Centralize and update docs for floating point comparisons

The new docs mention that Approx is deprecated and should not be
used, and explain the reasons behind it.

Closes #1444
This commit is contained in:
Martin Hořeňovský 2022-10-14 22:14:52 +02:00
parent bdf30834eb
commit 0c962d11b3
No known key found for this signature in database
GPG Key ID: DE48307B8B0D381A
4 changed files with 197 additions and 93 deletions

View File

@ -7,6 +7,7 @@ Once you're up and running consider the following reference material.
Writing tests: Writing tests:
* [Assertion macros](assertions.md#top) * [Assertion macros](assertions.md#top)
* [Matchers](matchers.md#top) * [Matchers](matchers.md#top)
* [Comparing floating point numbers](comparing-floating-point-numbers.md#top)
* [Logging macros](logging.md#top) * [Logging macros](logging.md#top)
* [Test cases and sections](test-cases-and-sections.md#top) * [Test cases and sections](test-cases-and-sections.md#top)
* [Test fixtures](test-fixtures.md#top) * [Test fixtures](test-fixtures.md#top)

View File

@ -53,56 +53,8 @@ This expression is too complex because of the `||` operator. If you want to chec
### Floating point comparisons ### Floating point comparisons
When comparing floating point numbers - especially if at least one of them has been computed - great care must be taken to allow for rounding errors and inexact representations. Comparing floating point numbers is complex, and [so it has its own
documentation page](comparing-floating-point-numbers.md#top).
Catch provides a way to perform tolerant comparisons of floating point values through use of a wrapper class called `Approx`. `Approx` can be used on either side of a comparison expression. It overloads the comparisons operators to take a tolerance into account. Here's a simple example:
```cpp
REQUIRE( performComputation() == Approx( 2.1 ) );
```
Catch also provides a user-defined literal for `Approx`; `_a`. It resides in
the `Catch::literals` namespace and can be used like so:
```cpp
using namespace Catch::literals;
REQUIRE( performComputation() == 2.1_a );
```
`Approx` is constructed with defaults that should cover most simple cases.
For the more complex cases, `Approx` provides 3 customization points:
* __epsilon__ - epsilon serves to set the coefficient by which a result
can differ from `Approx`'s value before it is rejected.
_By default set to `std::numeric_limits<float>::epsilon()*100`._
* __margin__ - margin serves to set the the absolute value by which
a result can differ from `Approx`'s value before it is rejected.
_By default set to `0.0`._
* __scale__ - scale is used to change the magnitude of `Approx` for relative check.
_By default set to `0.0`._
#### epsilon example
```cpp
Approx target = Approx(100).epsilon(0.01);
100.0 == target; // Obviously true
200.0 == target; // Obviously still false
100.5 == target; // True, because we set target to allow up to 1% difference
```
#### margin example
```cpp
Approx target = Approx(100).margin(5);
100.0 == target; // Obviously true
200.0 == target; // Obviously still false
104.0 == target; // True, because we set target to allow absolute difference of at most 5
```
#### scale
Scale can be useful if the computation leading to the result worked
on different scale than is used by the results. Since allowed difference
between Approx's value and compared value is based primarily on Approx's value
(the allowed difference is computed as
`(Approx::scale + Approx::value) * epsilon`), the resulting comparison could
need rescaling to be correct.
## Exceptions ## Exceptions

View File

@ -0,0 +1,192 @@
<a id="top"></a>
# Comparing floating point numbers with Catch2
If you are not deeply familiar with them, floating point numbers can be
unintuitive. This also applies to comparing floating point numbers for
(in)equality.
This page assumes that you have some understanding of both FP, and the
meaning of different kinds of comparisons, and only goes over what
functionality Catch2 provides to help you with comparing floating point
numbers. If you do not have this understanding, we recommend that you first
study up on floating point numbers and their comparisons, e.g. by [reading
this blog post](https://codingnest.com/the-little-things-comparing-floating-point-numbers/).
## Floating point matchers
```
#include <catch2/matchers/catch_matchers_floating.hpp
```
[Matchers](matchers.md#top) are the preferred way of comparing floating
point numbers in Catch2. We provide 3 of them:
* `WithinAbs(double target, double margin)`,
* `WithinRel(FloatingPoint target, FloatingPoint eps)`, and
* `WithinULP(FloatingPoint target, uint64_t maxUlpDiff)`.
> `WithinRel` matcher was introduced in Catch2 2.10.0
As with all matchers, you can combine multiple floating point matchers
in a single assertion. For example, to check that some computation matches
a known good value within 0.1% or is close enough (no different to 5
decimal places) to zero, we would write this assertion:
```cpp
REQUIRE_THAT( computation(input),
Catch::Matchers::WithinRel(expected, 0.001)
|| Catch::Matchers::WithinAbs(0, 0.000001) );
```
### WithinAbs
`WithinAbs` creates a matcher that accepts floating point numbers whose
difference with `target` is less-or-equal to the `margin`. Since `float`
can be converted to `double` without losing precision, only `double`
overload exists.
```cpp
REQUIRE_THAT(1.0, WithinAbs(1.2, 0.2));
REQUIRE_THAT(0.f, !WithinAbs(1.0, 0.5));
// Notice that infinity == infinity for WithinAbs
REQUIRE_THAT(INFINITY, WithinAbs(INFINITY, 0));
```
### WithinRel
`WithinRel` creates a matcher that accepts floating point numbers that
are _approximately equal_ to the `target` with a tolerance of `eps.`
Specifically, it matches if
`|arg - target| <= eps * max(|arg|, |target|)` holds. If you do not
specify `eps`, `std::numeric_limits<FloatingPoint>::epsilon * 100`
is used as the default.
```cpp
// Notice that WithinRel comparison is symmetric, unlike Approx's.
REQUIRE_THAT(1.0, WithinRel(1.1, 0.1));
REQUIRE_THAT(1.1, WithinRel(1.0, 0.1));
// Notice that inifnity == infinity for WithinRel
REQUIRE_THAT(INFINITY, WithinRel(INFINITY));
```
### WithinULP
`WithinULP` creates a matcher that accepts floating point numbers that
are no more than `maxUlpDiff`
[ULPs](https://en.wikipedia.org/wiki/Unit_in_the_last_place)
away from the `target` value. The short version of what this means
is that there is no more than `maxUlpDiff - 1` representable floating
point numbers between the argument for matching and the `target` value.
When using the ULP matcher in Catch2, it is important to keep in mind
that Catch2 interprets ULP distance slightly differently than
e.g. `std::nextafter` does.
Catch2's ULP calculation obeys these relations:
* `ulpDistance(-x, x) == 2 * ulpDistance(x, 0)`
* `ulpDistance(-0, 0) == 0` (due to the above)
* `ulpDistance(DBL_MAX, INFINITY) == 1`
* `ulpDistancE(NaN, x) == infinity`
**Important**: The WithinULP matcher requires the platform to use the
[IEEE-754](https://en.wikipedia.org/wiki/IEEE_754) representation for
floating point numbers.
```cpp
REQUIRE_THAT( -0.f, WithinULP( 0.f, 0 ) );
```
## `Approx`
```
#include <catch2/catch_approx.hpp>
```
**We strongly recommend against using `Approx` when writing new code.**
You should be using floating point matchers instead.
Catch2 provides one more way to handle floating point comparisons. It is
`Approx`, a special type with overloaded comparison operators, that can
be used in standard assertions, e.g.
```cpp
REQUIRE(0.99999 == Catch::Approx(1));
```
`Approx` supports four comparison operators, `==`, `!=`, `<=`, `>=`, and can
also be used with strong typedefs over `double`s. It can be used for both
relative and margin comparisons by using its three customization points.
Note that the semantics of this is always that of an _or_, so if either
the relative or absolute margin comparison passes, then the whole comparison
passes.
The downside to `Approx` is that it has a couple of issues that we cannot
fix without breaking backwards compatibility. Because Catch2 also provides
complete set of matchers that implement different floating point comparison
methods, `Approx` is left as-is, is considered deprecated, and should
not be used in new code.
The issues are
* All internal computation is done in `double`s, leading to slightly
different results if the inputs were floats.
* `Approx`'s relative margin comparison is not symmetric. This means
that `Approx( 10 ).epsilon(0.1) != 11.1` but `Approx( 11.1 ).epsilon(0.1) == 10`.
* By default, `Approx` only uses relative margin comparison. This means
that `Approx(0) == X` only passes for `X == 0`.
### Approx details
If you still want/need to know more about `Approx`, read on.
Catch2 provides a UDL for `Approx`; `_a`. It resides in the `Catch::literals`
namespace, and can be used like this:
```cpp
using namespace Catch::literals;
REQUIRE( performComputation() == 2.1_a );
```
`Approx` has three customization points for the comparison:
* **epsilon** - epsilon sets the coefficient by which a result
can differ from `Approx`'s value before it is rejected.
_Defaults to `std::numeric_limits<float>::epsilon()*100`._
```cpp
Approx target = Approx(100).epsilon(0.01);
100.0 == target; // Obviously true
200.0 == target; // Obviously still false
100.5 == target; // True, because we set target to allow up to 1% difference
```
* **margin** - margin sets the absolute value by which
a result can differ from `Approx`'s value before it is rejected.
_Defaults to `0.0`._
```cpp
Approx target = Approx(100).margin(5);
100.0 == target; // Obviously true
200.0 == target; // Obviously still false
104.0 == target; // True, because we set target to allow absolute difference of at most 5
```
* **scale** - scale is used to change the magnitude of `Approx` for the relative check.
_By default, set to `0.0`._
Scale could be useful if the computation leading to the result worked
on a different scale than is used by the results. Approx's scale is added
to Approx's value when computing the allowed relative margin from the
Approx's value.
---
[Home](Readme.md#top)

View File

@ -150,49 +150,8 @@ are:
> `WithinRel` matcher was introduced in Catch2 2.10.0 > `WithinRel` matcher was introduced in Catch2 2.10.0
For more details, read [the docs on comparing floating point
`WithinAbs` creates a matcher that accepts floating point numbers whose numbers](comparing-floating-point-numbers.md#floating-point-matchers).
difference with `target` is less than the `margin`.
`WithinULP` creates a matcher that accepts floating point numbers that
are no more than `maxUlpDiff`
[ULPs](https://en.wikipedia.org/wiki/Unit_in_the_last_place)
away from the `target` value. The short version of what this means
is that there is no more than `maxUlpDiff - 1` representable floating
point numbers between the argument for matching and the `target` value.
**Important**: The WithinULP matcher requires the platform to use the
[IEEE-754](https://en.wikipedia.org/wiki/IEEE_754) representation for
floating point numbers.
`WithinRel` creates a matcher that accepts floating point numbers that
are _approximately equal_ with the `target` with tolerance of `eps.`
Specifically, it matches if
`|arg - target| <= eps * max(|arg|, |target|)` holds. If you do not
specify `eps`, `std::numeric_limits<FloatingPoint>::epsilon * 100`
is used as the default.
In practice, you will often want to combine multiple of these matchers,
together for an assertion, because all 3 options have edge cases where
they behave differently than you would expect. As an example, under
the `WithinRel` matcher, a `0.` only ever matches a `0.` (or `-0.`),
regardless of the relative tolerance specified. Thus, if you want to
handle numbers that are "close enough to 0 to be 0", you have to combine
it with the `WithinAbs` matcher.
For example, to check that our computation matches known good value
within 0.1%, or is close enough (no different to 5 decimal places)
to zero, we would write this assertion:
```cpp
REQUIRE_THAT( computation(input),
Catch::Matchers::WithinRel(expected, 0.001)
|| Catch::Matchers::WithinAbs(0, 0.000001) );
```
> floating point matchers live in `catch2/matchers/catch_matchers_floating.hpp`
### Miscellaneous matchers ### Miscellaneous matchers