mirror of
https://github.com/catchorg/Catch2.git
synced 2024-12-23 11:43:29 +01:00
Merge branch 'develop'
This commit is contained in:
commit
35f4266d00
@ -87,7 +87,7 @@ Of course there are still more issues to do deal with. For example we'll hit pro
|
|||||||
Although this was a simple test it's been enough to demonstrate a few things about how Catch is used. Let's take moment to consider those before we move on.
|
Although this was a simple test it's been enough to demonstrate a few things about how Catch is used. Let's take moment to consider those before we move on.
|
||||||
|
|
||||||
1. All we did was ```#define``` one identifier and ```#include``` one header and we got everything - even an implementation of ```main()``` that will [respond to command line arguments](command-line.md). You can only use that ```#define``` in one implementation file, for (hopefully) obvious reasons. Once you have more than one file with unit tests in you'll just ```#include "catch.hpp"``` and go. Usually it's a good idea to have a dedicated implementation file that just has ```#define CATCH_CONFIG_MAIN``` and ```#include "catch.hpp"```. You can also provide your own implementation of main and drive Catch yourself (see [Supplying-your-own-main()](own-main.md)).
|
1. All we did was ```#define``` one identifier and ```#include``` one header and we got everything - even an implementation of ```main()``` that will [respond to command line arguments](command-line.md). You can only use that ```#define``` in one implementation file, for (hopefully) obvious reasons. Once you have more than one file with unit tests in you'll just ```#include "catch.hpp"``` and go. Usually it's a good idea to have a dedicated implementation file that just has ```#define CATCH_CONFIG_MAIN``` and ```#include "catch.hpp"```. You can also provide your own implementation of main and drive Catch yourself (see [Supplying-your-own-main()](own-main.md)).
|
||||||
2. We introduce test cases with the ```TEST_CASE``` macro. This macro takes one or two arguments - a free form test name and, optionally, one or more tags (for more see <a href="#test-cases-and-sections">Test cases and Sections</a>, below. The test name must be unique. You can run sets of tests by specifying a wildcarded test name or a tag expression. See the [command line docs](command-line.md) for more information on running tests.
|
2. We introduce test cases with the ```TEST_CASE``` macro. This macro takes one or two arguments - a free form test name and, optionally, one or more tags (for more see <a href="#test-cases-and-sections">Test cases and Sections</a>, ). The test name must be unique. You can run sets of tests by specifying a wildcarded test name or a tag expression. See the [command line docs](command-line.md) for more information on running tests.
|
||||||
3. The name and tags arguments are just strings. We haven't had to declare a function or method - or explicitly register the test case anywhere. Behind the scenes a function with a generated name is defined for you, and automatically registered using static registry classes. By abstracting the function name away we can name our tests without the constraints of identifier names.
|
3. The name and tags arguments are just strings. We haven't had to declare a function or method - or explicitly register the test case anywhere. Behind the scenes a function with a generated name is defined for you, and automatically registered using static registry classes. By abstracting the function name away we can name our tests without the constraints of identifier names.
|
||||||
4. We write our individual test assertions using the ```REQUIRE``` macro. Rather than a separate macro for each type of condition we express the condition naturally using C/C++ syntax. Behind the scenes a simple set of expression templates captures the left-hand-side and right-hand-side of the expression so we can display the values in our test report. As we'll see later there _are_ other assertion macros - but because of this technique the number of them is drastically reduced.
|
4. We write our individual test assertions using the ```REQUIRE``` macro. Rather than a separate macro for each type of condition we express the condition naturally using C/C++ syntax. Behind the scenes a simple set of expression templates captures the left-hand-side and right-hand-side of the expression so we can display the values in our test report. As we'll see later there _are_ other assertion macros - but because of this technique the number of them is drastically reduced.
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user