reaction );
}
2022-01-03 23:16:39 +01:00
void AssertionHandler::handleMessage(ResultWas::OfType resultType, StringRef message) {
m_resultCapture.handleMessage( m_assertionInfo, resultType, message, m_reaction );
}
auto AssertionHandler::allowThrows() const -> bool {
return getCurrentContext().getConfig()->allowThrows();
}
void AssertionHandler::complete() {
2023-07-13 13:37:30 +02:00
m_completed = true;
if( m_reaction.shouldDebugBreak ) {
// If you find your debugger stopping you here then go one level up on the
// call-stack for the code that caused it (typically a failed assertion)
// (To go back to the test and change execution, jump over the throw, next)
CATCH_BREAK_INTO_DEBUGGER();
}
if (m_reaction.shouldThrow) {
2022-11-16 16:06:45 +01:00
throw_test_failure_exception();
}
2023-01-22 19:43:11 +01:00
if ( m_reaction.shouldSkip ) {
2023-07-13 13:37:30 +02:00
throw_test_skip_exception();
2023-01-22 19:43:11 +01:00
}
}
void AssertionHandler::handleUnexpectedInflightException() {
m_resultCapture.handleUnexpectedInflightException( m_assertionInfo, Catch::translateActiveException(), m_reaction );
}
void AssertionHandler::handleExceptionThrownAsExpected() {
m_resultCapture.handleNonExpr(m_assertionInfo, ResultWas::Ok, m_reaction);
}
void AssertionHandler::handleExceptionNotThrownAsExpected() {
m_resultCapture.handleNonExpr(m_assertionInfo, ResultWas::Ok, m_reaction);
}
void AssertionHandler::handleUnexpectedExceptionNotThrown() {
m_resultCapture.handleUnexpectedExceptionNotThrown( m_assertionInfo, m_reaction );
}
void AssertionHandler::handleThrowingCallSkipped() {
m_resultCapture.handleNonExpr(m_assertionInfo, ResultWas::Ok, m_reaction);
}
// This is the overload that takes a string and infers the Equals matcher from it
// The more general overload, that takes any string matcher, is in catch_capture_matchers.cpp
2022-11-16 16:06:45 +01:00
void handleExceptionMatchExpr( AssertionHandler& handler, std::string const& str ) {
handleExceptionMatchExpr( handler, Matchers::Equals( str ) );
}
} // namespace Catch
2022-01-03 23:16:39 +01:00
#include <algorithm>
namespace Catch {
namespace Detail {
bool CaseInsensitiveLess::operator()( StringRef lhs,
StringRef rhs ) const {
return std::lexicographical_compare(
lhs.begin(), lhs.end(),
rhs.begin(), rhs.end(),
[]( char l, char r ) { return toLower( l ) < toLower( r ); } );
}
bool
CaseInsensitiveEqualTo::operator()( StringRef lhs,
StringRef rhs ) const {
return std::equal(
lhs.begin(), lhs.end(),
rhs.begin(), rhs.end(),
[]( char l, char r ) { return toLower( l ) == toLower( r ); } );
}
} // namespace Detail
} // namespace Catch
2022-04-20 23:46:07 +02:00
#include <algorithm>
2022-04-20 23:46:07 +02:00
#include <ostream>
namespace {
bool isOptPrefix( char c ) {
return c == '-'
#ifdef CATCH_PLATFORM_WINDOWS
|| c == '/'
#endif
;
}
2023-12-31 15:15:04 +01:00
Catch::StringRef normaliseOpt( Catch::StringRef optName ) {
if ( optName[0] == '-'
#if defined(CATCH_PLATFORM_WINDOWS)
|| optName[0] == '/'
#endif
2023-12-31 15:15:04 +01:00
) {
return optName.substr( 1, optName.size() );
}
return optName;
}
static size_t find_first_separator(Catch::StringRef sr) {
auto is_separator = []( char c ) {
return c == ' ' || c == ':' || c == '=';
};
size_t pos = 0;
while (pos < sr.size()) {
if (is_separator(sr[pos])) { return pos; }
++pos;
}
return Catch::StringRef::npos;
}
} // namespace
namespace Catch {
namespace Clara {
namespace Detail {
void TokenStream::loadBuffer() {
m_tokenBuffer.clear();
// Skip any empty strings
while ( it != itEnd && it->empty() ) {
++it;
}
if ( it != itEnd ) {
2023-12-31 15:15:04 +01:00
StringRef next = *it;
if ( isOptPrefix( next[0] ) ) {
2023-12-31 15:15:04 +01:00
auto delimiterPos = find_first_separator(next);
if ( delimiterPos != StringRef::npos ) {
m_tokenBuffer.push_back(
{ TokenType::Option,
next.substr( 0, delimiterPos ) } );
m_tokenBuffer.push_back(
{ TokenType::Argument,
2023-12-31 15:15:04 +01:00
next.substr( delimiterPos + 1, next.size() ) } );
} else {
if ( next[1] != '-' && next.size() > 2 ) {
2023-12-31 15:15:04 +01:00
// Combined short args, e.g. "-ab" for "-a -b"
for ( size_t i = 1; i < next.size(); ++i ) {
m_tokenBuffer.push_back(
2023-12-31 15:15:04 +01:00
{ TokenType::Option,
next.substr( i, 1 ) } );
}
} else {
m_tokenBuffer.push_back(
{ TokenType::Option, next } );
}
}
} else {
m_tokenBuffer.push_back(
{ TokenType::Argument, next } );
}
}
}
TokenStream::TokenStream( Args const& args ):
TokenStream( args.m_args.begin(), args.m_args.end() ) {}
TokenStream::TokenStream( Iterator it_, Iterator itEnd_ ):
it( it_ ), itEnd( itEnd_ ) {
loadBuffer();
}
TokenStream& TokenStream::operator++() {
if ( m_tokenBuffer.size() >= 2 ) {
m_tokenBuffer.erase( m_tokenBuffer.begin() );
} else {
if ( it != itEnd )
++it;
loadBuffer();
}
return *this;
}
ParserResult convertInto( std::string const& source,
std::string& target ) {
target = source;
return ParserResult::ok( ParseResultType::Matched );
}
ParserResult convertInto( std::string const& source,
bool& target ) {
std::string srcLC = toLower( source );
if ( srcLC == "y" || srcLC == "1" || srcLC == "true" ||
srcLC == "yes" || srcLC == "on" ) {
target = true;
} else if ( srcLC == "n" || srcLC == "0" || srcLC == "false" ||
srcLC == "no" || srcLC == "off" ) {
target = false;
} else {
return ParserResult::runtimeError(
"Expected a boolean value but did not recognise: '" +
2022-01-03 23:16:39 +01:00
source + '\'' );
}
return ParserResult::ok( ParseResultType::Matched );
}
size_t ParserBase::cardinality() const { return 1; }
InternalParseResult ParserBase::parse( Args const& args ) const {
2023-12-31 15:15:04 +01:00
return parse( static_cast<std::string>(args.exeName()), TokenStream( args ) );
}
ParseState::ParseState( ParseResultType type,
2023-12-31 15:15:04 +01:00
TokenStream remainingTokens ):
m_type( type ), m_remainingTokens( CATCH_MOVE(remainingTokens) ) {}
ParserResult BoundFlagRef::setFlag( bool flag ) {
m_ref = flag;
return ParserResult::ok( ParseResultType::Matched );
}
ResultBase::~ResultBase() = default;
bool BoundRef::isContainer() const { return false; }
bool BoundRef::isFlag() const { return false; }
bool BoundFlagRefBase::isFlag() const { return true; }
} // namespace Detail
Detail::InternalParseResult Arg::parse(std::string const&,
2023-12-31 15:15:04 +01:00
Detail::TokenStream tokens) const {
auto validationResult = validate();
if (!validationResult)
return Detail::InternalParseResult(validationResult);
2023-12-31 15:15:04 +01:00
auto token = *tokens;
if (token.type != Detail::TokenType::Argument)
return Detail::InternalParseResult::ok(Detail::ParseState(
2023-12-31 15:15:04 +01:00
ParseResultType::NoMatch, CATCH_MOVE(tokens)));
assert(!m_ref->isFlag());
auto valueRef =
static_cast<Detail::BoundValueRefBase*>(m_ref.get());
2023-12-31 15:15:04 +01:00
auto result = valueRef->setValue(static_cast<std::string>(token.token));
if ( !result )
return Detail::InternalParseResult( result );
else
2023-12-31 15:15:04 +01:00
return Detail::InternalParseResult::ok(
Detail::ParseState( ParseResultType::Matched,
CATCH_MOVE( ++tokens ) ) );
}
Opt::Opt(bool& ref) :
ParserRefImpl(std::make_shared<Detail::BoundFlagRef>(ref)) {}
2023-12-31 15:15:04 +01:00
Detail::HelpColumns Opt::getHelpColumns() const {
ReusableStringStream oss;
bool first = true;
for (auto const& opt : m_optNames) {
if (first)
first = false;
else
oss << ", ";
oss << opt;
}
if (!m_hint.empty())
oss << " <" << m_hint << '>';
2023-12-31 15:15:04 +01:00
return { oss.str(), m_description };
}
2023-12-31 15:15:04 +01:00
bool Opt::isMatch(StringRef optToken) const {
auto normalisedToken = normaliseOpt(optToken);
for (auto const& name : m_optNames) {
if (normaliseOpt(name) == normalisedToken)
return true;
}
return false;
}
Detail::InternalParseResult Opt::parse(std::string const&,
2023-12-31 15:15:04 +01:00
Detail::TokenStream tokens) const {
auto validationResult = validate();
if (!validationResult)
return Detail::InternalParseResult(validationResult);
2023-12-31 15:15:04 +01:00
if (tokens &&
tokens->type == Detail::TokenType::Option) {
auto const& token = *tokens;
if (isMatch(token.token)) {
if (m_ref->isFlag()) {
auto flagRef =
static_cast<Detail::BoundFlagRefBase*>(
m_ref.get());
auto result = flagRef->setFlag(true);
if (!result)
return Detail::InternalParseResult(result);
if (result.value() ==
ParseResultType::ShortCircuitAll)
return Detail::InternalParseResult::ok(Detail::ParseState(
2023-12-31 15:15:04 +01:00
result.value(), CATCH_MOVE(tokens)));
} else {
auto valueRef =
static_cast<Detail::BoundValueRefBase*>(
m_ref.get());
2023-12-31 15:15:04 +01:00
++tokens;
if (!tokens)
return Detail::InternalParseResult::runtimeError(
"Expected argument following " +
token.token);
2023-12-31 15:15:04 +01:00
auto const& argToken = *tokens;
if (argToken.type != Detail::TokenType::Argument)
return Detail::InternalParseResult::runtimeError(
"Expected argument following " +
token.token);
2023-12-31 15:15:04 +01:00
const auto result = valueRef->setValue(static_cast<std::string>(argToken.token));
if (!result)
return Detail::InternalParseResult(result);
if (result.value() ==
ParseResultType::ShortCircuitAll)
return Detail::InternalParseResult::ok(Detail::ParseState(
2023-12-31 15:15:04 +01:00
result.value(), CATCH_MOVE(tokens)));
}
return Detail::InternalParseResult::ok(Detail::ParseState(
2023-12-31 15:15:04 +01:00
ParseResultType::Matched, CATCH_MOVE(++tokens)));
}
}
return Detail::InternalParseResult::ok(
2023-12-31 15:15:04 +01:00
Detail::ParseState(ParseResultType::NoMatch, CATCH_MOVE(tokens)));
}
Detail::Result Opt::validate() const {
if (m_optNames.empty())
return Detail::Result::logicError("No options supplied to Opt");
for (auto const& name : m_optNames) {
if (name.empty())
return Detail::Result::logicError(
"Option name cannot be empty");
#ifdef CATCH_PLATFORM_WINDOWS
if (name[0] != '-' && name[0] != '/')
return Detail::Result::logicError(
"Option name must begin with '-' or '/'");
#else
if (name[0] != '-')
return Detail::Result::logicError(
"Option name must begin with '-'");
#endif
}
return ParserRefImpl::validate();
}
ExeName::ExeName() :
m_name(std::make_shared<std::string>("<executable>")) {}
ExeName::ExeName(std::string& ref) : ExeName() {
m_ref = std::make_shared<Detail::BoundValueRef<std::string>>(ref);
}
Detail::InternalParseResult
ExeName::parse(std::string const&,
2023-12-31 15:15:04 +01:00
Detail::TokenStream tokens) const {
return Detail::InternalParseResult::ok(
2023-12-31 15:15:04 +01:00
Detail::ParseState(ParseResultType::NoMatch, CATCH_MOVE(tokens)));
}
ParserResult ExeName::set(std::string const& newName) {
auto lastSlash = newName.find_last_of("\\/");
auto filename = (lastSlash == std::string::npos)
? newName
: newName.substr(lastSlash + 1);
*m_name = filename;
if (m_ref)
return m_ref->setValue(filename);
else
return ParserResult::ok(ParseResultType::Matched);
}
Parser& Parser::operator|=( Parser const& other ) {
m_options.insert( m_options.end(),
other.m_options.begin(),
other.m_options.end() );
m_args.insert(
m_args.end(), other.m_args.begin(), other.m_args.end() );
return *this;
}
std::vector<Detail::HelpColumns> Parser::getHelpColumns() const {
std::vector<Detail::HelpColumns> cols;
2023-12-31 15:15:04 +01:00
cols.reserve( m_options.size() );
for ( auto const& o : m_options ) {
2023-12-31 15:15:04 +01:00
cols.push_back(o.getHelpColumns());
}
return cols;
}
void Parser::writeToStream( std::ostream& os ) const {
if ( !m_exeName.name().empty() ) {
os << "usage:\n"
<< " " << m_exeName.name() << ' ';
bool required = true, first = true;
for ( auto const& arg : m_args ) {
if ( first )
first = false;
else
os << ' ';
if ( arg.isOptional() && required ) {
os << '[';
required = false;
}
os << '<' << arg.hint() << '>';
if ( arg.cardinality() == 0 )
os << " ... ";
}
if ( !required )
os << ']';
if ( !m_options.empty() )
os << " options";
os << "\n\nwhere options are:\n";
}
auto rows = getHelpColumns();
size_t consoleWidth = CATCH_CONFIG_CONSOLE_WIDTH;
size_t optWidth = 0;
for ( auto const& cols : rows )
optWidth = ( std::max )( optWidth, cols.left.size() + 2 );
optWidth = ( std::min )( optWidth, consoleWidth / 2 );
2023-12-31 15:15:04 +01:00
for ( auto& cols : rows ) {
auto row = TextFlow::Column( CATCH_MOVE(cols.left) )
.width( optWidth )
.indent( 2 ) +
TextFlow::Spacer( 4 ) +
2023-12-31 15:15:04 +01:00
TextFlow::Column( static_cast<std::string>(cols.descriptions) )
.width( consoleWidth - 7 - optWidth );
os << row << '\n';
}
}
Detail::Result Parser::validate() const {
for ( auto const& opt : m_options ) {
auto result = opt.validate();
if ( !result )
return result;
}
for ( auto const& arg : m_args ) {
auto result = arg.validate();
if ( !result )
return result;
}
return Detail::Result::ok();
}
Detail::InternalParseResult
Parser::parse( std::string const& exeName,
2023-12-31 15:15:04 +01:00
Detail::TokenStream tokens ) const {
struct ParserInfo {
ParserBase const* parser = nullptr;
size_t count = 0;
};
std::vector<ParserInfo> parseInfos;
parseInfos.reserve( m_options.size() + m_args.size() );
for ( auto const& opt : m_options ) {
parseInfos.push_back( { &opt, 0 } );
}
for ( auto const& arg : m_args ) {
parseInfos.push_back( { &arg, 0 } );
}
m_exeName.set( exeName );
auto result = Detail::InternalParseResult::ok(
2023-12-31 15:15:04 +01:00
Detail::ParseState( ParseResultType::NoMatch, CATCH_MOVE(tokens) ) );
while ( result.value().remainingTokens() ) {
bool tokenParsed = false;
for ( auto& parseInfo : parseInfos ) {
if ( parseInfo.parser->cardinality() == 0 ||
parseInfo.count < parseInfo.parser->cardinality() ) {
result = parseInfo.parser->parse(
2023-12-31 15:15:04 +01:00
exeName, CATCH_MOVE(result).value().remainingTokens() );
if ( !result )
return result;
if ( result.value().type() !=
ParseResultType::NoMatch ) {
tokenParsed = true;
++parseInfo.count;
break;
}
}
}
if ( result.value().type() == ParseResultType::ShortCircuitAll )
return result;
if ( !tokenParsed )
return Detail::InternalParseResult::runtimeError(
"Unrecognised token: " +
result.value().remainingTokens()->token );
}
// !TBD Check missing required options
return result;
}
Args::Args(int argc, char const* const* argv) :
m_exeName(argv[0]), m_args(argv + 1, argv + argc) {}
2023-12-31 15:15:04 +01:00
Args::Args(std::initializer_list<StringRef> args) :
m_exeName(*args.begin()),
m_args(args.begin() + 1, args.end()) {}
Help::Help( bool& showHelpFlag ):
Opt( [&]( bool flag ) {
showHelpFlag = flag;
return ParserResult::ok( ParseResultType::ShortCircuitAll );
} ) {
static_cast<Opt&> ( *this )(
"display usage information" )["-?"]["-h"]["--help"]
.optional();
}
} // namespace Clara
} // namespace Catch
2022-07-17 20:18:44 +02:00
#include <fstream>
#include <string>
namespace Catch {
2022-07-17 20:18:44 +02:00
Clara::Parser makeCommandLineParser( ConfigData& config ) {
2022-07-17 20:18:44 +02:00
using namespace Clara;
2022-07-17 20:18:44 +02:00
auto const setWarning = [&]( std::string const& warning ) {
if ( warning == "NoAssertions" ) {
config.warnings = static_cast<WarnAbout::What>(config.warnings | WarnAbout::NoAssertions);
return ParserResult::ok( ParseResultType::Matched );
} else if ( warning == "UnmatchedTestSpec" ) {
config.warnings = static_cast<WarnAbout::What>(config.warnings | WarnAbout::UnmatchedTestSpec);
return ParserResult::ok( ParseResultType::Matched );
}
2022-07-17 20:18:44 +02:00
return ParserResult ::runtimeError(
"Unrecognised warning option: '" + warning + '\'' );
};
auto const loadTestNamesFromFile = [&]( std::string const& filename ) {
std::ifstream f( filename.c_str() );
if( !f.is_open() )
return ParserResult::runtimeError( "Unable to load input file: '" + filename + '\'' );
std::string line;
while( std::getline( f, line ) ) {
line = trim(line);
if( !line.empty() && !startsWith( line, '#' ) ) {
if( !startsWith( line, '"' ) )
2024-03-01 22:07:10 +01:00
line = '"' + CATCH_MOVE(line) + '"';
config.testsOrTags.push_back( line );
config.testsOrTags.emplace_back( "," );
}
}
//Remove comma in the end
if(!config.testsOrTags.empty())
config.testsOrTags.erase( config.testsOrTags.end()-1 );
return ParserResult::ok( ParseResultType::Matched );
};
auto const setTestOrder = [&]( std::string const& order ) {
if( startsWith( "declared", order ) )
config.runOrder = TestRunOrder::Declared;
else if( startsWith( "lexical", order ) )
config.runOrder = TestRunOrder::LexicographicallySorted;
else if( startsWith( "random", order ) )
config.runOrder = TestRunOrder::Randomized;
else
2022-01-03 23:16:39 +01:00
return ParserResult::runtimeError( "Unrecognised ordering: '" + order + '\'' );
return ParserResult::ok( ParseResultType::Matched );
};
auto const setRngSeed = [&]( std::string const& seed ) {
2022-01-03 23:16:39 +01:00
if( seed == "time" ) {
config.rngSeed = generateRandomSeed(GenerateFrom::Time);
return ParserResult::ok(ParseResultType::Matched);
} else if (seed == "random-device") {
config.rngSeed = generateRandomSeed(GenerateFrom::RandomDevice);
return ParserResult::ok(ParseResultType::Matched);
}
2022-11-16 16:06:45 +01:00
// TODO: ideally we should be parsing uint32_t directly
// fix this later when we add new parse overload
auto parsedSeed = parseUInt( seed, 0 );
if ( !parsedSeed ) {
return ParserResult::runtimeError( "Could not parse '" + seed + "' as seed" );
2022-01-03 23:16:39 +01:00
}
2022-11-16 16:06:45 +01:00
config.rngSeed = *parsedSeed;
return ParserResult::ok( ParseResultType::Matched );
};
2022-04-20 23:46:07 +02:00
auto const setDefaultColourMode = [&]( std::string const& colourMode ) {
Optional<ColourMode> maybeMode = Catch::Detail::stringToColourMode(toLower( colourMode ));
if ( !maybeMode ) {
return ParserResult::runtimeError(
"colour mode must be one of: default, ansi, win32, "
"or none. '" +
colourMode + "' is not recognised" );
}
auto mode = *maybeMode;
if ( !isColourImplAvailable( mode ) ) {
return ParserResult::runtimeError(
"colour mode '" + colourMode +
"' is not supported in this binary" );
}
config.defaultColourMode = mode;
return ParserResult::ok( ParseResultType::Matched );
};
auto const setWaitForKeypress = [&]( std::string const& keypress ) {
auto keypressLc = toLower( keypress );
if (keypressLc == "never")
config.waitForKeypress = WaitForKeypress::Never;
else if( keypressLc == "start" )
config.waitForKeypress = WaitForKeypress::BeforeStart;
else if( keypressLc == "exit" )
config.waitForKeypress = WaitForKeypress::BeforeExit;
else if( keypressLc == "both" )
config.waitForKeypress = WaitForKeypress::BeforeStartAndExit;
else
return ParserResult::runtimeError( "keypress argument must be one of: never, start, exit or both. '" + keypress + "' not recognised" );
return ParserResult::ok( ParseResultType::Matched );
};
auto const setVerbosity = [&]( std::string const& verbosity ) {
auto lcVerbosity = toLower( verbosity );
if( lcVerbosity == "quiet" )
config.verbosity = Verbosity::Quiet;
else if( lcVerbosity == "normal" )
config.verbosity = Verbosity::Normal;
else if( lcVerbosity == "high" )
config.verbosity = Verbosity::High;
else
2022-01-03 23:16:39 +01:00
return ParserResult::runtimeError( "Unrecognised verbosity, '" + verbosity + '\'' );
return ParserResult::ok( ParseResultType::Matched );
};
2022-04-20 23:46:07 +02:00
auto const setReporter = [&]( std::string const& userReporterSpec ) {
if ( userReporterSpec.empty() ) {
2022-01-03 23:16:39 +01:00
return ParserResult::runtimeError( "Received empty reporter spec." );
}
2022-04-20 23:46:07 +02:00
Optional<ReporterSpec> parsed =
parseReporterSpec( userReporterSpec );
if ( !parsed ) {
return ParserResult::runtimeError(
"Could not parse reporter spec '" + userReporterSpec +
"'" );
2022-01-03 23:16:39 +01:00
}
2022-04-20 23:46:07 +02:00
auto const& reporterSpec = *parsed;
2022-01-03 23:16:39 +01:00
2023-07-13 13:37:30 +02:00
auto const& factories =
2022-04-20 23:46:07 +02:00
getRegistryHub().getReporterRegistry().getFactories();
auto result = factories.find( reporterSpec.name() );
2022-01-03 23:16:39 +01:00
2022-04-20 23:46:07 +02:00
if ( result == factories.end() ) {
return ParserResult::runtimeError(
"Unrecognized reporter, '" + reporterSpec.name() +
"'. Check available with --list-reporters" );
2022-01-03 23:16:39 +01:00
}
2022-04-20 23:46:07 +02:00
const bool hadOutputFile = reporterSpec.outputFile().some();
config.reporterSpecifications.push_back( CATCH_MOVE( *parsed ) );
// It would be enough to check this only once at the very end, but
// there is not a place where we could call this check, so do it
// every time it could fail. For valid inputs, this is still called
// at most once.
if (!hadOutputFile) {
2022-01-03 23:16:39 +01:00
int n_reporters_without_file = 0;
for (auto const& spec : config.reporterSpecifications) {
2022-04-20 23:46:07 +02:00
if (spec.outputFile().none()) {
2022-01-03 23:16:39 +01:00
n_reporters_without_file++;
}
}
if (n_reporters_without_file > 1) {
return ParserResult::runtimeError( "Only one reporter may have unspecified output file." );
}
}
return ParserResult::ok( ParseResultType::Matched );
};
2022-01-03 23:16:39 +01:00
auto const setShardCount = [&]( std::string const& shardCount ) {
2022-11-16 16:06:45 +01:00
auto parsedCount = parseUInt( shardCount );
if ( !parsedCount ) {
return ParserResult::runtimeError(
"Could not parse '" + shardCount + "' as shard count" );
}
if ( *parsedCount == 0 ) {
return ParserResult::runtimeError(
"Shard count must be positive" );
2022-01-03 23:16:39 +01:00
}
2022-11-16 16:06:45 +01:00
config.shardCount = *parsedCount;
return ParserResult::ok( ParseResultType::Matched );
2022-01-03 23:16:39 +01:00
};
auto const setShardIndex = [&](std::string const& shardIndex) {
2022-11-16 16:06:45 +01:00
auto parsedIndex = parseUInt( shardIndex );
if ( !parsedIndex ) {
return ParserResult::runtimeError(
"Could not parse '" + shardIndex + "' as shard index" );
2022-01-03 23:16:39 +01:00
}
2022-11-16 16:06:45 +01:00
config.shardIndex = *parsedIndex;
return ParserResult::ok( ParseResultType::Matched );
2022-01-03 23:16:39 +01:00
};
auto cli
= ExeName( config.processName )
| Help( config.showHelp )
| Opt( config.showSuccessfulTests )
["-s"]["--success"]
( "include successful tests in output" )
| Opt( config.shouldDebugBreak )
["-b"]["--break"]
( "break into debugger on failure" )
| Opt( config.noThrow )
["-e"]["--nothrow"]
( "skip exception tests" )
| Opt( config.showInvisibles )
["-i"]["--invisibles"]
( "show invisibles (tabs, newlines)" )
2022-01-03 23:16:39 +01:00
| Opt( config.defaultOutputFilename, "filename" )
["-o"]["--out"]
2022-01-03 23:16:39 +01:00
( "default output filename" )
2022-04-20 23:46:07 +02:00
| Opt( accept_many, setReporter, "name[::key=value]*" )
["-r"]["--reporter"]
( "reporter to use (defaults to console)" )
| Opt( config.name, "name" )
["-n"]["--name"]
( "suite name" )
| Opt( [&]( bool ){ config.abortAfter = 1; } )
["-a"]["--abort"]
( "abort at first failure" )
| Opt( [&]( int x ){ config.abortAfter = x; }, "no. failures" )
["-x"]["--abortx"]
( "abort after x failures" )
2022-01-03 23:16:39 +01:00
| Opt( accept_many, setWarning, "warning name" )
["-w"]["--warn"]
( "enable warnings" )
| Opt( [&]( bool flag ) { config.showDurations = flag ? ShowDurations::Always : ShowDurations::Never; }, "yes|no" )
["-d"]["--durations"]
( "show test durations" )
| Opt( config.minDuration, "seconds" )
["-D"]["--min-duration"]
( "show test durations for tests taking at least the given number of seconds" )
| Opt( loadTestNamesFromFile, "filename" )
["-f"]["--input-file"]
( "load test names to run from a file" )
| Opt( config.filenamesAsTags )
["-#"]["--filenames-as-tags"]
( "adds a tag for the filename" )
| Opt( config.sectionsToRun, "section name" )
["-c"]["--section"]
( "specify section to run" )
| Opt( setVerbosity, "quiet|normal|high" )
["-v"]["--verbosity"]
( "set output verbosity" )
2022-01-03 23:16:39 +01:00
| Opt( config.listTests )
["--list-tests"]
( "list all/matching test cases" )
| Opt( config.listTags )
["--list-tags"]
( "list all/matching tags" )
| Opt( config.listReporters )
["--list-reporters"]
2022-05-17 22:13:36 +02:00
( "list all available reporters" )
| Opt( config.listListeners )
["--list-listeners"]
( "list all listeners" )
| Opt( setTestOrder, "decl|lex|rand" )
["--order"]
( "test case order (defaults to decl)" )
2022-01-03 23:16:39 +01:00
| Opt( setRngSeed, "'time'|'random-device'|number" )
["--rng-seed"]
( "set a specific seed for random numbers" )
2022-04-20 23:46:07 +02:00
| Opt( setDefaultColourMode, "ansi|win32|none|default" )
["--colour-mode"]
( "what color mode should be used as default" )
| Opt( config.libIdentify )
["--libidentify"]
( "report name and version according to libidentify standard" )
| Opt( setWaitForKeypress, "never|start|exit|both" )
["--wait-for-keypress"]
( "waits for a keypress before exiting" )
2022-05-17 22:13:36 +02:00
| Opt( config.skipBenchmarks)
["--skip-benchmarks"]
( "disable running benchmarks")
| Opt( config.benchmarkSamples, "samples" )
["--benchmark-samples"]
( "number of samples to collect (default: 100)" )
| Opt( config.benchmarkResamples, "resamples" )
["--benchmark-resamples"]
( "number of resamples for the bootstrap (default: 100000)" )
| Opt( config.benchmarkConfidenceInterval, "confidence interval" )
["--benchmark-confidence-interval"]
( "confidence interval for the bootstrap (between 0 and 1, default: 0.95)" )
| Opt( config.benchmarkNoAnalysis )
["--benchmark-no-analysis"]
( "perform only measurements; do not perform any analysis" )
| Opt( config.benchmarkWarmupTime, "benchmarkWarmupTime" )
["--benchmark-warmup-time"]
( "amount of time in milliseconds spent on warming up each test (default: 100)" )
2022-01-03 23:16:39 +01:00
| Opt( setShardCount, "shard count" )
["--shard-count"]
( "split the tests to execute into this many groups" )
| Opt( setShardIndex, "shard index" )
["--shard-index"]
2023-12-31 15:15:04 +01:00
( "index of the group of tests to execute (see --shard-count)" )
| Opt( config.allowZeroTests )
2022-01-03 23:16:39 +01:00
["--allow-running-no-tests"]
( "Treat 'No tests run' as a success" )
| Arg( config.testsOrTags, "test name|pattern|tags" )
( "which test or tests to use" );
return cli;
}
} // end namespace Catch
#if defined(__clang__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wexit-time-destructors"
#endif
2022-04-20 23:46:07 +02:00
#include <cassert>
#include <ostream>
2022-04-20 23:46:07 +02:00
#include <utility>
namespace Catch {
2022-04-20 23:46:07 +02:00
ColourImpl::~ColourImpl() = default;
2022-04-20 23:46:07 +02:00
ColourImpl::ColourGuard ColourImpl::guardColour( Colour::Code colourCode ) {
return ColourGuard(colourCode, this );
}
2022-04-20 23:46:07 +02:00
void ColourImpl::ColourGuard::engageImpl( std::ostream& stream ) {
assert( &stream == &m_colourImpl->m_stream->stream() &&
"Engaging colour guard for different stream than used by the "
"parent colour implementation" );
static_cast<void>( stream );
m_engaged = true;
m_colourImpl->use( m_code );
}
ColourImpl::ColourGuard::ColourGuard( Colour::Code code,
ColourImpl const* colour ):
m_colourImpl( colour ), m_code( code ) {
}
ColourImpl::ColourGuard::ColourGuard( ColourGuard&& rhs ) noexcept:
m_colourImpl( rhs.m_colourImpl ),
m_code( rhs.m_code ),
m_engaged( rhs.m_engaged ) {
rhs.m_engaged = false;
}
ColourImpl::ColourGuard&
ColourImpl::ColourGuard::operator=( ColourGuard&& rhs ) noexcept {
using std::swap;
swap( m_colourImpl, rhs.m_colourImpl );
swap( m_code, rhs.m_code );
swap( m_engaged, rhs.m_engaged );
return *this;
}
ColourImpl::ColourGuard::~ColourGuard() {
if ( m_engaged ) {
m_colourImpl->use( Colour::None );
}
}
ColourImpl::ColourGuard&
ColourImpl::ColourGuard::engage( std::ostream& stream ) & {
engageImpl( stream );
return *this;
}
ColourImpl::ColourGuard&&
ColourImpl::ColourGuard::engage( std::ostream& stream ) && {
engageImpl( stream );
return CATCH_MOVE(*this);
}
namespace {
//! A do-nothing implementation of colour, used as fallback for unknown
//! platforms, and when the user asks to deactivate all colours.
2023-07-13 13:37:30 +02:00
class NoColourImpl final : public ColourImpl {
2022-04-20 23:46:07 +02:00
public:
NoColourImpl( IStream* stream ): ColourImpl( stream ) {}
private:
void use( Colour::Code ) const override {}
};
2022-04-20 23:46:07 +02:00
} // namespace
2022-04-20 23:46:07 +02:00
} // namespace Catch
2022-04-20 23:46:07 +02:00
#if defined ( CATCH_CONFIG_COLOUR_WIN32 ) /////////////////////////////////////////
namespace Catch {
namespace {
2023-07-13 13:37:30 +02:00
class Win32ColourImpl final : public ColourImpl {
public:
2022-04-20 23:46:07 +02:00
Win32ColourImpl(IStream* stream):
ColourImpl(stream) {
CONSOLE_SCREEN_BUFFER_INFO csbiInfo;
2022-04-20 23:46:07 +02:00
GetConsoleScreenBufferInfo( GetStdHandle( STD_OUTPUT_HANDLE ),
&csbiInfo );
originalForegroundAttributes = csbiInfo.wAttributes & ~( BACKGROUND_GREEN | BACKGROUND_RED | BACKGROUND_BLUE | BACKGROUND_INTENSITY );
originalBackgroundAttributes = csbiInfo.wAttributes & ~( FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_BLUE | FOREGROUND_INTENSITY );
}
2022-05-17 22:13:36 +02:00
static bool useImplementationForStream(IStream const& stream) {
2022-04-20 23:46:07 +02:00
// Win32 text colour APIs can only be used on console streams
// We cannot check that the output hasn't been redirected,
// so we just check that the original stream is console stream.
return stream.isConsole();
}
private:
void use( Colour::Code _colourCode ) const override {
switch( _colourCode ) {
case Colour::None: return setTextAttribute( originalForegroundAttributes );
case Colour::White: return setTextAttribute( FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_BLUE );
case Colour::Red: return setTextAttribute( FOREGROUND_RED );
case Colour::Green: return setTextAttribute( FOREGROUND_GREEN );
case Colour::Blue: return setTextAttribute( FOREGROUND_BLUE );
case Colour::Cyan: return setTextAttribute( FOREGROUND_BLUE | FOREGROUND_GREEN );
case Colour::Yellow: return setTextAttribute( FOREGROUND_RED | FOREGROUND_GREEN );
case Colour::Grey: return setTextAttribute( 0 );
case Colour::LightGrey: return setTextAttribute( FOREGROUND_INTENSITY );
case Colour::BrightRed: return setTextAttribute( FOREGROUND_INTENSITY | FOREGROUND_RED );
case Colour::BrightGreen: return setTextAttribute( FOREGROUND_INTENSITY | FOREGROUND_GREEN );
case Colour::BrightWhite: return setTextAttribute( FOREGROUND_INTENSITY | FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_BLUE );
case Colour::BrightYellow: return setTextAttribute( FOREGROUND_INTENSITY | FOREGROUND_RED | FOREGROUND_GREEN );
case Colour::Bright: CATCH_INTERNAL_ERROR( "not a colour" );
default:
CATCH_ERROR( "Unknown colour requested" );
}
}
2022-04-20 23:46:07 +02:00
void setTextAttribute( WORD _textAttribute ) const {
SetConsoleTextAttribute( GetStdHandle( STD_OUTPUT_HANDLE ),
_textAttribute |
originalBackgroundAttributes );
}
WORD originalForegroundAttributes;
WORD originalBackgroundAttributes;
};
} // end anon namespace
} // end namespace Catch
2022-04-20 23:46:07 +02:00
#endif // Windows/ ANSI/ None
2022-04-20 23:46:07 +02:00
#if defined( CATCH_PLATFORM_LINUX ) || defined( CATCH_PLATFORM_MAC )
# define CATCH_INTERNAL_HAS_ISATTY
# include <unistd.h>
#endif
namespace Catch {
namespace {
2023-07-13 13:37:30 +02:00
class ANSIColourImpl final : public ColourImpl {
public:
2022-04-20 23:46:07 +02:00
ANSIColourImpl( IStream* stream ): ColourImpl( stream ) {}
2022-05-17 22:13:36 +02:00
static bool useImplementationForStream(IStream const& stream) {
2022-04-20 23:46:07 +02:00
// This is kinda messy due to trying to support a bunch of
// different platforms at once.
// The basic idea is that if we are asked to do autodetection (as
// opposed to being told to use posixy colours outright), then we
// only want to use the colours if we are writing to console.
// However, console might be redirected, so we make an attempt at
// checking for that on platforms where we know how to do that.
bool useColour = stream.isConsole();
#if defined( CATCH_INTERNAL_HAS_ISATTY ) && \
!( defined( __DJGPP__ ) && defined( __STRICT_ANSI__ ) )
ErrnoGuard _; // for isatty
useColour = useColour && isatty( STDOUT_FILENO );
# endif
# if defined( CATCH_PLATFORM_MAC ) || defined( CATCH_PLATFORM_IPHONE )
useColour = useColour && !isDebuggerActive();
# endif
return useColour;
}
private:
void use( Colour::Code _colourCode ) const override {
auto setColour = [&out =
m_stream->stream()]( char const* escapeCode ) {
// The escape sequence must be flushed to console, otherwise
// if stdin and stderr are intermixed, we'd get accidentally
// coloured output.
out << '\033' << escapeCode << std::flush;
};
switch( _colourCode ) {
case Colour::None:
case Colour::White: return setColour( "[0m" );
case Colour::Red: return setColour( "[0;31m" );
case Colour::Green: return setColour( "[0;32m" );
case Colour::Blue: return setColour( "[0;34m" );
case Colour::Cyan: return setColour( "[0;36m" );
case Colour::Yellow: return setColour( "[0;33m" );
case Colour::Grey: return setColour( "[1;30m" );
case Colour::LightGrey: return setColour( "[0;37m" );
case Colour::BrightRed: return setColour( "[1;31m" );
case Colour::BrightGreen: return setColour( "[1;32m" );
case Colour::BrightWhite: return setColour( "[1;37m" );
case Colour::BrightYellow: return setColour( "[1;33m" );
case Colour::Bright: CATCH_INTERNAL_ERROR( "not a colour" );
default: CATCH_INTERNAL_ERROR( "Unknown colour requested" );
}
}
};
} // end anon namespace
} // end namespace Catch
namespace Catch {
2024-03-01 22:07:10 +01:00
Detail::unique_ptr<ColourImpl> makeColourImpl( ColourMode colourSelection,
2022-04-20 23:46:07 +02:00
IStream* stream ) {
#if defined( CATCH_CONFIG_COLOUR_WIN32 )
2024-03-01 22:07:10 +01:00
if ( colourSelection == ColourMode::Win32 ) {
2022-04-20 23:46:07 +02:00
return Detail::make_unique<Win32ColourImpl>( stream );
}
#endif
2024-03-01 22:07:10 +01:00
if ( colourSelection == ColourMode::ANSI ) {
2022-07-17 20:18:44 +02:00
return Detail::make_unique<ANSIColourImpl>( stream );
}
2024-03-01 22:07:10 +01:00
if ( colourSelection == ColourMode::None ) {
2022-07-17 20:18:44 +02:00
return Detail::make_unique<NoColourImpl>( stream );
}
2024-03-01 22:07:10 +01:00
if ( colourSelection == ColourMode::PlatformDefault) {
2022-07-17 20:18:44 +02:00
#if defined( CATCH_CONFIG_COLOUR_WIN32 )
2022-05-17 22:13:36 +02:00
if ( Win32ColourImpl::useImplementationForStream( *stream ) ) {
2022-04-20 23:46:07 +02:00
return Detail::make_unique<Win32ColourImpl>( stream );
}
#endif
2022-05-17 22:13:36 +02:00
if ( ANSIColourImpl::useImplementationForStream( *stream ) ) {
2022-04-20 23:46:07 +02:00
return Detail::make_unique<ANSIColourImpl>( stream );
}
return Detail::make_unique<NoColourImpl>( stream );
}
2024-03-01 22:07:10 +01:00
CATCH_ERROR( "Could not create colour impl for selection " << static_cast<int>(colourSelection) );
}
2022-04-20 23:46:07 +02:00
bool isColourImplAvailable( ColourMode colourSelection ) {
switch ( colourSelection ) {
#if defined( CATCH_CONFIG_COLOUR_WIN32 )
case ColourMode::Win32:
#endif
case ColourMode::ANSI:
case ColourMode::None:
case ColourMode::PlatformDefault:
return true;
default:
return false;
}
}
} // end namespace Catch
#if defined(__clang__)
# pragma clang diagnostic pop
#endif
namespace Catch {
2023-07-13 13:37:30 +02:00
Context* Context::currentContext = nullptr;
2023-07-13 13:37:30 +02:00
void cleanUpContext() {
delete Context::currentContext;
Context::currentContext = nullptr;
}
void Context::createContext() {
currentContext = new Context();
}
2023-07-13 13:37:30 +02:00
Context& getCurrentMutableContext() {
if ( !Context::currentContext ) { Context::createContext(); }
// NOLINTNEXTLINE(clang-analyzer-core.uninitialized.UndefReturn)
return *Context::currentContext;
}
void Context::setResultCapture( IResultCapture* resultCapture ) {
m_resultCapture = resultCapture;
}
2023-07-13 13:37:30 +02:00
void Context::setConfig( IConfig const* config ) { m_config = config; }
2022-05-17 22:13:36 +02:00
SimplePcg32& sharedRng() {
static SimplePcg32 s_rng;
return s_rng;
}
}
2022-04-20 23:46:07 +02:00
#include <ostream>
#if defined(CATCH_CONFIG_ANDROID_LOGWRITE)
#include <android/log.h>
namespace Catch {
void writeToDebugConsole( std::string const& text ) {
__android_log_write( ANDROID_LOG_DEBUG, "Catch", text.c_str() );
}
}
#elif defined(CATCH_PLATFORM_WINDOWS)
namespace Catch {
void writeToDebugConsole( std::string const& text ) {
::OutputDebugStringA( text.c_str() );
}
}
#else
namespace Catch {
void writeToDebugConsole( std::string const& text ) {
// !TBD: Need a version for Mac/ XCode and other IDEs
Catch::cout() << text;
}
}
#endif // Platform
#if defined(CATCH_PLATFORM_MAC) || defined(CATCH_PLATFORM_IPHONE)
# include <cassert>
# include <sys/types.h>
# include <unistd.h>
# include <cstddef>
# include <ostream>
#ifdef __apple_build_version__
// These headers will only compile with AppleClang (XCode)
// For other compilers (Clang, GCC, ... ) we need to exclude them
# include <sys/sysctl.h>
#endif
namespace Catch {
#ifdef __apple_build_version__
// The following function is taken directly from the following technical note:
// https://developer.apple.com/library/archive/qa/qa1361/_index.html
// Returns true if the current process is being debugged (either
// running under the debugger or has a debugger attached post facto).
bool isDebuggerActive(){
int mib[4];
struct kinfo_proc info;
std::size_t size;
// Initialize the flags so that, if sysctl fails for some bizarre
// reason, we get a predictable result.
info.kp_proc.p_flag = 0;
// Initialize mib, which tells sysctl the info we want, in this case
// we're looking for information about a specific process ID.
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = getpid();
// Call sysctl.
size = sizeof(info);
if( sysctl(mib, sizeof(mib) / sizeof(*mib), &info, &size, nullptr, 0) != 0 ) {
2022-01-03 23:16:39 +01:00
Catch::cerr() << "\n** Call to sysctl failed - unable to determine if debugger is active **\n\n" << std::flush;
return false;
}
// We're being debugged if the P_TRACED flag is set.
return ( (info.kp_proc.p_flag & P_TRACED) != 0 );
}
#else
bool isDebuggerActive() {
// We need to find another way to determine this for non-appleclang compilers on macOS
return false;
}
#endif
} // namespace Catch
#elif defined(CATCH_PLATFORM_LINUX)
#include <fstream>
#include <string>
namespace Catch{
// The standard POSIX way of detecting a debugger is to attempt to
// ptrace() the process, but this needs to be done from a child and not
// this process itself to still allow attaching to this process later
// if wanted, so is rather heavy. Under Linux we have the PID of the
// "debugger" (which doesn't need to be gdb, of course, it could also
// be strace, for example) in /proc/$PID/status, so just get it from
// there instead.
bool isDebuggerActive(){
// Libstdc++ has a bug, where std::ifstream sets errno to 0
// This way our users can properly assert over errno values
ErrnoGuard guard;
std::ifstream in("/proc/self/status");
for( std::string line; std::getline(in, line); ) {
static const int PREFIX_LEN = 11;
if( line.compare(0, PREFIX_LEN, "TracerPid:\t") == 0 ) {
// We're traced if the PID is not 0 and no other PID starts
// with 0 digit, so it's enough to check for just a single
// character.
return line.length() > PREFIX_LEN && line[PREFIX_LEN] != '0';
}
}
return false;
}
} // namespace Catch
#elif defined(_MSC_VER)
extern "C" __declspec(dllimport) int __stdcall IsDebuggerPresent();
namespace Catch {
bool isDebuggerActive() {
return IsDebuggerPresent() != 0;
}
}
#elif defined(__MINGW32__)
extern "C" __declspec(dllimport) int __stdcall IsDebuggerPresent();
namespace Catch {
bool isDebuggerActive() {
return IsDebuggerPresent() != 0;
}
}
#else
namespace Catch {
bool isDebuggerActive() { return false; }
}
#endif // Platform
2022-07-17 20:18:44 +02:00
namespace Catch {
2024-03-01 22:07:10 +01:00
void ITransientExpression::streamReconstructedExpression(
std::ostream& os ) const {
// We can't make this function pure virtual to keep ITransientExpression
// constexpr, so we write error message instead
os << "Some class derived from ITransientExpression without overriding streamReconstructedExpression";
}
2022-07-17 20:18:44 +02:00
void formatReconstructedExpression( std::ostream &os, std::string const& lhs, StringRef op, std::string const& rhs ) {
if( lhs.size() + rhs.size() < 40 &&
lhs.find('\n') == std::string::npos &&
rhs.find('\n') == std::string::npos )
os << lhs << ' ' << op << ' ' << rhs;
else
os << lhs << '\n' << op << '\n' << rhs;
}
}
#include <stdexcept>
namespace Catch {
#if defined(CATCH_CONFIG_DISABLE_EXCEPTIONS) && !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS_CUSTOM_HANDLER)
[[noreturn]]
void throw_exception(std::exception const& e) {
Catch::cerr() << "Catch will terminate because it needed to throw an exception.\n"
<< "The message was: " << e.what() << '\n';
std::terminate();
}
#endif
[[noreturn]]
void throw_logic_error(std::string const& msg) {
throw_exception(std::logic_error(msg));
}
[[noreturn]]
void throw_domain_error(std::string const& msg) {
throw_exception(std::domain_error(msg));
}
[[noreturn]]
void throw_runtime_error(std::string const& msg) {
throw_exception(std::runtime_error(msg));
}
} // namespace Catch;
#include <cassert>
namespace Catch {
2022-01-03 23:16:39 +01:00
IMutableEnumValuesRegistry::~IMutableEnumValuesRegistry() = default;
namespace Detail {
namespace {
// Extracts the actual name part of an enum instance
// In other words, it returns the Blue part of Bikeshed::Colour::Blue
StringRef extractInstanceName(StringRef enumInstance) {
2022-01-03 23:16:39 +01:00
// Find last occurrence of ":"
size_t name_start = enumInstance.size();
while (name_start > 0 && enumInstance[name_start - 1] != ':') {
--name_start;
}
return enumInstance.substr(name_start, enumInstance.size() - name_start);
}
}
std::vector<StringRef> parseEnums( StringRef enums ) {
auto enumValues = splitStringRef( enums, ',' );
std::vector<StringRef> parsed;
parsed.reserve( enumValues.size() );
for( auto const& enumValue : enumValues ) {
parsed.push_back(trim(extractInstanceName(enumValue)));
}
return parsed;
}
2023-12-11 00:55:40 +01:00
EnumInfo::~EnumInfo() = default;
StringRef EnumInfo::lookup( int value ) const {
for( auto const& valueToName : m_values ) {
if( valueToName.first == value )
return valueToName.second;
}
return "{** unexpected enum value **}"_sr;
}
Catch::Detail::unique_ptr<EnumInfo> makeEnumInfo( StringRef enumName, StringRef allValueNames, std::vector<int> const& values ) {
auto enumInfo = Catch::Detail::make_unique<EnumInfo>();
enumInfo->m_name = enumName;
enumInfo->m_values.reserve( values.size() );
const auto valueNames = Catch::Detail::parseEnums( allValueNames );
assert( valueNames.size() == values.size() );
std::size_t i = 0;
for( auto value : values )
enumInfo->m_values.emplace_back(value, valueNames[i++]);
return enumInfo;
}
EnumInfo const& EnumValuesRegistry::registerEnum( StringRef enumName, StringRef allValueNames, std::vector<int> const& values ) {
m_enumInfos.push_back(makeEnumInfo(enumName, allValueNames, values));
return *m_enumInfos.back();
}
} // Detail
} // Catch
2022-07-17 20:18:44 +02:00
#include <cerrno>
namespace Catch {
ErrnoGuard::ErrnoGuard():m_oldErrno(errno){}
ErrnoGuard::~ErrnoGuard() { errno = m_oldErrno; }
}
2023-07-13 13:37:30 +02:00
#include <exception>
namespace Catch {
2023-12-11 00:55:40 +01:00
#if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
2023-07-13 13:37:30 +02:00
namespace {
static std::string tryTranslators(
std::vector<
Detail::unique_ptr<IExceptionTranslator const>> const& translators ) {
if ( translators.empty() ) {
std::rethrow_exception( std::current_exception() );
} else {
return translators[0]->translate( translators.begin() + 1,
translators.end() );
}
}
}
2023-12-11 00:55:40 +01:00
#endif //!defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
2023-07-13 13:37:30 +02:00
2023-12-11 00:55:40 +01:00
ExceptionTranslatorRegistry::~ExceptionTranslatorRegistry() = default;
2022-01-03 23:16:39 +01:00
void ExceptionTranslatorRegistry::registerTranslator( Detail::unique_ptr<IExceptionTranslator>&& translator ) {
m_translators.push_back( CATCH_MOVE( translator ) );
}
#if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
std::string ExceptionTranslatorRegistry::translateActiveException() const {
2022-01-03 23:16:39 +01:00
// Compiling a mixed mode project with MSVC means that CLR
// exceptions will be caught in (...) as well. However, these do
// do not fill-in std::current_exception and thus lead to crash
// when attempting rethrow.
// /EHa switch also causes structured exceptions to be caught
// here, but they fill-in current_exception properly, so
// at worst the output should be a little weird, instead of
// causing a crash.
if ( std::current_exception() == nullptr ) {
return "Non C++ exception. Possibly a CLR exception.";
}
// First we try user-registered translators. If none of them can
// handle the exception, it will be rethrown handled by our defaults.
try {
2023-07-13 13:37:30 +02:00
return tryTranslators(m_translators);
}
2022-01-03 23:16:39 +01:00
// To avoid having to handle TFE explicitly everywhere, we just
// rethrow it so that it goes back up the caller.
catch( TestFailureException& ) {
std::rethrow_exception(std::current_exception());
}
2023-01-22 19:43:11 +01:00
catch( TestSkipException& ) {
std::rethrow_exception(std::current_exception());
}
2022-01-03 23:16:39 +01:00
catch( std::exception const& ex ) {
return ex.what();
}
2022-01-03 23:16:39 +01:00
catch( std::string const& msg ) {
return msg;
}
catch( const char* msg ) {
return msg;
}
catch(...) {
return "Unknown exception";
}
}
#else // ^^ Exceptions are enabled // Exceptions are disabled vv
std::string ExceptionTranslatorRegistry::translateActiveException() const {
CATCH_INTERNAL_ERROR("Attempted to translate active exception under CATCH_CONFIG_DISABLE_EXCEPTIONS!");
}
#endif
}
2022-01-03 23:16:39 +01:00
/** \file
* This file provides platform specific implementations of FatalConditionHandler
*
* This means that there is a lot of conditional compilation, and platform
* specific code. Currently, Catch2 supports a dummy handler (if no
* handler is desired), and 2 platform specific handlers:
* * Windows' SEH
* * POSIX signals
*
* Consequently, various pieces of code below are compiled if either of
* the platform specific handlers is enabled, or if none of them are
* enabled. It is assumed that both cannot be enabled at the same time,
* and doing so should cause a compilation error.
*
* If another platform specific handler is added, the compile guards
* below will need to be updated taking these assumptions into account.
*/
2022-01-03 23:16:39 +01:00
#include <algorithm>
#if !defined( CATCH_CONFIG_WINDOWS_SEH ) && !defined( CATCH_CONFIG_POSIX_SIGNALS )
namespace Catch {
// If neither SEH nor signal handling is required, the handler impls
// do not have to do anything, and can be empty.
void FatalConditionHandler::engage_platform() {}
2022-04-20 23:46:07 +02:00
void FatalConditionHandler::disengage_platform() noexcept {}
2022-01-03 23:16:39 +01:00
FatalConditionHandler::FatalConditionHandler() = default;
FatalConditionHandler::~FatalConditionHandler() = default;
} // end namespace Catch
#endif // !CATCH_CONFIG_WINDOWS_SEH && !CATCH_CONFIG_POSIX_SIGNALS
#if defined( CATCH_CONFIG_WINDOWS_SEH ) && defined( CATCH_CONFIG_POSIX_SIGNALS )
#error "Inconsistent configuration: Windows' SEH handling and POSIX signals cannot be enabled at the same time"
#endif // CATCH_CONFIG_WINDOWS_SEH && CATCH_CONFIG_POSIX_SIGNALS
#if defined( CATCH_CONFIG_WINDOWS_SEH ) || defined( CATCH_CONFIG_POSIX_SIGNALS )
namespace {
2022-01-03 23:16:39 +01:00
//! Signals fatal error message to the run context
void reportFatal( char const * const message ) {
Catch::getCurrentContext().getResultCapture()->handleFatalErrorCondition( message );
}
2022-01-03 23:16:39 +01:00
//! Minimal size Catch2 needs for its own fatal error handling.
//! Picked empirically, so it might not be sufficient on all
//! platforms, and for all configurations.
constexpr std::size_t minStackSizeForErrors = 32 * 1024;
} // end unnamed namespace
#endif // CATCH_CONFIG_WINDOWS_SEH || CATCH_CONFIG_POSIX_SIGNALS
#if defined( CATCH_CONFIG_WINDOWS_SEH )
namespace Catch {
2022-01-03 23:16:39 +01:00
struct SignalDefs { DWORD id; const char* name; };
// There is no 1-1 mapping between signals and windows exceptions.
// Windows can easily distinguish between SO and SigSegV,
// but SigInt, SigTerm, etc are handled differently.
static SignalDefs signalDefs[] = {
2022-04-20 23:46:07 +02:00
{ EXCEPTION_ILLEGAL_INSTRUCTION, "SIGILL - Illegal instruction signal" },
{ EXCEPTION_STACK_OVERFLOW, "SIGSEGV - Stack overflow" },
{ EXCEPTION_ACCESS_VIOLATION, "SIGSEGV - Segmentation violation signal" },
{ EXCEPTION_INT_DIVIDE_BY_ZERO, "Divide by zero error" },
};
2022-01-03 23:16:39 +01:00
static LONG CALLBACK topLevelExceptionFilter(PEXCEPTION_POINTERS ExceptionInfo) {
for (auto const& def : signalDefs) {
if (ExceptionInfo->ExceptionRecord->ExceptionCode == def.id) {
reportFatal(def.name);
}
}
// If its not an exception we care about, pass it along.
// This stops us from eating debugger breaks etc.
return EXCEPTION_CONTINUE_SEARCH;
}
2022-01-03 23:16:39 +01:00
// Since we do not support multiple instantiations, we put these
// into global variables and rely on cleaning them up in outlined
// constructors/destructors
static LPTOP_LEVEL_EXCEPTION_FILTER previousTopLevelExceptionFilter = nullptr;
// For MSVC, we reserve part of the stack memory for handling
// memory overflow structured exception.
FatalConditionHandler::FatalConditionHandler() {
2022-01-03 23:16:39 +01:00
ULONG guaranteeSize = static_cast<ULONG>(minStackSizeForErrors);
if (!SetThreadStackGuarantee(&guaranteeSize)) {
// We do not want to fully error out, because needing
// the stack reserve should be rare enough anyway.
Catch::cerr()
<< "Failed to reserve piece of stack."
<< " Stack overflows will not be reported successfully.";
}
}
2022-01-03 23:16:39 +01:00
// We do not attempt to unset the stack guarantee, because
// Windows does not support lowering the stack size guarantee.
FatalConditionHandler::~FatalConditionHandler() = default;
void FatalConditionHandler::engage_platform() {
// Register as a the top level exception filter.
previousTopLevelExceptionFilter = SetUnhandledExceptionFilter(topLevelExceptionFilter);
}
2022-04-20 23:46:07 +02:00
void FatalConditionHandler::disengage_platform() noexcept {
if (SetUnhandledExceptionFilter(previousTopLevelExceptionFilter) != topLevelExceptionFilter) {
Catch::cerr()
<< "Unexpected SEH unhandled exception filter on disengage."
<< " The filter was restored, but might be rolled back unexpectedly.";
}
2022-01-03 23:16:39 +01:00
previousTopLevelExceptionFilter = nullptr;
}
2022-01-03 23:16:39 +01:00
} // end namespace Catch
2022-01-03 23:16:39 +01:00
#endif // CATCH_CONFIG_WINDOWS_SEH
2022-01-03 23:16:39 +01:00
#if defined( CATCH_CONFIG_POSIX_SIGNALS )
2022-01-03 23:16:39 +01:00
#include <signal.h>
namespace Catch {
struct SignalDefs {
int id;
const char* name;
};
static SignalDefs signalDefs[] = {
{ SIGINT, "SIGINT - Terminal interrupt signal" },
{ SIGILL, "SIGILL - Illegal instruction signal" },
{ SIGFPE, "SIGFPE - Floating point error signal" },
{ SIGSEGV, "SIGSEGV - Segmentation violation signal" },
{ SIGTERM, "SIGTERM - Termination request signal" },
{ SIGABRT, "SIGABRT - Abort (abnormal termination) signal" }
};
2022-01-03 23:16:39 +01:00
// Older GCCs trigger -Wmissing-field-initializers for T foo = {}
// which is zero initialization, but not explicit. We want to avoid
// that.
#if defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wmissing-field-initializers"
#endif
static char* altStackMem = nullptr;
static std::size_t altStackSize = 0;
static stack_t oldSigStack{};
static struct sigaction oldSigActions[sizeof(signalDefs) / sizeof(SignalDefs)]{};
2022-04-20 23:46:07 +02:00
static void restorePreviousSignalHandlers() noexcept {
2022-01-03 23:16:39 +01:00
// We set signal handlers back to the previous ones. Hopefully
// nobody overwrote them in the meantime, and doesn't expect
// their signal handlers to live past ours given that they
// installed them after ours..
for (std::size_t i = 0; i < sizeof(signalDefs) / sizeof(SignalDefs); ++i) {
sigaction(signalDefs[i].id, &oldSigActions[i], nullptr);
}
// Return the old stack
sigaltstack(&oldSigStack, nullptr);
}
2022-01-03 23:16:39 +01:00
static void handleSignal( int sig ) {
char const * name = "<unknown signal>";
for (auto const& def : signalDefs) {
if (sig == def.id) {
name = def.name;
break;
}
}
2022-01-03 23:16:39 +01:00
// We need to restore previous signal handlers and let them do
// their thing, so that the users can have the debugger break
// when a signal is raised, and so on.
restorePreviousSignalHandlers();
reportFatal( name );
raise( sig );
}
FatalConditionHandler::FatalConditionHandler() {
2022-01-03 23:16:39 +01:00
assert(!altStackMem && "Cannot initialize POSIX signal handler when one already exists");
if (altStackSize == 0) {
altStackSize = std::max(static_cast<size_t>(SIGSTKSZ), minStackSizeForErrors);
}
altStackMem = new char[altStackSize]();
}
FatalConditionHandler::~FatalConditionHandler() {
delete[] altStackMem;
// We signal that another instance can be constructed by zeroing
// out the pointer.
altStackMem = nullptr;
}
void FatalConditionHandler::engage_platform() {
stack_t sigStack;
sigStack.ss_sp = altStackMem;
2022-01-03 23:16:39 +01:00
sigStack.ss_size = altStackSize;
sigStack.ss_flags = 0;
sigaltstack(&sigStack, &oldSigStack);
struct sigaction sa = { };
sa.sa_handler = handleSignal;
sa.sa_flags = SA_ONSTACK;
for (std::size_t i = 0; i < sizeof(signalDefs)/sizeof(SignalDefs); ++i) {
sigaction(signalDefs[i].id, &sa, &oldSigActions[i]);
}
}
2022-01-03 23:16:39 +01:00
#if defined(__GNUC__)
# pragma GCC diagnostic pop
#endif
2022-04-20 23:46:07 +02:00
void FatalConditionHandler::disengage_platform() noexcept {
2022-01-03 23:16:39 +01:00
restorePreviousSignalHandlers();
}
2022-01-03 23:16:39 +01:00
} // end namespace Catch
2022-01-03 23:16:39 +01:00
#endif // CATCH_CONFIG_POSIX_SIGNALS
2022-01-03 23:16:39 +01:00
#include <cstring>
namespace Catch {
namespace Detail {
uint32_t convertToBits(float f) {
static_assert(sizeof(float) == sizeof(uint32_t), "Important ULP matcher assumption violated");
uint32_t i;
std::memcpy(&i, &f, sizeof(f));
return i;
}
uint64_t convertToBits(double d) {
static_assert(sizeof(double) == sizeof(uint64_t), "Important ULP matcher assumption violated");
uint64_t i;
std::memcpy(&i, &d, sizeof(d));
return i;
}
2023-12-11 00:55:40 +01:00
#if defined( __GNUC__ ) || defined( __clang__ )
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wfloat-equal"
#endif
bool directCompare( float lhs, float rhs ) { return lhs == rhs; }
bool directCompare( double lhs, double rhs ) { return lhs == rhs; }
#if defined( __GNUC__ ) || defined( __clang__ )
# pragma GCC diagnostic pop
#endif
2022-01-03 23:16:39 +01:00
} // end namespace Detail
} // end namespace Catch
2022-11-16 16:06:45 +01:00
#include <cstdlib>
namespace Catch {
namespace Detail {
#if !defined (CATCH_CONFIG_GETENV)
char const* getEnv( char const* ) { return nullptr; }
#else
char const* getEnv( char const* varName ) {
# if defined( _MSC_VER )
# pragma warning( push )
# pragma warning( disable : 4996 ) // use getenv_s instead of getenv
# endif
return std::getenv( varName );
# if defined( _MSC_VER )
# pragma warning( pop )
# endif
}
#endif
} // namespace Detail
} // namespace Catch
2022-04-20 23:46:07 +02:00
#include <cstdio>
#include <fstream>
#include <sstream>
#include <vector>
namespace Catch {
2022-04-20 23:46:07 +02:00
Catch::IStream::~IStream() = default;
namespace Detail {
namespace {
2022-04-20 23:46:07 +02:00
template<typename WriterF, std::size_t bufferSize=256>
2023-07-13 13:37:30 +02:00
class StreamBufImpl final : public std::streambuf {
2022-04-20 23:46:07 +02:00
char data[bufferSize];
WriterF m_writer;
2022-04-20 23:46:07 +02:00
public:
StreamBufImpl() {
setp( data, data + sizeof(data) );
}
2022-05-17 22:13:36 +02:00
~StreamBufImpl() noexcept override {
2022-04-20 23:46:07 +02:00
StreamBufImpl::sync();
}
2022-04-20 23:46:07 +02:00
private:
int overflow( int c ) override {
sync();
if( c != EOF ) {
if( pbase() == epptr() )
m_writer( std::string( 1, static_cast<char>( c ) ) );
else
sputc( static_cast<char>( c ) );
}
2022-04-20 23:46:07 +02:00
return 0;
}
2022-04-20 23:46:07 +02:00
int sync() override {
if( pbase() != pptr() ) {
m_writer( std::string( pbase(), static_cast<std::string::size_type>( pptr() - pbase() ) ) );
setp( pbase(), epptr() );
}
return 0;
}
2022-04-20 23:46:07 +02:00
};
2022-04-20 23:46:07 +02:00
///////////////////////////////////////////////////////////////////////////
2022-04-20 23:46:07 +02:00
struct OutputDebugWriter {
2022-04-20 23:46:07 +02:00
void operator()( std::string const& str ) {
if ( !str.empty() ) {
writeToDebugConsole( str );
}
}
2022-04-20 23:46:07 +02:00
};
2022-04-20 23:46:07 +02:00
///////////////////////////////////////////////////////////////////////////
2023-07-13 13:37:30 +02:00
class FileStream final : public IStream {
2022-04-20 23:46:07 +02:00
std::ofstream m_ofs;
public:
FileStream( std::string const& filename ) {
m_ofs.open( filename.c_str() );
CATCH_ENFORCE( !m_ofs.fail(), "Unable to open file: '" << filename << '\'' );
2022-10-17 19:57:58 +02:00
m_ofs << std::unitbuf;
2022-04-20 23:46:07 +02:00
}
public: // IStream
std::ostream& stream() override {
return m_ofs;
}
};
2022-04-20 23:46:07 +02:00
///////////////////////////////////////////////////////////////////////////
2023-07-13 13:37:30 +02:00
class CoutStream final : public IStream {
2022-04-20 23:46:07 +02:00
std::ostream m_os;
public:
// Store the streambuf from cout up-front because
// cout may get redirected when running tests
CoutStream() : m_os( Catch::cout().rdbuf() ) {}
2022-04-20 23:46:07 +02:00
public: // IStream
std::ostream& stream() override { return m_os; }
bool isConsole() const override { return true; }
};
2022-04-20 23:46:07 +02:00
class CerrStream : public IStream {
std::ostream m_os;
public:
// Store the streambuf from cerr up-front because
// cout may get redirected when running tests
CerrStream(): m_os( Catch::cerr().rdbuf() ) {}
public: // IStream
std::ostream& stream() override { return m_os; }
bool isConsole() const override { return true; }
};
///////////////////////////////////////////////////////////////////////////
2023-07-13 13:37:30 +02:00
class DebugOutStream final : public IStream {
2022-04-20 23:46:07 +02:00
Detail::unique_ptr<StreamBufImpl<OutputDebugWriter>> m_streamBuf;
std::ostream m_os;
public:
DebugOutStream()
: m_streamBuf( Detail::make_unique<StreamBufImpl<OutputDebugWriter>>() ),
m_os( m_streamBuf.get() )
{}
public: // IStream
std::ostream& stream() override { return m_os; }
};
} // unnamed namespace
} // namespace Detail
///////////////////////////////////////////////////////////////////////////
auto makeStream( std::string const& filename ) -> Detail::unique_ptr<IStream> {
if ( filename.empty() || filename == "-" ) {
return Detail::make_unique<Detail::CoutStream>();
}
if( filename[0] == '%' ) {
if ( filename == "%debug" ) {
return Detail::make_unique<Detail::DebugOutStream>();
} else if ( filename == "%stderr" ) {
return Detail::make_unique<Detail::CerrStream>();
} else if ( filename == "%stdout" ) {
return Detail::make_unique<Detail::CoutStream>();
} else {
CATCH_ERROR( "Unrecognised stream: '" << filename << '\'' );
}
}
return Detail::make_unique<Detail::FileStream>( filename );
}
}
2023-12-11 00:55:40 +01:00
namespace Catch {
void JsonUtils::indent( std::ostream& os, std::uint64_t level ) {
for ( std::uint64_t i = 0; i < level; ++i ) {
os << " ";
}
}
void JsonUtils::appendCommaNewline( std::ostream& os,
bool& should_comma,
std::uint64_t level ) {
if ( should_comma ) { os << ','; }
should_comma = true;
os << '\n';
indent( os, level );
}
JsonObjectWriter::JsonObjectWriter( std::ostream& os ):
JsonObjectWriter{ os, 0 } {}
JsonObjectWriter::JsonObjectWriter( std::ostream& os,
std::uint64_t indent_level ):
m_os{ os }, m_indent_level{ indent_level } {
m_os << '{';
}
2024-03-01 22:07:10 +01:00
JsonObjectWriter::JsonObjectWriter( JsonObjectWriter&& source ) noexcept:
2023-12-11 00:55:40 +01:00
m_os{ source.m_os },
m_indent_level{ source.m_indent_level },
m_should_comma{ source.m_should_comma },
m_active{ source.m_active } {
source.m_active = false;
}
JsonObjectWriter::~JsonObjectWriter() {
if ( !m_active ) { return; }
m_os << '\n';
JsonUtils::indent( m_os, m_indent_level );
m_os << '}';
}
JsonValueWriter JsonObjectWriter::write( StringRef key ) {
JsonUtils::appendCommaNewline(
m_os, m_should_comma, m_indent_level + 1 );
m_os << '"' << key << "\": ";
return JsonValueWriter{ m_os, m_indent_level + 1 };
}
JsonArrayWriter::JsonArrayWriter( std::ostream& os ):
JsonArrayWriter{ os, 0 } {}
JsonArrayWriter::JsonArrayWriter( std::ostream& os,
std::uint64_t indent_level ):
m_os{ os }, m_indent_level{ indent_level } {
m_os << '[';
}
2024-03-01 22:07:10 +01:00
JsonArrayWriter::JsonArrayWriter( JsonArrayWriter&& source ) noexcept:
2023-12-11 00:55:40 +01:00
m_os{ source.m_os },
m_indent_level{ source.m_indent_level },
m_should_comma{ source.m_should_comma },
m_active{ source.m_active } {
source.m_active = false;
}
JsonArrayWriter::~JsonArrayWriter() {
if ( !m_active ) { return; }
m_os << '\n';
JsonUtils::indent( m_os, m_indent_level );
m_os << ']';
}
JsonObjectWriter JsonArrayWriter::writeObject() {
JsonUtils::appendCommaNewline(
m_os, m_should_comma, m_indent_level + 1 );
return JsonObjectWriter{ m_os, m_indent_level + 1 };
}
JsonArrayWriter JsonArrayWriter::writeArray() {
JsonUtils::appendCommaNewline(
m_os, m_should_comma, m_indent_level + 1 );
return JsonArrayWriter{ m_os, m_indent_level + 1 };
}
JsonArrayWriter& JsonArrayWriter::write( bool value ) {
return writeImpl( value );
}
JsonValueWriter::JsonValueWriter( std::ostream& os ):
JsonValueWriter{ os, 0 } {}
JsonValueWriter::JsonValueWriter( std::ostream& os,
std::uint64_t indent_level ):
m_os{ os }, m_indent_level{ indent_level } {}
JsonObjectWriter JsonValueWriter::writeObject() && {
return JsonObjectWriter{ m_os, m_indent_level };
}
JsonArrayWriter JsonValueWriter::writeArray() && {
return JsonArrayWriter{ m_os, m_indent_level };
}
void JsonValueWriter::write( Catch::StringRef value ) && {
writeImpl( value, true );
}
void JsonValueWriter::write( bool value ) && {
writeImpl( value ? "true"_sr : "false"_sr, false );
}
void JsonValueWriter::writeImpl( Catch::StringRef value, bool quote ) {
if ( quote ) { m_os << '"'; }
for (char c : value) {
// Escape list taken from https://www.json.org/json-en.html,
// string definition.
// Note that while forward slash _can_ be escaped, it does
// not have to be, if JSON is not further embedded somewhere
// where forward slash is meaningful.
if ( c == '"' ) {
m_os << "\\\"";
} else if ( c == '\\' ) {
m_os << "\\\\";
} else if ( c == '\b' ) {
m_os << "\\b";
} else if ( c == '\f' ) {
m_os << "\\f";
} else if ( c == '\n' ) {
m_os << "\\n";
} else if ( c == '\r' ) {
m_os << "\\r";
} else if ( c == '\t' ) {
m_os << "\\t";
} else {
m_os << c;
}
}
if ( quote ) { m_os << '"'; }
}
} // namespace Catch
2022-04-20 23:46:07 +02:00
namespace Catch {
2022-07-17 20:18:44 +02:00
auto operator << (std::ostream& os, LazyExpression const& lazyExpr) -> std::ostream& {
if (lazyExpr.m_isNegated)
os << '!';
if (lazyExpr) {
if (lazyExpr.m_isNegated && lazyExpr.m_transientExpression->isBinaryExpression())
os << '(' << *lazyExpr.m_transientExpression << ')';
else
os << *lazyExpr.m_transientExpression;
} else {
os << "{** error - unchecked empty expression requested **}";
2022-04-20 23:46:07 +02:00
}
2022-07-17 20:18:44 +02:00
return os;
}
2022-04-20 23:46:07 +02:00
2022-07-17 20:18:44 +02:00
} // namespace Catch
2022-04-20 23:46:07 +02:00
2022-07-17 20:18:44 +02:00
#ifdef CATCH_CONFIG_WINDOWS_CRTDBG
#include <crtdbg.h>
namespace Catch {
LeakDetector::LeakDetector() {
int flag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
flag |= _CRTDBG_LEAK_CHECK_DF;
flag |= _CRTDBG_ALLOC_MEM_DF;
_CrtSetDbgFlag(flag);
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE | _CRTDBG_MODE_DEBUG);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDERR);
// Change this to leaking allocation's number to break there
_CrtSetBreakAlloc(-1);
}
}
#else // ^^ Windows crt debug heap enabled // Windows crt debug heap disabled vv
2023-12-11 00:55:40 +01:00
Catch::LeakDetector::LeakDetector() = default;
2022-07-17 20:18:44 +02:00
#endif // CATCH_CONFIG_WINDOWS_CRTDBG
Catch::LeakDetector::~LeakDetector() {
Catch::cleanUp();
}
namespace Catch {
namespace {
void listTests(IEventListener& reporter, IConfig const& config) {
auto const& testSpec = config.testSpec();
auto matchedTestCases = filterTests(getAllTestCasesSorted(config), testSpec, config);
reporter.listTests(matchedTestCases);
}
void listTags(IEventListener& reporter, IConfig const& config) {
auto const& testSpec = config.testSpec();
std::vector<TestCaseHandle> matchedTestCases = filterTests(getAllTestCasesSorted(config), testSpec, config);
std::map<StringRef, TagInfo, Detail::CaseInsensitiveLess> tagCounts;
for (auto const& testCase : matchedTestCases) {
for (auto const& tagName : testCase.getTestCaseInfo().tags) {
auto it = tagCounts.find(tagName.original);
if (it == tagCounts.end())
it = tagCounts.insert(std::make_pair(tagName.original, TagInfo())).first;
it->second.add(tagName.original);
}
}
std::vector<TagInfo> infos; infos.reserve(tagCounts.size());
for (auto& tagc : tagCounts) {
infos.push_back(CATCH_MOVE(tagc.second));
}
reporter.listTags(infos);
2022-04-20 23:46:07 +02:00
}
void listReporters(IEventListener& reporter) {
std::vector<ReporterDescription> descriptions;
2023-07-13 13:37:30 +02:00
auto const& factories = getRegistryHub().getReporterRegistry().getFactories();
2022-04-20 23:46:07 +02:00
descriptions.reserve(factories.size());
for (auto const& fac : factories) {
descriptions.push_back({ fac.first, fac.second->getDescription() });
}
reporter.listReporters(descriptions);
}
2022-05-17 22:13:36 +02:00
void listListeners(IEventListener& reporter) {
std::vector<ListenerDescription> descriptions;
auto const& factories =
getRegistryHub().getReporterRegistry().getListeners();
descriptions.reserve( factories.size() );
for ( auto const& fac : factories ) {
descriptions.push_back( { fac->getName(), fac->getDescription() } );
}
reporter.listListeners( descriptions );
}
2022-04-20 23:46:07 +02:00
} // end anonymous namespace
void TagInfo::add( StringRef spelling ) {
++count;
spellings.insert( spelling );
}
std::string TagInfo::all() const {
// 2 per tag for brackets '[' and ']'
size_t size = spellings.size() * 2;
for (auto const& spelling : spellings) {
size += spelling.size();
}
std::string out; out.reserve(size);
for (auto const& spelling : spellings) {
out += '[';
out += spelling;
out += ']';
}
return out;
}
bool list( IEventListener& reporter, Config const& config ) {
bool listed = false;
if (config.listTests()) {
listed = true;
listTests(reporter, config);
}
if (config.listTags()) {
listed = true;
listTags(reporter, config);
}
if (config.listReporters()) {
listed = true;
2022-01-03 23:16:39 +01:00
listReporters(reporter);
}
2022-05-17 22:13:36 +02:00
if ( config.listListeners() ) {
listed = true;
listListeners( reporter );
}
return listed;
}
} // end namespace Catch
namespace Catch {
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS
2022-05-17 22:13:36 +02:00
static LeakDetector leakDetector;
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION
}
2022-01-03 23:16:39 +01:00
// Allow users of amalgamated .cpp file to remove our main and provide their own.
#if !defined(CATCH_AMALGAMATED_CUSTOM_MAIN)
#if defined(CATCH_CONFIG_WCHAR) && defined(CATCH_PLATFORM_WINDOWS) && defined(_UNICODE) && !defined(DO_NOT_USE_WMAIN)
// Standard C/C++ Win32 Unicode wmain entry point
2022-01-03 23:16:39 +01:00
extern "C" int __cdecl wmain (int argc, wchar_t * argv[], wchar_t * []) {
#else
// Standard C/C++ main entry point
int main (int argc, char * argv[]) {
#endif
// We want to force the linker not to discard the global variable
// and its constructor, as it (optionally) registers leak detector
(void)&Catch::leakDetector;
return Catch::Session().run( argc, argv );
}
2022-01-03 23:16:39 +01:00
#endif // !defined(CATCH_AMALGAMATED_CUSTOM_MAIN
2022-07-17 20:18:44 +02:00
namespace Catch {
MessageInfo::MessageInfo( StringRef _macroName,
SourceLineInfo const& _lineInfo,
ResultWas::OfType _type )
: macroName( _macroName ),
lineInfo( _lineInfo ),
type( _type ),
sequence( ++globalCount )
{}
// This may need protecting if threading support is added
unsigned int MessageInfo::globalCount = 0;
} // end namespace Catch
#include <cstdio>
#include <cstring>
#include <sstream>
#if defined(CATCH_CONFIG_NEW_CAPTURE)
#if defined(_MSC_VER)
#include <io.h> //_dup and _dup2
#define dup _dup
#define dup2 _dup2
#define fileno _fileno
#else
#include <unistd.h> // dup and dup2
#endif
#endif
namespace Catch {
RedirectedStream::RedirectedStream( std::ostream& originalStream, std::ostream& redirectionStream )
: m_originalStream( originalStream ),
m_redirectionStream( redirectionStream ),
m_prevBuf( m_originalStream.rdbuf() )
{
m_originalStream.rdbuf( m_redirectionStream.rdbuf() );
}
RedirectedStream::~RedirectedStream() {
m_originalStream.rdbuf( m_prevBuf );
}
RedirectedStdOut::RedirectedStdOut() : m_cout( Catch::cout(), m_rss.get() ) {}
auto RedirectedStdOut::str() const -> std::string { return m_rss.str(); }
RedirectedStdErr::RedirectedStdErr()
: m_cerr( Catch::cerr(), m_rss.get() ),
m_clog( Catch::clog(), m_rss.get() )
{}
auto RedirectedStdErr::str() const -> std::string { return m_rss.str(); }
RedirectedStreams::RedirectedStreams(std::string& redirectedCout, std::string& redirectedCerr)
: m_redirectedCout(redirectedCout),
m_redirectedCerr(redirectedCerr)
{}
RedirectedStreams::~RedirectedStreams() {
m_redirectedCout += m_redirectedStdOut.str();
m_redirectedCerr += m_redirectedStdErr.str();
}
#if defined(CATCH_CONFIG_NEW_CAPTURE)
#if defined(_MSC_VER)
TempFile::TempFile() {
if (tmpnam_s(m_buffer)) {
CATCH_RUNTIME_ERROR("Could not get a temp filename");
}
2020-10-08 15:26:30 +02:00
if (fopen_s(&m_file, m_buffer, "w+")) {
char buffer[100];
if (strerror_s(buffer, errno)) {
CATCH_RUNTIME_ERROR("Could not translate errno to a string");
}
CATCH_RUNTIME_ERROR("Could not open the temp file: '" << m_buffer << "' because: " << buffer);
}
}
#else
TempFile::TempFile() {
m_file = std::tmpfile();
if (!m_file) {
CATCH_RUNTIME_ERROR("Could not create a temp file.");
}
}
#endif
TempFile::~TempFile() {
// TBD: What to do about errors here?
std::fclose(m_file);
// We manually create the file on Windows only, on Linux
// it will be autodeleted
#if defined(_MSC_VER)
std::remove(m_buffer);
#endif
}
FILE* TempFile::getFile() {
return m_file;
}
std::string TempFile::getContents() {
std::stringstream sstr;
char buffer[100] = {};
std::rewind(m_file);
while (std::fgets(buffer, sizeof(buffer), m_file)) {
sstr << buffer;
}
return sstr.str();
}
OutputRedirect::OutputRedirect(std::string& stdout_dest, std::string& stderr_dest) :
m_originalStdout(dup(1)),
m_originalStderr(dup(2)),
m_stdoutDest(stdout_dest),
m_stderrDest(stderr_dest) {
dup2(fileno(m_stdoutFile.getFile()), 1);
dup2(fileno(m_stderrFile.getFile()), 2);
}
OutputRedirect::~OutputRedirect() {
Catch::cout() << std::flush;
fflush(stdout);
// Since we support overriding these streams, we flush cerr
// even though std::cerr is unbuffered
Catch::cerr() << std::flush;
Catch::clog() << std::flush;
fflush(stderr);
dup2(m_originalStdout, 1);
dup2(m_originalStderr, 2);
m_stdoutDest += m_stdoutFile.getContents();
m_stderrDest += m_stderrFile.getContents();
}
#endif // CATCH_CONFIG_NEW_CAPTURE
} // namespace Catch
#if defined(CATCH_CONFIG_NEW_CAPTURE)
#if defined(_MSC_VER)
#undef dup
#undef dup2
#undef fileno
#endif
#endif
2022-07-17 20:18:44 +02:00
2022-11-16 16:06:45 +01:00
#include <limits>
2023-01-22 19:43:11 +01:00
#include <stdexcept>
2022-11-16 16:06:45 +01:00
namespace Catch {
Optional<unsigned int> parseUInt(std::string const& input, int base) {
auto trimmed = trim( input );
// std::stoull is annoying and accepts numbers starting with '-',
// it just negates them into unsigned int
if ( trimmed.empty() || trimmed[0] == '-' ) {
return {};
}
CATCH_TRY {
size_t pos = 0;
const auto ret = std::stoull( trimmed, &pos, base );
// We did not consume the whole input, so there is an issue
// This can be bunch of different stuff, like multiple numbers
// in the input, or invalid digits/characters and so on. Either
// way, we do not want to return the partially parsed result.
if ( pos != trimmed.size() ) {
return {};
}
// Too large
if ( ret > std::numeric_limits<unsigned int>::max() ) {
return {};
}
return static_cast<unsigned int>(ret);
}
2023-01-22 19:43:11 +01:00
CATCH_CATCH_ANON( std::invalid_argument const& ) {
// no conversion could be performed
}
CATCH_CATCH_ANON( std::out_of_range const& ) {
// the input does not fit into an unsigned long long
}
return {};
2022-11-16 16:06:45 +01:00
}
} // namespace Catch
2022-07-17 20:18:44 +02:00
#include <cmath>
namespace Catch {
#if !defined(CATCH_CONFIG_POLYFILL_ISNAN)
bool isnan(float f) {
return std::isnan(f);
}
bool isnan(double d) {
return std::isnan(d);
}
#else
// For now we only use this for embarcadero
bool isnan(float f) {
return std::_isnan(f);
}
bool isnan(double d) {
return std::_isnan(d);
}
#endif
2023-12-11 00:55:40 +01:00
#if !defined( CATCH_CONFIG_GLOBAL_NEXTAFTER )
float nextafter( float x, float y ) { return std::nextafter( x, y ); }
double nextafter( double x, double y ) { return std::nextafter( x, y ); }
#else
float nextafter( float x, float y ) { return ::nextafterf( x, y ); }
double nextafter( double x, double y ) { return ::nextafter( x, y ); }
#endif
2022-07-17 20:18:44 +02:00
} // end namespace Catch
namespace Catch {
namespace {
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable:4146) // we negate uint32 during the rotate
#endif
// Safe rotr implementation thanks to John Regehr
uint32_t rotate_right(uint32_t val, uint32_t count) {
const uint32_t mask = 31;
count &= mask;
return (val >> count) | (val << (-count & mask));
}
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
}
SimplePcg32::SimplePcg32(result_type seed_) {
seed(seed_);
}
void SimplePcg32::seed(result_type seed_) {
m_state = 0;
(*this)();
m_state += seed_;
(*this)();
}
void SimplePcg32::discard(uint64_t skip) {
// We could implement this to run in O(log n) steps, but this
// should suffice for our use case.
for (uint64_t s = 0; s < skip; ++s) {
static_cast<void>((*this)());
}
}
SimplePcg32::result_type SimplePcg32::operator()() {
// prepare the output value
const uint32_t xorshifted = static_cast<uint32_t>(((m_state >> 18u) ^ m_state) >> 27u);
const auto output = rotate_right(xorshifted, m_state >> 59u);
// advance state
m_state = m_state * 6364136223846793005ULL + s_inc;
return output;
}
bool operator==(SimplePcg32 const& lhs, SimplePcg32 const& rhs) {
return lhs.m_state == rhs.m_state;
}
bool operator!=(SimplePcg32 const& lhs, SimplePcg32 const& rhs) {
return lhs.m_state != rhs.m_state;
}
}
2022-01-03 23:16:39 +01:00
#include <ctime>
#include <random>
namespace Catch {
std::uint32_t generateRandomSeed( GenerateFrom from ) {
switch ( from ) {
case GenerateFrom::Time:
return static_cast<std::uint32_t>( std::time( nullptr ) );
case GenerateFrom::Default:
2023-12-11 00:55:40 +01:00
case GenerateFrom::RandomDevice: {
std::random_device rd;
return Detail::fillBitsFrom<std::uint32_t>( rd );
}
2022-01-03 23:16:39 +01:00
default:
CATCH_ERROR("Unknown generation method");
}
}
} // end namespace Catch
namespace Catch {
2023-07-13 13:37:30 +02:00
struct ReporterRegistry::ReporterRegistryImpl {
std::vector<Detail::unique_ptr<EventListenerFactory>> listeners;
std::map<std::string, IReporterFactoryPtr, Detail::CaseInsensitiveLess>
factories;
};
2023-07-13 13:37:30 +02:00
ReporterRegistry::ReporterRegistry():
m_impl( Detail::make_unique<ReporterRegistryImpl>() ) {
// Because it is impossible to move out of initializer list,
// we have to add the elements manually
2023-07-13 13:37:30 +02:00
m_impl->factories["Automake"] =
Detail::make_unique<ReporterFactory<AutomakeReporter>>();
m_impl->factories["compact"] =
Detail::make_unique<ReporterFactory<CompactReporter>>();
m_impl->factories["console"] =
Detail::make_unique<ReporterFactory<ConsoleReporter>>();
m_impl->factories["JUnit"] =
Detail::make_unique<ReporterFactory<JunitReporter>>();
m_impl->factories["SonarQube"] =
Detail::make_unique<ReporterFactory<SonarQubeReporter>>();
m_impl->factories["TAP"] =
Detail::make_unique<ReporterFactory<TAPReporter>>();
m_impl->factories["TeamCity"] =
Detail::make_unique<ReporterFactory<TeamCityReporter>>();
m_impl->factories["XML"] =
Detail::make_unique<ReporterFactory<XmlReporter>>();
2023-12-11 00:55:40 +01:00
m_impl->factories["JSON"] =
Detail::make_unique<ReporterFactory<JsonReporter>>();
}
ReporterRegistry::~ReporterRegistry() = default;
2023-07-13 13:37:30 +02:00
IEventListenerPtr
ReporterRegistry::create( std::string const& name,
ReporterConfig&& config ) const {
auto it = m_impl->factories.find( name );
if ( it == m_impl->factories.end() ) return nullptr;
return it->second->create( CATCH_MOVE( config ) );
}
2023-07-13 13:37:30 +02:00
void ReporterRegistry::registerReporter( std::string const& name,
IReporterFactoryPtr factory ) {
2022-04-20 23:46:07 +02:00
CATCH_ENFORCE( name.find( "::" ) == name.npos,
2023-07-13 13:37:30 +02:00
"'::' is not allowed in reporter name: '" + name +
'\'' );
auto ret = m_impl->factories.emplace( name, CATCH_MOVE( factory ) );
CATCH_ENFORCE( ret.second,
"reporter using '" + name +
"' as name was already registered" );
}
2022-04-20 23:46:07 +02:00
void ReporterRegistry::registerListener(
Detail::unique_ptr<EventListenerFactory> factory ) {
2023-07-13 13:37:30 +02:00
m_impl->listeners.push_back( CATCH_MOVE( factory ) );
}
2023-07-13 13:37:30 +02:00
std::map<std::string,
IReporterFactoryPtr,
Detail::CaseInsensitiveLess> const&
ReporterRegistry::getFactories() const {
return m_impl->factories;
}
2023-07-13 13:37:30 +02:00
std::vector<Detail::unique_ptr<EventListenerFactory>> const&
ReporterRegistry::getListeners() const {
return m_impl->listeners;
}
} // namespace Catch
2022-04-20 23:46:07 +02:00
#include <algorithm>
namespace Catch {
namespace {
struct kvPair {
StringRef key, value;
};
kvPair splitKVPair(StringRef kvString) {
2023-07-13 13:37:30 +02:00
auto splitPos = static_cast<size_t>(
std::find( kvString.begin(), kvString.end(), '=' ) -
kvString.begin() );
2022-04-20 23:46:07 +02:00
return { kvString.substr( 0, splitPos ),
kvString.substr( splitPos + 1, kvString.size() ) };
}
}
namespace Detail {
std::vector<std::string> splitReporterSpec( StringRef reporterSpec ) {
static constexpr auto separator = "::";
static constexpr size_t separatorSize = 2;
size_t separatorPos = 0;
auto findNextSeparator = [&reporterSpec]( size_t startPos ) {
static_assert(
separatorSize == 2,
"The code below currently assumes 2 char separator" );
auto currentPos = startPos;
do {
while ( currentPos < reporterSpec.size() &&
reporterSpec[currentPos] != separator[0] ) {
++currentPos;
}
if ( currentPos + 1 < reporterSpec.size() &&
reporterSpec[currentPos + 1] == separator[1] ) {
return currentPos;
}
++currentPos;
} while ( currentPos < reporterSpec.size() );
return static_cast<size_t>( -1 );
};
std::vector<std::string> parts;
while ( separatorPos < reporterSpec.size() ) {
const auto nextSeparator = findNextSeparator( separatorPos );
parts.push_back( static_cast<std::string>( reporterSpec.substr(
separatorPos, nextSeparator - separatorPos ) ) );
if ( nextSeparator == static_cast<size_t>( -1 ) ) {
break;
}
separatorPos = nextSeparator + separatorSize;
}
// Handle a separator at the end.
// This is not a valid spec, but we want to do validation in a
// centralized place
if ( separatorPos == reporterSpec.size() ) {
parts.emplace_back();
}
return parts;
}
Optional<ColourMode> stringToColourMode( StringRef colourMode ) {
if ( colourMode == "default" ) {
return ColourMode::PlatformDefault;
} else if ( colourMode == "ansi" ) {
return ColourMode::ANSI;
} else if ( colourMode == "win32" ) {
return ColourMode::Win32;
} else if ( colourMode == "none" ) {
return ColourMode::None;
} else {
return {};
}
}
} // namespace Detail
bool operator==( ReporterSpec const& lhs, ReporterSpec const& rhs ) {
return lhs.m_name == rhs.m_name &&
lhs.m_outputFileName == rhs.m_outputFileName &&
lhs.m_colourMode == rhs.m_colourMode &&
lhs.m_customOptions == rhs.m_customOptions;
}
Optional<ReporterSpec> parseReporterSpec( StringRef reporterSpec ) {
auto parts = Detail::splitReporterSpec( reporterSpec );
assert( parts.size() > 0 && "Split should never return empty vector" );
std::map<std::string, std::string> kvPairs;
Optional<std::string> outputFileName;
Optional<ColourMode> colourMode;
// First part is always reporter name, so we skip it
for ( size_t i = 1; i < parts.size(); ++i ) {
auto kv = splitKVPair( parts[i] );
auto key = kv.key, value = kv.value;
2024-03-01 22:07:10 +01:00
if ( key.empty() || value.empty() ) { // NOLINT(bugprone-branch-clone)
2022-04-20 23:46:07 +02:00
return {};
} else if ( key[0] == 'X' ) {
// This is a reporter-specific option, we don't check these
// apart from basic sanity checks
if ( key.size() == 1 ) {
return {};
}
2022-07-17 20:18:44 +02:00
auto ret = kvPairs.emplace( std::string(kv.key), std::string(kv.value) );
2022-04-20 23:46:07 +02:00
if ( !ret.second ) {
// Duplicated key. We might want to handle this differently,
// e.g. by overwriting the existing value?
return {};
}
} else if ( key == "out" ) {
// Duplicated key
if ( outputFileName ) {
return {};
}
outputFileName = static_cast<std::string>( value );
} else if ( key == "colour-mode" ) {
// Duplicated key
if ( colourMode ) {
return {};
}
colourMode = Detail::stringToColourMode( value );
// Parsing failed
if ( !colourMode ) {
return {};
}
} else {
// Unrecognized option
return {};
}
}
return ReporterSpec{ CATCH_MOVE( parts[0] ),
CATCH_MOVE( outputFileName ),
CATCH_MOVE( colourMode ),
CATCH_MOVE( kvPairs ) };
}
ReporterSpec::ReporterSpec(
std::string name,
Optional<std::string> outputFileName,
Optional<ColourMode> colourMode,
std::map<std::string, std::string> customOptions ):
m_name( CATCH_MOVE( name ) ),
m_outputFileName( CATCH_MOVE( outputFileName ) ),
m_colourMode( CATCH_MOVE( colourMode ) ),
m_customOptions( CATCH_MOVE( customOptions ) ) {}
} // namespace Catch
namespace Catch {
bool isOk( ResultWas::OfType resultType ) {
return ( resultType & ResultWas::FailureBit ) == 0;
}
bool isJustInfo( int flags ) {
return flags == ResultWas::Info;
}
ResultDisposition::Flags operator | ( ResultDisposition::Flags lhs, ResultDisposition::Flags rhs ) {
return static_cast<ResultDisposition::Flags>( static_cast<int>( lhs ) | static_cast<int>( rhs ) );
}
bool shouldContinueOnFailure( int flags ) { return ( flags & ResultDisposition::ContinueOnFailure ) != 0; }
bool shouldSuppressFailure( int flags ) { return ( flags & ResultDisposition::SuppressFail ) != 0; }
} // end namespace Catch
2022-04-20 23:46:07 +02:00
#include <cstdio>
#include <sstream>
#include <vector>
namespace Catch {
// This class encapsulates the idea of a pool of ostringstreams that can be reused.
struct StringStreams {
std::vector<Detail::unique_ptr<std::ostringstream>> m_streams;
std::vector<std::size_t> m_unused;
std::ostringstream m_referenceStream; // Used for copy state/ flags from
auto add() -> std::size_t {
if( m_unused.empty() ) {
m_streams.push_back( Detail::make_unique<std::ostringstream>() );
return m_streams.size()-1;
}
else {
auto index = m_unused.back();
m_unused.pop_back();
return index;
}
}
void release( std::size_t index ) {
m_streams[index]->copyfmt( m_referenceStream ); // Restore initial flags and other state
m_unused.push_back(index);
}
};
ReusableStringStream::ReusableStringStream()
: m_index( Singleton<StringStreams>::getMutable().add() ),
m_oss( Singleton<StringStreams>::getMutable().m_streams[m_index].get() )
{}
ReusableStringStream::~ReusableStringStream() {
static_cast<std::ostringstream*>( m_oss )->str("");
m_oss->clear();
Singleton<StringStreams>::getMutable().release( m_index );
}
std::string ReusableStringStream::str() const {
return static_cast<std::ostringstream*>( m_oss )->str();
}
void ReusableStringStream::str( std::string const& str ) {
static_cast<std::ostringstream*>( m_oss )->str( str );
}
}
#include <cassert>
#include <algorithm>
namespace Catch {
namespace Generators {
2023-07-13 13:37:30 +02:00
namespace {
struct GeneratorTracker final : TestCaseTracking::TrackerBase,
IGeneratorTracker {
GeneratorBasePtr m_generator;
GeneratorTracker(
TestCaseTracking::NameAndLocation&& nameAndLocation,
TrackerContext& ctx,
ITracker* parent ):
TrackerBase( CATCH_MOVE( nameAndLocation ), ctx, parent ) {}
static GeneratorTracker*
acquire( TrackerContext& ctx,
TestCaseTracking::NameAndLocationRef const&
nameAndLocation ) {
GeneratorTracker* tracker;
ITracker& currentTracker = ctx.currentTracker();
// Under specific circumstances, the generator we want
// to acquire is also the current tracker. If this is
// the case, we have to avoid looking through current
// tracker's children, and instead return the current
// tracker.
// A case where this check is important is e.g.
// for (int i = 0; i < 5; ++i) {
// int n = GENERATE(1, 2);
// }
//
// without it, the code above creates 5 nested generators.
if ( currentTracker.nameAndLocation() == nameAndLocation ) {
auto thisTracker = currentTracker.parent()->findChild(
nameAndLocation );
assert( thisTracker );
assert( thisTracker->isGeneratorTracker() );
tracker = static_cast<GeneratorTracker*>( thisTracker );
} else if ( ITracker* childTracker =
currentTracker.findChild(
nameAndLocation ) ) {
assert( childTracker );
assert( childTracker->isGeneratorTracker() );
tracker =
static_cast<GeneratorTracker*>( childTracker );
} else {
return nullptr;
}
2023-07-13 13:37:30 +02:00
if ( !tracker->isComplete() ) { tracker->open(); }
2023-07-13 13:37:30 +02:00
return tracker;
}
2023-07-13 13:37:30 +02:00
// TrackerBase interface
bool isGeneratorTracker() const override { return true; }
auto hasGenerator() const -> bool override {
return !!m_generator;
}
void close() override {
TrackerBase::close();
// If a generator has a child (it is followed by a section)
// and none of its children have started, then we must wait
// until later to start consuming its values.
// This catches cases where `GENERATE` is placed between two
// `SECTION`s.
// **The check for m_children.empty cannot be removed**.
// doing so would break `GENERATE` _not_ followed by
// `SECTION`s.
const bool should_wait_for_child = [&]() {
// No children -> nobody to wait for
if ( m_children.empty() ) { return false; }
// If at least one child started executing, don't wait
if ( std::find_if(
m_children.begin(),
m_children.end(),
[]( TestCaseTracking::ITrackerPtr const&
tracker ) {
return tracker->hasStarted();
} ) != m_children.end() ) {
return false;
}
2022-01-03 23:16:39 +01:00
2023-07-13 13:37:30 +02:00
// No children have started. We need to check if they
// _can_ start, and thus we should wait for them, or
// they cannot start (due to filters), and we shouldn't
// wait for them
ITracker* parent = m_parent;
// This is safe: there is always at least one section
// tracker in a test case tracking tree
while ( !parent->isSectionTracker() ) {
parent = parent->parent();
2022-01-03 23:16:39 +01:00
}
2023-07-13 13:37:30 +02:00
assert( parent &&
"Missing root (test case) level section" );
auto const& parentSection =
static_cast<SectionTracker const&>( *parent );
auto const& filters = parentSection.getFilters();
// No filters -> no restrictions on running sections
if ( filters.empty() ) { return true; }
for ( auto const& child : m_children ) {
if ( child->isSectionTracker() &&
std::find( filters.begin(),
filters.end(),
static_cast<SectionTracker const&>(
*child )
.trimmedName() ) !=
filters.end() ) {
return true;
}
}
return false;
}();
// This check is a bit tricky, because m_generator->next()
// has a side-effect, where it consumes generator's current
// value, but we do not want to invoke the side-effect if
// this generator is still waiting for any child to start.
assert( m_generator && "Tracker without generator" );
if ( should_wait_for_child ||
( m_runState == CompletedSuccessfully &&
m_generator->countedNext() ) ) {
m_children.clear();
m_runState = Executing;
2022-01-03 23:16:39 +01:00
}
}
2023-07-13 13:37:30 +02:00
// IGeneratorTracker interface
auto getGenerator() const -> GeneratorBasePtr const& override {
return m_generator;
}
void setGenerator( GeneratorBasePtr&& generator ) override {
m_generator = CATCH_MOVE( generator );
}
};
} // namespace
}
2022-04-20 23:46:07 +02:00
RunContext::RunContext(IConfig const* _config, IEventListenerPtr&& reporter)
: m_runInfo(_config->name()),
m_config(_config),
2022-01-03 23:16:39 +01:00
m_reporter(CATCH_MOVE(reporter)),
m_lastAssertionInfo{ StringRef(), SourceLineInfo("",0), StringRef(), ResultDisposition::Normal },
m_includeSuccessfulResults( m_config->includeSuccessfulResults() || m_reporter->getPreferences().shouldReportAllAssertions )
{
2023-07-13 13:37:30 +02:00
getCurrentMutableContext().setResultCapture( this );
m_reporter->testRunStarting(m_runInfo);
}
RunContext::~RunContext() {
m_reporter->testRunEnded(TestRunStats(m_runInfo, m_totals, aborting()));
}
Totals RunContext::runTest(TestCaseHandle const& testCase) {
2022-01-03 23:16:39 +01:00
const Totals prevTotals = m_totals;
auto const& testInfo = testCase.getTestCaseInfo();
m_reporter->testCaseStarting(testInfo);
m_activeTestCase = &testCase;
ITracker& rootTracker = m_trackerContext.startRun();
assert(rootTracker.isSectionTracker());
static_cast<SectionTracker&>(rootTracker).addInitialFilters(m_config->getSectionsToRun());
2022-01-03 23:16:39 +01:00
2022-05-17 22:13:36 +02:00
// We intentionally only seed the internal RNG once per test case,
// before it is first invoked. The reason for that is a complex
// interplay of generator/section implementation details and the
// Random*Generator types.
//
// The issue boils down to us needing to seed the Random*Generators
// with different seed each, so that they return different sequences
// of random numbers. We do this by giving them a number from the
// shared RNG instance as their seed.
//
// However, this runs into an issue if the reseeding happens each
// time the test case is entered (as opposed to first time only),
// because multiple generators could get the same seed, e.g. in
// ```cpp
// TEST_CASE() {
// auto i = GENERATE(take(10, random(0, 100));
// SECTION("A") {
// auto j = GENERATE(take(10, random(0, 100));
// }
// SECTION("B") {
// auto k = GENERATE(take(10, random(0, 100));
// }
// }
// ```
// `i` and `j` would properly return values from different sequences,
// but `i` and `k` would return the same sequence, because their seed
// would be the same.
// (The reason their seeds would be the same is that the generator
// for k would be initialized when the test case is entered the second
// time, after the shared RNG instance was reset to the same value
// it had when the generator for i was initialized.)
seedRng( *m_config );
2022-01-03 23:16:39 +01:00
uint64_t testRuns = 0;
2023-02-27 15:12:35 +01:00
std::string redirectedCout;
std::string redirectedCerr;
do {
m_trackerContext.startCycle();
2023-01-29 23:18:57 +01:00
m_testCaseTracker = &SectionTracker::acquire(m_trackerContext, TestCaseTracking::NameAndLocationRef(testInfo.name, testInfo.lineInfo));
2022-01-03 23:16:39 +01:00
m_reporter->testCasePartialStarting(testInfo, testRuns);
const auto beforeRunTotals = m_totals;
std::string oneRunCout, oneRunCerr;
runCurrentTest(oneRunCout, oneRunCerr);
redirectedCout += oneRunCout;
redirectedCerr += oneRunCerr;
const auto singleRunTotals = m_totals.delta(beforeRunTotals);
2023-02-27 15:12:35 +01:00
auto statsForOneRun = TestCaseStats(testInfo, singleRunTotals, CATCH_MOVE(oneRunCout), CATCH_MOVE(oneRunCerr), aborting());
2022-01-03 23:16:39 +01:00
m_reporter->testCasePartialEnded(statsForOneRun, testRuns);
++testRuns;
} while (!m_testCaseTracker->isSuccessfullyCompleted() && !aborting());
Totals deltaTotals = m_totals.delta(prevTotals);
if (testInfo.expectedToFail() && deltaTotals.testCases.passed > 0) {
deltaTotals.assertions.failed++;
deltaTotals.testCases.passed--;
deltaTotals.testCases.failed++;
}
m_totals.testCases += deltaTotals.testCases;
m_reporter->testCaseEnded(TestCaseStats(testInfo,
deltaTotals,
2023-02-27 15:12:35 +01:00
CATCH_MOVE(redirectedCout),
CATCH_MOVE(redirectedCerr),
aborting()));
m_activeTestCase = nullptr;
m_testCaseTracker = nullptr;
return deltaTotals;
}
2023-07-13 13:37:30 +02:00
void RunContext::assertionEnded(AssertionResult&& result) {
if (result.getResultType() == ResultWas::Ok) {
m_totals.assertions.passed++;
m_lastAssertionPassed = true;
2023-01-22 19:43:11 +01:00
} else if (result.getResultType() == ResultWas::ExplicitSkip) {
m_totals.assertions.skipped++;
m_lastAssertionPassed = true;
2022-01-03 23:16:39 +01:00
} else if (!result.succeeded()) {
m_lastAssertionPassed = false;
2022-01-03 23:16:39 +01:00
if (result.isOk()) {
}
else if( m_activeTestCase->getTestCaseInfo().okToFail() )
m_totals.assertions.failedButOk++;
else
m_totals.assertions.failed++;
}
else {
m_lastAssertionPassed = true;
}
2022-01-03 23:16:39 +01:00
m_reporter->assertionEnded(AssertionStats(result, m_messages, m_totals));
2023-07-13 13:37:30 +02:00
if ( result.getResultType() != ResultWas::Warning ) {
m_messageScopes.clear();
2023-07-13 13:37:30 +02:00
}
2023-12-11 00:55:40 +01:00
// Reset working state. assertion info will be reset after
// populateReaction is run if it is needed
2023-07-13 13:37:30 +02:00
m_lastResult = CATCH_MOVE( result );
}
void RunContext::resetAssertionInfo() {
m_lastAssertionInfo.macroName = StringRef();
m_lastAssertionInfo.capturedExpression = "{Unknown expression after the reported line}"_sr;
2023-12-11 00:55:40 +01:00
m_lastAssertionInfo.resultDisposition = ResultDisposition::Normal;
}
2023-07-13 13:37:30 +02:00
void RunContext::notifyAssertionStarted( AssertionInfo const& info ) {
m_reporter->assertionStarting( info );
}
bool RunContext::sectionStarted( StringRef sectionName,
SourceLineInfo const& sectionLineInfo,
Counts& assertions ) {
2023-01-29 23:18:57 +01:00
ITracker& sectionTracker =
SectionTracker::acquire( m_trackerContext,
TestCaseTracking::NameAndLocationRef(
sectionName, sectionLineInfo ) );
if (!sectionTracker.isOpen())
return false;
m_activeSections.push_back(&sectionTracker);
2023-01-29 23:18:57 +01:00
SectionInfo sectionInfo( sectionLineInfo, static_cast<std::string>(sectionName) );
m_lastAssertionInfo.lineInfo = sectionInfo.lineInfo;
m_reporter->sectionStarting(sectionInfo);
assertions = m_totals.assertions;
return true;
}
2023-01-22 19:43:11 +01:00
IGeneratorTracker*
RunContext::acquireGeneratorTracker( StringRef generatorName,
SourceLineInfo const& lineInfo ) {
using namespace Generators;
2023-01-22 19:43:11 +01:00
GeneratorTracker* tracker = GeneratorTracker::acquire(
m_trackerContext,
2023-01-29 23:18:57 +01:00
TestCaseTracking::NameAndLocationRef(
generatorName, lineInfo ) );
m_lastAssertionInfo.lineInfo = lineInfo;
return tracker;
}
2023-01-22 19:43:11 +01:00
IGeneratorTracker* RunContext::createGeneratorTracker(
StringRef generatorName,
SourceLineInfo lineInfo,
Generators::GeneratorBasePtr&& generator ) {
auto nameAndLoc = TestCaseTracking::NameAndLocation( static_cast<std::string>( generatorName ), lineInfo );
auto& currentTracker = m_trackerContext.currentTracker();
assert(
currentTracker.nameAndLocation() != nameAndLoc &&
"Trying to create tracker for a genreator that already has one" );
auto newTracker = Catch::Detail::make_unique<Generators::GeneratorTracker>(
2023-01-29 23:18:57 +01:00
CATCH_MOVE(nameAndLoc), m_trackerContext, &currentTracker );
2023-01-22 19:43:11 +01:00
auto ret = newTracker.get();
currentTracker.addChild( CATCH_MOVE( newTracker ) );
ret->setGenerator( CATCH_MOVE( generator ) );
ret->open();
return ret;
}
bool RunContext::testForMissingAssertions(Counts& assertions) {
if (assertions.total() != 0)
return false;
if (!m_config->warnAboutMissingAssertions())
return false;
if (m_trackerContext.currentTracker().hasChildren())
return false;
m_totals.assertions.failed++;
assertions.failed++;
return true;
}
2023-01-29 23:18:57 +01:00
void RunContext::sectionEnded(SectionEndInfo&& endInfo) {
Counts assertions = m_totals.assertions - endInfo.prevAssertions;
bool missingAssertions = testForMissingAssertions(assertions);
if (!m_activeSections.empty()) {
m_activeSections.back()->close();
m_activeSections.pop_back();
}
2023-01-29 23:18:57 +01:00
m_reporter->sectionEnded(SectionStats(CATCH_MOVE(endInfo.sectionInfo), assertions, endInfo.durationInSeconds, missingAssertions));
m_messages.clear();
m_messageScopes.clear();
}
2023-01-29 23:18:57 +01:00
void RunContext::sectionEndedEarly(SectionEndInfo&& endInfo) {
if ( m_unfinishedSections.empty() ) {
m_activeSections.back()->fail();
2023-01-29 23:18:57 +01:00
} else {
m_activeSections.back()->close();
2023-01-29 23:18:57 +01:00
}
m_activeSections.pop_back();
2023-01-29 23:18:57 +01:00
m_unfinishedSections.push_back(CATCH_MOVE(endInfo));
}
2022-01-03 23:16:39 +01:00
void RunContext::benchmarkPreparing( StringRef name ) {
m_reporter->benchmarkPreparing(name);
}
void RunContext::benchmarkStarting( BenchmarkInfo const& info ) {
m_reporter->benchmarkStarting( info );
}
void RunContext::benchmarkEnded( BenchmarkStats<> const& stats ) {
m_reporter->benchmarkEnded( stats );
}
2022-01-03 23:16:39 +01:00
void RunContext::benchmarkFailed( StringRef error ) {
m_reporter->benchmarkFailed( error );
}
void RunContext::pushScopedMessage(MessageInfo const & message) {
m_messages.push_back(message);
}
void RunContext::popScopedMessage(MessageInfo const & message) {
m_messages.erase(std::remove(m_messages.begin(), m_messages.end(), message), m_messages.end());
}
2023-01-29 23:18:57 +01:00
void RunContext::emplaceUnscopedMessage( MessageBuilder&& builder ) {
m_messageScopes.emplace_back( CATCH_MOVE(builder) );
}
std::string RunContext::getCurrentTestName() const {
return m_activeTestCase
? m_activeTestCase->getTestCaseInfo().name
: std::string();
}
const AssertionResult * RunContext::getLastResult() const {
return &(*m_lastResult);
}
void RunContext::exceptionEarlyReported() {
m_shouldReportUnexpected = false;
}
void RunContext::handleFatalErrorCondition( StringRef message ) {
// First notify reporter that bad things happened
m_reporter->fatalErrorEncountered(message);
// Don't rebuild the result -- the stringification itself can cause more fatal errors
// Instead, fake a result data.
AssertionResultData tempResult( ResultWas::FatalErrorCondition, { false } );
tempResult.message = static_cast<std::string>(message);
2023-01-29 23:18:57 +01:00
AssertionResult result(m_lastAssertionInfo, CATCH_MOVE(tempResult));
2023-07-13 13:37:30 +02:00
assertionEnded(CATCH_MOVE(result) );
2023-12-11 00:55:40 +01:00
resetAssertionInfo();
handleUnfinishedSections();
// Recreate section for test case (as we will lose the one that was in scope)
auto const& testCaseInfo = m_activeTestCase->getTestCaseInfo();
SectionInfo testCaseSection(testCaseInfo.lineInfo, testCaseInfo.name);
Counts assertions;
assertions.failed = 1;
2023-01-29 23:18:57 +01:00
SectionStats testCaseSectionStats(CATCH_MOVE(testCaseSection), assertions, 0, false);
m_reporter->sectionEnded(testCaseSectionStats);
auto const& testInfo = m_activeTestCase->getTestCaseInfo();
Totals deltaTotals;
deltaTotals.testCases.failed = 1;
deltaTotals.assertions.failed = 1;
m_reporter->testCaseEnded(TestCaseStats(testInfo,
deltaTotals,
std::string(),
std::string(),
false));
m_totals.testCases.failed++;
m_reporter->testRunEnded(TestRunStats(m_runInfo, m_totals, false));
}
bool RunContext::lastAssertionPassed() {
return m_lastAssertionPassed;
}
void RunContext::assertionPassed() {
m_lastAssertionPassed = true;
++m_totals.assertions.passed;
resetAssertionInfo();
m_messageScopes.clear();
}
bool RunContext::aborting() const {
return m_totals.assertions.failed >= static_cast<std::size_t>(m_config->abortAfter());
}
void RunContext::runCurrentTest(std::string & redirectedCout, std::string & redirectedCerr) {
auto const& testCaseInfo = m_activeTestCase->getTestCaseInfo();
SectionInfo testCaseSection(testCaseInfo.lineInfo, testCaseInfo.name);
m_reporter->sectionStarting(testCaseSection);
Counts prevAssertions = m_totals.assertions;
double duration = 0;
m_shouldReportUnexpected = true;
m_lastAssertionInfo = { "TEST_CASE"_sr, testCaseInfo.lineInfo, StringRef(), ResultDisposition::Normal };
Timer timer;
CATCH_TRY {
if (m_reporter->getPreferences().shouldRedirectStdOut) {
#if !defined(CATCH_CONFIG_EXPERIMENTAL_REDIRECT)
RedirectedStreams redirectedStreams(redirectedCout, redirectedCerr);
timer.start();
invokeActiveTestCase();
#else
OutputRedirect r(redirectedCout, redirectedCerr);
timer.start();
invokeActiveTestCase();
#endif
} else {
timer.start();
invokeActiveTestCase();
}
duration = timer.getElapsedSeconds();
} CATCH_CATCH_ANON (TestFailureException&) {
// This just means the test was aborted due to failure
2023-01-22 19:43:11 +01:00
} CATCH_CATCH_ANON (TestSkipException&) {
// This just means the test was explicitly skipped
} CATCH_CATCH_ALL {
// Under CATCH_CONFIG_FAST_COMPILE, unexpected exceptions under REQUIRE assertions
// are reported without translation at the point of origin.
if( m_shouldReportUnexpected ) {
AssertionReaction dummyReaction;
handleUnexpectedInflightException( m_lastAssertionInfo, translateActiveException(), dummyReaction );
}
}
Counts assertions = m_totals.assertions - prevAssertions;
bool missingAssertions = testForMissingAssertions(assertions);
m_testCaseTracker->close();
handleUnfinishedSections();
m_messages.clear();
m_messageScopes.clear();
2023-01-29 23:18:57 +01:00
SectionStats testCaseSectionStats(CATCH_MOVE(testCaseSection), assertions, duration, missingAssertions);
m_reporter->sectionEnded(testCaseSectionStats);
}
void RunContext::invokeActiveTestCase() {
2022-01-03 23:16:39 +01:00
// We need to engage a handler for signals/structured exceptions
// before running the tests themselves, or the binary can crash
// without failed test being reported.
2022-01-03 23:16:39 +01:00
FatalConditionHandlerGuard _(&m_fatalConditionhandler);
2022-07-17 20:18:44 +02:00
// We keep having issue where some compilers warn about an unused
// variable, even though the type has non-trivial constructor and
// destructor. This is annoying and ugly, but it makes them stfu.
(void)_;
m_activeTestCase->invoke();
}
void RunContext::handleUnfinishedSections() {
// If sections ended prematurely due to an exception we stored their
// infos here so we can tear them down outside the unwind process.
for (auto it = m_unfinishedSections.rbegin(),
itEnd = m_unfinishedSections.rend();
it != itEnd;
++it)
2023-01-29 23:18:57 +01:00
sectionEnded(CATCH_MOVE(*it));
m_unfinishedSections.clear();
}
void RunContext::handleExpr(
AssertionInfo const& info,
ITransientExpression const& expr,
AssertionReaction& reaction
) {
bool negated = isFalseTest( info.resultDisposition );
bool result = expr.getResult() != negated;
if( result ) {
if (!m_includeSuccessfulResults) {
assertionPassed();
}
else {
reportExpr(info, ResultWas::Ok, &expr, negated);
}
}
else {
reportExpr(info, ResultWas::ExpressionFailed, &expr, negated );
populateReaction( reaction );
}
2023-12-11 00:55:40 +01:00
resetAssertionInfo();
}
void RunContext::reportExpr(
AssertionInfo const &info,
ResultWas::OfType resultType,
ITransientExpression const *expr,
bool negated ) {
m_lastAssertionInfo = info;
AssertionResultData data( resultType, LazyExpression( negated ) );
2023-01-29 23:18:57 +01:00
AssertionResult assertionResult{ info, CATCH_MOVE( data ) };
assertionResult.m_resultData.lazyExpression.m_transientExpression = expr;
2023-07-13 13:37:30 +02:00
assertionEnded( CATCH_MOVE(assertionResult) );
}
void RunContext::handleMessage(
AssertionInfo const& info,
ResultWas::OfType resultType,
2022-01-03 23:16:39 +01:00
StringRef message,
AssertionReaction& reaction
) {
m_lastAssertionInfo = info;
AssertionResultData data( resultType, LazyExpression( false ) );
data.message = static_cast<std::string>(message);
2023-01-29 23:18:57 +01:00
AssertionResult assertionResult{ m_lastAssertionInfo,
CATCH_MOVE( data ) };
2023-07-13 13:37:30 +02:00
const auto isOk = assertionResult.isOk();
assertionEnded( CATCH_MOVE(assertionResult) );
if ( !isOk ) {
populateReaction( reaction );
2023-01-22 19:43:11 +01:00
} else if ( resultType == ResultWas::ExplicitSkip ) {
// TODO: Need to handle this explicitly, as ExplicitSkip is
// considered "OK"
reaction.shouldSkip = true;
}
2023-12-11 00:55:40 +01:00
resetAssertionInfo();
}
void RunContext::handleUnexpectedExceptionNotThrown(
AssertionInfo const& info,
AssertionReaction& reaction
) {
handleNonExpr(info, Catch::ResultWas::DidntThrowException, reaction);
}
void RunContext::handleUnexpectedInflightException(
AssertionInfo const& info,
2023-07-13 13:37:30 +02:00
std::string&& message,
AssertionReaction& reaction
) {
m_lastAssertionInfo = info;
AssertionResultData data( ResultWas::ThrewException, LazyExpression( false ) );
2023-07-13 13:37:30 +02:00
data.message = CATCH_MOVE(message);
2023-01-29 23:18:57 +01:00
AssertionResult assertionResult{ info, CATCH_MOVE(data) };
2023-07-13 13:37:30 +02:00
assertionEnded( CATCH_MOVE(assertionResult) );
populateReaction( reaction );
2023-12-11 00:55:40 +01:00
resetAssertionInfo();
}
void RunContext::populateReaction( AssertionReaction& reaction ) {
reaction.shouldDebugBreak = m_config->shouldDebugBreak();
reaction.shouldThrow = aborting() || (m_lastAssertionInfo.resultDisposition & ResultDisposition::Normal);
}
void RunContext::handleIncomplete(
AssertionInfo const& info
) {
2023-02-27 15:12:35 +01:00
using namespace std::string_literals;
m_lastAssertionInfo = info;
AssertionResultData data( ResultWas::ThrewException, LazyExpression( false ) );
2023-02-27 15:12:35 +01:00
data.message = "Exception translation was disabled by CATCH_CONFIG_FAST_COMPILE"s;
2023-01-29 23:18:57 +01:00
AssertionResult assertionResult{ info, CATCH_MOVE( data ) };
2023-07-13 13:37:30 +02:00
assertionEnded( CATCH_MOVE(assertionResult) );
2023-12-11 00:55:40 +01:00
resetAssertionInfo();
}
void RunContext::handleNonExpr(
AssertionInfo const &info,
ResultWas::OfType resultType,
AssertionReaction &reaction
) {
m_lastAssertionInfo = info;
AssertionResultData data( resultType, LazyExpression( false ) );
2023-01-29 23:18:57 +01:00
AssertionResult assertionResult{ info, CATCH_MOVE( data ) };
2023-07-13 13:37:30 +02:00
const auto isOk = assertionResult.isOk();
assertionEnded( CATCH_MOVE(assertionResult) );
if ( !isOk ) { populateReaction( reaction ); }
2023-12-11 00:55:40 +01:00
resetAssertionInfo();
}
IResultCapture& getResultCapture() {
if (auto* capture = getCurrentContext().getResultCapture())
return *capture;
else
CATCH_INTERNAL_ERROR("No result capture instance");
}
2022-04-20 23:46:07 +02:00
void seedRng(IConfig const& config) {
2022-05-17 22:13:36 +02:00
sharedRng().seed(config.rngSeed());
2022-04-20 23:46:07 +02:00
}
2022-04-20 23:46:07 +02:00
unsigned int rngSeed() {
return getCurrentContext().getConfig()->rngSeed();
}
2022-04-20 23:46:07 +02:00
}
2022-04-20 23:46:07 +02:00
namespace Catch {
2022-04-20 23:46:07 +02:00
Section::Section( SectionInfo&& info ):
m_info( CATCH_MOVE( info ) ),
m_sectionIncluded(
2023-01-29 23:18:57 +01:00
getResultCapture().sectionStarted( m_info.name, m_info.lineInfo, m_assertions ) ) {
2022-04-20 23:46:07 +02:00
// Non-"included" sections will not use the timing information
// anyway, so don't bother with the potential syscall.
if (m_sectionIncluded) {
m_timer.start();
2022-01-03 23:16:39 +01:00
}
2022-04-20 23:46:07 +02:00
}
2023-01-29 23:18:57 +01:00
Section::Section( SourceLineInfo const& _lineInfo,
StringRef _name,
const char* const ):
2023-02-27 15:12:35 +01:00
m_info( { "invalid", static_cast<std::size_t>( -1 ) }, std::string{} ),
2023-01-29 23:18:57 +01:00
m_sectionIncluded(
getResultCapture().sectionStarted( _name, _lineInfo, m_assertions ) ) {
// We delay initialization the SectionInfo member until we know
// this section needs it, so we avoid allocating std::string for name.
// We also delay timer start to avoid the potential syscall unless we
// will actually use the result.
if ( m_sectionIncluded ) {
m_info.name = static_cast<std::string>( _name );
m_info.lineInfo = _lineInfo;
m_timer.start();
}
}
2022-04-20 23:46:07 +02:00
Section::~Section() {
if( m_sectionIncluded ) {
2023-01-29 23:18:57 +01:00
SectionEndInfo endInfo{ CATCH_MOVE(m_info), m_assertions, m_timer.getElapsedSeconds() };
if ( uncaught_exceptions() ) {
getResultCapture().sectionEndedEarly( CATCH_MOVE(endInfo) );
} else {
getResultCapture().sectionEnded( CATCH_MOVE( endInfo ) );
}
}
}
2022-04-20 23:46:07 +02:00
// This indicates whether the section should be executed or not
Section::operator bool() const {
return m_sectionIncluded;
}
2022-04-20 23:46:07 +02:00
} // end namespace Catch
2022-04-20 23:46:07 +02:00
#include <vector>
namespace Catch {
namespace {
static auto getSingletons() -> std::vector<ISingleton*>*& {
static std::vector<ISingleton*>* g_singletons = nullptr;
if( !g_singletons )
g_singletons = new std::vector<ISingleton*>();
return g_singletons;
}
2022-04-20 23:46:07 +02:00
}
2022-04-20 23:46:07 +02:00
ISingleton::~ISingleton() = default;
2022-04-20 23:46:07 +02:00
void addSingleton(ISingleton* singleton ) {
getSingletons()->push_back( singleton );
}
void cleanupSingletons() {
auto& singletons = getSingletons();
for( auto singleton : *singletons )
delete singleton;
delete singletons;
singletons = nullptr;
}
2022-04-20 23:46:07 +02:00
} // namespace Catch
#include <cstring>
#include <ostream>
namespace Catch {
bool SourceLineInfo::operator == ( SourceLineInfo const& other ) const noexcept {
return line == other.line && (file == other.file || std::strcmp(file, other.file) == 0);
}
bool SourceLineInfo::operator < ( SourceLineInfo const& other ) const noexcept {
// We can assume that the same file will usually have the same pointer.
// Thus, if the pointers are the same, there is no point in calling the strcmp
return line < other.line || ( line == other.line && file != other.file && (std::strcmp(file, other.file) < 0));
}
2022-04-20 23:46:07 +02:00
std::ostream& operator << ( std::ostream& os, SourceLineInfo const& info ) {
#ifndef __GNUG__
os << info.file << '(' << info.line << ')';
#else
os << info.file << ':' << info.line;
#endif
return os;
}
2022-04-20 23:46:07 +02:00
} // end namespace Catch
2022-07-17 20:18:44 +02:00
namespace Catch {
#if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
void StartupExceptionRegistry::add( std::exception_ptr const& exception ) noexcept {
CATCH_TRY {
m_exceptions.push_back(exception);
} CATCH_CATCH_ALL {
// If we run out of memory during start-up there's really not a lot more we can do about it
std::terminate();
}
}
std::vector<std::exception_ptr> const& StartupExceptionRegistry::getExceptions() const noexcept {
return m_exceptions;
}
#endif
} // end namespace Catch
2022-04-20 23:46:07 +02:00
#include <iostream>
namespace Catch {
// If you #define this you must implement these functions
#if !defined( CATCH_CONFIG_NOSTDOUT )
std::ostream& cout() { return std::cout; }
std::ostream& cerr() { return std::cerr; }
std::ostream& clog() { return std::clog; }
#endif
2022-04-20 23:46:07 +02:00
} // namespace Catch
#include <ostream>
#include <cstring>
#include <cctype>
#include <vector>
namespace Catch {
bool startsWith( std::string const& s, std::string const& prefix ) {
return s.size() >= prefix.size() && std::equal(prefix.begin(), prefix.end(), s.begin());
}
2022-01-03 23:16:39 +01:00
bool startsWith( StringRef s, char prefix ) {
return !s.empty() && s[0] == prefix;
}
bool endsWith( std::string const& s, std::string const& suffix ) {
return s.size() >= suffix.size() && std::equal(suffix.rbegin(), suffix.rend(), s.rbegin());
}
bool endsWith( std::string const& s, char suffix ) {
return !s.empty() && s[s.size()-1] == suffix;
}
bool contains( std::string const& s, std::string const& infix ) {
return s.find( infix ) != std::string::npos;
}
void toLowerInPlace( std::string& s ) {
2023-07-13 13:37:30 +02:00
for ( char& c : s ) {
c = toLower( c );
}
}
std::string toLower( std::string const& s ) {
std::string lc = s;
toLowerInPlace( lc );
return lc;
}
2022-01-03 23:16:39 +01:00
char toLower(char c) {
return static_cast<char>(std::tolower(static_cast<unsigned char>(c)));
}
std::string trim( std::string const& str ) {
static char const* whitespaceChars = "\n\r\t ";
std::string::size_type start = str.find_first_not_of( whitespaceChars );
std::string::size_type end = str.find_last_not_of( whitespaceChars );
return start != std::string::npos ? str.substr( start, 1+end-start ) : std::string();
}
StringRef trim(StringRef ref) {
const auto is_ws = [](char c) {
return c == ' ' || c == '\t' || c == '\n' || c == '\r';
};
size_t real_begin = 0;
while (real_begin < ref.size() && is_ws(ref[real_begin])) { ++real_begin; }
size_t real_end = ref.size();
while (real_end > real_begin && is_ws(ref[real_end - 1])) { --real_end; }
return ref.substr(real_begin, real_end - real_begin);
}
bool replaceInPlace( std::string& str, std::string const& replaceThis, std::string const& withThis ) {
std::size_t i = str.find( replaceThis );
2024-03-01 22:07:10 +01:00
if (i == std::string::npos) {
return false;
}
std::size_t copyBegin = 0;
std::string origStr = CATCH_MOVE(str);
str.clear();
// There is at least one replacement, so reserve with the best guess
// we can make without actually counting the number of occurences.
str.reserve(origStr.size() - replaceThis.size() + withThis.size());
do {
str.append(origStr, copyBegin, i-copyBegin );
str += withThis;
copyBegin = i + replaceThis.size();
if( copyBegin < origStr.size() )
i = origStr.find( replaceThis, copyBegin );
else
i = std::string::npos;
2024-03-01 22:07:10 +01:00
} while( i != std::string::npos );
if ( copyBegin < origStr.size() ) {
str.append(origStr, copyBegin, origStr.size() );
}
2024-03-01 22:07:10 +01:00
return true;
}
std::vector<StringRef> splitStringRef( StringRef str, char delimiter ) {
std::vector<StringRef> subStrings;
std::size_t start = 0;
for(std::size_t pos = 0; pos < str.size(); ++pos ) {
if( str[pos] == delimiter ) {
if( pos - start > 1 )
subStrings.push_back( str.substr( start, pos-start ) );
start = pos+1;
}
}
if( start < str.size() )
subStrings.push_back( str.substr( start, str.size()-start ) );
return subStrings;
}
std::ostream& operator << ( std::ostream& os, pluralise const& pluraliser ) {
os << pluraliser.m_count << ' ' << pluraliser.m_label;
if( pluraliser.m_count != 1 )
os << 's';
return os;
}
}
#include <algorithm>
#include <ostream>
#include <cstring>
#include <cstdint>
namespace Catch {
StringRef::StringRef( char const* rawChars ) noexcept
2022-05-17 22:13:36 +02:00
: StringRef( rawChars, std::strlen(rawChars) )
{}
2022-01-03 23:16:39 +01:00
bool StringRef::operator<(StringRef rhs) const noexcept {
if (m_size < rhs.m_size) {
return strncmp(m_start, rhs.m_start, m_size) <= 0;
}
return strncmp(m_start, rhs.m_start, rhs.m_size) < 0;
}
2022-01-03 23:16:39 +01:00
int StringRef::compare( StringRef rhs ) const {
auto cmpResult =
strncmp( m_start, rhs.m_start, std::min( m_size, rhs.m_size ) );
// This means that strncmp found a difference before the strings
// ended, and we can return it directly
if ( cmpResult != 0 ) {
return cmpResult;
}
// If strings are equal up to length, then their comparison results on
// their size
if ( m_size < rhs.m_size ) {
return -1;
} else if ( m_size > rhs.m_size ) {
return 1;
} else {
return 0;
}
}
auto operator << ( std::ostream& os, StringRef str ) -> std::ostream& {
return os.write(str.data(), static_cast<std::streamsize>(str.size()));
}
std::string operator+(StringRef lhs, StringRef rhs) {
std::string ret;
ret.reserve(lhs.size() + rhs.size());
ret += lhs;
ret += rhs;
return ret;
}
2022-01-03 23:16:39 +01:00
auto operator+=( std::string& lhs, StringRef rhs ) -> std::string& {
lhs.append(rhs.data(), rhs.size());
return lhs;
}
} // namespace Catch
namespace Catch {
2023-12-11 00:55:40 +01:00
TagAliasRegistry::~TagAliasRegistry() = default;
TagAlias const* TagAliasRegistry::find( std::string const& alias ) const {
auto it = m_registry.find( alias );
if( it != m_registry.end() )
return &(it->second);
else
return nullptr;
}
std::string TagAliasRegistry::expandAliases( std::string const& unexpandedTestSpec ) const {
std::string expandedTestSpec = unexpandedTestSpec;
for( auto const& registryKvp : m_registry ) {
std::size_t pos = expandedTestSpec.find( registryKvp.first );
if( pos != std::string::npos ) {
expandedTestSpec = expandedTestSpec.substr( 0, pos ) +
registryKvp.second.tag +
expandedTestSpec.substr( pos + registryKvp.first.size() );
}
}
return expandedTestSpec;
}
void TagAliasRegistry::add( std::string const& alias, std::string const& tag, SourceLineInfo const& lineInfo ) {
CATCH_ENFORCE( startsWith(alias, "[@") && endsWith(alias, ']'),
"error: tag alias, '" << alias << "' is not of the form [@alias name].\n" << lineInfo );
CATCH_ENFORCE( m_registry.insert(std::make_pair(alias, TagAlias(tag, lineInfo))).second,
"error: tag alias, '" << alias << "' already registered.\n"
<< "\tFirst seen at: " << find(alias)->lineInfo << "\n"
<< "\tRedefined at: " << lineInfo );
}
2022-01-03 23:16:39 +01:00
ITagAliasRegistry::~ITagAliasRegistry() = default;
ITagAliasRegistry const& ITagAliasRegistry::get() {
return getRegistryHub().getTagAliasRegistry();
}
} // end namespace Catch
namespace Catch {
2022-04-20 23:46:07 +02:00
TestCaseInfoHasher::TestCaseInfoHasher( hash_t seed ): m_seed( seed ) {}
uint32_t TestCaseInfoHasher::operator()( TestCaseInfo const& t ) const {
// FNV-1a hash algorithm that is designed for uniqueness:
const hash_t prime = 1099511628211u;
hash_t hash = 14695981039346656037u;
for ( const char c : t.name ) {
hash ^= c;
hash *= prime;
}
for ( const char c : t.className ) {
hash ^= c;
hash *= prime;
}
for ( const Tag& tag : t.tags ) {
for ( const char c : tag.original ) {
hash ^= c;
hash *= prime;
}
}
2022-04-20 23:46:07 +02:00
hash ^= m_seed;
hash *= prime;
const uint32_t low{ static_cast<uint32_t>( hash ) };
const uint32_t high{ static_cast<uint32_t>( hash >> 32 ) };
return low * high;
}
} // namespace Catch
#include <algorithm>
#include <set>
namespace Catch {
2023-07-13 13:37:30 +02:00
namespace {
static void enforceNoDuplicateTestCases(
std::vector<TestCaseHandle> const& tests ) {
auto testInfoCmp = []( TestCaseInfo const* lhs,
TestCaseInfo const* rhs ) {
return *lhs < *rhs;
};
std::set<TestCaseInfo const*, decltype( testInfoCmp )&> seenTests(
testInfoCmp );
for ( auto const& test : tests ) {
const auto infoPtr = &test.getTestCaseInfo();
const auto prev = seenTests.insert( infoPtr );
CATCH_ENFORCE( prev.second,
"error: test case \""
<< infoPtr->name << "\", with tags \""
<< infoPtr->tagsAsString()
<< "\" already defined.\n"
<< "\tFirst seen at "
<< ( *prev.first )->lineInfo << "\n"
<< "\tRedefined at " << infoPtr->lineInfo );
}
}
static bool matchTest( TestCaseHandle const& testCase,
TestSpec const& testSpec,
IConfig const& config ) {
return testSpec.matches( testCase.getTestCaseInfo() ) &&
isThrowSafe( testCase, config );
}
} // end unnamed namespace
std::vector<TestCaseHandle> sortTests( IConfig const& config, std::vector<TestCaseHandle> const& unsortedTestCases ) {
switch (config.runOrder()) {
case TestRunOrder::Declared:
return unsortedTestCases;
case TestRunOrder::LexicographicallySorted: {
std::vector<TestCaseHandle> sorted = unsortedTestCases;
2022-01-03 23:16:39 +01:00
std::sort(
sorted.begin(),
sorted.end(),
[]( TestCaseHandle const& lhs, TestCaseHandle const& rhs ) {
return lhs.getTestCaseInfo() < rhs.getTestCaseInfo();
}
);
return sorted;
}
case TestRunOrder::Randomized: {
2022-04-20 23:46:07 +02:00
using TestWithHash = std::pair<TestCaseInfoHasher::hash_t, TestCaseHandle>;
2022-01-03 23:16:39 +01:00
2022-04-20 23:46:07 +02:00
TestCaseInfoHasher h{ config.rngSeed() };
2022-01-03 23:16:39 +01:00
std::vector<TestWithHash> indexed_tests;
indexed_tests.reserve(unsortedTestCases.size());
for (auto const& handle : unsortedTestCases) {
indexed_tests.emplace_back(h(handle.getTestCaseInfo()), handle);
}
2022-01-03 23:16:39 +01:00
std::sort( indexed_tests.begin(),
indexed_tests.end(),
[]( TestWithHash const& lhs, TestWithHash const& rhs ) {
if ( lhs.first == rhs.first ) {
return lhs.second.getTestCaseInfo() <
rhs.second.getTestCaseInfo();
}
return lhs.first < rhs.first;
} );
std::vector<TestCaseHandle> randomized;
randomized.reserve(indexed_tests.size());
for (auto const& indexed : indexed_tests) {
randomized.push_back(indexed.second);
}
return randomized;
}
}
CATCH_INTERNAL_ERROR("Unknown test order value!");
}
bool isThrowSafe( TestCaseHandle const& testCase, IConfig const& config ) {
return !testCase.getTestCaseInfo().throws() || config.allowThrows();
}
std::vector<TestCaseHandle> filterTests( std::vector<TestCaseHandle> const& testCases, TestSpec const& testSpec, IConfig const& config ) {
std::vector<TestCaseHandle> filtered;
filtered.reserve( testCases.size() );
for (auto const& testCase : testCases) {
if ((!testSpec.hasFilters() && !testCase.getTestCaseInfo().isHidden()) ||
(testSpec.hasFilters() && matchTest(testCase, testSpec, config))) {
filtered.push_back(testCase);
}
}
2022-01-03 23:16:39 +01:00
return createShard(filtered, config.shardCount(), config.shardIndex());
}
std::vector<TestCaseHandle> const& getAllTestCasesSorted( IConfig const& config ) {
return getRegistryHub().getTestCaseRegistry().getAllTestsSorted( config );
}
void TestRegistry::registerTest(Detail::unique_ptr<TestCaseInfo> testInfo, Detail::unique_ptr<ITestInvoker> testInvoker) {
m_handles.emplace_back(testInfo.get(), testInvoker.get());
m_viewed_test_infos.push_back(testInfo.get());
2022-01-03 23:16:39 +01:00
m_owned_test_infos.push_back(CATCH_MOVE(testInfo));
m_invokers.push_back(CATCH_MOVE(testInvoker));
}
std::vector<TestCaseInfo*> const& TestRegistry::getAllInfos() const {
return m_viewed_test_infos;
}
std::vector<TestCaseHandle> const& TestRegistry::getAllTests() const {
return m_handles;
}
std::vector<TestCaseHandle> const& TestRegistry::getAllTestsSorted( IConfig const& config ) const {
if( m_sortedFunctions.empty() )
enforceNoDuplicateTestCases( m_handles );
if( m_currentSortOrder != config.runOrder() || m_sortedFunctions.empty() ) {
m_sortedFunctions = sortTests( config, m_handles );
m_currentSortOrder = config.runOrder();
}
return m_sortedFunctions;
}
} // end namespace Catch
#include <algorithm>
#include <cassert>
#if defined(__clang__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wexit-time-destructors"
#endif
namespace Catch {
namespace TestCaseTracking {
2023-01-29 23:18:57 +01:00
NameAndLocation::NameAndLocation( std::string&& _name, SourceLineInfo const& _location )
: name( CATCH_MOVE(_name) ),
location( _location )
{}
ITracker::~ITracker() = default;
2022-01-03 23:16:39 +01:00
void ITracker::markAsNeedingAnotherRun() {
m_runState = NeedsAnotherRun;
}
void ITracker::addChild( ITrackerPtr&& child ) {
m_children.push_back( CATCH_MOVE(child) );
}
2023-02-27 15:12:35 +01:00
ITracker* ITracker::findChild( NameAndLocationRef const& nameAndLocation ) {
auto it = std::find_if(
m_children.begin(),
m_children.end(),
[&nameAndLocation]( ITrackerPtr const& tracker ) {
2023-02-27 15:12:35 +01:00
auto const& tnameAndLoc = tracker->nameAndLocation();
if ( tnameAndLoc.location.line !=
nameAndLocation.location.line ) {
return false;
}
return tnameAndLoc == nameAndLocation;
} );
2022-01-03 23:16:39 +01:00
return ( it != m_children.end() ) ? it->get() : nullptr;
}
bool ITracker::isSectionTracker() const { return false; }
bool ITracker::isGeneratorTracker() const { return false; }
bool ITracker::isOpen() const {
return m_runState != NotStarted && !isComplete();
}
2022-01-03 23:16:39 +01:00
bool ITracker::hasStarted() const { return m_runState != NotStarted; }
2022-01-03 23:16:39 +01:00
void ITracker::openChild() {
if (m_runState != ExecutingChildren) {
m_runState = ExecutingChildren;
if (m_parent) {
m_parent->openChild();
}
}
}
ITracker& TrackerContext::startRun() {
using namespace std::string_literals;
2022-01-03 23:16:39 +01:00
m_rootTracker = Catch::Detail::make_unique<SectionTracker>(
NameAndLocation( "{root}"s, CATCH_INTERNAL_LINEINFO ),
*this,
nullptr );
m_currentTracker = nullptr;
m_runState = Executing;
return *m_rootTracker;
}
void TrackerContext::completeCycle() {
m_runState = CompletedCycle;
}
bool TrackerContext::completedCycle() const {
return m_runState == CompletedCycle;
}
void TrackerContext::setCurrentTracker( ITracker* tracker ) {
m_currentTracker = tracker;
}
2023-01-29 23:18:57 +01:00
TrackerBase::TrackerBase( NameAndLocation&& nameAndLocation, TrackerContext& ctx, ITracker* parent ):
ITracker(CATCH_MOVE(nameAndLocation), parent),
2022-01-03 23:16:39 +01:00
m_ctx( ctx )
{}
bool TrackerBase::isComplete() const {
return m_runState == CompletedSuccessfully || m_runState == Failed;
}
void TrackerBase::open() {
m_runState = Executing;
moveToThis();
if( m_parent )
m_parent->openChild();
}
void TrackerBase::close() {
// Close any still open children (e.g. generators)
while( &m_ctx.currentTracker() != this )
m_ctx.currentTracker().close();
switch( m_runState ) {
case NeedsAnotherRun:
break;
case Executing:
m_runState = CompletedSuccessfully;
break;
case ExecutingChildren:
if( std::all_of(m_children.begin(), m_children.end(), [](ITrackerPtr const& t){ return t->isComplete(); }) )
m_runState = CompletedSuccessfully;
break;
case NotStarted:
case CompletedSuccessfully:
case Failed:
CATCH_INTERNAL_ERROR( "Illogical state: " << m_runState );
default:
CATCH_INTERNAL_ERROR( "Unknown state: " << m_runState );
}
moveToParent();
m_ctx.completeCycle();
}
void TrackerBase::fail() {
m_runState = Failed;
if( m_parent )
m_parent->markAsNeedingAnotherRun();
moveToParent();
m_ctx.completeCycle();
}
void TrackerBase::moveToParent() {
assert( m_parent );
m_ctx.setCurrentTracker( m_parent );
}
void TrackerBase::moveToThis() {
m_ctx.setCurrentTracker( this );
}
2023-01-29 23:18:57 +01:00
SectionTracker::SectionTracker( NameAndLocation&& nameAndLocation, TrackerContext& ctx, ITracker* parent )
: TrackerBase( CATCH_MOVE(nameAndLocation), ctx, parent ),
2023-02-27 15:12:35 +01:00
m_trimmed_name(trim(StringRef(ITracker::nameAndLocation().name)))
{
if( parent ) {
2023-01-29 23:18:57 +01:00
while ( !parent->isSectionTracker() ) {
2022-01-03 23:16:39 +01:00
parent = parent->parent();
2023-01-29 23:18:57 +01:00
}
SectionTracker& parentSection = static_cast<SectionTracker&>( *parent );
addNextFilters( parentSection.m_filters );
}
}
bool SectionTracker::isComplete() const {
bool complete = true;
if (m_filters.empty()
2022-01-03 23:16:39 +01:00
|| m_filters[0].empty()
|| std::find(m_filters.begin(), m_filters.end(), m_trimmed_name) != m_filters.end()) {
complete = TrackerBase::isComplete();
}
return complete;
}
bool SectionTracker::isSectionTracker() const { return true; }
2023-02-27 15:12:35 +01:00
SectionTracker& SectionTracker::acquire( TrackerContext& ctx, NameAndLocationRef const& nameAndLocation ) {
2023-01-29 23:18:57 +01:00
SectionTracker* tracker;
ITracker& currentTracker = ctx.currentTracker();
2022-01-03 23:16:39 +01:00
if ( ITracker* childTracker =
currentTracker.findChild( nameAndLocation ) ) {
assert( childTracker );
assert( childTracker->isSectionTracker() );
2023-01-29 23:18:57 +01:00
tracker = static_cast<SectionTracker*>( childTracker );
2022-01-03 23:16:39 +01:00
} else {
2023-01-29 23:18:57 +01:00
auto newTracker = Catch::Detail::make_unique<SectionTracker>(
NameAndLocation{ static_cast<std::string>(nameAndLocation.name),
nameAndLocation.location },
ctx,
&currentTracker );
tracker = newTracker.get();
currentTracker.addChild( CATCH_MOVE( newTracker ) );
}
if ( !ctx.completedCycle() ) {
tracker->tryOpen();
}
2023-01-29 23:18:57 +01:00
return *tracker;
}
void SectionTracker::tryOpen() {
if( !isComplete() )
open();
}
void SectionTracker::addInitialFilters( std::vector<std::string> const& filters ) {
if( !filters.empty() ) {
m_filters.reserve( m_filters.size() + filters.size() + 2 );
2022-01-03 23:16:39 +01:00
m_filters.emplace_back(StringRef{}); // Root - should never be consulted
m_filters.emplace_back(StringRef{}); // Test Case - not a section filter
m_filters.insert( m_filters.end(), filters.begin(), filters.end() );
}
}
2022-01-03 23:16:39 +01:00
void SectionTracker::addNextFilters( std::vector<StringRef> const& filters ) {
if( filters.size() > 1 )
m_filters.insert( m_filters.end(), filters.begin()+1, filters.end() );
}
2022-01-03 23:16:39 +01:00
StringRef SectionTracker::trimmedName() const {
return m_trimmed_name;
}
2022-01-03 23:16:39 +01:00
} // namespace TestCaseTracking
} // namespace Catch
#if defined(__clang__)
# pragma clang diagnostic pop
#endif
2022-11-16 16:06:45 +01:00
namespace Catch {
void throw_test_failure_exception() {
#if !defined( CATCH_CONFIG_DISABLE_EXCEPTIONS )
throw TestFailureException{};
#else
CATCH_ERROR( "Test failure requires aborting test!" );
#endif
}
2023-07-13 13:37:30 +02:00
void throw_test_skip_exception() {
#if !defined( CATCH_CONFIG_DISABLE_EXCEPTIONS )
throw Catch::TestSkipException();
#else
CATCH_ERROR( "Explicitly skipping tests during runtime requires exceptions" );
#endif
}
2022-11-16 16:06:45 +01:00
} // namespace Catch
2022-01-03 23:16:39 +01:00
#include <algorithm>
#include <iterator>
namespace Catch {
2023-07-13 13:37:30 +02:00
ITestInvoker::~ITestInvoker() = default;
2022-01-03 23:16:39 +01:00
namespace {
2023-07-13 13:37:30 +02:00
static StringRef extractClassName( StringRef classOrMethodName ) {
2022-01-03 23:16:39 +01:00
if ( !startsWith( classOrMethodName, '&' ) ) {
return classOrMethodName;
}
// Remove the leading '&' to avoid having to special case it later
const auto methodName =
classOrMethodName.substr( 1, classOrMethodName.size() );
auto reverseStart = std::make_reverse_iterator( methodName.end() );
auto reverseEnd = std::make_reverse_iterator( methodName.begin() );
// We make a simplifying assumption that ":" is only present
// in the input as part of "::" from C++ typenames (this is
// relatively safe assumption because the input is generated
// as stringification of type through preprocessor).
auto lastColons = std::find( reverseStart, reverseEnd, ':' ) + 1;
auto secondLastColons =
std::find( lastColons + 1, reverseEnd, ':' );
auto const startIdx = reverseEnd - secondLastColons;
auto const classNameSize = secondLastColons - lastColons - 1;
return methodName.substr(
static_cast<std::size_t>( startIdx ),
static_cast<std::size_t>( classNameSize ) );
}
2023-07-13 13:37:30 +02:00
class TestInvokerAsFunction final : public ITestInvoker {
using TestType = void ( * )();
TestType m_testAsFunction;
public:
TestInvokerAsFunction( TestType testAsFunction ) noexcept:
m_testAsFunction( testAsFunction ) {}
void invoke() const override { m_testAsFunction(); }
};
2022-01-03 23:16:39 +01:00
} // namespace
Detail::unique_ptr<ITestInvoker> makeTestInvoker( void(*testAsFunction)() ) {
2022-01-03 23:16:39 +01:00
return Detail::make_unique<TestInvokerAsFunction>( testAsFunction );
}
2022-01-03 23:16:39 +01:00
AutoReg::AutoReg( Detail::unique_ptr<ITestInvoker> invoker, SourceLineInfo const& lineInfo, StringRef classOrMethod, NameAndTags const& nameAndTags ) noexcept {
CATCH_TRY {
getMutableRegistryHub()
.registerTest(
makeTestCaseInfo(
extractClassName( classOrMethod ),
nameAndTags,
lineInfo),
2022-01-03 23:16:39 +01:00
CATCH_MOVE(invoker)
);
} CATCH_CATCH_ALL {
// Do not throw when constructing global objects, instead register the exception to be processed later
getMutableRegistryHub().registerStartupException();
}
}
}
namespace Catch {
TestSpecParser::TestSpecParser( ITagAliasRegistry const& tagAliases ) : m_tagAliases( &tagAliases ) {}
TestSpecParser& TestSpecParser::parse( std::string const& arg ) {
m_mode = None;
m_exclusion = false;
m_arg = m_tagAliases->expandAliases( arg );
m_escapeChars.clear();
m_substring.reserve(m_arg.size());
m_patternName.reserve(m_arg.size());
m_realPatternPos = 0;
for( m_pos = 0; m_pos < m_arg.size(); ++m_pos )
//if visitChar fails
if( !visitChar( m_arg[m_pos] ) ){
2022-01-03 23:16:39 +01:00
m_testSpec.m_invalidSpecs.push_back(arg);
break;
}
endMode();
return *this;
}
TestSpec TestSpecParser::testSpec() {
addFilter();
2022-01-03 23:16:39 +01:00
return CATCH_MOVE(m_testSpec);
}
bool TestSpecParser::visitChar( char c ) {
if( (m_mode != EscapedName) && (c == '\\') ) {
escape();
addCharToPattern(c);
return true;
}else if((m_mode != EscapedName) && (c == ',') ) {
return separate();
}
switch( m_mode ) {
case None:
if( processNoneChar( c ) )
return true;
break;
case Name:
processNameChar( c );
break;
case EscapedName:
endMode();
addCharToPattern(c);
return true;
default:
case Tag:
case QuotedName:
if( processOtherChar( c ) )
return true;
break;
}
m_substring += c;
if( !isControlChar( c ) ) {
m_patternName += c;
m_realPatternPos++;
}
return true;
}
// Two of the processing methods return true to signal the caller to return
// without adding the given character to the current pattern strings
bool TestSpecParser::processNoneChar( char c ) {
switch( c ) {
case ' ':
return true;
case '~':
m_exclusion = true;
return false;
case '[':
startNewMode( Tag );
return false;
case '"':
startNewMode( QuotedName );
return false;
default:
startNewMode( Name );
return false;
}
}
void TestSpecParser::processNameChar( char c ) {
if( c == '[' ) {
if( m_substring == "exclude:" )
m_exclusion = true;
else
endMode();
startNewMode( Tag );
}
}
bool TestSpecParser::processOtherChar( char c ) {
if( !isControlChar( c ) )
return false;
m_substring += c;
endMode();
return true;
}
void TestSpecParser::startNewMode( Mode mode ) {
m_mode = mode;
}
void TestSpecParser::endMode() {
switch( m_mode ) {
case Name:
case QuotedName:
return addNamePattern();
case Tag:
return addTagPattern();
case EscapedName:
revertBackToLastMode();
return;
case None:
default:
return startNewMode( None );
}
}
void TestSpecParser::escape() {
saveLastMode();
m_mode = EscapedName;
m_escapeChars.push_back(m_realPatternPos);
}
bool TestSpecParser::isControlChar( char c ) const {
switch( m_mode ) {
default:
return false;
case None:
return c == '~';
case Name:
return c == '[';
case EscapedName:
return true;
case QuotedName:
return c == '"';
case Tag:
return c == '[' || c == ']';
}
}
void TestSpecParser::addFilter() {
if( !m_currentFilter.m_required.empty() || !m_currentFilter.m_forbidden.empty() ) {
2022-01-03 23:16:39 +01:00
m_testSpec.m_filters.push_back( CATCH_MOVE(m_currentFilter) );
m_currentFilter = TestSpec::Filter();
}
}
void TestSpecParser::saveLastMode() {
lastMode = m_mode;
}
void TestSpecParser::revertBackToLastMode() {
m_mode = lastMode;
}
bool TestSpecParser::separate() {
if( (m_mode==QuotedName) || (m_mode==Tag) ){
//invalid argument, signal failure to previous scope.
m_mode = None;
m_pos = m_arg.size();
m_substring.clear();
m_patternName.clear();
m_realPatternPos = 0;
return false;
}
endMode();
addFilter();
return true; //success
}
std::string TestSpecParser::preprocessPattern() {
std::string token = m_patternName;
for (std::size_t i = 0; i < m_escapeChars.size(); ++i)
token = token.substr(0, m_escapeChars[i] - i) + token.substr(m_escapeChars[i] - i + 1);
m_escapeChars.clear();
if (startsWith(token, "exclude:")) {
m_exclusion = true;
token = token.substr(8);
}
m_patternName.clear();
m_realPatternPos = 0;
return token;
}
void TestSpecParser::addNamePattern() {
auto token = preprocessPattern();
if (!token.empty()) {
if (m_exclusion) {
m_currentFilter.m_forbidden.emplace_back(Detail::make_unique<TestSpec::NamePattern>(token, m_substring));
} else {
m_currentFilter.m_required.emplace_back(Detail::make_unique<TestSpec::NamePattern>(token, m_substring));
}
}
m_substring.clear();
m_exclusion = false;
m_mode = None;
}
void TestSpecParser::addTagPattern() {
auto token = preprocessPattern();
if (!token.empty()) {
// If the tag pattern is the "hide and tag" shorthand (e.g. [.foo])
// we have to create a separate hide tag and shorten the real one
if (token.size() > 1 && token[0] == '.') {
token.erase(token.begin());
if (m_exclusion) {
m_currentFilter.m_forbidden.emplace_back(Detail::make_unique<TestSpec::TagPattern>(".", m_substring));
} else {
m_currentFilter.m_required.emplace_back(Detail::make_unique<TestSpec::TagPattern>(".", m_substring));
}
}
if (m_exclusion) {
m_currentFilter.m_forbidden.emplace_back(Detail::make_unique<TestSpec::TagPattern>(token, m_substring));
} else {
m_currentFilter.m_required.emplace_back(Detail::make_unique<TestSpec::TagPattern>(token, m_substring));
}
}
m_substring.clear();
m_exclusion = false;
m_mode = None;
}
} // namespace Catch
2022-01-03 23:16:39 +01:00
#include <algorithm>
#include <cstring>
#include <ostream>
namespace {
bool isWhitespace( char c ) {
return c == ' ' || c == '\t' || c == '\n' || c == '\r';
}
bool isBreakableBefore( char c ) {
static const char chars[] = "[({<|";
return std::memchr( chars, c, sizeof( chars ) - 1 ) != nullptr;
}
bool isBreakableAfter( char c ) {
static const char chars[] = "])}>.,:;*+-=&/\\";
return std::memchr( chars, c, sizeof( chars ) - 1 ) != nullptr;
}
bool isBoundary( std::string const& line, size_t at ) {
assert( at > 0 );
assert( at <= line.size() );
return at == line.size() ||
( isWhitespace( line[at] ) && !isWhitespace( line[at - 1] ) ) ||
isBreakableBefore( line[at] ) ||
isBreakableAfter( line[at - 1] );
}
} // namespace
namespace Catch {
namespace TextFlow {
2022-01-03 23:16:39 +01:00
void Column::const_iterator::calcLength() {
m_addHyphen = false;
m_parsedTo = m_lineStart;
std::string const& current_line = m_column.m_string;
2022-01-03 23:16:39 +01:00
if ( current_line[m_lineStart] == '\n' ) {
++m_parsedTo;
}
2022-01-03 23:16:39 +01:00
const auto maxLineLength = m_column.m_width - indentSize();
const auto maxParseTo = std::min(current_line.size(), m_lineStart + maxLineLength);
while ( m_parsedTo < maxParseTo &&
current_line[m_parsedTo] != '\n' ) {
++m_parsedTo;
}
2022-01-03 23:16:39 +01:00
// If we encountered a newline before the column is filled,
// then we linebreak at the newline and consider this line
// finished.
if ( m_parsedTo < m_lineStart + maxLineLength ) {
m_lineLength = m_parsedTo - m_lineStart;
} else {
2022-01-03 23:16:39 +01:00
// Look for a natural linebreak boundary in the column
// (We look from the end, so that the first found boundary is
// the right one)
size_t newLineLength = maxLineLength;
while ( newLineLength > 0 && !isBoundary( current_line, m_lineStart + newLineLength ) ) {
--newLineLength;
}
2022-01-03 23:16:39 +01:00
while ( newLineLength > 0 &&
isWhitespace( current_line[m_lineStart + newLineLength - 1] ) ) {
--newLineLength;
}
2022-01-03 23:16:39 +01:00
// If we found one, then that is where we linebreak
if ( newLineLength > 0 ) {
m_lineLength = newLineLength;
} else {
2022-01-03 23:16:39 +01:00
// Otherwise we have to split text with a hyphen
m_addHyphen = true;
m_lineLength = maxLineLength - 1;
}
}
}
2022-01-03 23:16:39 +01:00
size_t Column::const_iterator::indentSize() const {
auto initial =
2022-01-03 23:16:39 +01:00
m_lineStart == 0 ? m_column.m_initialIndent : std::string::npos;
return initial == std::string::npos ? m_column.m_indent : initial;
}
std::string
2022-01-03 23:16:39 +01:00
Column::const_iterator::addIndentAndSuffix( size_t position,
size_t length ) const {
std::string ret;
2022-01-03 23:16:39 +01:00
const auto desired_indent = indentSize();
ret.reserve( desired_indent + length + m_addHyphen );
ret.append( desired_indent, ' ' );
ret.append( m_column.m_string, position, length );
2022-01-03 23:16:39 +01:00
if ( m_addHyphen ) {
ret.push_back( '-' );
}
return ret;
}
2022-01-03 23:16:39 +01:00
Column::const_iterator::const_iterator( Column const& column ): m_column( column ) {
assert( m_column.m_width > m_column.m_indent );
assert( m_column.m_initialIndent == std::string::npos ||
m_column.m_width > m_column.m_initialIndent );
calcLength();
2022-01-03 23:16:39 +01:00
if ( m_lineLength == 0 ) {
m_lineStart = m_column.m_string.size();
}
}
2022-01-03 23:16:39 +01:00
std::string Column::const_iterator::operator*() const {
assert( m_lineStart <= m_parsedTo );
return addIndentAndSuffix( m_lineStart, m_lineLength );
}
2022-01-03 23:16:39 +01:00
Column::const_iterator& Column::const_iterator::operator++() {
m_lineStart += m_lineLength;
std::string const& current_line = m_column.m_string;
2022-01-03 23:16:39 +01:00
if ( m_lineStart < current_line.size() && current_line[m_lineStart] == '\n' ) {
m_lineStart += 1;
} else {
2022-01-03 23:16:39 +01:00
while ( m_lineStart < current_line.size() &&
isWhitespace( current_line[m_lineStart] ) ) {
++m_lineStart;
}
}
2022-01-03 23:16:39 +01:00
if ( m_lineStart != current_line.size() ) {
calcLength();
}
return *this;
}
2022-01-03 23:16:39 +01:00
Column::const_iterator Column::const_iterator::operator++( int ) {
const_iterator prev( *this );
operator++();
return prev;
}
std::ostream& operator<<( std::ostream& os, Column const& col ) {
bool first = true;
for ( auto line : col ) {
if ( first ) {
first = false;
} else {
os << '\n';
}
os << line;
}
return os;
}
Column Spacer( size_t spaceWidth ) {
Column ret{ "" };
ret.width( spaceWidth );
return ret;
}
Columns::iterator::iterator( Columns const& columns, EndTag ):
m_columns( columns.m_columns ), m_activeIterators( 0 ) {
m_iterators.reserve( m_columns.size() );
for ( auto const& col : m_columns ) {
m_iterators.push_back( col.end() );
}
}
Columns::iterator::iterator( Columns const& columns ):
m_columns( columns.m_columns ),
m_activeIterators( m_columns.size() ) {
m_iterators.reserve( m_columns.size() );
for ( auto const& col : m_columns ) {
m_iterators.push_back( col.begin() );
}
}
std::string Columns::iterator::operator*() const {
std::string row, padding;
for ( size_t i = 0; i < m_columns.size(); ++i ) {
const auto width = m_columns[i].width();
if ( m_iterators[i] != m_columns[i].end() ) {
std::string col = *m_iterators[i];
row += padding;
row += col;
padding.clear();
if ( col.size() < width ) {
padding.append( width - col.size(), ' ' );
}
} else {
padding.append( width, ' ' );
}
}
return row;
}
Columns::iterator& Columns::iterator::operator++() {
for ( size_t i = 0; i < m_columns.size(); ++i ) {
if ( m_iterators[i] != m_columns[i].end() ) {
++m_iterators[i];
}
}
return *this;
}
Columns::iterator Columns::iterator::operator++( int ) {
iterator prev( *this );
operator++();
return prev;
}
std::ostream& operator<<( std::ostream& os, Columns const& cols ) {
bool first = true;
for ( auto line : cols ) {
if ( first ) {
first = false;
} else {
os << '\n';
}
os << line;
}
return os;
}
2023-12-31 15:15:04 +01:00
Columns operator+(Column const& lhs, Column const& rhs) {
Columns cols;
2023-12-31 15:15:04 +01:00
cols += lhs;
cols += rhs;
return cols;
}
2023-12-31 15:15:04 +01:00
Columns operator+(Column&& lhs, Column&& rhs) {
Columns cols;
cols += CATCH_MOVE( lhs );
cols += CATCH_MOVE( rhs );
return cols;
}
2023-12-31 15:15:04 +01:00
Columns& operator+=(Columns& lhs, Column const& rhs) {
lhs.m_columns.push_back( rhs );
return lhs;
}
Columns& operator+=(Columns& lhs, Column&& rhs) {
lhs.m_columns.push_back( CATCH_MOVE(rhs) );
return lhs;
}
Columns operator+( Columns const& lhs, Column const& rhs ) {
auto combined( lhs );
combined += rhs;
return combined;
}
2023-12-31 15:15:04 +01:00
Columns operator+( Columns&& lhs, Column&& rhs ) {
lhs += CATCH_MOVE( rhs );
return CATCH_MOVE( lhs );
}
} // namespace TextFlow
} // namespace Catch
2022-07-17 20:18:44 +02:00
#include <exception>
namespace Catch {
bool uncaught_exceptions() {
#if defined(CATCH_CONFIG_DISABLE_EXCEPTIONS)
return false;
#elif defined(CATCH_CONFIG_CPP17_UNCAUGHT_EXCEPTIONS)
return std::uncaught_exceptions() > 0;
#else
return std::uncaught_exception();
#endif
}
} // end namespace Catch
namespace Catch {
WildcardPattern::WildcardPattern( std::string const& pattern,
CaseSensitive caseSensitivity )
: m_caseSensitivity( caseSensitivity ),
m_pattern( normaliseString( pattern ) )
{
if( startsWith( m_pattern, '*' ) ) {
m_pattern = m_pattern.substr( 1 );
m_wildcard = WildcardAtStart;
}
if( endsWith( m_pattern, '*' ) ) {
m_pattern = m_pattern.substr( 0, m_pattern.size()-1 );
m_wildcard = static_cast<WildcardPosition>( m_wildcard | WildcardAtEnd );
}
}
bool WildcardPattern::matches( std::string const& str ) const {
switch( m_wildcard ) {
case NoWildcard:
return m_pattern == normaliseString( str );
case WildcardAtStart:
return endsWith( normaliseString( str ), m_pattern );
case WildcardAtEnd:
return startsWith( normaliseString( str ), m_pattern );
case WildcardAtBothEnds:
return contains( normaliseString( str ), m_pattern );
default:
CATCH_INTERNAL_ERROR( "Unknown enum" );
}
}
std::string WildcardPattern::normaliseString( std::string const& str ) const {
return trim( m_caseSensitivity == CaseSensitive::No ? toLower( str ) : str );
}
}
2022-01-03 23:16:39 +01:00
// Note: swapping these two includes around causes MSVC to error out
// while in /permissive- mode. No, I don't know why.
// Tested on VS 2019, 18.{3, 4}.x
2023-01-22 19:43:11 +01:00
#include <cstdint>
#include <iomanip>
#include <type_traits>
namespace Catch {
namespace {
size_t trailingBytes(unsigned char c) {
if ((c & 0xE0) == 0xC0) {
return 2;
}
if ((c & 0xF0) == 0xE0) {
return 3;
}
if ((c & 0xF8) == 0xF0) {
return 4;
}
CATCH_INTERNAL_ERROR("Invalid multibyte utf-8 start byte encountered");
}
uint32_t headerValue(unsigned char c) {
if ((c & 0xE0) == 0xC0) {
return c & 0x1F;
}
if ((c & 0xF0) == 0xE0) {
return c & 0x0F;
}
if ((c & 0xF8) == 0xF0) {
return c & 0x07;
}
CATCH_INTERNAL_ERROR("Invalid multibyte utf-8 start byte encountered");
}
void hexEscapeChar(std::ostream& os, unsigned char c) {
std::ios_base::fmtflags f(os.flags());
os << "\\x"
<< std::uppercase << std::hex << std::setfill('0') << std::setw(2)
<< static_cast<int>(c);
os.flags(f);
}
bool shouldNewline(XmlFormatting fmt) {
return !!(static_cast<std::underlying_type_t<XmlFormatting>>(fmt & XmlFormatting::Newline));
}
bool shouldIndent(XmlFormatting fmt) {
return !!(static_cast<std::underlying_type_t<XmlFormatting>>(fmt & XmlFormatting::Indent));
}
} // anonymous namespace
XmlFormatting operator | (XmlFormatting lhs, XmlFormatting rhs) {
return static_cast<XmlFormatting>(
static_cast<std::underlying_type_t<XmlFormatting>>(lhs) |
static_cast<std::underlying_type_t<XmlFormatting>>(rhs)
);
}
XmlFormatting operator & (XmlFormatting lhs, XmlFormatting rhs) {
return static_cast<XmlFormatting>(
static_cast<std::underlying_type_t<XmlFormatting>>(lhs) &
static_cast<std::underlying_type_t<XmlFormatting>>(rhs)
);
}
2022-01-03 23:16:39 +01:00
XmlEncode::XmlEncode( StringRef str, ForWhat forWhat )
: m_str( str ),
m_forWhat( forWhat )
{}
void XmlEncode::encodeTo( std::ostream& os ) const {
// Apostrophe escaping not necessary if we always use " to write attributes
// (see: http://www.w3.org/TR/xml/#syntax)
for( std::size_t idx = 0; idx < m_str.size(); ++ idx ) {
2022-01-03 23:16:39 +01:00
unsigned char c = static_cast<unsigned char>(m_str[idx]);
switch (c) {
case '<': os << "&lt;"; break;
case '&': os << "&amp;"; break;
case '>':
// See: http://www.w3.org/TR/xml/#syntax
if (idx > 2 && m_str[idx - 1] == ']' && m_str[idx - 2] == ']')
os << "&gt;";
else
os << c;
break;
case '\"':
if (m_forWhat == ForAttributes)
os << "&quot;";
else
os << c;
break;
default:
// Check for control characters and invalid utf-8
// Escape control characters in standard ascii
// see http://stackoverflow.com/questions/404107/why-are-control-characters-illegal-in-xml-1-0
if (c < 0x09 || (c > 0x0D && c < 0x20) || c == 0x7F) {
hexEscapeChar(os, c);
break;
}
// Plain ASCII: Write it to stream
if (c < 0x7F) {
os << c;
break;
}
// UTF-8 territory
// Check if the encoding is valid and if it is not, hex escape bytes.
// Important: We do not check the exact decoded values for validity, only the encoding format
// First check that this bytes is a valid lead byte:
// This means that it is not encoded as 1111 1XXX
// Or as 10XX XXXX
if (c < 0xC0 ||
c >= 0xF8) {
hexEscapeChar(os, c);
break;
}
auto encBytes = trailingBytes(c);
// Are there enough bytes left to avoid accessing out-of-bounds memory?
if (idx + encBytes - 1 >= m_str.size()) {
hexEscapeChar(os, c);
break;
}
// The header is valid, check data
// The next encBytes bytes must together be a valid utf-8
// This means: bitpattern 10XX XXXX and the extracted value is sane (ish)
bool valid = true;
uint32_t value = headerValue(c);
for (std::size_t n = 1; n < encBytes; ++n) {
2022-01-03 23:16:39 +01:00
unsigned char nc = static_cast<unsigned char>(m_str[idx + n]);
valid &= ((nc & 0xC0) == 0x80);
value = (value << 6) | (nc & 0x3F);
}
if (
// Wrong bit pattern of following bytes
(!valid) ||
// Overlong encodings
(value < 0x80) ||
(0x80 <= value && value < 0x800 && encBytes > 2) ||
(0x800 < value && value < 0x10000 && encBytes > 3) ||
// Encoded value out of range
(value >= 0x110000)
) {
hexEscapeChar(os, c);
break;
}
// If we got here, this is in fact a valid(ish) utf-8 sequence
for (std::size_t n = 0; n < encBytes; ++n) {
os << m_str[idx + n];
}
idx += encBytes - 1;
break;
}
}
}
std::ostream& operator << ( std::ostream& os, XmlEncode const& xmlEncode ) {
xmlEncode.encodeTo( os );
return os;
}
XmlWriter::ScopedElement::ScopedElement( XmlWriter* writer, XmlFormatting fmt )
: m_writer( writer ),
m_fmt(fmt)
{}
XmlWriter::ScopedElement::ScopedElement( ScopedElement&& other ) noexcept
: m_writer( other.m_writer ),
m_fmt(other.m_fmt)
{
other.m_writer = nullptr;
other.m_fmt = XmlFormatting::None;
}
XmlWriter::ScopedElement& XmlWriter::ScopedElement::operator=( ScopedElement&& other ) noexcept {
if ( m_writer ) {
m_writer->endElement();
}
m_writer = other.m_writer;
other.m_writer = nullptr;
m_fmt = other.m_fmt;
other.m_fmt = XmlFormatting::None;
return *this;
}
XmlWriter::ScopedElement::~ScopedElement() {
if (m_writer) {
m_writer->endElement(m_fmt);
}
}
2022-01-03 23:16:39 +01:00
XmlWriter::ScopedElement&
XmlWriter::ScopedElement::writeText( StringRef text, XmlFormatting fmt ) {
m_writer->writeText( text, fmt );
return *this;
}
2022-01-03 23:16:39 +01:00
XmlWriter::ScopedElement&
XmlWriter::ScopedElement::writeAttribute( StringRef name,
StringRef attribute ) {
m_writer->writeAttribute( name, attribute );
return *this;
}
XmlWriter::XmlWriter( std::ostream& os ) : m_os( os )
{
writeDeclaration();
}
XmlWriter::~XmlWriter() {
while (!m_tags.empty()) {
endElement();
}
newlineIfNecessary();
}
XmlWriter& XmlWriter::startElement( std::string const& name, XmlFormatting fmt ) {
ensureTagClosed();
newlineIfNecessary();
if (shouldIndent(fmt)) {
m_os << m_indent;
m_indent += " ";
}
m_os << '<' << name;
m_tags.push_back( name );
m_tagIsOpen = true;
applyFormatting(fmt);
return *this;
}
XmlWriter::ScopedElement XmlWriter::scopedElement( std::string const& name, XmlFormatting fmt ) {
ScopedElement scoped( this, fmt );
startElement( name, fmt );
return scoped;
}
XmlWriter& XmlWriter::endElement(XmlFormatting fmt) {
m_indent = m_indent.substr(0, m_indent.size() - 2);
if( m_tagIsOpen ) {
m_os << "/>";
m_tagIsOpen = false;
} else {
newlineIfNecessary();
if (shouldIndent(fmt)) {
m_os << m_indent;
}
2022-01-03 23:16:39 +01:00
m_os << "</" << m_tags.back() << '>';
}
m_os << std::flush;
applyFormatting(fmt);
m_tags.pop_back();
return *this;
}
2022-01-03 23:16:39 +01:00
XmlWriter& XmlWriter::writeAttribute( StringRef name,
StringRef attribute ) {
if( !name.empty() && !attribute.empty() )
m_os << ' ' << name << "=\"" << XmlEncode( attribute, XmlEncode::ForAttributes ) << '"';
return *this;
}
2022-01-03 23:16:39 +01:00
XmlWriter& XmlWriter::writeAttribute( StringRef name, bool attribute ) {
writeAttribute(name, (attribute ? "true"_sr : "false"_sr));
return *this;
}
2022-01-03 23:16:39 +01:00
XmlWriter& XmlWriter::writeAttribute( StringRef name,
char const* attribute ) {
writeAttribute( name, StringRef( attribute ) );
return *this;
}
XmlWriter& XmlWriter::writeText( StringRef text, XmlFormatting fmt ) {
CATCH_ENFORCE(!m_tags.empty(), "Cannot write text as top level element");
if( !text.empty() ){
bool tagWasOpen = m_tagIsOpen;
ensureTagClosed();
if (tagWasOpen && shouldIndent(fmt)) {
m_os << m_indent;
}
2022-01-03 23:16:39 +01:00
m_os << XmlEncode( text, XmlEncode::ForTextNodes );
applyFormatting(fmt);
}
return *this;
}
2022-01-03 23:16:39 +01:00
XmlWriter& XmlWriter::writeComment( StringRef text, XmlFormatting fmt ) {
ensureTagClosed();
if (shouldIndent(fmt)) {
m_os << m_indent;
}
2022-01-03 23:16:39 +01:00
m_os << "<!-- " << text << " -->";
applyFormatting(fmt);
return *this;
}
2022-01-03 23:16:39 +01:00
void XmlWriter::writeStylesheetRef( StringRef url ) {
m_os << R"(<?xml-stylesheet type="text/xsl" href=")" << url << R"("?>)" << '\n';
}
void XmlWriter::ensureTagClosed() {
if( m_tagIsOpen ) {
m_os << '>' << std::flush;
newlineIfNecessary();
m_tagIsOpen = false;
}
}
void XmlWriter::applyFormatting(XmlFormatting fmt) {
m_needsNewline = shouldNewline(fmt);
}
void XmlWriter::writeDeclaration() {
2022-01-03 23:16:39 +01:00
m_os << R"(<?xml version="1.0" encoding="UTF-8"?>)" << '\n';
}
void XmlWriter::newlineIfNecessary() {
if( m_needsNewline ) {
2022-01-03 23:16:39 +01:00
m_os << '\n' << std::flush;
m_needsNewline = false;
}
}
}
2022-07-17 20:18:44 +02:00
namespace Catch {
namespace Matchers {
std::string MatcherUntypedBase::toString() const {
if (m_cachedToString.empty()) {
m_cachedToString = describe();
}
return m_cachedToString;
}
MatcherUntypedBase::~MatcherUntypedBase() = default;
} // namespace Matchers
} // namespace Catch
namespace Catch {
namespace Matchers {
std::string IsEmptyMatcher::describe() const {
return "is empty";
}
std::string HasSizeMatcher::describe() const {
ReusableStringStream sstr;
sstr << "has size == " << m_target_size;
return sstr.str();
}
IsEmptyMatcher IsEmpty() {
return {};
}
HasSizeMatcher SizeIs(std::size_t sz) {
return HasSizeMatcher{ sz };
}
} // end namespace Matchers
} // end namespace Catch
namespace Catch {
namespace Matchers {
bool ExceptionMessageMatcher::match(std::exception const& ex) const {
return ex.what() == m_message;
}
std::string ExceptionMessageMatcher::describe() const {
return "exception message matches \"" + m_message + '"';
}
ExceptionMessageMatcher Message(std::string const& message) {
return ExceptionMessageMatcher(message);
}
} // namespace Matchers
} // namespace Catch
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <cstdint>
#include <sstream>
#include <iomanip>
#include <limits>
namespace Catch {
namespace {
template <typename FP>
bool almostEqualUlps(FP lhs, FP rhs, uint64_t maxUlpDiff) {
// Comparison with NaN should always be false.
// This way we can rule it out before getting into the ugly details
if (Catch::isnan(lhs) || Catch::isnan(rhs)) {
return false;
}
2022-01-03 23:16:39 +01:00
// This should also handle positive and negative zeros, infinities
const auto ulpDist = ulpDistance(lhs, rhs);
2022-01-03 23:16:39 +01:00
return ulpDist <= maxUlpDiff;
}
template <typename FP>
FP step(FP start, FP direction, uint64_t steps) {
for (uint64_t i = 0; i < steps; ++i) {
start = Catch::nextafter(start, direction);
}
return start;
}
// Performs equivalent check of std::fabs(lhs - rhs) <= margin
// But without the subtraction to allow for INFINITY in comparison
bool marginComparison(double lhs, double rhs, double margin) {
return (lhs + margin >= rhs) && (rhs + margin >= lhs);
}
template <typename FloatingPoint>
void write(std::ostream& out, FloatingPoint num) {
out << std::scientific
<< std::setprecision(std::numeric_limits<FloatingPoint>::max_digits10 - 1)
<< num;
}
} // end anonymous namespace
namespace Matchers {
namespace Detail {
enum class FloatingPointKind : uint8_t {
Float,
Double
};
} // end namespace Detail
WithinAbsMatcher::WithinAbsMatcher(double target, double margin)
:m_target{ target }, m_margin{ margin } {
CATCH_ENFORCE(margin >= 0, "Invalid margin: " << margin << '.'
<< " Margin has to be non-negative.");
}
// Performs equivalent check of std::fabs(lhs - rhs) <= margin
// But without the subtraction to allow for INFINITY in comparison
bool WithinAbsMatcher::match(double const& matchee) const {
return (matchee + m_margin >= m_target) && (m_target + m_margin >= matchee);
}
std::string WithinAbsMatcher::describe() const {
return "is within " + ::Catch::Detail::stringify(m_margin) + " of " + ::Catch::Detail::stringify(m_target);
}
WithinUlpsMatcher::WithinUlpsMatcher(double target, uint64_t ulps, Detail::FloatingPointKind baseType)
:m_target{ target }, m_ulps{ ulps }, m_type{ baseType } {
CATCH_ENFORCE(m_type == Detail::FloatingPointKind::Double
|| m_ulps < (std::numeric_limits<uint32_t>::max)(),
"Provided ULP is impossibly large for a float comparison.");
2022-01-03 23:16:39 +01:00
CATCH_ENFORCE( std::numeric_limits<double>::is_iec559,
"WithinUlp matcher only supports platforms with "
"IEEE-754 compatible floating point representation" );
}
#if defined(__clang__)
#pragma clang diagnostic push
// Clang <3.5 reports on the default branch in the switch below
#pragma clang diagnostic ignored "-Wunreachable-code"
#endif
bool WithinUlpsMatcher::match(double const& matchee) const {
switch (m_type) {
case Detail::FloatingPointKind::Float:
return almostEqualUlps<float>(static_cast<float>(matchee), static_cast<float>(m_target), m_ulps);
case Detail::FloatingPointKind::Double:
return almostEqualUlps<double>(matchee, m_target, m_ulps);
default:
CATCH_INTERNAL_ERROR( "Unknown Detail::FloatingPointKind value" );
}
}
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
std::string WithinUlpsMatcher::describe() const {
std::stringstream ret;
ret << "is within " << m_ulps << " ULPs of ";
if (m_type == Detail::FloatingPointKind::Float) {
write(ret, static_cast<float>(m_target));
ret << 'f';
} else {
write(ret, m_target);
}
ret << " ([";
if (m_type == Detail::FloatingPointKind::Double) {
2022-05-17 22:13:36 +02:00
write( ret,
step( m_target,
-std::numeric_limits<double>::infinity(),
m_ulps ) );
ret << ", ";
2022-05-17 22:13:36 +02:00
write( ret,
step( m_target,
std::numeric_limits<double>::infinity(),
m_ulps ) );
} else {
// We have to cast INFINITY to float because of MinGW, see #1782
2022-05-17 22:13:36 +02:00
write( ret,
step( static_cast<float>( m_target ),
-std::numeric_limits<float>::infinity(),
m_ulps ) );
ret << ", ";
2022-05-17 22:13:36 +02:00
write( ret,
step( static_cast<float>( m_target ),
std::numeric_limits<float>::infinity(),
m_ulps ) );
}
ret << "])";
return ret.str();
}
WithinRelMatcher::WithinRelMatcher(double target, double epsilon):
m_target(target),
m_epsilon(epsilon){
CATCH_ENFORCE(m_epsilon >= 0., "Relative comparison with epsilon < 0 does not make sense.");
CATCH_ENFORCE(m_epsilon < 1., "Relative comparison with epsilon >= 1 does not make sense.");
}
bool WithinRelMatcher::match(double const& matchee) const {
const auto relMargin = m_epsilon * (std::max)(std::fabs(matchee), std::fabs(m_target));
return marginComparison(matchee, m_target,
std::isinf(relMargin)? 0 : relMargin);
}
std::string WithinRelMatcher::describe() const {
Catch::ReusableStringStream sstr;
sstr << "and " << m_target << " are within " << m_epsilon * 100. << "% of each other";
return sstr.str();
}
WithinUlpsMatcher WithinULP(double target, uint64_t maxUlpDiff) {
return WithinUlpsMatcher(target, maxUlpDiff, Detail::FloatingPointKind::Double);
}
WithinUlpsMatcher WithinULP(float target, uint64_t maxUlpDiff) {
return WithinUlpsMatcher(target, maxUlpDiff, Detail::FloatingPointKind::Float);
}
WithinAbsMatcher WithinAbs(double target, double margin) {
return WithinAbsMatcher(target, margin);
}
WithinRelMatcher WithinRel(double target, double eps) {
return WithinRelMatcher(target, eps);
}
WithinRelMatcher WithinRel(double target) {
return WithinRelMatcher(target, std::numeric_limits<double>::epsilon() * 100);
}
WithinRelMatcher WithinRel(float target, float eps) {
return WithinRelMatcher(target, eps);
}
WithinRelMatcher WithinRel(float target) {
return WithinRelMatcher(target, std::numeric_limits<float>::epsilon() * 100);
}
2023-02-27 15:12:35 +01:00
bool IsNaNMatcher::match( double const& matchee ) const {
return std::isnan( matchee );
}
std::string IsNaNMatcher::describe() const {
using namespace std::string_literals;
return "is NaN"s;
}
IsNaNMatcher IsNaN() { return IsNaNMatcher(); }
} // namespace Matchers
} // namespace Catch
2022-07-17 20:18:44 +02:00
std::string Catch::Matchers::Detail::finalizeDescription(const std::string& desc) {
if (desc.empty()) {
return "matches undescribed predicate";
} else {
return "matches predicate: \"" + desc + '"';
}
}
namespace Catch {
namespace Matchers {
std::string AllTrueMatcher::describe() const { return "contains only true"; }
AllTrueMatcher AllTrue() { return AllTrueMatcher{}; }
std::string NoneTrueMatcher::describe() const { return "contains no true"; }
NoneTrueMatcher NoneTrue() { return NoneTrueMatcher{}; }
std::string AnyTrueMatcher::describe() const { return "contains at least one true"; }
AnyTrueMatcher AnyTrue() { return AnyTrueMatcher{}; }
} // namespace Matchers
} // namespace Catch
#include <regex>
namespace Catch {
namespace Matchers {
CasedString::CasedString( std::string const& str, CaseSensitive caseSensitivity )
: m_caseSensitivity( caseSensitivity ),
m_str( adjustString( str ) )
{}
std::string CasedString::adjustString( std::string const& str ) const {
return m_caseSensitivity == CaseSensitive::No
? toLower( str )
: str;
}
StringRef CasedString::caseSensitivitySuffix() const {
return m_caseSensitivity == CaseSensitive::Yes
? StringRef()
: " (case insensitive)"_sr;
}
2022-04-20 23:46:07 +02:00
StringMatcherBase::StringMatcherBase( StringRef operation, CasedString const& comparator )
: m_comparator( comparator ),
m_operation( operation ) {
}
std::string StringMatcherBase::describe() const {
std::string description;
description.reserve(5 + m_operation.size() + m_comparator.m_str.size() +
m_comparator.caseSensitivitySuffix().size());
description += m_operation;
description += ": \"";
description += m_comparator.m_str;
2022-01-03 23:16:39 +01:00
description += '"';
description += m_comparator.caseSensitivitySuffix();
return description;
}
2022-04-20 23:46:07 +02:00
StringEqualsMatcher::StringEqualsMatcher( CasedString const& comparator ) : StringMatcherBase( "equals"_sr, comparator ) {}
bool StringEqualsMatcher::match( std::string const& source ) const {
return m_comparator.adjustString( source ) == m_comparator.m_str;
}
2022-04-20 23:46:07 +02:00
StringContainsMatcher::StringContainsMatcher( CasedString const& comparator ) : StringMatcherBase( "contains"_sr, comparator ) {}
bool StringContainsMatcher::match( std::string const& source ) const {
return contains( m_comparator.adjustString( source ), m_comparator.m_str );
}
2022-04-20 23:46:07 +02:00
StartsWithMatcher::StartsWithMatcher( CasedString const& comparator ) : StringMatcherBase( "starts with"_sr, comparator ) {}
bool StartsWithMatcher::match( std::string const& source ) const {
return startsWith( m_comparator.adjustString( source ), m_comparator.m_str );
}
2022-04-20 23:46:07 +02:00
EndsWithMatcher::EndsWithMatcher( CasedString const& comparator ) : StringMatcherBase( "ends with"_sr, comparator ) {}
bool EndsWithMatcher::match( std::string const& source ) const {
return endsWith( m_comparator.adjustString( source ), m_comparator.m_str );
}
2022-01-03 23:16:39 +01:00
RegexMatcher::RegexMatcher(std::string regex, CaseSensitive caseSensitivity): m_regex(CATCH_MOVE(regex)), m_caseSensitivity(caseSensitivity) {}
bool RegexMatcher::match(std::string const& matchee) const {
auto flags = std::regex::ECMAScript; // ECMAScript is the default syntax option anyway
if (m_caseSensitivity == CaseSensitive::No) {
flags |= std::regex::icase;
}
auto reg = std::regex(m_regex, flags);
return std::regex_match(matchee, reg);
}
std::string RegexMatcher::describe() const {
return "matches " + ::Catch::Detail::stringify(m_regex) + ((m_caseSensitivity == CaseSensitive::Yes)? " case sensitively" : " case insensitively");
}
StringEqualsMatcher Equals( std::string const& str, CaseSensitive caseSensitivity ) {
return StringEqualsMatcher( CasedString( str, caseSensitivity) );
}
2022-01-03 23:16:39 +01:00
StringContainsMatcher ContainsSubstring( std::string const& str, CaseSensitive caseSensitivity ) {
return StringContainsMatcher( CasedString( str, caseSensitivity) );
}
EndsWithMatcher EndsWith( std::string const& str, CaseSensitive caseSensitivity ) {
return EndsWithMatcher( CasedString( str, caseSensitivity) );
}
StartsWithMatcher StartsWith( std::string const& str, CaseSensitive caseSensitivity ) {
return StartsWithMatcher( CasedString( str, caseSensitivity) );
}
RegexMatcher Matches(std::string const& regex, CaseSensitive caseSensitivity) {
return RegexMatcher(regex, caseSensitivity);
}
} // namespace Matchers
} // namespace Catch
namespace Catch {
namespace Matchers {
MatcherGenericBase::~MatcherGenericBase() = default;
namespace Detail {
std::string describe_multi_matcher(StringRef combine, std::string const* descriptions_begin, std::string const* descriptions_end) {
std::string description;
std::size_t combined_size = 4;
for ( auto desc = descriptions_begin; desc != descriptions_end; ++desc ) {
combined_size += desc->size();
}
2022-01-03 23:16:39 +01:00
combined_size += static_cast<size_t>(descriptions_end - descriptions_begin - 1) * combine.size();
description.reserve(combined_size);
description += "( ";
bool first = true;
for( auto desc = descriptions_begin; desc != descriptions_end; ++desc ) {
if( first )
first = false;
else
description += combine;
description += *desc;
}
description += " )";
return description;
}
} // namespace Detail
} // namespace Matchers
} // namespace Catch
namespace Catch {
// This is the general overload that takes a any string matcher
// There is another overload, in catch_assertionhandler.h/.cpp, that only takes a string and infers
// the Equals matcher (so the header does not mention matchers)
2022-11-16 16:06:45 +01:00
void handleExceptionMatchExpr( AssertionHandler& handler, StringMatcher const& matcher ) {
std::string exceptionMessage = Catch::translateActiveException();
2022-11-16 16:06:45 +01:00
MatchExpr<std::string, StringMatcher const&> expr( CATCH_MOVE(exceptionMessage), matcher );
handler.handleExpr( expr );
}
} // namespace Catch
2022-07-17 20:18:44 +02:00
#include <ostream>
namespace Catch {
2023-12-11 00:55:40 +01:00
AutomakeReporter::~AutomakeReporter() = default;
2022-07-17 20:18:44 +02:00
void AutomakeReporter::testCaseEnded(TestCaseStats const& _testCaseStats) {
// Possible values to emit are PASS, XFAIL, SKIP, FAIL, XPASS and ERROR.
m_stream << ":test-result: ";
2023-01-22 19:43:11 +01:00
if ( _testCaseStats.totals.testCases.skipped > 0 ) {
m_stream << "SKIP";
} else if (_testCaseStats.totals.assertions.allPassed()) {
2022-07-17 20:18:44 +02:00
m_stream << "PASS";
} else if (_testCaseStats.totals.assertions.allOk()) {
m_stream << "XFAIL";
} else {
m_stream << "FAIL";
}
m_stream << ' ' << _testCaseStats.testInfo->name << '\n';
StreamingReporterBase::testCaseEnded(_testCaseStats);
}
2022-07-17 20:18:44 +02:00
void AutomakeReporter::skipTest(TestCaseInfo const& testInfo) {
m_stream << ":test-result: SKIP " << testInfo.name << '\n';
2022-01-03 23:16:39 +01:00
}
2022-07-17 20:18:44 +02:00
} // end namespace Catch
2022-04-20 23:46:07 +02:00
namespace Catch {
ReporterBase::ReporterBase( ReporterConfig&& config ):
IEventListener( config.fullConfig() ),
m_wrapped_stream( CATCH_MOVE(config).takeStream() ),
m_stream( m_wrapped_stream->stream() ),
m_colour( makeColourImpl( config.colourMode(), m_wrapped_stream.get() ) ),
m_customOptions( config.customOptions() )
{}
ReporterBase::~ReporterBase() = default;
void ReporterBase::listReporters(
std::vector<ReporterDescription> const& descriptions ) {
defaultListReporters(m_stream, descriptions, m_config->verbosity());
}
2022-05-17 22:13:36 +02:00
void ReporterBase::listListeners(
std::vector<ListenerDescription> const& descriptions ) {
defaultListListeners( m_stream, descriptions );
}
2022-04-20 23:46:07 +02:00
void ReporterBase::listTests(std::vector<TestCaseHandle> const& tests) {
defaultListTests(m_stream,
m_colour.get(),
tests,
m_config->hasTestFilters(),
m_config->verbosity());
}
void ReporterBase::listTags(std::vector<TagInfo> const& tags) {
defaultListTags( m_stream, tags, m_config->hasTestFilters() );
}
} // namespace Catch
#include <ostream>
namespace Catch {
namespace {
2022-04-20 23:46:07 +02:00
// Colour::LightGrey
static constexpr Colour::Code compactDimColour = Colour::FileName;
#ifdef CATCH_PLATFORM_MAC
static constexpr Catch::StringRef compactFailedString = "FAILED"_sr;
static constexpr Catch::StringRef compactPassedString = "PASSED"_sr;
#else
static constexpr Catch::StringRef compactFailedString = "failed"_sr;
static constexpr Catch::StringRef compactPassedString = "passed"_sr;
#endif
// Implementation of CompactReporter formatting
class AssertionPrinter {
public:
AssertionPrinter& operator= (AssertionPrinter const&) = delete;
AssertionPrinter(AssertionPrinter const&) = delete;
2022-04-20 23:46:07 +02:00
AssertionPrinter(std::ostream& _stream, AssertionStats const& _stats, bool _printInfoMessages, ColourImpl* colourImpl_)
: stream(_stream)
, result(_stats.assertionResult)
, messages(_stats.infoMessages)
, itMessage(_stats.infoMessages.begin())
2022-04-20 23:46:07 +02:00
, printInfoMessages(_printInfoMessages)
, colourImpl(colourImpl_)
{}
void print() {
printSourceInfo();
itMessage = messages.begin();
switch (result.getResultType()) {
case ResultWas::Ok:
printResultType(Colour::ResultSuccess, compactPassedString);
printOriginalExpression();
printReconstructedExpression();
if (!result.hasExpression())
printRemainingMessages(Colour::None);
else
printRemainingMessages();
break;
case ResultWas::ExpressionFailed:
if (result.isOk())
printResultType(Colour::ResultSuccess, compactFailedString + " - but was ok"_sr);
else
printResultType(Colour::Error, compactFailedString);
printOriginalExpression();
printReconstructedExpression();
printRemainingMessages();
break;
case ResultWas::ThrewException:
printResultType(Colour::Error, compactFailedString);
printIssue("unexpected exception with message:");
printMessage();
printExpressionWas();
printRemainingMessages();
break;
case ResultWas::FatalErrorCondition:
printResultType(Colour::Error, compactFailedString);
printIssue("fatal error condition with message:");
printMessage();
printExpressionWas();
printRemainingMessages();
break;
case ResultWas::DidntThrowException:
printResultType(Colour::Error, compactFailedString);
printIssue("expected exception, got none");
printExpressionWas();
printRemainingMessages();
break;
case ResultWas::Info:
printResultType(Colour::None, "info"_sr);
printMessage();
printRemainingMessages();
break;
case ResultWas::Warning:
printResultType(Colour::None, "warning"_sr);
printMessage();
printRemainingMessages();
break;
case ResultWas::ExplicitFailure:
printResultType(Colour::Error, compactFailedString);
printIssue("explicitly");
printRemainingMessages(Colour::None);
break;
2023-01-22 19:43:11 +01:00
case ResultWas::ExplicitSkip:
printResultType(Colour::Skip, "skipped"_sr);
printMessage();
printRemainingMessages();
break;
// These cases are here to prevent compiler warnings
case ResultWas::Unknown:
case ResultWas::FailureBit:
case ResultWas::Exception:
printResultType(Colour::Error, "** internal error **");
break;
}
}
private:
void printSourceInfo() const {
2022-04-20 23:46:07 +02:00
stream << colourImpl->guardColour( Colour::FileName )
<< result.getSourceInfo() << ':';
}
void printResultType(Colour::Code colour, StringRef passOrFail) const {
if (!passOrFail.empty()) {
2022-04-20 23:46:07 +02:00
stream << colourImpl->guardColour(colour) << ' ' << passOrFail;
stream << ':';
}
}
void printIssue(char const* issue) const {
stream << ' ' << issue;
}
void printExpressionWas() {
if (result.hasExpression()) {
stream << ';';
{
2022-04-20 23:46:07 +02:00
stream << colourImpl->guardColour(compactDimColour) << " expression was:";
}
printOriginalExpression();
}
}
void printOriginalExpression() const {
if (result.hasExpression()) {
stream << ' ' << result.getExpression();
}
}
void printReconstructedExpression() const {
if (result.hasExpandedExpression()) {
2022-04-20 23:46:07 +02:00
stream << colourImpl->guardColour(compactDimColour) << " for: ";
stream << result.getExpandedExpression();
}
}
void printMessage() {
if (itMessage != messages.end()) {
stream << " '" << itMessage->message << '\'';
++itMessage;
}
}
2022-04-20 23:46:07 +02:00
void printRemainingMessages(Colour::Code colour = compactDimColour) {
if (itMessage == messages.end())
return;
const auto itEnd = messages.cend();
2023-07-13 13:37:30 +02:00
const auto N = static_cast<std::size_t>(itEnd - itMessage);
2022-04-20 23:46:07 +02:00
stream << colourImpl->guardColour( colour ) << " with "
<< pluralise( N, "message"_sr ) << ':';
while (itMessage != itEnd) {
// If this assertion is a warning ignore any INFO messages
if (printInfoMessages || itMessage->type != ResultWas::Info) {
printMessage();
if (itMessage != itEnd) {
2022-04-20 23:46:07 +02:00
stream << colourImpl->guardColour(compactDimColour) << " and";
}
continue;
}
++itMessage;
}
}
private:
std::ostream& stream;
AssertionResult const& result;
2023-02-27 15:12:35 +01:00
std::vector<MessageInfo> const& messages;
std::vector<MessageInfo>::const_iterator itMessage;
bool printInfoMessages;
2022-04-20 23:46:07 +02:00
ColourImpl* colourImpl;
};
} // anon namespace
std::string CompactReporter::getDescription() {
return "Reports test results on a single line, suitable for IDEs";
}
2022-01-03 23:16:39 +01:00
void CompactReporter::noMatchingTestCases( StringRef unmatchedSpec ) {
m_stream << "No test cases matched '" << unmatchedSpec << "'\n";
}
2022-04-20 23:46:07 +02:00
void CompactReporter::testRunStarting( TestRunInfo const& ) {
if ( m_config->testSpec().hasFilters() ) {
m_stream << m_colour->guardColour( Colour::BrightYellow )
<< "Filters: "
2022-11-16 16:06:45 +01:00
<< m_config->testSpec()
2022-04-20 23:46:07 +02:00
<< '\n';
}
2022-10-17 19:57:58 +02:00
m_stream << "RNG seed: " << getSeed() << '\n';
2022-04-20 23:46:07 +02:00
}
2022-01-03 23:16:39 +01:00
void CompactReporter::assertionEnded( AssertionStats const& _assertionStats ) {
AssertionResult const& result = _assertionStats.assertionResult;
bool printInfoMessages = true;
// Drop out if result was successful and we're not printing those
if( !m_config->includeSuccessfulResults() && result.isOk() ) {
2023-01-22 19:43:11 +01:00
if( result.getResultType() != ResultWas::Warning && result.getResultType() != ResultWas::ExplicitSkip )
2022-01-03 23:16:39 +01:00
return;
printInfoMessages = false;
}
2022-04-20 23:46:07 +02:00
AssertionPrinter printer( m_stream, _assertionStats, printInfoMessages, m_colour.get() );
printer.print();
2022-01-03 23:16:39 +01:00
m_stream << '\n' << std::flush;
}
void CompactReporter::sectionEnded(SectionStats const& _sectionStats) {
double dur = _sectionStats.durationInSeconds;
if ( shouldShowDuration( *m_config, dur ) ) {
2022-01-03 23:16:39 +01:00
m_stream << getFormattedDuration( dur ) << " s: " << _sectionStats.sectionInfo.name << '\n' << std::flush;
}
}
void CompactReporter::testRunEnded( TestRunStats const& _testRunStats ) {
2022-11-16 16:06:45 +01:00
printTestRunTotals( m_stream, *m_colour, _testRunStats.totals );
2022-01-03 23:16:39 +01:00
m_stream << "\n\n" << std::flush;
StreamingReporterBase::testRunEnded( _testRunStats );
}
2023-12-11 00:55:40 +01:00
CompactReporter::~CompactReporter() = default;
} // end namespace Catch
#include <cstdio>
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable:4061) // Not all labels are EXPLICITLY handled in switch
// Note that 4062 (not all labels are handled and default is missing) is enabled
#endif
#if defined(__clang__)
# pragma clang diagnostic push
// For simplicity, benchmarking-only helpers are always enabled
# pragma clang diagnostic ignored "-Wunused-function"
#endif
namespace Catch {
namespace {
// Formatter impl for ConsoleReporter
class ConsoleAssertionPrinter {
public:
ConsoleAssertionPrinter& operator= (ConsoleAssertionPrinter const&) = delete;
ConsoleAssertionPrinter(ConsoleAssertionPrinter const&) = delete;
2022-04-20 23:46:07 +02:00
ConsoleAssertionPrinter(std::ostream& _stream, AssertionStats const& _stats, ColourImpl* colourImpl_, bool _printInfoMessages)
: stream(_stream),
stats(_stats),
result(_stats.assertionResult),
colour(Colour::None),
messages(_stats.infoMessages),
2022-04-20 23:46:07 +02:00
colourImpl(colourImpl_),
printInfoMessages(_printInfoMessages) {
switch (result.getResultType()) {
case ResultWas::Ok:
colour = Colour::Success;
2022-01-03 23:16:39 +01:00
passOrFail = "PASSED"_sr;
//if( result.hasMessage() )
2023-02-27 15:12:35 +01:00
if (messages.size() == 1)
messageLabel = "with message"_sr;
if (messages.size() > 1)
messageLabel = "with messages"_sr;
break;
case ResultWas::ExpressionFailed:
if (result.isOk()) {
colour = Colour::Success;
2022-01-03 23:16:39 +01:00
passOrFail = "FAILED - but was ok"_sr;
} else {
colour = Colour::Error;
2022-01-03 23:16:39 +01:00
passOrFail = "FAILED"_sr;
}
2023-02-27 15:12:35 +01:00
if (messages.size() == 1)
messageLabel = "with message"_sr;
if (messages.size() > 1)
messageLabel = "with messages"_sr;
break;
case ResultWas::ThrewException:
colour = Colour::Error;
2022-01-03 23:16:39 +01:00
passOrFail = "FAILED"_sr;
2023-02-27 15:12:35 +01:00
// todo switch
switch (messages.size()) { case 0:
messageLabel = "due to unexpected exception with "_sr;
break;
case 1:
messageLabel = "due to unexpected exception with message"_sr;
break;
default:
messageLabel = "due to unexpected exception with messages"_sr;
break;
}
break;
case ResultWas::FatalErrorCondition:
colour = Colour::Error;
2022-01-03 23:16:39 +01:00
passOrFail = "FAILED"_sr;
2023-02-27 15:12:35 +01:00
messageLabel = "due to a fatal error condition"_sr;
break;
case ResultWas::DidntThrowException:
colour = Colour::Error;
2022-01-03 23:16:39 +01:00
passOrFail = "FAILED"_sr;
2023-02-27 15:12:35 +01:00
messageLabel = "because no exception was thrown where one was expected"_sr;
break;
case ResultWas::Info:
2023-02-27 15:12:35 +01:00
messageLabel = "info"_sr;
break;
case ResultWas::Warning:
2023-02-27 15:12:35 +01:00
messageLabel = "warning"_sr;
break;
case ResultWas::ExplicitFailure:
2022-01-03 23:16:39 +01:00
passOrFail = "FAILED"_sr;
colour = Colour::Error;
2023-02-27 15:12:35 +01:00
if (messages.size() == 1)
messageLabel = "explicitly with message"_sr;
if (messages.size() > 1)
messageLabel = "explicitly with messages"_sr;
break;
2023-01-22 19:43:11 +01:00
case ResultWas::ExplicitSkip:
colour = Colour::Skip;
passOrFail = "SKIPPED"_sr;
2023-02-27 15:12:35 +01:00
if (messages.size() == 1)
messageLabel = "explicitly with message"_sr;
if (messages.size() > 1)
messageLabel = "explicitly with messages"_sr;
2023-01-22 19:43:11 +01:00
break;
// These cases are here to prevent compiler warnings
case ResultWas::Unknown:
case ResultWas::FailureBit:
case ResultWas::Exception:
2022-01-03 23:16:39 +01:00
passOrFail = "** internal error **"_sr;
colour = Colour::Error;
break;
}
}
void print() const {
printSourceInfo();
if (stats.totals.assertions.total() > 0) {
printResultType();
printOriginalExpression();
printReconstructedExpression();
} else {
stream << '\n';
}
printMessage();
}
private:
void printResultType() const {
if (!passOrFail.empty()) {
2022-04-20 23:46:07 +02:00
stream << colourImpl->guardColour(colour) << passOrFail << ":\n";
}
}
void printOriginalExpression() const {
if (result.hasExpression()) {
2022-04-20 23:46:07 +02:00
stream << colourImpl->guardColour( Colour::OriginalExpression )
<< " " << result.getExpressionInMacro() << '\n';
}
}
void printReconstructedExpression() const {
if (result.hasExpandedExpression()) {
stream << "with expansion:\n";
2022-04-20 23:46:07 +02:00
stream << colourImpl->guardColour( Colour::ReconstructedExpression )
<< TextFlow::Column( result.getExpandedExpression() )
.indent( 2 )
<< '\n';
}
}
void printMessage() const {
if (!messageLabel.empty())
stream << messageLabel << ':' << '\n';
for (auto const& msg : messages) {
// If this assertion is a warning ignore any INFO messages
if (printInfoMessages || msg.type != ResultWas::Info)
stream << TextFlow::Column(msg.message).indent(2) << '\n';
}
}
void printSourceInfo() const {
2022-04-20 23:46:07 +02:00
stream << colourImpl->guardColour( Colour::FileName )
<< result.getSourceInfo() << ": ";
}
std::ostream& stream;
AssertionStats const& stats;
AssertionResult const& result;
Colour::Code colour;
2022-01-03 23:16:39 +01:00
StringRef passOrFail;
2023-02-27 15:12:35 +01:00
StringRef messageLabel;
std::vector<MessageInfo> const& messages;
2022-04-20 23:46:07 +02:00
ColourImpl* colourImpl;
bool printInfoMessages;
};
2022-01-03 23:16:39 +01:00
std::size_t makeRatio( std::uint64_t number, std::uint64_t total ) {
const auto ratio = total > 0 ? CATCH_CONFIG_CONSOLE_WIDTH * number / total : 0;
return (ratio == 0 && number > 0) ? 1 : static_cast<std::size_t>(ratio);
}
2023-01-22 19:43:11 +01:00
std::size_t&
findMax( std::size_t& i, std::size_t& j, std::size_t& k, std::size_t& l ) {
if (i > j && i > k && i > l)
return i;
2023-01-22 19:43:11 +01:00
else if (j > k && j > l)
return j;
2023-01-22 19:43:11 +01:00
else if (k > l)
return k;
2023-01-22 19:43:11 +01:00
else
return l;
}
struct ColumnBreak {};
struct RowBreak {};
2023-12-11 00:55:40 +01:00
struct OutputFlush {};
class Duration {
enum class Unit {
Auto,
Nanoseconds,
Microseconds,
Milliseconds,
Seconds,
Minutes
};
static const uint64_t s_nanosecondsInAMicrosecond = 1000;
static const uint64_t s_nanosecondsInAMillisecond = 1000 * s_nanosecondsInAMicrosecond;
static const uint64_t s_nanosecondsInASecond = 1000 * s_nanosecondsInAMillisecond;
static const uint64_t s_nanosecondsInAMinute = 60 * s_nanosecondsInASecond;
double m_inNanoseconds;
Unit m_units;
public:
explicit Duration(double inNanoseconds, Unit units = Unit::Auto)
: m_inNanoseconds(inNanoseconds),
m_units(units) {
if (m_units == Unit::Auto) {
if (m_inNanoseconds < s_nanosecondsInAMicrosecond)
m_units = Unit::Nanoseconds;
else if (m_inNanoseconds < s_nanosecondsInAMillisecond)
m_units = Unit::Microseconds;
else if (m_inNanoseconds < s_nanosecondsInASecond)
m_units = Unit::Milliseconds;
else if (m_inNanoseconds < s_nanosecondsInAMinute)
m_units = Unit::Seconds;
else
m_units = Unit::Minutes;
}
}
auto value() const -> double {
switch (m_units) {
case Unit::Microseconds:
return m_inNanoseconds / static_cast<double>(s_nanosecondsInAMicrosecond);
case Unit::Milliseconds:
return m_inNanoseconds / static_cast<double>(s_nanosecondsInAMillisecond);
case Unit::Seconds:
return m_inNanoseconds / static_cast<double>(s_nanosecondsInASecond);
case Unit::Minutes:
return m_inNanoseconds / static_cast<double>(s_nanosecondsInAMinute);
default:
return m_inNanoseconds;
}
}
StringRef unitsAsString() const {
switch (m_units) {
case Unit::Nanoseconds:
return "ns"_sr;
case Unit::Microseconds:
return "us"_sr;
case Unit::Milliseconds:
return "ms"_sr;
case Unit::Seconds:
return "s"_sr;
case Unit::Minutes:
return "m"_sr;
default:
return "** internal error **"_sr;
}
}
friend auto operator << (std::ostream& os, Duration const& duration) -> std::ostream& {
return os << duration.value() << ' ' << duration.unitsAsString();
}
};
} // end anon namespace
2024-01-15 14:13:53 +01:00
enum class Justification { Left, Right };
struct ColumnInfo {
std::string name;
std::size_t width;
Justification justification;
};
class TablePrinter {
std::ostream& m_os;
std::vector<ColumnInfo> m_columnInfos;
ReusableStringStream m_oss;
int m_currentColumn = -1;
bool m_isOpen = false;
public:
TablePrinter( std::ostream& os, std::vector<ColumnInfo> columnInfos )
: m_os( os ),
2022-01-03 23:16:39 +01:00
m_columnInfos( CATCH_MOVE( columnInfos ) ) {}
auto columnInfos() const -> std::vector<ColumnInfo> const& {
return m_columnInfos;
}
void open() {
if (!m_isOpen) {
m_isOpen = true;
*this << RowBreak();
TextFlow::Columns headerCols;
for (auto const& info : m_columnInfos) {
2022-01-03 23:16:39 +01:00
assert(info.width > 2);
headerCols += TextFlow::Column(info.name).width(info.width - 2);
2023-12-31 15:15:04 +01:00
headerCols += TextFlow::Spacer( 2 );
}
m_os << headerCols << '\n';
m_os << lineOfChars('-') << '\n';
}
}
void close() {
if (m_isOpen) {
*this << RowBreak();
2022-01-03 23:16:39 +01:00
m_os << '\n' << std::flush;
m_isOpen = false;
}
}
template<typename T>
2023-12-11 00:55:40 +01:00
friend TablePrinter& operator<< (TablePrinter& tp, T const& value) {
tp.m_oss << value;
return tp;
}
2023-12-11 00:55:40 +01:00
friend TablePrinter& operator<< (TablePrinter& tp, ColumnBreak) {
auto colStr = tp.m_oss.str();
const auto strSize = colStr.size();
tp.m_oss.str("");
tp.open();
if (tp.m_currentColumn == static_cast<int>(tp.m_columnInfos.size() - 1)) {
tp.m_currentColumn = -1;
tp.m_os << '\n';
}
tp.m_currentColumn++;
auto colInfo = tp.m_columnInfos[tp.m_currentColumn];
2022-01-03 23:16:39 +01:00
auto padding = (strSize + 1 < colInfo.width)
? std::string(colInfo.width - (strSize + 1), ' ')
: std::string();
if (colInfo.justification == Justification::Left)
tp.m_os << colStr << padding << ' ';
else
tp.m_os << padding << colStr << ' ';
return tp;
}
2023-12-11 00:55:40 +01:00
friend TablePrinter& operator<< (TablePrinter& tp, RowBreak) {
if (tp.m_currentColumn > 0) {
tp.m_os << '\n';
tp.m_currentColumn = -1;
}
return tp;
}
2023-12-11 00:55:40 +01:00
friend TablePrinter& operator<<(TablePrinter& tp, OutputFlush) {
tp.m_os << std::flush;
return tp;
}
};
2022-04-20 23:46:07 +02:00
ConsoleReporter::ConsoleReporter(ReporterConfig&& config):
StreamingReporterBase( CATCH_MOVE( config ) ),
m_tablePrinter(Detail::make_unique<TablePrinter>(m_stream,
[&config]() -> std::vector<ColumnInfo> {
if (config.fullConfig()->benchmarkNoAnalysis())
{
return{
{ "benchmark name", CATCH_CONFIG_CONSOLE_WIDTH - 43, Justification::Left },
{ " samples", 14, Justification::Right },
{ " iterations", 14, Justification::Right },
{ " mean", 14, Justification::Right }
};
}
else
{
return{
{ "benchmark name", CATCH_CONFIG_CONSOLE_WIDTH - 43, Justification::Left },
{ "samples mean std dev", 14, Justification::Right },
{ "iterations low mean low std dev", 14, Justification::Right },
2023-12-11 00:55:40 +01:00
{ "est run time high mean high std dev", 14, Justification::Right }
};
}
}())) {}
ConsoleReporter::~ConsoleReporter() = default;
std::string ConsoleReporter::getDescription() {
return "Reports test results as plain lines of text";
}
2022-01-03 23:16:39 +01:00
void ConsoleReporter::noMatchingTestCases( StringRef unmatchedSpec ) {
m_stream << "No test cases matched '" << unmatchedSpec << "'\n";
}
2022-01-03 23:16:39 +01:00
void ConsoleReporter::reportInvalidTestSpec( StringRef arg ) {
m_stream << "Invalid Filter: " << arg << '\n';
}
void ConsoleReporter::assertionStarting(AssertionInfo const&) {}
2022-01-03 23:16:39 +01:00
void ConsoleReporter::assertionEnded(AssertionStats const& _assertionStats) {
AssertionResult const& result = _assertionStats.assertionResult;
bool includeResults = m_config->includeSuccessfulResults() || !result.isOk();
// Drop out if result was successful but we're not printing them.
2023-01-22 19:43:11 +01:00
// TODO: Make configurable whether skips should be printed
if (!includeResults && result.getResultType() != ResultWas::Warning && result.getResultType() != ResultWas::ExplicitSkip)
2022-01-03 23:16:39 +01:00
return;
lazyPrint();
2022-04-20 23:46:07 +02:00
ConsoleAssertionPrinter printer(m_stream, _assertionStats, m_colour.get(), includeResults);
printer.print();
2022-01-03 23:16:39 +01:00
m_stream << '\n' << std::flush;
}
void ConsoleReporter::sectionStarting(SectionInfo const& _sectionInfo) {
m_tablePrinter->close();
m_headerPrinted = false;
StreamingReporterBase::sectionStarting(_sectionInfo);
}
void ConsoleReporter::sectionEnded(SectionStats const& _sectionStats) {
m_tablePrinter->close();
if (_sectionStats.missingAssertions) {
lazyPrint();
2022-04-20 23:46:07 +02:00
auto guard =
m_colour->guardColour( Colour::ResultError ).engage( m_stream );
if (m_sectionStack.size() > 1)
2022-01-03 23:16:39 +01:00
m_stream << "\nNo assertions in section";
else
2022-01-03 23:16:39 +01:00
m_stream << "\nNo assertions in test case";
m_stream << " '" << _sectionStats.sectionInfo.name << "'\n\n" << std::flush;
}
double dur = _sectionStats.durationInSeconds;
if (shouldShowDuration(*m_config, dur)) {
2022-01-03 23:16:39 +01:00
m_stream << getFormattedDuration(dur) << " s: " << _sectionStats.sectionInfo.name << '\n' << std::flush;
}
if (m_headerPrinted) {
m_headerPrinted = false;
}
StreamingReporterBase::sectionEnded(_sectionStats);
}
2022-01-03 23:16:39 +01:00
void ConsoleReporter::benchmarkPreparing( StringRef name ) {
lazyPrintWithoutClosingBenchmarkTable();
2022-01-03 23:16:39 +01:00
auto nameCol = TextFlow::Column( static_cast<std::string>( name ) )
.width( m_tablePrinter->columnInfos()[0].width - 2 );
bool firstLine = true;
for (auto line : nameCol) {
if (!firstLine)
(*m_tablePrinter) << ColumnBreak() << ColumnBreak() << ColumnBreak();
else
firstLine = false;
(*m_tablePrinter) << line << ColumnBreak();
}
}
void ConsoleReporter::benchmarkStarting(BenchmarkInfo const& info) {
(*m_tablePrinter) << info.samples << ColumnBreak()
<< info.iterations << ColumnBreak();
2023-12-11 00:55:40 +01:00
if ( !m_config->benchmarkNoAnalysis() ) {
( *m_tablePrinter )
<< Duration( info.estimatedDuration ) << ColumnBreak();
}
( *m_tablePrinter ) << OutputFlush{};
}
void ConsoleReporter::benchmarkEnded(BenchmarkStats<> const& stats) {
if (m_config->benchmarkNoAnalysis())
{
(*m_tablePrinter) << Duration(stats.mean.point.count()) << ColumnBreak();
}
else
{
(*m_tablePrinter) << ColumnBreak()
<< Duration(stats.mean.point.count()) << ColumnBreak()
<< Duration(stats.mean.lower_bound.count()) << ColumnBreak()
<< Duration(stats.mean.upper_bound.count()) << ColumnBreak() << ColumnBreak()
<< Duration(stats.standardDeviation.point.count()) << ColumnBreak()
<< Duration(stats.standardDeviation.lower_bound.count()) << ColumnBreak()
<< Duration(stats.standardDeviation.upper_bound.count()) << ColumnBreak() << ColumnBreak() << ColumnBreak() << ColumnBreak() << ColumnBreak();
}
}
2022-01-03 23:16:39 +01:00
void ConsoleReporter::benchmarkFailed( StringRef error ) {
2022-04-20 23:46:07 +02:00
auto guard = m_colour->guardColour( Colour::Red ).engage( m_stream );
(*m_tablePrinter)
<< "Benchmark failed (" << error << ')'
<< ColumnBreak() << RowBreak();
}
void ConsoleReporter::testCaseEnded(TestCaseStats const& _testCaseStats) {
m_tablePrinter->close();
StreamingReporterBase::testCaseEnded(_testCaseStats);
m_headerPrinted = false;
}
void ConsoleReporter::testRunEnded(TestRunStats const& _testRunStats) {
printTotalsDivider(_testRunStats.totals);
2022-11-16 16:06:45 +01:00
printTestRunTotals( m_stream, *m_colour, _testRunStats.totals );
2022-01-03 23:16:39 +01:00
m_stream << '\n' << std::flush;
StreamingReporterBase::testRunEnded(_testRunStats);
}
2024-03-01 22:07:10 +01:00
void ConsoleReporter::testRunStarting(TestRunInfo const& _testRunInfo) {
StreamingReporterBase::testRunStarting(_testRunInfo);
2022-04-20 23:46:07 +02:00
if ( m_config->testSpec().hasFilters() ) {
m_stream << m_colour->guardColour( Colour::BrightYellow ) << "Filters: "
2022-11-16 16:06:45 +01:00
<< m_config->testSpec() << '\n';
2022-04-20 23:46:07 +02:00
}
2022-10-17 19:57:58 +02:00
m_stream << "Randomness seeded to: " << getSeed() << '\n';
}
void ConsoleReporter::lazyPrint() {
m_tablePrinter->close();
lazyPrintWithoutClosingBenchmarkTable();
}
void ConsoleReporter::lazyPrintWithoutClosingBenchmarkTable() {
2022-01-03 23:16:39 +01:00
if ( !m_testRunInfoPrinted ) {
lazyPrintRunInfo();
2022-01-03 23:16:39 +01:00
}
if (!m_headerPrinted) {
printTestCaseAndSectionHeader();
m_headerPrinted = true;
}
}
void ConsoleReporter::lazyPrintRunInfo() {
2022-04-20 23:46:07 +02:00
m_stream << '\n'
<< lineOfChars( '~' ) << '\n'
<< m_colour->guardColour( Colour::SecondaryText )
<< currentTestRunInfo.name << " is a Catch2 v" << libraryVersion()
<< " host application.\n"
<< "Run with -? for options\n\n";
2022-01-03 23:16:39 +01:00
m_testRunInfoPrinted = true;
}
void ConsoleReporter::printTestCaseAndSectionHeader() {
assert(!m_sectionStack.empty());
printOpenHeader(currentTestCaseInfo->name);
if (m_sectionStack.size() > 1) {
2022-04-20 23:46:07 +02:00
auto guard = m_colour->guardColour( Colour::Headers ).engage( m_stream );
auto
it = m_sectionStack.begin() + 1, // Skip first section (test case)
itEnd = m_sectionStack.end();
for (; it != itEnd; ++it)
printHeaderString(it->name, 2);
}
SourceLineInfo lineInfo = m_sectionStack.back().lineInfo;
2022-04-20 23:46:07 +02:00
m_stream << lineOfChars( '-' ) << '\n'
<< m_colour->guardColour( Colour::FileName ) << lineInfo << '\n'
<< lineOfChars( '.' ) << "\n\n"
<< std::flush;
}
void ConsoleReporter::printClosedHeader(std::string const& _name) {
printOpenHeader(_name);
2022-01-03 23:16:39 +01:00
m_stream << lineOfChars('.') << '\n';
}
void ConsoleReporter::printOpenHeader(std::string const& _name) {
2022-01-03 23:16:39 +01:00
m_stream << lineOfChars('-') << '\n';
{
2022-04-20 23:46:07 +02:00
auto guard = m_colour->guardColour( Colour::Headers ).engage( m_stream );
printHeaderString(_name);
}
}
void ConsoleReporter::printHeaderString(std::string const& _string, std::size_t indent) {
2022-01-03 23:16:39 +01:00
// We want to get a bit fancy with line breaking here, so that subsequent
// lines start after ":" if one is present, e.g.
// ```
// blablabla: Fancy
// linebreaking
// ```
// but we also want to avoid problems with overly long indentation causing
// the text to take up too many lines, e.g.
// ```
// blablabla: F
// a
// n
// c
// y
// .
// .
// .
// ```
// So we limit the prefix indentation check to first quarter of the possible
// width
std::size_t idx = _string.find( ": " );
if ( idx != std::string::npos && idx < CATCH_CONFIG_CONSOLE_WIDTH / 4 ) {
idx += 2;
} else {
idx = 0;
}
m_stream << TextFlow::Column( _string )
.indent( indent + idx )
.initialIndent( indent )
<< '\n';
}
void ConsoleReporter::printTotalsDivider(Totals const& totals) {
if (totals.testCases.total() > 0) {
std::size_t failedRatio = makeRatio(totals.testCases.failed, totals.testCases.total());
std::size_t failedButOkRatio = makeRatio(totals.testCases.failedButOk, totals.testCases.total());
std::size_t passedRatio = makeRatio(totals.testCases.passed, totals.testCases.total());
2023-01-22 19:43:11 +01:00
std::size_t skippedRatio = makeRatio(totals.testCases.skipped, totals.testCases.total());
while (failedRatio + failedButOkRatio + passedRatio + skippedRatio < CATCH_CONFIG_CONSOLE_WIDTH - 1)
findMax(failedRatio, failedButOkRatio, passedRatio, skippedRatio)++;
while (failedRatio + failedButOkRatio + passedRatio > CATCH_CONFIG_CONSOLE_WIDTH - 1)
2023-01-22 19:43:11 +01:00
findMax(failedRatio, failedButOkRatio, passedRatio, skippedRatio)--;
2022-04-20 23:46:07 +02:00
m_stream << m_colour->guardColour( Colour::Error )
<< std::string( failedRatio, '=' )
<< m_colour->guardColour( Colour::ResultExpectedFailure )
<< std::string( failedButOkRatio, '=' );
if ( totals.testCases.allPassed() ) {
m_stream << m_colour->guardColour( Colour::ResultSuccess )
<< std::string( passedRatio, '=' );
} else {
m_stream << m_colour->guardColour( Colour::Success )
<< std::string( passedRatio, '=' );
}
2023-01-22 19:43:11 +01:00
m_stream << m_colour->guardColour( Colour::Skip )
<< std::string( skippedRatio, '=' );
} else {
2022-04-20 23:46:07 +02:00
m_stream << m_colour->guardColour( Colour::Warning )
<< std::string( CATCH_CONFIG_CONSOLE_WIDTH - 1, '=' );
}
2022-01-03 23:16:39 +01:00
m_stream << '\n';
}
} // end namespace Catch
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
#if defined(__clang__)
# pragma clang diagnostic pop
#endif
2022-04-20 23:46:07 +02:00
#include <algorithm>
#include <cassert>
namespace Catch {
namespace {
struct BySectionInfo {
BySectionInfo( SectionInfo const& other ): m_other( other ) {}
2024-03-01 22:07:10 +01:00
BySectionInfo( BySectionInfo const& other ) = default;
bool operator()(
2022-01-03 23:16:39 +01:00
Detail::unique_ptr<CumulativeReporterBase::SectionNode> const&
node ) const {
return (
( node->stats.sectionInfo.name == m_other.name ) &&
( node->stats.sectionInfo.lineInfo == m_other.lineInfo ) );
}
void operator=( BySectionInfo const& ) = delete;
private:
SectionInfo const& m_other;
};
} // namespace
2022-07-17 20:18:44 +02:00
namespace Detail {
AssertionOrBenchmarkResult::AssertionOrBenchmarkResult(
AssertionStats const& assertion ):
m_assertion( assertion ) {}
AssertionOrBenchmarkResult::AssertionOrBenchmarkResult(
BenchmarkStats<> const& benchmark ):
m_benchmark( benchmark ) {}
bool AssertionOrBenchmarkResult::isAssertion() const {
return m_assertion.some();
}
bool AssertionOrBenchmarkResult::isBenchmark() const {
return m_benchmark.some();
}
AssertionStats const& AssertionOrBenchmarkResult::asAssertion() const {
assert(m_assertion.some());
return *m_assertion;
}
BenchmarkStats<> const& AssertionOrBenchmarkResult::asBenchmark() const {
assert(m_benchmark.some());
return *m_benchmark;
}
}
CumulativeReporterBase::~CumulativeReporterBase() = default;
void CumulativeReporterBase::benchmarkEnded(BenchmarkStats<> const& benchmarkStats) {
m_sectionStack.back()->assertionsAndBenchmarks.emplace_back(benchmarkStats);
}
void
CumulativeReporterBase::sectionStarting( SectionInfo const& sectionInfo ) {
2023-01-29 23:18:57 +01:00
// We need a copy, because SectionStats expect to take ownership
SectionStats incompleteStats( SectionInfo(sectionInfo), Counts(), 0, false );
2022-07-17 20:18:44 +02:00
SectionNode* node;
if ( m_sectionStack.empty() ) {
if ( !m_rootSection ) {
m_rootSection =
Detail::make_unique<SectionNode>( incompleteStats );
}
node = m_rootSection.get();
} else {
SectionNode& parentNode = *m_sectionStack.back();
auto it = std::find_if( parentNode.childSections.begin(),
parentNode.childSections.end(),
BySectionInfo( sectionInfo ) );
if ( it == parentNode.childSections.end() ) {
auto newNode =
Detail::make_unique<SectionNode>( incompleteStats );
node = newNode.get();
parentNode.childSections.push_back( CATCH_MOVE( newNode ) );
} else {
node = it->get();
}
}
m_deepestSection = node;
m_sectionStack.push_back( node );
}
void CumulativeReporterBase::assertionEnded(
AssertionStats const& assertionStats ) {
assert( !m_sectionStack.empty() );
// AssertionResult holds a pointer to a temporary DecomposedExpression,
// which getExpandedExpression() calls to build the expression string.
// Our section stack copy of the assertionResult will likely outlive the
// temporary, so it must be expanded or discarded now to avoid calling
// a destroyed object later.
if ( m_shouldStoreFailedAssertions &&
!assertionStats.assertionResult.isOk() ) {
static_cast<void>(
assertionStats.assertionResult.getExpandedExpression() );
}
if ( m_shouldStoreSuccesfulAssertions &&
assertionStats.assertionResult.isOk() ) {
static_cast<void>(
assertionStats.assertionResult.getExpandedExpression() );
}
SectionNode& sectionNode = *m_sectionStack.back();
sectionNode.assertionsAndBenchmarks.emplace_back( assertionStats );
}
void CumulativeReporterBase::sectionEnded( SectionStats const& sectionStats ) {
assert( !m_sectionStack.empty() );
SectionNode& node = *m_sectionStack.back();
node.stats = sectionStats;
m_sectionStack.pop_back();
}
void CumulativeReporterBase::testCaseEnded(
TestCaseStats const& testCaseStats ) {
auto node = Detail::make_unique<TestCaseNode>( testCaseStats );
assert( m_sectionStack.size() == 0 );
node->children.push_back( CATCH_MOVE(m_rootSection) );
m_testCases.push_back( CATCH_MOVE(node) );
assert( m_deepestSection );
m_deepestSection->stdOut = testCaseStats.stdOut;
m_deepestSection->stdErr = testCaseStats.stdErr;
}
void CumulativeReporterBase::testRunEnded( TestRunStats const& testRunStats ) {
assert(!m_testRun && "CumulativeReporterBase assumes there can only be one test run");
m_testRun = Detail::make_unique<TestRunNode>( testRunStats );
m_testRun->children.swap( m_testCases );
testRunEndedCumulative();
}
bool CumulativeReporterBase::SectionNode::hasAnyAssertions() const {
return std::any_of(
assertionsAndBenchmarks.begin(),
assertionsAndBenchmarks.end(),
[]( Detail::AssertionOrBenchmarkResult const& res ) {
return res.isAssertion();
} );
}
} // end namespace Catch
namespace Catch {
void EventListenerBase::fatalErrorEncountered( StringRef ) {}
void EventListenerBase::benchmarkPreparing( StringRef ) {}
void EventListenerBase::benchmarkStarting( BenchmarkInfo const& ) {}
void EventListenerBase::benchmarkEnded( BenchmarkStats<> const& ) {}
void EventListenerBase::benchmarkFailed( StringRef ) {}
void EventListenerBase::assertionStarting( AssertionInfo const& ) {}
void EventListenerBase::assertionEnded( AssertionStats const& ) {}
void EventListenerBase::listReporters(
std::vector<ReporterDescription> const& ) {}
void EventListenerBase::listListeners(
std::vector<ListenerDescription> const& ) {}
void EventListenerBase::listTests( std::vector<TestCaseHandle> const& ) {}
void EventListenerBase::listTags( std::vector<TagInfo> const& ) {}
void EventListenerBase::noMatchingTestCases( StringRef ) {}
void EventListenerBase::reportInvalidTestSpec( StringRef ) {}
void EventListenerBase::testRunStarting( TestRunInfo const& ) {}
void EventListenerBase::testCaseStarting( TestCaseInfo const& ) {}
void EventListenerBase::testCasePartialStarting(TestCaseInfo const&, uint64_t) {}
void EventListenerBase::sectionStarting( SectionInfo const& ) {}
void EventListenerBase::sectionEnded( SectionStats const& ) {}
void EventListenerBase::testCasePartialEnded(TestCaseStats const&, uint64_t) {}
void EventListenerBase::testCaseEnded( TestCaseStats const& ) {}
void EventListenerBase::testRunEnded( TestRunStats const& ) {}
void EventListenerBase::skipTest( TestCaseInfo const& ) {}
} // namespace Catch
#include <algorithm>
#include <cfloat>
#include <cstdio>
#include <ostream>
#include <iomanip>
namespace Catch {
namespace {
void listTestNamesOnly(std::ostream& out,
std::vector<TestCaseHandle> const& tests) {
for (auto const& test : tests) {
auto const& testCaseInfo = test.getTestCaseInfo();
if (startsWith(testCaseInfo.name, '#')) {
out << '"' << testCaseInfo.name << '"';
} else {
out << testCaseInfo.name;
}
out << '\n';
}
out << std::flush;
}
} // end unnamed namespace
// Because formatting using c++ streams is stateful, drop down to C is
// required Alternatively we could use stringstream, but its performance
// is... not good.
std::string getFormattedDuration( double duration ) {
// Max exponent + 1 is required to represent the whole part
// + 1 for decimal point
// + 3 for the 3 decimal places
// + 1 for null terminator
const std::size_t maxDoubleSize = DBL_MAX_10_EXP + 1 + 1 + 3 + 1;
char buffer[maxDoubleSize];
2022-01-03 23:16:39 +01:00
2022-07-17 20:18:44 +02:00
// Save previous errno, to prevent sprintf from overwriting it
ErrnoGuard guard;
#ifdef _MSC_VER
size_t printedLength = static_cast<size_t>(
sprintf_s( buffer, "%.3f", duration ) );
#else
size_t printedLength = static_cast<size_t>(
std::snprintf( buffer, maxDoubleSize, "%.3f", duration ) );
#endif
return std::string( buffer, printedLength );
}
2022-01-03 23:16:39 +01:00
2022-07-17 20:18:44 +02:00
bool shouldShowDuration( IConfig const& config, double duration ) {
if ( config.showDurations() == ShowDurations::Always ) {
return true;
2022-01-03 23:16:39 +01:00
}
2022-07-17 20:18:44 +02:00
if ( config.showDurations() == ShowDurations::Never ) {
return false;
2022-01-03 23:16:39 +01:00
}
2022-07-17 20:18:44 +02:00
const double min = config.minDuration();
return min >= 0 && duration >= min;
}
2022-01-03 23:16:39 +01:00
2022-07-17 20:18:44 +02:00
std::string serializeFilters( std::vector<std::string> const& filters ) {
// We add a ' ' separator between each filter
size_t serialized_size = filters.size() - 1;
for (auto const& filter : filters) {
serialized_size += filter.size();
2022-01-03 23:16:39 +01:00
}
2022-07-17 20:18:44 +02:00
std::string serialized;
serialized.reserve(serialized_size);
bool first = true;
for (auto const& filter : filters) {
if (!first) {
serialized.push_back(' ');
}
first = false;
serialized.append(filter);
2022-01-03 23:16:39 +01:00
}
2022-07-17 20:18:44 +02:00
return serialized;
2022-01-03 23:16:39 +01:00
}
2022-07-17 20:18:44 +02:00
std::ostream& operator<<( std::ostream& out, lineOfChars value ) {
for ( size_t idx = 0; idx < CATCH_CONFIG_CONSOLE_WIDTH - 1; ++idx ) {
out.put( value.c );
}
return out;
2022-01-03 23:16:39 +01:00
}
void
2022-07-17 20:18:44 +02:00
defaultListReporters( std::ostream& out,
std::vector<ReporterDescription> const& descriptions,
Verbosity verbosity ) {
out << "Available reporters:\n";
const auto maxNameLen =
std::max_element( descriptions.begin(),
descriptions.end(),
[]( ReporterDescription const& lhs,
ReporterDescription const& rhs ) {
return lhs.name.size() < rhs.name.size();
} )
->name.size();
for ( auto const& desc : descriptions ) {
if ( verbosity == Verbosity::Quiet ) {
out << TextFlow::Column( desc.name )
.indent( 2 )
.width( 5 + maxNameLen )
<< '\n';
} else {
2022-07-17 20:18:44 +02:00
out << TextFlow::Column( desc.name + ':' )
.indent( 2 )
.width( 5 + maxNameLen ) +
TextFlow::Column( desc.description )
.initialIndent( 0 )
.indent( 2 )
.width( CATCH_CONFIG_CONSOLE_WIDTH - maxNameLen - 8 )
<< '\n';
}
}
2022-07-17 20:18:44 +02:00
out << '\n' << std::flush;
}
2022-07-17 20:18:44 +02:00
void defaultListListeners( std::ostream& out,
std::vector<ListenerDescription> const& descriptions ) {
out << "Registered listeners:\n";
if(descriptions.empty()) {
return;
2022-01-03 23:16:39 +01:00
}
2022-07-17 20:18:44 +02:00
const auto maxNameLen =
std::max_element( descriptions.begin(),
descriptions.end(),
[]( ListenerDescription const& lhs,
ListenerDescription const& rhs ) {
return lhs.name.size() < rhs.name.size();
} )
->name.size();
for ( auto const& desc : descriptions ) {
out << TextFlow::Column( static_cast<std::string>( desc.name ) +
':' )
.indent( 2 )
.width( maxNameLen + 5 ) +
TextFlow::Column( desc.description )
.initialIndent( 0 )
.indent( 2 )
.width( CATCH_CONFIG_CONSOLE_WIDTH - maxNameLen - 8 )
<< '\n';
2022-01-03 23:16:39 +01:00
}
2022-07-17 20:18:44 +02:00
out << '\n' << std::flush;
}
2022-07-17 20:18:44 +02:00
void defaultListTags( std::ostream& out,
std::vector<TagInfo> const& tags,
bool isFiltered ) {
if ( isFiltered ) {
out << "Tags for matching test cases:\n";
} else {
out << "All available tags:\n";
}
2022-07-17 20:18:44 +02:00
for ( auto const& tagCount : tags ) {
ReusableStringStream rss;
rss << " " << std::setw( 2 ) << tagCount.count << " ";
auto str = rss.str();
auto wrapper = TextFlow::Column( tagCount.all() )
.initialIndent( 0 )
.indent( str.size() )
.width( CATCH_CONFIG_CONSOLE_WIDTH - 10 );
out << str << wrapper << '\n';
}
out << pluralise(tags.size(), "tag"_sr) << "\n\n" << std::flush;
}
2022-07-17 20:18:44 +02:00
void defaultListTests(std::ostream& out, ColourImpl* streamColour, std::vector<TestCaseHandle> const& tests, bool isFiltered, Verbosity verbosity) {
// We special case this to provide the equivalent of old
// `--list-test-names-only`, which could then be used by the
// `--input-file` option.
if (verbosity == Verbosity::Quiet) {
listTestNamesOnly(out, tests);
return;
}
2022-07-17 20:18:44 +02:00
if (isFiltered) {
out << "Matching test cases:\n";
} else {
out << "All available test cases:\n";
}
2022-07-17 20:18:44 +02:00
for (auto const& test : tests) {
auto const& testCaseInfo = test.getTestCaseInfo();
Colour::Code colour = testCaseInfo.isHidden()
? Colour::SecondaryText
: Colour::None;
auto colourGuard = streamColour->guardColour( colour ).engage( out );
out << TextFlow::Column(testCaseInfo.name).indent(2) << '\n';
if (verbosity >= Verbosity::High) {
out << TextFlow::Column(Catch::Detail::stringify(testCaseInfo.lineInfo)).indent(4) << '\n';
}
if (!testCaseInfo.tags.empty() &&
verbosity > Verbosity::Quiet) {
out << TextFlow::Column(testCaseInfo.tagsAsString()).indent(6) << '\n';
}
}
if (isFiltered) {
out << pluralise(tests.size(), "matching test case"_sr);
} else {
out << pluralise(tests.size(), "test case"_sr);
}
out << "\n\n" << std::flush;
2022-01-03 23:16:39 +01:00
}
2022-11-16 16:06:45 +01:00
namespace {
class SummaryColumn {
public:
SummaryColumn( std::string suffix, Colour::Code colour ):
m_suffix( CATCH_MOVE( suffix ) ), m_colour( colour ) {}
SummaryColumn&& addRow( std::uint64_t count ) && {
std::string row = std::to_string(count);
auto const new_width = std::max( m_width, row.size() );
if ( new_width > m_width ) {
for ( auto& oldRow : m_rows ) {
oldRow.insert( 0, new_width - m_width, ' ' );
}
} else {
row.insert( 0, m_width - row.size(), ' ' );
}
m_width = new_width;
m_rows.push_back( row );
return std::move( *this );
}
std::string const& getSuffix() const { return m_suffix; }
Colour::Code getColour() const { return m_colour; }
std::string const& getRow( std::size_t index ) const {
return m_rows[index];
}
private:
std::string m_suffix;
Colour::Code m_colour;
std::size_t m_width = 0;
std::vector<std::string> m_rows;
};
void printSummaryRow( std::ostream& stream,
ColourImpl& colour,
StringRef label,
std::vector<SummaryColumn> const& cols,
std::size_t row ) {
for ( auto const& col : cols ) {
auto const& value = col.getRow( row );
auto const& suffix = col.getSuffix();
if ( suffix.empty() ) {
stream << label << ": ";
if ( value != "0" ) {
stream << value;
} else {
stream << colour.guardColour( Colour::Warning )
<< "- none -";
}
} else if ( value != "0" ) {
stream << colour.guardColour( Colour::LightGrey ) << " | "
<< colour.guardColour( col.getColour() ) << value
<< ' ' << suffix;
}
}
stream << '\n';
}
} // namespace
void printTestRunTotals( std::ostream& stream,
ColourImpl& streamColour,
Totals const& totals ) {
if ( totals.testCases.total() == 0 ) {
stream << streamColour.guardColour( Colour::Warning )
<< "No tests ran\n";
return;
}
if ( totals.assertions.total() > 0 && totals.testCases.allPassed() ) {
stream << streamColour.guardColour( Colour::ResultSuccess )
<< "All tests passed";
stream << " ("
<< pluralise( totals.assertions.passed, "assertion"_sr )
<< " in "
<< pluralise( totals.testCases.passed, "test case"_sr )
<< ')' << '\n';
return;
}
std::vector<SummaryColumn> columns;
2023-01-22 19:43:11 +01:00
// Don't include "skipped assertions" in total count
const auto totalAssertionCount =
totals.assertions.total() - totals.assertions.skipped;
2022-11-16 16:06:45 +01:00
columns.push_back( SummaryColumn( "", Colour::None )
.addRow( totals.testCases.total() )
2023-01-22 19:43:11 +01:00
.addRow( totalAssertionCount ) );
2022-11-16 16:06:45 +01:00
columns.push_back( SummaryColumn( "passed", Colour::Success )
.addRow( totals.testCases.passed )
.addRow( totals.assertions.passed ) );
columns.push_back( SummaryColumn( "failed", Colour::ResultError )
.addRow( totals.testCases.failed )
.addRow( totals.assertions.failed ) );
2023-01-22 19:43:11 +01:00
columns.push_back( SummaryColumn( "skipped", Colour::Skip )
.addRow( totals.testCases.skipped )
// Don't print "skipped assertions"
.addRow( 0 ) );
2022-11-16 16:06:45 +01:00
columns.push_back(
SummaryColumn( "failed as expected", Colour::ResultExpectedFailure )
.addRow( totals.testCases.failedButOk )
.addRow( totals.assertions.failedButOk ) );
printSummaryRow( stream, streamColour, "test cases"_sr, columns, 0 );
printSummaryRow( stream, streamColour, "assertions"_sr, columns, 1 );
}
2022-07-17 20:18:44 +02:00
} // namespace Catch
2023-12-11 00:55:40 +01:00
//
namespace Catch {
namespace {
void writeSourceInfo( JsonObjectWriter& writer,
SourceLineInfo const& sourceInfo ) {
auto source_location_writer =
writer.write( "source-location"_sr ).writeObject();
source_location_writer.write( "filename"_sr )
.write( sourceInfo.file );
source_location_writer.write( "line"_sr ).write( sourceInfo.line );
}
void writeTags( JsonArrayWriter writer, std::vector<Tag> const& tags ) {
for ( auto const& tag : tags ) {
writer.write( tag.original );
}
}
void writeProperties( JsonArrayWriter writer,
TestCaseInfo const& info ) {
if ( info.isHidden() ) { writer.write( "is-hidden"_sr ); }
if ( info.okToFail() ) { writer.write( "ok-to-fail"_sr ); }
if ( info.expectedToFail() ) {
writer.write( "expected-to-fail"_sr );
}
if ( info.throws() ) { writer.write( "throws"_sr ); }
}
} // namespace
JsonReporter::JsonReporter( ReporterConfig&& config ):
StreamingReporterBase{ CATCH_MOVE( config ) } {
m_preferences.shouldRedirectStdOut = true;
// TBD: Do we want to report all assertions? XML reporter does
// not, but for machine-parseable reporters I think the answer
// should be yes.
m_preferences.shouldReportAllAssertions = true;
m_objectWriters.emplace( m_stream );
m_writers.emplace( Writer::Object );
auto& writer = m_objectWriters.top();
writer.write( "version"_sr ).write( 1 );
{
auto metadata_writer = writer.write( "metadata"_sr ).writeObject();
metadata_writer.write( "name"_sr ).write( m_config->name() );
metadata_writer.write( "rng-seed"_sr ).write( m_config->rngSeed() );
metadata_writer.write( "catch2-version"_sr )
.write( libraryVersion() );
if ( m_config->testSpec().hasFilters() ) {
metadata_writer.write( "filters"_sr )
.write( m_config->testSpec() );
}
}
}
JsonReporter::~JsonReporter() {
endListing();
// TODO: Ensure this closes the top level object, add asserts
assert( m_writers.size() == 1 && "Only the top level object should be open" );
assert( m_writers.top() == Writer::Object );
endObject();
m_stream << '\n' << std::flush;
assert( m_writers.empty() );
}
JsonArrayWriter& JsonReporter::startArray() {
m_arrayWriters.emplace( m_arrayWriters.top().writeArray() );
m_writers.emplace( Writer::Array );
return m_arrayWriters.top();
}
JsonArrayWriter& JsonReporter::startArray( StringRef key ) {
m_arrayWriters.emplace(
m_objectWriters.top().write( key ).writeArray() );
m_writers.emplace( Writer::Array );
return m_arrayWriters.top();
}
JsonObjectWriter& JsonReporter::startObject() {
m_objectWriters.emplace( m_arrayWriters.top().writeObject() );
m_writers.emplace( Writer::Object );
return m_objectWriters.top();
}
JsonObjectWriter& JsonReporter::startObject( StringRef key ) {
m_objectWriters.emplace(
m_objectWriters.top().write( key ).writeObject() );
m_writers.emplace( Writer::Object );
return m_objectWriters.top();
}
void JsonReporter::endObject() {
assert( isInside( Writer::Object ) );
m_objectWriters.pop();
m_writers.pop();
}
void JsonReporter::endArray() {
assert( isInside( Writer::Array ) );
m_arrayWriters.pop();
m_writers.pop();
}
bool JsonReporter::isInside( Writer writer ) {
return !m_writers.empty() && m_writers.top() == writer;
}
void JsonReporter::startListing() {
if ( !m_startedListing ) { startObject( "listings"_sr ); }
m_startedListing = true;
}
void JsonReporter::endListing() {
if ( m_startedListing ) { endObject(); }
m_startedListing = false;
}
std::string JsonReporter::getDescription() {
return "Outputs listings as JSON. Test listing is Work-in-Progress!";
}
2024-03-01 22:07:10 +01:00
void JsonReporter::testRunStarting( TestRunInfo const& runInfo ) {
StreamingReporterBase::testRunStarting( runInfo );
2023-12-11 00:55:40 +01:00
endListing();
assert( isInside( Writer::Object ) );
startObject( "test-run"_sr );
startArray( "test-cases"_sr );
}
static void writeCounts( JsonObjectWriter&& writer, Counts const& counts ) {
writer.write( "passed"_sr ).write( counts.passed );
writer.write( "failed"_sr ).write( counts.failed );
writer.write( "fail-but-ok"_sr ).write( counts.failedButOk );
writer.write( "skipped"_sr ).write( counts.skipped );
}
void JsonReporter::testRunEnded(TestRunStats const& runStats) {
assert( isInside( Writer::Array ) );
// End "test-cases"
endArray();
{
auto totals =
m_objectWriters.top().write( "totals"_sr ).writeObject();
writeCounts( totals.write( "assertions"_sr ).writeObject(),
runStats.totals.assertions );
writeCounts( totals.write( "test-cases"_sr ).writeObject(),
runStats.totals.testCases );
}
// End the "test-run" object
endObject();
}
void JsonReporter::testCaseStarting( TestCaseInfo const& tcInfo ) {
StreamingReporterBase::testCaseStarting( tcInfo );
assert( isInside( Writer::Array ) &&
"We should be in the 'test-cases' array" );
startObject();
// "test-info" prelude
{
auto testInfo =
m_objectWriters.top().write( "test-info"_sr ).writeObject();
// TODO: handle testName vs className!!
testInfo.write( "name"_sr ).write( tcInfo.name );
writeSourceInfo(testInfo, tcInfo.lineInfo);
writeTags( testInfo.write( "tags"_sr ).writeArray(), tcInfo.tags );
writeProperties( testInfo.write( "properties"_sr ).writeArray(),
tcInfo );
}
// Start the array for individual test runs (testCasePartial pairs)
startArray( "runs"_sr );
}
void JsonReporter::testCaseEnded( TestCaseStats const& tcStats ) {
StreamingReporterBase::testCaseEnded( tcStats );
// We need to close the 'runs' array before finishing the test case
assert( isInside( Writer::Array ) );
endArray();
{
auto totals =
m_objectWriters.top().write( "totals"_sr ).writeObject();
writeCounts( totals.write( "assertions"_sr ).writeObject(),
tcStats.totals.assertions );
// We do not write the test case totals, because there will always be just one test case here.
// TODO: overall "result" -> success, skip, fail here? Or in partial result?
}
// We do not write out stderr/stdout, because we instead wrote those out in partial runs
// TODO: aborting?
// And we also close this test case's object
assert( isInside( Writer::Object ) );
endObject();
}
void JsonReporter::testCasePartialStarting( TestCaseInfo const& /*tcInfo*/,
uint64_t index ) {
startObject();
m_objectWriters.top().write( "run-idx"_sr ).write( index );
startArray( "path"_sr );
// TODO: we want to delay most of the printing to the 'root' section
// TODO: childSection key name?
}
void JsonReporter::testCasePartialEnded( TestCaseStats const& tcStats,
uint64_t /*index*/ ) {
// Fixme: the top level section handles this.
//// path object
endArray();
if ( !tcStats.stdOut.empty() ) {
m_objectWriters.top()
.write( "captured-stdout"_sr )
.write( tcStats.stdOut );
}
if ( !tcStats.stdErr.empty() ) {
m_objectWriters.top()
.write( "captured-stderr"_sr )
.write( tcStats.stdErr );
}
{
auto totals =
m_objectWriters.top().write( "totals"_sr ).writeObject();
writeCounts( totals.write( "assertions"_sr ).writeObject(),
tcStats.totals.assertions );
// We do not write the test case totals, because there will
// always be just one test case here.
// TODO: overall "result" -> success, skip, fail here? Or in
// partial result?
}
// TODO: aborting?
// run object
endObject();
}
void JsonReporter::sectionStarting( SectionInfo const& sectionInfo ) {
assert( isInside( Writer::Array ) &&
"Section should always start inside an object" );
// We want to nest top level sections, even though it shares name
// and source loc with the TEST_CASE
auto& sectionObject = startObject();
sectionObject.write( "kind"_sr ).write( "section"_sr );
sectionObject.write( "name"_sr ).write( sectionInfo.name );
writeSourceInfo( m_objectWriters.top(), sectionInfo.lineInfo );
// TBD: Do we want to create this event lazily? It would become
// rather complex, but we could do it, and it would look
// better for empty sections. OTOH, empty sections should
// be rare.
startArray( "path"_sr );
}
void JsonReporter::sectionEnded( SectionStats const& /*sectionStats */) {
// End the subpath array
endArray();
// TODO: metadata
// TODO: what info do we have here?
// End the section object
endObject();
}
void JsonReporter::assertionStarting( AssertionInfo const& /*assertionInfo*/ ) {}
void JsonReporter::assertionEnded( AssertionStats const& assertionStats ) {
// TODO: There is lot of different things to handle here, but
// we can fill it in later, after we show that the basic
// outline and streaming reporter impl works well enough.
//if ( !m_config->includeSuccessfulResults()
// && assertionStats.assertionResult.isOk() ) {
// return;
//}
assert( isInside( Writer::Array ) );
auto assertionObject = m_arrayWriters.top().writeObject();
assertionObject.write( "kind"_sr ).write( "assertion"_sr );
writeSourceInfo( assertionObject,
assertionStats.assertionResult.getSourceInfo() );
assertionObject.write( "status"_sr )
.write( assertionStats.assertionResult.isOk() );
// TODO: handling of result.
// TODO: messages
// TODO: totals?
}
void JsonReporter::benchmarkPreparing( StringRef name ) { (void)name; }
void JsonReporter::benchmarkStarting( BenchmarkInfo const& ) {}
void JsonReporter::benchmarkEnded( BenchmarkStats<> const& ) {}
void JsonReporter::benchmarkFailed( StringRef error ) { (void)error; }
void JsonReporter::listReporters(
std::vector<ReporterDescription> const& descriptions ) {
startListing();
auto writer =
m_objectWriters.top().write( "reporters"_sr ).writeArray();
for ( auto const& desc : descriptions ) {
auto desc_writer = writer.writeObject();
desc_writer.write( "name"_sr ).write( desc.name );
desc_writer.write( "description"_sr ).write( desc.description );
}
}
void JsonReporter::listListeners(
std::vector<ListenerDescription> const& descriptions ) {
startListing();
auto writer =
m_objectWriters.top().write( "listeners"_sr ).writeArray();
for ( auto const& desc : descriptions ) {
auto desc_writer = writer.writeObject();
desc_writer.write( "name"_sr ).write( desc.name );
desc_writer.write( "description"_sr ).write( desc.description );
}
}
void JsonReporter::listTests( std::vector<TestCaseHandle> const& tests ) {
startListing();
auto writer = m_objectWriters.top().write( "tests"_sr ).writeArray();
for ( auto const& test : tests ) {
auto desc_writer = writer.writeObject();
auto const& info = test.getTestCaseInfo();
desc_writer.write( "name"_sr ).write( info.name );
desc_writer.write( "class-name"_sr ).write( info.className );
{
auto tag_writer = desc_writer.write( "tags"_sr ).writeArray();
for ( auto const& tag : info.tags ) {
tag_writer.write( tag.original );
}
}
writeSourceInfo( desc_writer, info.lineInfo );
}
}
void JsonReporter::listTags( std::vector<TagInfo> const& tags ) {
startListing();
auto writer = m_objectWriters.top().write( "tags"_sr ).writeArray();
for ( auto const& tag : tags ) {
auto tag_writer = writer.writeObject();
{
auto aliases_writer =
tag_writer.write( "aliases"_sr ).writeArray();
for ( auto alias : tag.spellings ) {
aliases_writer.write( alias );
}
}
tag_writer.write( "count"_sr ).write( tag.count );
}
}
} // namespace Catch
#include <cassert>
#include <ctime>
#include <algorithm>
2022-01-03 23:16:39 +01:00
#include <iomanip>
namespace Catch {
namespace {
std::string getCurrentTimestamp() {
time_t rawtime;
std::time(&rawtime);
std::tm timeInfo = {};
2022-01-03 23:16:39 +01:00
#if defined (_MSC_VER) || defined (__MINGW32__)
gmtime_s(&timeInfo, &rawtime);
2022-11-16 16:06:45 +01:00
#elif defined (CATCH_PLATFORM_PLAYSTATION)
gmtime_s(&rawtime, &timeInfo);
2023-07-13 13:37:30 +02:00
#elif defined (__IAR_SYSTEMS_ICC__)
timeInfo = *std::gmtime(&rawtime);
#else
2022-01-03 23:16:39 +01:00
gmtime_r(&rawtime, &timeInfo);
#endif
2022-01-03 23:16:39 +01:00
auto const timeStampSize = sizeof("2017-01-16T17:06:45Z");
char timeStamp[timeStampSize];
const char * const fmt = "%Y-%m-%dT%H:%M:%SZ";
std::strftime(timeStamp, timeStampSize, fmt, &timeInfo);
2022-01-03 23:16:39 +01:00
return std::string(timeStamp, timeStampSize - 1);
}
std::string fileNameTag(std::vector<Tag> const& tags) {
auto it = std::find_if(begin(tags),
end(tags),
[] (Tag const& tag) {
return tag.original.size() > 0
&& tag.original[0] == '#'; });
if (it != tags.end()) {
return static_cast<std::string>(
it->original.substr(1, it->original.size() - 1)
);
}
return std::string();
}
2022-01-03 23:16:39 +01:00
// Formats the duration in seconds to 3 decimal places.
// This is done because some genius defined Maven Surefire schema
// in a way that only accepts 3 decimal places, and tools like
// Jenkins use that schema for validation JUnit reporter output.
std::string formatDuration( double seconds ) {
ReusableStringStream rss;
rss << std::fixed << std::setprecision( 3 ) << seconds;
return rss.str();
}
2022-07-17 20:18:44 +02:00
static void normalizeNamespaceMarkers(std::string& str) {
std::size_t pos = str.find( "::" );
2024-03-01 22:07:10 +01:00
while ( pos != std::string::npos ) {
2022-07-17 20:18:44 +02:00
str.replace( pos, 2, "." );
pos += 1;
pos = str.find( "::", pos );
}
}
} // anonymous namespace
2022-04-20 23:46:07 +02:00
JunitReporter::JunitReporter( ReporterConfig&& _config )
: CumulativeReporterBase( CATCH_MOVE(_config) ),
2022-01-03 23:16:39 +01:00
xml( m_stream )
{
m_preferences.shouldRedirectStdOut = true;
m_preferences.shouldReportAllAssertions = true;
2022-01-03 23:16:39 +01:00
m_shouldStoreSuccesfulAssertions = false;
}
std::string JunitReporter::getDescription() {
return "Reports test results in an XML format that looks like Ant's junitreport target";
}
void JunitReporter::testRunStarting( TestRunInfo const& runInfo ) {
CumulativeReporterBase::testRunStarting( runInfo );
xml.startElement( "testsuites" );
suiteTimer.start();
stdOutForSuite.clear();
stdErrForSuite.clear();
unexpectedExceptions = 0;
}
void JunitReporter::testCaseStarting( TestCaseInfo const& testCaseInfo ) {
m_okToFail = testCaseInfo.okToFail();
}
2022-01-03 23:16:39 +01:00
void JunitReporter::assertionEnded( AssertionStats const& assertionStats ) {
if( assertionStats.assertionResult.getResultType() == ResultWas::ThrewException && !m_okToFail )
unexpectedExceptions++;
2022-01-03 23:16:39 +01:00
CumulativeReporterBase::assertionEnded( assertionStats );
}
void JunitReporter::testCaseEnded( TestCaseStats const& testCaseStats ) {
stdOutForSuite += testCaseStats.stdOut;
stdErrForSuite += testCaseStats.stdErr;
CumulativeReporterBase::testCaseEnded( testCaseStats );
}
void JunitReporter::testRunEndedCumulative() {
2022-01-03 23:16:39 +01:00
const auto suiteTime = suiteTimer.getElapsedSeconds();
writeRun( *m_testRun, suiteTime );
xml.endElement();
}
2022-01-03 23:16:39 +01:00
void JunitReporter::writeRun( TestRunNode const& testRunNode, double suiteTime ) {
XmlWriter::ScopedElement e = xml.scopedElement( "testsuite" );
2022-01-03 23:16:39 +01:00
TestRunStats const& stats = testRunNode.value;
xml.writeAttribute( "name"_sr, stats.runInfo.name );
xml.writeAttribute( "errors"_sr, unexpectedExceptions );
xml.writeAttribute( "failures"_sr, stats.totals.assertions.failed-unexpectedExceptions );
2023-01-22 19:43:11 +01:00
xml.writeAttribute( "skipped"_sr, stats.totals.assertions.skipped );
2022-01-03 23:16:39 +01:00
xml.writeAttribute( "tests"_sr, stats.totals.assertions.total() );
xml.writeAttribute( "hostname"_sr, "tbd"_sr ); // !TBD
if( m_config->showDurations() == ShowDurations::Never )
2022-01-03 23:16:39 +01:00
xml.writeAttribute( "time"_sr, ""_sr );
else
2022-01-03 23:16:39 +01:00
xml.writeAttribute( "time"_sr, formatDuration( suiteTime ) );
xml.writeAttribute( "timestamp"_sr, getCurrentTimestamp() );
2022-01-03 23:16:39 +01:00
// Write properties
{
auto properties = xml.scopedElement("properties");
2022-01-03 23:16:39 +01:00
xml.scopedElement("property")
.writeAttribute("name"_sr, "random-seed"_sr)
.writeAttribute("value"_sr, m_config->rngSeed());
2022-11-16 16:06:45 +01:00
if (m_config->testSpec().hasFilters()) {
xml.scopedElement("property")
2022-01-03 23:16:39 +01:00
.writeAttribute("name"_sr, "filters"_sr)
2022-11-16 16:06:45 +01:00
.writeAttribute("value"_sr, m_config->testSpec());
}
}
// Write test cases
2022-01-03 23:16:39 +01:00
for( auto const& child : testRunNode.children )
writeTestCase( *child );
xml.scopedElement( "system-out" ).writeText( trim( stdOutForSuite ), XmlFormatting::Newline );
xml.scopedElement( "system-err" ).writeText( trim( stdErrForSuite ), XmlFormatting::Newline );
}
void JunitReporter::writeTestCase( TestCaseNode const& testCaseNode ) {
TestCaseStats const& stats = testCaseNode.value;
// All test cases have exactly one section - which represents the
// test case itself. That section may have 0-n nested sections
assert( testCaseNode.children.size() == 1 );
SectionNode const& rootSection = *testCaseNode.children.front();
2022-01-03 23:16:39 +01:00
std::string className =
static_cast<std::string>( stats.testInfo->className );
if( className.empty() ) {
className = fileNameTag(stats.testInfo->tags);
2022-01-03 23:16:39 +01:00
if ( className.empty() ) {
className = "global";
2022-01-03 23:16:39 +01:00
}
}
if ( !m_config->name().empty() )
2022-01-03 23:16:39 +01:00
className = static_cast<std::string>(m_config->name()) + '.' + className;
2022-07-17 20:18:44 +02:00
normalizeNamespaceMarkers(className);
2022-01-03 23:16:39 +01:00
writeSection( className, "", rootSection, stats.testInfo->okToFail() );
}
2022-01-03 23:16:39 +01:00
void JunitReporter::writeSection( std::string const& className,
std::string const& rootName,
SectionNode const& sectionNode,
bool testOkToFail) {
std::string name = trim( sectionNode.stats.sectionInfo.name );
if( !rootName.empty() )
name = rootName + '/' + name;
2022-01-03 23:16:39 +01:00
if( sectionNode.hasAnyAssertions()
|| !sectionNode.stdOut.empty()
|| !sectionNode.stdErr.empty() ) {
XmlWriter::ScopedElement e = xml.scopedElement( "testcase" );
if( className.empty() ) {
2022-01-03 23:16:39 +01:00
xml.writeAttribute( "classname"_sr, name );
xml.writeAttribute( "name"_sr, "root"_sr );
}
else {
2022-01-03 23:16:39 +01:00
xml.writeAttribute( "classname"_sr, className );
xml.writeAttribute( "name"_sr, name );
}
2022-01-03 23:16:39 +01:00
xml.writeAttribute( "time"_sr, formatDuration( sectionNode.stats.durationInSeconds ) );
// This is not ideal, but it should be enough to mimic gtest's
// junit output.
// Ideally the JUnit reporter would also handle `skipTest`
// events and write those out appropriately.
2022-01-03 23:16:39 +01:00
xml.writeAttribute( "status"_sr, "run"_sr );
if (sectionNode.stats.assertions.failedButOk) {
xml.scopedElement("skipped")
.writeAttribute("message", "TEST_CASE tagged with !mayfail");
}
writeAssertions( sectionNode );
2022-01-03 23:16:39 +01:00
if( !sectionNode.stdOut.empty() )
xml.scopedElement( "system-out" ).writeText( trim( sectionNode.stdOut ), XmlFormatting::Newline );
if( !sectionNode.stdErr.empty() )
xml.scopedElement( "system-err" ).writeText( trim( sectionNode.stdErr ), XmlFormatting::Newline );
}
for( auto const& childNode : sectionNode.childSections )
if( className.empty() )
2022-01-03 23:16:39 +01:00
writeSection( name, "", *childNode, testOkToFail );
else
2022-01-03 23:16:39 +01:00
writeSection( className, name, *childNode, testOkToFail );
}
void JunitReporter::writeAssertions( SectionNode const& sectionNode ) {
2022-01-03 23:16:39 +01:00
for (auto const& assertionOrBenchmark : sectionNode.assertionsAndBenchmarks) {
if (assertionOrBenchmark.isAssertion()) {
writeAssertion(assertionOrBenchmark.asAssertion());
}
}
}
void JunitReporter::writeAssertion( AssertionStats const& stats ) {
AssertionResult const& result = stats.assertionResult;
2023-01-22 19:43:11 +01:00
if ( !result.isOk() ||
result.getResultType() == ResultWas::ExplicitSkip ) {
std::string elementName;
switch( result.getResultType() ) {
case ResultWas::ThrewException:
case ResultWas::FatalErrorCondition:
elementName = "error";
break;
case ResultWas::ExplicitFailure:
case ResultWas::ExpressionFailed:
case ResultWas::DidntThrowException:
elementName = "failure";
break;
2023-01-22 19:43:11 +01:00
case ResultWas::ExplicitSkip:
elementName = "skipped";
break;
// We should never see these here:
case ResultWas::Info:
case ResultWas::Warning:
case ResultWas::Ok:
case ResultWas::Unknown:
case ResultWas::FailureBit:
case ResultWas::Exception:
elementName = "internalError";
break;
}
XmlWriter::ScopedElement e = xml.scopedElement( elementName );
2022-01-03 23:16:39 +01:00
xml.writeAttribute( "message"_sr, result.getExpression() );
xml.writeAttribute( "type"_sr, result.getTestMacroName() );
ReusableStringStream rss;
2023-01-22 19:43:11 +01:00
if ( result.getResultType() == ResultWas::ExplicitSkip ) {
rss << "SKIPPED\n";
} else {
rss << "FAILED" << ":\n";
if (result.hasExpression()) {
rss << " ";
rss << result.getExpressionInMacro();
rss << '\n';
}
if (result.hasExpandedExpression()) {
rss << "with expansion:\n";
rss << TextFlow::Column(result.getExpandedExpression()).indent(2) << '\n';
}
}
2023-07-13 13:37:30 +02:00
if( result.hasMessage() )
rss << result.getMessage() << '\n';
for( auto const& msg : stats.infoMessages )
if( msg.type == ResultWas::Info )
rss << msg.message << '\n';
rss << "at " << result.getSourceInfo();
xml.writeText( rss.str(), XmlFormatting::Newline );
}
}
} // end namespace Catch
2022-01-03 23:16:39 +01:00
2022-04-20 23:46:07 +02:00
#include <ostream>
namespace Catch {
2022-04-20 23:46:07 +02:00
void MultiReporter::updatePreferences(IEventListener const& reporterish) {
2022-01-03 23:16:39 +01:00
m_preferences.shouldRedirectStdOut |=
reporterish.getPreferences().shouldRedirectStdOut;
m_preferences.shouldReportAllAssertions |=
reporterish.getPreferences().shouldReportAllAssertions;
}
2022-04-20 23:46:07 +02:00
void MultiReporter::addListener( IEventListenerPtr&& listener ) {
2022-01-03 23:16:39 +01:00
updatePreferences(*listener);
m_reporterLikes.insert(m_reporterLikes.begin() + m_insertedListeners, CATCH_MOVE(listener) );
++m_insertedListeners;
}
2022-04-20 23:46:07 +02:00
void MultiReporter::addReporter( IEventListenerPtr&& reporter ) {
2022-01-03 23:16:39 +01:00
updatePreferences(*reporter);
// We will need to output the captured stdout if there are reporters
// that do not want it captured.
// We do not consider listeners, because it is generally assumed that
// listeners are output-transparent, even though they can ask for stdout
// capture to do something with it.
m_haveNoncapturingReporters |= !reporter->getPreferences().shouldRedirectStdOut;
// Reporters can always be placed to the back without breaking the
// reporting order
m_reporterLikes.push_back( CATCH_MOVE( reporter ) );
}
2022-04-20 23:46:07 +02:00
void MultiReporter::noMatchingTestCases( StringRef unmatchedSpec ) {
2022-01-03 23:16:39 +01:00
for ( auto& reporterish : m_reporterLikes ) {
reporterish->noMatchingTestCases( unmatchedSpec );
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::fatalErrorEncountered( StringRef error ) {
2022-01-03 23:16:39 +01:00
for ( auto& reporterish : m_reporterLikes ) {
reporterish->fatalErrorEncountered( error );
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::reportInvalidTestSpec( StringRef arg ) {
2022-01-03 23:16:39 +01:00
for ( auto& reporterish : m_reporterLikes ) {
reporterish->reportInvalidTestSpec( arg );
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::benchmarkPreparing( StringRef name ) {
2022-01-03 23:16:39 +01:00
for (auto& reporterish : m_reporterLikes) {
reporterish->benchmarkPreparing(name);
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::benchmarkStarting( BenchmarkInfo const& benchmarkInfo ) {
2022-01-03 23:16:39 +01:00
for ( auto& reporterish : m_reporterLikes ) {
reporterish->benchmarkStarting( benchmarkInfo );
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::benchmarkEnded( BenchmarkStats<> const& benchmarkStats ) {
2022-01-03 23:16:39 +01:00
for ( auto& reporterish : m_reporterLikes ) {
reporterish->benchmarkEnded( benchmarkStats );
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::benchmarkFailed( StringRef error ) {
2022-01-03 23:16:39 +01:00
for (auto& reporterish : m_reporterLikes) {
reporterish->benchmarkFailed(error);
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::testRunStarting( TestRunInfo const& testRunInfo ) {
2022-01-03 23:16:39 +01:00
for ( auto& reporterish : m_reporterLikes ) {
reporterish->testRunStarting( testRunInfo );
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::testCaseStarting( TestCaseInfo const& testInfo ) {
2022-01-03 23:16:39 +01:00
for ( auto& reporterish : m_reporterLikes ) {
reporterish->testCaseStarting( testInfo );
}
}
2022-01-03 23:16:39 +01:00
void
2022-04-20 23:46:07 +02:00
MultiReporter::testCasePartialStarting( TestCaseInfo const& testInfo,
2022-01-03 23:16:39 +01:00
uint64_t partNumber ) {
for ( auto& reporterish : m_reporterLikes ) {
reporterish->testCasePartialStarting( testInfo, partNumber );
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::sectionStarting( SectionInfo const& sectionInfo ) {
2022-01-03 23:16:39 +01:00
for ( auto& reporterish : m_reporterLikes ) {
reporterish->sectionStarting( sectionInfo );
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::assertionStarting( AssertionInfo const& assertionInfo ) {
2022-01-03 23:16:39 +01:00
for ( auto& reporterish : m_reporterLikes ) {
reporterish->assertionStarting( assertionInfo );
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::assertionEnded( AssertionStats const& assertionStats ) {
2022-01-03 23:16:39 +01:00
const bool reportByDefault =
assertionStats.assertionResult.getResultType() != ResultWas::Ok ||
m_config->includeSuccessfulResults();
for ( auto & reporterish : m_reporterLikes ) {
if ( reportByDefault ||
reporterish->getPreferences().shouldReportAllAssertions ) {
reporterish->assertionEnded( assertionStats );
}
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::sectionEnded( SectionStats const& sectionStats ) {
2022-01-03 23:16:39 +01:00
for ( auto& reporterish : m_reporterLikes ) {
reporterish->sectionEnded( sectionStats );
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::testCasePartialEnded( TestCaseStats const& testStats,
2022-01-03 23:16:39 +01:00
uint64_t partNumber ) {
if ( m_preferences.shouldRedirectStdOut &&
m_haveNoncapturingReporters ) {
if ( !testStats.stdOut.empty() ) {
Catch::cout() << testStats.stdOut << std::flush;
}
if ( !testStats.stdErr.empty() ) {
Catch::cerr() << testStats.stdErr << std::flush;
}
}
for ( auto& reporterish : m_reporterLikes ) {
reporterish->testCasePartialEnded( testStats, partNumber );
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::testCaseEnded( TestCaseStats const& testCaseStats ) {
2022-01-03 23:16:39 +01:00
for ( auto& reporterish : m_reporterLikes ) {
reporterish->testCaseEnded( testCaseStats );
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::testRunEnded( TestRunStats const& testRunStats ) {
2022-01-03 23:16:39 +01:00
for ( auto& reporterish : m_reporterLikes ) {
reporterish->testRunEnded( testRunStats );
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::skipTest( TestCaseInfo const& testInfo ) {
2022-01-03 23:16:39 +01:00
for ( auto& reporterish : m_reporterLikes ) {
reporterish->skipTest( testInfo );
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::listReporters(std::vector<ReporterDescription> const& descriptions) {
2022-01-03 23:16:39 +01:00
for (auto& reporterish : m_reporterLikes) {
reporterish->listReporters(descriptions);
}
}
2022-05-17 22:13:36 +02:00
void MultiReporter::listListeners(
std::vector<ListenerDescription> const& descriptions ) {
for ( auto& reporterish : m_reporterLikes ) {
reporterish->listListeners( descriptions );
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::listTests(std::vector<TestCaseHandle> const& tests) {
2022-01-03 23:16:39 +01:00
for (auto& reporterish : m_reporterLikes) {
reporterish->listTests(tests);
}
}
2022-04-20 23:46:07 +02:00
void MultiReporter::listTags(std::vector<TagInfo> const& tags) {
2022-01-03 23:16:39 +01:00
for (auto& reporterish : m_reporterLikes) {
reporterish->listTags(tags);
}
}
} // end namespace Catch
2022-05-17 22:13:36 +02:00
namespace Catch {
namespace Detail {
void registerReporterImpl( std::string const& name,
IReporterFactoryPtr reporterPtr ) {
CATCH_TRY {
getMutableRegistryHub().registerReporter(
name, CATCH_MOVE( reporterPtr ) );
}
CATCH_CATCH_ALL {
// Do not throw when constructing global objects, instead
// register the exception to be processed later
getMutableRegistryHub().registerStartupException();
}
}
2023-07-13 13:37:30 +02:00
void registerListenerImpl( Detail::unique_ptr<EventListenerFactory> listenerFactory ) {
getMutableRegistryHub().registerListener( CATCH_MOVE(listenerFactory) );
}
2022-05-17 22:13:36 +02:00
} // namespace Detail
} // namespace Catch
#include <map>
namespace Catch {
2022-04-20 23:46:07 +02:00
namespace {
2022-11-16 16:06:45 +01:00
std::string createMetadataString(IConfig const& config) {
2022-04-20 23:46:07 +02:00
ReusableStringStream sstr;
2022-11-16 16:06:45 +01:00
if ( config.testSpec().hasFilters() ) {
sstr << "filters='"
<< config.testSpec()
<< "' ";
}
sstr << "rng-seed=" << config.rngSeed();
2022-04-20 23:46:07 +02:00
return sstr.str();
}
}
void SonarQubeReporter::testRunStarting(TestRunInfo const& testRunInfo) {
CumulativeReporterBase::testRunStarting(testRunInfo);
2022-04-20 23:46:07 +02:00
2022-11-16 16:06:45 +01:00
xml.writeComment( createMetadataString( *m_config ) );
xml.startElement("testExecutions");
2022-01-03 23:16:39 +01:00
xml.writeAttribute("version"_sr, '1');
}
2022-01-03 23:16:39 +01:00
void SonarQubeReporter::writeRun( TestRunNode const& runNode ) {
2023-01-29 23:18:57 +01:00
std::map<StringRef, std::vector<TestCaseNode const*>> testsPerFile;
2022-01-03 23:16:39 +01:00
for ( auto const& child : runNode.children ) {
testsPerFile[child->value.testInfo->lineInfo.file].push_back(
child.get() );
}
2022-01-03 23:16:39 +01:00
for ( auto const& kv : testsPerFile ) {
writeTestFile( kv.first, kv.second );
}
}
2023-01-29 23:18:57 +01:00
void SonarQubeReporter::writeTestFile(StringRef filename, std::vector<TestCaseNode const*> const& testCaseNodes) {
XmlWriter::ScopedElement e = xml.scopedElement("file");
2022-01-03 23:16:39 +01:00
xml.writeAttribute("path"_sr, filename);
for (auto const& child : testCaseNodes)
writeTestCase(*child);
}
void SonarQubeReporter::writeTestCase(TestCaseNode const& testCaseNode) {
// All test cases have exactly one section - which represents the
// test case itself. That section may have 0-n nested sections
assert(testCaseNode.children.size() == 1);
SectionNode const& rootSection = *testCaseNode.children.front();
writeSection("", rootSection, testCaseNode.value.testInfo->okToFail());
}
void SonarQubeReporter::writeSection(std::string const& rootName, SectionNode const& sectionNode, bool okToFail) {
std::string name = trim(sectionNode.stats.sectionInfo.name);
if (!rootName.empty())
name = rootName + '/' + name;
2022-01-03 23:16:39 +01:00
if ( sectionNode.hasAnyAssertions()
|| !sectionNode.stdOut.empty()
|| !sectionNode.stdErr.empty() ) {
XmlWriter::ScopedElement e = xml.scopedElement("testCase");
2022-01-03 23:16:39 +01:00
xml.writeAttribute("name"_sr, name);
xml.writeAttribute("duration"_sr, static_cast<long>(sectionNode.stats.durationInSeconds * 1000));
writeAssertions(sectionNode, okToFail);
}
for (auto const& childNode : sectionNode.childSections)
writeSection(name, *childNode, okToFail);
}
void SonarQubeReporter::writeAssertions(SectionNode const& sectionNode, bool okToFail) {
2022-01-03 23:16:39 +01:00
for (auto const& assertionOrBenchmark : sectionNode.assertionsAndBenchmarks) {
if (assertionOrBenchmark.isAssertion()) {
writeAssertion(assertionOrBenchmark.asAssertion(), okToFail);
}
}
}
void SonarQubeReporter::writeAssertion(AssertionStats const& stats, bool okToFail) {
AssertionResult const& result = stats.assertionResult;
2023-01-22 19:43:11 +01:00
if ( !result.isOk() ||
result.getResultType() == ResultWas::ExplicitSkip ) {
std::string elementName;
if (okToFail) {
elementName = "skipped";
} else {
switch (result.getResultType()) {
case ResultWas::ThrewException:
case ResultWas::FatalErrorCondition:
elementName = "error";
break;
case ResultWas::ExplicitFailure:
case ResultWas::ExpressionFailed:
case ResultWas::DidntThrowException:
elementName = "failure";
break;
2023-01-22 19:43:11 +01:00
case ResultWas::ExplicitSkip:
elementName = "skipped";
break;
// We should never see these here:
case ResultWas::Info:
case ResultWas::Warning:
case ResultWas::Ok:
case ResultWas::Unknown:
case ResultWas::FailureBit:
case ResultWas::Exception:
elementName = "internalError";
break;
}
}
XmlWriter::ScopedElement e = xml.scopedElement(elementName);
ReusableStringStream messageRss;
2022-01-03 23:16:39 +01:00
messageRss << result.getTestMacroName() << '(' << result.getExpression() << ')';
xml.writeAttribute("message"_sr, messageRss.str());
ReusableStringStream textRss;
2023-01-22 19:43:11 +01:00
if ( result.getResultType() == ResultWas::ExplicitSkip ) {
textRss << "SKIPPED\n";
} else {
textRss << "FAILED:\n";
if (result.hasExpression()) {
2022-01-03 23:16:39 +01:00
textRss << '\t' << result.getExpressionInMacro() << '\n';
}
if (result.hasExpandedExpression()) {
2022-01-03 23:16:39 +01:00
textRss << "with expansion:\n\t" << result.getExpandedExpression() << '\n';
}
}
2023-07-13 13:37:30 +02:00
if (result.hasMessage())
2022-01-03 23:16:39 +01:00
textRss << result.getMessage() << '\n';
for (auto const& msg : stats.infoMessages)
if (msg.type == ResultWas::Info)
2022-01-03 23:16:39 +01:00
textRss << msg.message << '\n';
textRss << "at " << result.getSourceInfo();
xml.writeText(textRss.str(), XmlFormatting::Newline);
}
}
} // end namespace Catch
namespace Catch {
StreamingReporterBase::~StreamingReporterBase() = default;
void
StreamingReporterBase::testRunStarting( TestRunInfo const& _testRunInfo ) {
currentTestRunInfo = _testRunInfo;
}
2022-01-03 23:16:39 +01:00
void StreamingReporterBase::testRunEnded( TestRunStats const& ) {
currentTestCaseInfo = nullptr;
}
} // end namespace Catch
#include <algorithm>
#include <ostream>
namespace Catch {
namespace {
// Yes, this has to be outside the class and namespaced by naming.
// Making older compiler happy is hard.
static constexpr StringRef tapFailedString = "not ok"_sr;
static constexpr StringRef tapPassedString = "ok"_sr;
2022-04-20 23:46:07 +02:00
static constexpr Colour::Code tapDimColour = Colour::FileName;
class TapAssertionPrinter {
public:
TapAssertionPrinter& operator= (TapAssertionPrinter const&) = delete;
TapAssertionPrinter(TapAssertionPrinter const&) = delete;
2022-04-20 23:46:07 +02:00
TapAssertionPrinter(std::ostream& _stream, AssertionStats const& _stats, std::size_t _counter, ColourImpl* colour_)
: stream(_stream)
, result(_stats.assertionResult)
, messages(_stats.infoMessages)
, itMessage(_stats.infoMessages.begin())
, printInfoMessages(true)
2022-04-20 23:46:07 +02:00
, counter(_counter)
, colourImpl( colour_ ) {}
void print() {
itMessage = messages.begin();
switch (result.getResultType()) {
case ResultWas::Ok:
printResultType(tapPassedString);
printOriginalExpression();
printReconstructedExpression();
if (!result.hasExpression())
printRemainingMessages(Colour::None);
else
printRemainingMessages();
break;
case ResultWas::ExpressionFailed:
if (result.isOk()) {
printResultType(tapPassedString);
} else {
printResultType(tapFailedString);
}
printOriginalExpression();
printReconstructedExpression();
if (result.isOk()) {
printIssue(" # TODO");
}
printRemainingMessages();
break;
case ResultWas::ThrewException:
printResultType(tapFailedString);
printIssue("unexpected exception with message:"_sr);
printMessage();
printExpressionWas();
printRemainingMessages();
break;
case ResultWas::FatalErrorCondition:
printResultType(tapFailedString);
printIssue("fatal error condition with message:"_sr);
printMessage();
printExpressionWas();
printRemainingMessages();
break;
case ResultWas::DidntThrowException:
printResultType(tapFailedString);
printIssue("expected exception, got none"_sr);
printExpressionWas();
printRemainingMessages();
break;
case ResultWas::Info:
printResultType("info"_sr);
printMessage();
printRemainingMessages();
break;
case ResultWas::Warning:
printResultType("warning"_sr);
printMessage();
printRemainingMessages();
break;
case ResultWas::ExplicitFailure:
printResultType(tapFailedString);
printIssue("explicitly"_sr);
printRemainingMessages(Colour::None);
break;
2023-01-22 19:43:11 +01:00
case ResultWas::ExplicitSkip:
printResultType(tapPassedString);
printIssue(" # SKIP"_sr);
printMessage();
printRemainingMessages();
break;
// These cases are here to prevent compiler warnings
case ResultWas::Unknown:
case ResultWas::FailureBit:
case ResultWas::Exception:
printResultType("** internal error **"_sr);
break;
}
}
private:
void printResultType(StringRef passOrFail) const {
if (!passOrFail.empty()) {
stream << passOrFail << ' ' << counter << " -";
}
}
void printIssue(StringRef issue) const {
stream << ' ' << issue;
}
void printExpressionWas() {
if (result.hasExpression()) {
stream << ';';
2022-04-20 23:46:07 +02:00
stream << colourImpl->guardColour( tapDimColour )
<< " expression was:";
printOriginalExpression();
}
}
void printOriginalExpression() const {
if (result.hasExpression()) {
stream << ' ' << result.getExpression();
}
}
void printReconstructedExpression() const {
if (result.hasExpandedExpression()) {
2022-04-20 23:46:07 +02:00
stream << colourImpl->guardColour( tapDimColour ) << " for: ";
std::string expr = result.getExpandedExpression();
std::replace(expr.begin(), expr.end(), '\n', ' ');
stream << expr;
}
}
void printMessage() {
if (itMessage != messages.end()) {
stream << " '" << itMessage->message << '\'';
++itMessage;
}
}
2022-04-20 23:46:07 +02:00
void printRemainingMessages(Colour::Code colour = tapDimColour) {
if (itMessage == messages.end()) {
return;
}
// using messages.end() directly (or auto) yields compilation error:
std::vector<MessageInfo>::const_iterator itEnd = messages.end();
2023-07-13 13:37:30 +02:00
const std::size_t N = static_cast<std::size_t>(itEnd - itMessage);
2022-04-20 23:46:07 +02:00
stream << colourImpl->guardColour( colour ) << " with "
<< pluralise( N, "message"_sr ) << ':';
for (; itMessage != itEnd; ) {
// If this assertion is a warning ignore any INFO messages
if (printInfoMessages || itMessage->type != ResultWas::Info) {
stream << " '" << itMessage->message << '\'';
if (++itMessage != itEnd) {
2022-04-20 23:46:07 +02:00
stream << colourImpl->guardColour(tapDimColour) << " and";
}
}
}
}
private:
std::ostream& stream;
AssertionResult const& result;
2023-02-27 15:12:35 +01:00
std::vector<MessageInfo> const& messages;
std::vector<MessageInfo>::const_iterator itMessage;
bool printInfoMessages;
std::size_t counter;
2022-04-20 23:46:07 +02:00
ColourImpl* colourImpl;
};
} // End anonymous namespace
2022-04-20 23:46:07 +02:00
void TAPReporter::testRunStarting( TestRunInfo const& ) {
2022-11-16 16:06:45 +01:00
if ( m_config->testSpec().hasFilters() ) {
m_stream << "# filters: " << m_config->testSpec() << '\n';
}
2022-04-20 23:46:07 +02:00
m_stream << "# rng-seed: " << m_config->rngSeed() << '\n';
}
2022-01-03 23:16:39 +01:00
void TAPReporter::noMatchingTestCases( StringRef unmatchedSpec ) {
m_stream << "# No test cases matched '" << unmatchedSpec << "'\n";
}
2022-01-03 23:16:39 +01:00
void TAPReporter::assertionEnded(AssertionStats const& _assertionStats) {
++counter;
2022-01-03 23:16:39 +01:00
m_stream << "# " << currentTestCaseInfo->name << '\n';
2022-04-20 23:46:07 +02:00
TapAssertionPrinter printer(m_stream, _assertionStats, counter, m_colour.get());
printer.print();
2022-01-03 23:16:39 +01:00
m_stream << '\n' << std::flush;
}
void TAPReporter::testRunEnded(TestRunStats const& _testRunStats) {
2022-01-03 23:16:39 +01:00
m_stream << "1.." << _testRunStats.totals.assertions.total();
if (_testRunStats.totals.testCases.total() == 0) {
2022-01-03 23:16:39 +01:00
m_stream << " # Skipped: No tests ran.";
}
2022-01-03 23:16:39 +01:00
m_stream << "\n\n" << std::flush;
StreamingReporterBase::testRunEnded(_testRunStats);
}
} // end namespace Catch
#include <cassert>
2022-04-20 23:46:07 +02:00
#include <ostream>
namespace Catch {
namespace {
// if string has a : in first line will set indent to follow it on
// subsequent lines
void printHeaderString(std::ostream& os, std::string const& _string, std::size_t indent = 0) {
std::size_t i = _string.find(": ");
if (i != std::string::npos)
i += 2;
else
i = 0;
os << TextFlow::Column(_string)
.indent(indent + i)
.initialIndent(indent) << '\n';
}
2022-01-03 23:16:39 +01:00
std::string escape(StringRef str) {
std::string escaped = static_cast<std::string>(str);
replaceInPlace(escaped, "|", "||");
replaceInPlace(escaped, "'", "|'");
replaceInPlace(escaped, "\n", "|n");
replaceInPlace(escaped, "\r", "|r");
replaceInPlace(escaped, "[", "|[");
replaceInPlace(escaped, "]", "|]");
return escaped;
}
} // end anonymous namespace
2023-12-11 00:55:40 +01:00
TeamCityReporter::~TeamCityReporter() = default;
2022-01-03 23:16:39 +01:00
void TeamCityReporter::testRunStarting( TestRunInfo const& runInfo ) {
m_stream << "##teamcity[testSuiteStarted name='" << escape( runInfo.name )
<< "']\n";
}
2022-01-03 23:16:39 +01:00
void TeamCityReporter::testRunEnded( TestRunStats const& runStats ) {
m_stream << "##teamcity[testSuiteFinished name='"
<< escape( runStats.runInfo.name ) << "']\n";
}
2022-01-03 23:16:39 +01:00
void TeamCityReporter::assertionEnded(AssertionStats const& assertionStats) {
AssertionResult const& result = assertionStats.assertionResult;
2023-01-22 19:43:11 +01:00
if ( !result.isOk() ||
result.getResultType() == ResultWas::ExplicitSkip ) {
ReusableStringStream msg;
if (!m_headerPrintedForThisSection)
printSectionHeader(msg.get());
m_headerPrintedForThisSection = true;
msg << result.getSourceInfo() << '\n';
switch (result.getResultType()) {
case ResultWas::ExpressionFailed:
msg << "expression failed";
break;
case ResultWas::ThrewException:
msg << "unexpected exception";
break;
case ResultWas::FatalErrorCondition:
msg << "fatal error condition";
break;
case ResultWas::DidntThrowException:
msg << "no exception was thrown where one was expected";
break;
case ResultWas::ExplicitFailure:
msg << "explicit failure";
break;
2023-01-22 19:43:11 +01:00
case ResultWas::ExplicitSkip:
msg << "explicit skip";
break;
// We shouldn't get here because of the isOk() test
case ResultWas::Ok:
case ResultWas::Info:
case ResultWas::Warning:
CATCH_ERROR("Internal error in TeamCity reporter");
// These cases are here to prevent compiler warnings
case ResultWas::Unknown:
case ResultWas::FailureBit:
case ResultWas::Exception:
CATCH_ERROR("Not implemented");
}
if (assertionStats.infoMessages.size() == 1)
msg << " with message:";
if (assertionStats.infoMessages.size() > 1)
msg << " with messages:";
for (auto const& messageInfo : assertionStats.infoMessages)
msg << "\n \"" << messageInfo.message << '"';
if (result.hasExpression()) {
msg <<
"\n " << result.getExpressionInMacro() << "\n"
"with expansion:\n"
" " << result.getExpandedExpression() << '\n';
}
2023-01-22 19:43:11 +01:00
if ( result.getResultType() == ResultWas::ExplicitSkip ) {
m_stream << "##teamcity[testIgnored";
} else if ( currentTestCaseInfo->okToFail() ) {
msg << "- failure ignore as test marked as 'ok to fail'\n";
2023-01-22 19:43:11 +01:00
m_stream << "##teamcity[testIgnored";
} else {
2023-01-22 19:43:11 +01:00
m_stream << "##teamcity[testFailed";
}
2023-01-22 19:43:11 +01:00
m_stream << " name='" << escape( currentTestCaseInfo->name ) << '\''
<< " message='" << escape( msg.str() ) << '\'' << "]\n";
}
2022-01-03 23:16:39 +01:00
m_stream.flush();
}
void TeamCityReporter::testCaseStarting(TestCaseInfo const& testInfo) {
m_testTimer.start();
StreamingReporterBase::testCaseStarting(testInfo);
2022-01-03 23:16:39 +01:00
m_stream << "##teamcity[testStarted name='"
<< escape(testInfo.name) << "']\n";
2022-01-03 23:16:39 +01:00
m_stream.flush();
}
void TeamCityReporter::testCaseEnded(TestCaseStats const& testCaseStats) {
StreamingReporterBase::testCaseEnded(testCaseStats);
auto const& testCaseInfo = *testCaseStats.testInfo;
if (!testCaseStats.stdOut.empty())
2022-01-03 23:16:39 +01:00
m_stream << "##teamcity[testStdOut name='"
<< escape(testCaseInfo.name)
<< "' out='" << escape(testCaseStats.stdOut) << "']\n";
if (!testCaseStats.stdErr.empty())
2022-01-03 23:16:39 +01:00
m_stream << "##teamcity[testStdErr name='"
<< escape(testCaseInfo.name)
<< "' out='" << escape(testCaseStats.stdErr) << "']\n";
2022-01-03 23:16:39 +01:00
m_stream << "##teamcity[testFinished name='"
<< escape(testCaseInfo.name) << "' duration='"
<< m_testTimer.getElapsedMilliseconds() << "']\n";
2022-01-03 23:16:39 +01:00
m_stream.flush();
}
void TeamCityReporter::printSectionHeader(std::ostream& os) {
assert(!m_sectionStack.empty());
if (m_sectionStack.size() > 1) {
os << lineOfChars('-') << '\n';
std::vector<SectionInfo>::const_iterator
it = m_sectionStack.begin() + 1, // Skip first section (test case)
itEnd = m_sectionStack.end();
for (; it != itEnd; ++it)
printHeaderString(os, it->name);
os << lineOfChars('-') << '\n';
}
SourceLineInfo lineInfo = m_sectionStack.front().lineInfo;
os << lineInfo << '\n';
os << lineOfChars('.') << "\n\n";
}
} // end namespace Catch
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable:4061) // Not all labels are EXPLICITLY handled in switch
// Note that 4062 (not all labels are handled
// and default is missing) is enabled
#endif
namespace Catch {
2022-04-20 23:46:07 +02:00
XmlReporter::XmlReporter( ReporterConfig&& _config )
: StreamingReporterBase( CATCH_MOVE(_config) ),
m_xml(m_stream)
{
m_preferences.shouldRedirectStdOut = true;
m_preferences.shouldReportAllAssertions = true;
}
XmlReporter::~XmlReporter() = default;
std::string XmlReporter::getDescription() {
return "Reports test results as an XML document";
}
std::string XmlReporter::getStylesheetRef() const {
return std::string();
}
void XmlReporter::writeSourceInfo( SourceLineInfo const& sourceInfo ) {
m_xml
2022-01-03 23:16:39 +01:00
.writeAttribute( "filename"_sr, sourceInfo.file )
.writeAttribute( "line"_sr, sourceInfo.line );
}
void XmlReporter::testRunStarting( TestRunInfo const& testInfo ) {
StreamingReporterBase::testRunStarting( testInfo );
std::string stylesheetRef = getStylesheetRef();
if( !stylesheetRef.empty() )
m_xml.writeStylesheetRef( stylesheetRef );
2022-01-03 23:16:39 +01:00
m_xml.startElement("Catch2TestRun")
.writeAttribute("name"_sr, m_config->name())
2022-05-17 22:13:36 +02:00
.writeAttribute("rng-seed"_sr, m_config->rngSeed())
2023-07-13 13:37:30 +02:00
.writeAttribute("xml-format-version"_sr, 3)
2022-05-17 22:13:36 +02:00
.writeAttribute("catch2-version"_sr, libraryVersion());
2022-11-16 16:06:45 +01:00
if ( m_config->testSpec().hasFilters() ) {
m_xml.writeAttribute( "filters"_sr, m_config->testSpec() );
}
}
void XmlReporter::testCaseStarting( TestCaseInfo const& testInfo ) {
StreamingReporterBase::testCaseStarting(testInfo);
m_xml.startElement( "TestCase" )
2023-02-27 15:12:35 +01:00
.writeAttribute( "name"_sr, trim( StringRef(testInfo.name) ) )
2022-01-03 23:16:39 +01:00
.writeAttribute( "tags"_sr, testInfo.tagsAsString() );
writeSourceInfo( testInfo.lineInfo );
if ( m_config->showDurations() == ShowDurations::Always )
m_testCaseTimer.start();
m_xml.ensureTagClosed();
}
void XmlReporter::sectionStarting( SectionInfo const& sectionInfo ) {
StreamingReporterBase::sectionStarting( sectionInfo );
if( m_sectionDepth++ > 0 ) {
m_xml.startElement( "Section" )
2023-02-27 15:12:35 +01:00
.writeAttribute( "name"_sr, trim( StringRef(sectionInfo.name) ) );
writeSourceInfo( sectionInfo.lineInfo );
m_xml.ensureTagClosed();
}
}
void XmlReporter::assertionStarting( AssertionInfo const& ) { }
2022-01-03 23:16:39 +01:00
void XmlReporter::assertionEnded( AssertionStats const& assertionStats ) {
AssertionResult const& result = assertionStats.assertionResult;
bool includeResults = m_config->includeSuccessfulResults() || !result.isOk();
if( includeResults || result.getResultType() == ResultWas::Warning ) {
// Print any info messages in <Info> tags.
for( auto const& msg : assertionStats.infoMessages ) {
if( msg.type == ResultWas::Info && includeResults ) {
2023-07-13 13:37:30 +02:00
auto t = m_xml.scopedElement( "Info" );
writeSourceInfo( msg.lineInfo );
t.writeText( msg.message );
} else if ( msg.type == ResultWas::Warning ) {
2023-07-13 13:37:30 +02:00
auto t = m_xml.scopedElement( "Warning" );
writeSourceInfo( msg.lineInfo );
t.writeText( msg.message );
}
}
}
// Drop out if result was successful but we're not printing them.
2023-01-22 19:43:11 +01:00
if ( !includeResults && result.getResultType() != ResultWas::Warning &&
result.getResultType() != ResultWas::ExplicitSkip ) {
2022-01-03 23:16:39 +01:00
return;
2023-01-22 19:43:11 +01:00
}
// Print the expression if there is one.
if( result.hasExpression() ) {
m_xml.startElement( "Expression" )
2022-01-03 23:16:39 +01:00
.writeAttribute( "success"_sr, result.succeeded() )
.writeAttribute( "type"_sr, result.getTestMacroName() );
writeSourceInfo( result.getSourceInfo() );
m_xml.scopedElement( "Original" )
.writeText( result.getExpression() );
m_xml.scopedElement( "Expanded" )
.writeText( result.getExpandedExpression() );
}
// And... Print a result applicable to each result type.
switch( result.getResultType() ) {
case ResultWas::ThrewException:
m_xml.startElement( "Exception" );
writeSourceInfo( result.getSourceInfo() );
m_xml.writeText( result.getMessage() );
m_xml.endElement();
break;
case ResultWas::FatalErrorCondition:
m_xml.startElement( "FatalErrorCondition" );
writeSourceInfo( result.getSourceInfo() );
m_xml.writeText( result.getMessage() );
m_xml.endElement();
break;
case ResultWas::Info:
m_xml.scopedElement( "Info" )
2022-01-03 23:16:39 +01:00
.writeText( result.getMessage() );
break;
case ResultWas::Warning:
// Warning will already have been written
break;
case ResultWas::ExplicitFailure:
m_xml.startElement( "Failure" );
writeSourceInfo( result.getSourceInfo() );
m_xml.writeText( result.getMessage() );
m_xml.endElement();
break;
2023-01-22 19:43:11 +01:00
case ResultWas::ExplicitSkip:
m_xml.startElement( "Skip" );
writeSourceInfo( result.getSourceInfo() );
m_xml.writeText( result.getMessage() );
m_xml.endElement();
break;
default:
break;
}
if( result.hasExpression() )
m_xml.endElement();
}
void XmlReporter::sectionEnded( SectionStats const& sectionStats ) {
StreamingReporterBase::sectionEnded( sectionStats );
2023-01-22 19:43:11 +01:00
if ( --m_sectionDepth > 0 ) {
{
XmlWriter::ScopedElement e = m_xml.scopedElement( "OverallResults" );
e.writeAttribute( "successes"_sr, sectionStats.assertions.passed );
e.writeAttribute( "failures"_sr, sectionStats.assertions.failed );
e.writeAttribute( "expectedFailures"_sr, sectionStats.assertions.failedButOk );
e.writeAttribute( "skipped"_sr, sectionStats.assertions.skipped > 0 );
2023-01-22 19:43:11 +01:00
if ( m_config->showDurations() == ShowDurations::Always )
e.writeAttribute( "durationInSeconds"_sr, sectionStats.durationInSeconds );
}
// Ends assertion tag
m_xml.endElement();
}
}
void XmlReporter::testCaseEnded( TestCaseStats const& testCaseStats ) {
StreamingReporterBase::testCaseEnded( testCaseStats );
XmlWriter::ScopedElement e = m_xml.scopedElement( "OverallResult" );
2022-01-03 23:16:39 +01:00
e.writeAttribute( "success"_sr, testCaseStats.totals.assertions.allOk() );
2023-01-22 19:43:11 +01:00
e.writeAttribute( "skips"_sr, testCaseStats.totals.assertions.skipped );
if ( m_config->showDurations() == ShowDurations::Always )
2022-01-03 23:16:39 +01:00
e.writeAttribute( "durationInSeconds"_sr, m_testCaseTimer.getElapsedSeconds() );
if( !testCaseStats.stdOut.empty() )
2023-02-27 15:12:35 +01:00
m_xml.scopedElement( "StdOut" ).writeText( trim( StringRef(testCaseStats.stdOut) ), XmlFormatting::Newline );
if( !testCaseStats.stdErr.empty() )
2023-02-27 15:12:35 +01:00
m_xml.scopedElement( "StdErr" ).writeText( trim( StringRef(testCaseStats.stdErr) ), XmlFormatting::Newline );
m_xml.endElement();
}
void XmlReporter::testRunEnded( TestRunStats const& testRunStats ) {
StreamingReporterBase::testRunEnded( testRunStats );
m_xml.scopedElement( "OverallResults" )
2022-01-03 23:16:39 +01:00
.writeAttribute( "successes"_sr, testRunStats.totals.assertions.passed )
.writeAttribute( "failures"_sr, testRunStats.totals.assertions.failed )
2023-01-22 19:43:11 +01:00
.writeAttribute( "expectedFailures"_sr, testRunStats.totals.assertions.failedButOk )
.writeAttribute( "skips"_sr, testRunStats.totals.assertions.skipped );
m_xml.scopedElement( "OverallResultsCases")
2022-01-03 23:16:39 +01:00
.writeAttribute( "successes"_sr, testRunStats.totals.testCases.passed )
.writeAttribute( "failures"_sr, testRunStats.totals.testCases.failed )
2023-01-22 19:43:11 +01:00
.writeAttribute( "expectedFailures"_sr, testRunStats.totals.testCases.failedButOk )
.writeAttribute( "skips"_sr, testRunStats.totals.testCases.skipped );
m_xml.endElement();
}
2022-01-03 23:16:39 +01:00
void XmlReporter::benchmarkPreparing( StringRef name ) {
m_xml.startElement("BenchmarkResults")
2022-01-03 23:16:39 +01:00
.writeAttribute("name"_sr, name);
}
void XmlReporter::benchmarkStarting(BenchmarkInfo const &info) {
2022-01-03 23:16:39 +01:00
m_xml.writeAttribute("samples"_sr, info.samples)
.writeAttribute("resamples"_sr, info.resamples)
.writeAttribute("iterations"_sr, info.iterations)
.writeAttribute("clockResolution"_sr, info.clockResolution)
.writeAttribute("estimatedDuration"_sr, info.estimatedDuration)
.writeComment("All values in nano seconds"_sr);
}
void XmlReporter::benchmarkEnded(BenchmarkStats<> const& benchmarkStats) {
2023-12-11 00:55:40 +01:00
m_xml.scopedElement("mean")
2022-01-03 23:16:39 +01:00
.writeAttribute("value"_sr, benchmarkStats.mean.point.count())
.writeAttribute("lowerBound"_sr, benchmarkStats.mean.lower_bound.count())
.writeAttribute("upperBound"_sr, benchmarkStats.mean.upper_bound.count())
.writeAttribute("ci"_sr, benchmarkStats.mean.confidence_interval);
2023-12-11 00:55:40 +01:00
m_xml.scopedElement("standardDeviation")
2022-01-03 23:16:39 +01:00
.writeAttribute("value"_sr, benchmarkStats.standardDeviation.point.count())
.writeAttribute("lowerBound"_sr, benchmarkStats.standardDeviation.lower_bound.count())
.writeAttribute("upperBound"_sr, benchmarkStats.standardDeviation.upper_bound.count())
.writeAttribute("ci"_sr, benchmarkStats.standardDeviation.confidence_interval);
2023-12-11 00:55:40 +01:00
m_xml.scopedElement("outliers")
2022-01-03 23:16:39 +01:00
.writeAttribute("variance"_sr, benchmarkStats.outlierVariance)
.writeAttribute("lowMild"_sr, benchmarkStats.outliers.low_mild)
.writeAttribute("lowSevere"_sr, benchmarkStats.outliers.low_severe)
.writeAttribute("highMild"_sr, benchmarkStats.outliers.high_mild)
.writeAttribute("highSevere"_sr, benchmarkStats.outliers.high_severe);
m_xml.endElement();
}
2022-01-03 23:16:39 +01:00
void XmlReporter::benchmarkFailed(StringRef error) {
m_xml.scopedElement("failed").
2022-01-03 23:16:39 +01:00
writeAttribute("message"_sr, error);
m_xml.endElement();
}
2022-01-03 23:16:39 +01:00
void XmlReporter::listReporters(std::vector<ReporterDescription> const& descriptions) {
auto outerTag = m_xml.scopedElement("AvailableReporters");
for (auto const& reporter : descriptions) {
auto inner = m_xml.scopedElement("Reporter");
m_xml.startElement("Name", XmlFormatting::Indent)
.writeText(reporter.name, XmlFormatting::None)
.endElement(XmlFormatting::Newline);
m_xml.startElement("Description", XmlFormatting::Indent)
.writeText(reporter.description, XmlFormatting::None)
.endElement(XmlFormatting::Newline);
}
}
2022-05-17 22:13:36 +02:00
void XmlReporter::listListeners(std::vector<ListenerDescription> const& descriptions) {
auto outerTag = m_xml.scopedElement( "RegisteredListeners" );
for ( auto const& listener : descriptions ) {
auto inner = m_xml.scopedElement( "Listener" );
m_xml.startElement( "Name", XmlFormatting::Indent )
.writeText( listener.name, XmlFormatting::None )
.endElement( XmlFormatting::Newline );
m_xml.startElement( "Description", XmlFormatting::Indent )
.writeText( listener.description, XmlFormatting::None )
.endElement( XmlFormatting::Newline );
}
}
2022-01-03 23:16:39 +01:00
void XmlReporter::listTests(std::vector<TestCaseHandle> const& tests) {
auto outerTag = m_xml.scopedElement("MatchingTests");
for (auto const& test : tests) {
auto innerTag = m_xml.scopedElement("TestCase");
auto const& testInfo = test.getTestCaseInfo();
m_xml.startElement("Name", XmlFormatting::Indent)
.writeText(testInfo.name, XmlFormatting::None)
.endElement(XmlFormatting::Newline);
m_xml.startElement("ClassName", XmlFormatting::Indent)
.writeText(testInfo.className, XmlFormatting::None)
.endElement(XmlFormatting::Newline);
m_xml.startElement("Tags", XmlFormatting::Indent)
.writeText(testInfo.tagsAsString(), XmlFormatting::None)
.endElement(XmlFormatting::Newline);
auto sourceTag = m_xml.scopedElement("SourceInfo");
m_xml.startElement("File", XmlFormatting::Indent)
.writeText(testInfo.lineInfo.file, XmlFormatting::None)
.endElement(XmlFormatting::Newline);
m_xml.startElement("Line", XmlFormatting::Indent)
.writeText(std::to_string(testInfo.lineInfo.line), XmlFormatting::None)
.endElement(XmlFormatting::Newline);
}
}
2022-01-03 23:16:39 +01:00
void XmlReporter::listTags(std::vector<TagInfo> const& tags) {
auto outerTag = m_xml.scopedElement("TagsFromMatchingTests");
for (auto const& tag : tags) {
auto innerTag = m_xml.scopedElement("Tag");
m_xml.startElement("Count", XmlFormatting::Indent)
.writeText(std::to_string(tag.count), XmlFormatting::None)
.endElement(XmlFormatting::Newline);
auto aliasTag = m_xml.scopedElement("Aliases");
for (auto const& alias : tag.spellings) {
m_xml.startElement("Alias", XmlFormatting::Indent)
2022-01-03 23:16:39 +01:00
.writeText(alias, XmlFormatting::None)
.endElement(XmlFormatting::Newline);
}
}
}
} // end namespace Catch
#if defined(_MSC_VER)
#pragma warning(pop)
#endif