mirror of
https://github.com/catchorg/Catch2.git
synced 2024-11-22 13:26:10 +01:00
Replace vector iterator args in benchmarks with ptr args
This commit is contained in:
parent
b4ffba5087
commit
9bba07cb87
@ -30,8 +30,13 @@ namespace Catch {
|
|||||||
samples.push_back( current->count() );
|
samples.push_back( current->count() );
|
||||||
}
|
}
|
||||||
|
|
||||||
auto analysis = Catch::Benchmark::Detail::analyse_samples(cfg.benchmarkConfidenceInterval(), cfg.benchmarkResamples(), samples.begin(), samples.end());
|
auto analysis = Catch::Benchmark::Detail::analyse_samples(
|
||||||
auto outliers = Catch::Benchmark::Detail::classify_outliers(samples.begin(), samples.end());
|
cfg.benchmarkConfidenceInterval(),
|
||||||
|
cfg.benchmarkResamples(),
|
||||||
|
samples.data(),
|
||||||
|
samples.data() + samples.size() );
|
||||||
|
auto outliers = Catch::Benchmark::Detail::classify_outliers(
|
||||||
|
samples.data(), samples.data() + samples.size() );
|
||||||
|
|
||||||
auto wrap_estimate = [](Estimate<double> e) {
|
auto wrap_estimate = [](Estimate<double> e) {
|
||||||
return Estimate<Duration> {
|
return Estimate<Duration> {
|
||||||
|
@ -63,8 +63,8 @@ namespace Catch {
|
|||||||
auto r = run_for_at_least<Clock>(std::chrono::duration_cast<ClockDuration<Clock>>(clock_resolution_estimation_time), iterations, &resolution<Clock>)
|
auto r = run_for_at_least<Clock>(std::chrono::duration_cast<ClockDuration<Clock>>(clock_resolution_estimation_time), iterations, &resolution<Clock>)
|
||||||
.result;
|
.result;
|
||||||
return {
|
return {
|
||||||
FloatDuration<Clock>(mean(r.begin(), r.end())),
|
FloatDuration<Clock>(mean(r.data(), r.data() + r.size())),
|
||||||
classify_outliers(r.begin(), r.end()),
|
classify_outliers(r.data(), r.data() + r.size()),
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
template <typename Clock>
|
template <typename Clock>
|
||||||
@ -92,8 +92,8 @@ namespace Catch {
|
|||||||
.count() ) );
|
.count() ) );
|
||||||
}
|
}
|
||||||
return {
|
return {
|
||||||
FloatDuration<Clock>(mean(times.begin(), times.end())),
|
FloatDuration<Clock>(mean(times.data(), times.data() + times.size())),
|
||||||
classify_outliers(times.begin(), times.end()),
|
classify_outliers(times.data(), times.data() + times.size()),
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -30,8 +30,8 @@ namespace Catch {
|
|||||||
static sample
|
static sample
|
||||||
resample( URng& rng,
|
resample( URng& rng,
|
||||||
unsigned int resamples,
|
unsigned int resamples,
|
||||||
std::vector<double>::const_iterator first,
|
double const* first,
|
||||||
std::vector<double>::const_iterator last,
|
double const* last,
|
||||||
Estimator& estimator ) {
|
Estimator& estimator ) {
|
||||||
auto n = static_cast<size_t>( last - first );
|
auto n = static_cast<size_t>( last - first );
|
||||||
std::uniform_int_distribution<decltype( n )> dist( 0,
|
std::uniform_int_distribution<decltype( n )> dist( 0,
|
||||||
@ -51,7 +51,7 @@ namespace Catch {
|
|||||||
dist( rng ) )] );
|
dist( rng ) )] );
|
||||||
}
|
}
|
||||||
const auto estimate =
|
const auto estimate =
|
||||||
estimator( resampled.begin(), resampled.end() );
|
estimator( resampled.data(), resampled.data() + resampled.size() );
|
||||||
out.push_back( estimate );
|
out.push_back( estimate );
|
||||||
}
|
}
|
||||||
std::sort( out.begin(), out.end() );
|
std::sort( out.begin(), out.end() );
|
||||||
@ -168,8 +168,7 @@ namespace Catch {
|
|||||||
}
|
}
|
||||||
|
|
||||||
static double
|
static double
|
||||||
standard_deviation( std::vector<double>::const_iterator first,
|
standard_deviation( double const* first, double const* last ) {
|
||||||
std::vector<double>::const_iterator last ) {
|
|
||||||
auto m = Catch::Benchmark::Detail::mean( first, last );
|
auto m = Catch::Benchmark::Detail::mean( first, last );
|
||||||
double variance =
|
double variance =
|
||||||
std::accumulate( first,
|
std::accumulate( first,
|
||||||
@ -201,7 +200,10 @@ namespace Catch {
|
|||||||
# pragma GCC diagnostic pop
|
# pragma GCC diagnostic pop
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
double weighted_average_quantile(int k, int q, std::vector<double>::iterator first, std::vector<double>::iterator last) {
|
double weighted_average_quantile( int k,
|
||||||
|
int q,
|
||||||
|
double* first,
|
||||||
|
double* last ) {
|
||||||
auto count = last - first;
|
auto count = last - first;
|
||||||
double idx = (count - 1) * k / static_cast<double>(q);
|
double idx = (count - 1) * k / static_cast<double>(q);
|
||||||
int j = static_cast<int>(idx);
|
int j = static_cast<int>(idx);
|
||||||
@ -217,12 +219,11 @@ namespace Catch {
|
|||||||
}
|
}
|
||||||
|
|
||||||
OutlierClassification
|
OutlierClassification
|
||||||
classify_outliers( std::vector<double>::const_iterator first,
|
classify_outliers( double const* first, double const* last ) {
|
||||||
std::vector<double>::const_iterator last ) {
|
|
||||||
std::vector<double> copy( first, last );
|
std::vector<double> copy( first, last );
|
||||||
|
|
||||||
auto q1 = weighted_average_quantile( 1, 4, copy.begin(), copy.end() );
|
auto q1 = weighted_average_quantile( 1, 4, copy.data(), copy.data() + copy.size() );
|
||||||
auto q3 = weighted_average_quantile( 3, 4, copy.begin(), copy.end() );
|
auto q3 = weighted_average_quantile( 3, 4, copy.data(), copy.data() + copy.size() );
|
||||||
auto iqr = q3 - q1;
|
auto iqr = q3 - q1;
|
||||||
auto los = q1 - ( iqr * 3. );
|
auto los = q1 - ( iqr * 3. );
|
||||||
auto lom = q1 - ( iqr * 1.5 );
|
auto lom = q1 - ( iqr * 1.5 );
|
||||||
@ -246,8 +247,7 @@ namespace Catch {
|
|||||||
return o;
|
return o;
|
||||||
}
|
}
|
||||||
|
|
||||||
double mean( std::vector<double>::const_iterator first,
|
double mean( double const* first, double const* last ) {
|
||||||
std::vector<double>::const_iterator last ) {
|
|
||||||
auto count = last - first;
|
auto count = last - first;
|
||||||
double sum = 0.;
|
double sum = 0.;
|
||||||
while (first != last) {
|
while (first != last) {
|
||||||
@ -280,8 +280,8 @@ namespace Catch {
|
|||||||
|
|
||||||
bootstrap_analysis analyse_samples(double confidence_level,
|
bootstrap_analysis analyse_samples(double confidence_level,
|
||||||
unsigned int n_resamples,
|
unsigned int n_resamples,
|
||||||
std::vector<double>::iterator first,
|
double* first,
|
||||||
std::vector<double>::iterator last) {
|
double* last) {
|
||||||
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION
|
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION
|
||||||
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS
|
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS
|
||||||
static std::random_device entropy;
|
static std::random_device entropy;
|
||||||
@ -293,8 +293,7 @@ namespace Catch {
|
|||||||
auto stddev = &standard_deviation;
|
auto stddev = &standard_deviation;
|
||||||
|
|
||||||
#if defined(CATCH_CONFIG_USE_ASYNC)
|
#if defined(CATCH_CONFIG_USE_ASYNC)
|
||||||
auto Estimate = [=](double(*f)(std::vector<double>::const_iterator,
|
auto Estimate = [=](double(*f)(double const*, double const*)) {
|
||||||
std::vector<double>::const_iterator)) {
|
|
||||||
auto seed = entropy();
|
auto seed = entropy();
|
||||||
return std::async(std::launch::async, [=] {
|
return std::async(std::launch::async, [=] {
|
||||||
std::mt19937 rng(seed);
|
std::mt19937 rng(seed);
|
||||||
@ -309,8 +308,7 @@ namespace Catch {
|
|||||||
auto mean_estimate = mean_future.get();
|
auto mean_estimate = mean_future.get();
|
||||||
auto stddev_estimate = stddev_future.get();
|
auto stddev_estimate = stddev_future.get();
|
||||||
#else
|
#else
|
||||||
auto Estimate = [=](double(*f)(std::vector<double>::const_iterator,
|
auto Estimate = [=](double(*f)(double const* , double const*)) {
|
||||||
std::vector<double>::const_iterator)) {
|
|
||||||
auto seed = entropy();
|
auto seed = entropy();
|
||||||
std::mt19937 rng(seed);
|
std::mt19937 rng(seed);
|
||||||
auto resampled = resample(rng, n_resamples, first, last, f);
|
auto resampled = resample(rng, n_resamples, first, last, f);
|
||||||
|
@ -26,19 +26,20 @@ namespace Catch {
|
|||||||
// to centralize warning suppression
|
// to centralize warning suppression
|
||||||
bool directCompare( double lhs, double rhs );
|
bool directCompare( double lhs, double rhs );
|
||||||
|
|
||||||
double weighted_average_quantile(int k, int q, std::vector<double>::iterator first, std::vector<double>::iterator last);
|
double weighted_average_quantile( int k,
|
||||||
|
int q,
|
||||||
|
double* first,
|
||||||
|
double* last );
|
||||||
|
|
||||||
OutlierClassification
|
OutlierClassification
|
||||||
classify_outliers( std::vector<double>::const_iterator first,
|
classify_outliers( double const* first, double const* last );
|
||||||
std::vector<double>::const_iterator last );
|
|
||||||
|
|
||||||
double mean( std::vector<double>::const_iterator first,
|
double mean( double const* first, double const* last );
|
||||||
std::vector<double>::const_iterator last );
|
|
||||||
|
|
||||||
template <typename Estimator>
|
template <typename Estimator>
|
||||||
sample jackknife(Estimator&& estimator,
|
sample jackknife(Estimator&& estimator,
|
||||||
std::vector<double>::iterator first,
|
double* first,
|
||||||
std::vector<double>::iterator last) {
|
double* last) {
|
||||||
auto n = static_cast<size_t>(last - first);
|
auto n = static_cast<size_t>(last - first);
|
||||||
auto second = first;
|
auto second = first;
|
||||||
++second;
|
++second;
|
||||||
@ -63,8 +64,8 @@ namespace Catch {
|
|||||||
|
|
||||||
template <typename Estimator>
|
template <typename Estimator>
|
||||||
Estimate<double> bootstrap( double confidence_level,
|
Estimate<double> bootstrap( double confidence_level,
|
||||||
std::vector<double>::iterator first,
|
double* first,
|
||||||
std::vector<double>::iterator last,
|
double* last,
|
||||||
sample const& resample,
|
sample const& resample,
|
||||||
Estimator&& estimator ) {
|
Estimator&& estimator ) {
|
||||||
auto n_samples = last - first;
|
auto n_samples = last - first;
|
||||||
@ -74,7 +75,7 @@ namespace Catch {
|
|||||||
if (n_samples == 1) return { point, point, point, confidence_level };
|
if (n_samples == 1) return { point, point, point, confidence_level };
|
||||||
|
|
||||||
sample jack = jackknife(estimator, first, last);
|
sample jack = jackknife(estimator, first, last);
|
||||||
double jack_mean = mean(jack.begin(), jack.end());
|
double jack_mean = mean(jack.data(), jack.data() + jack.size());
|
||||||
double sum_squares = 0, sum_cubes = 0;
|
double sum_squares = 0, sum_cubes = 0;
|
||||||
for (double x : jack) {
|
for (double x : jack) {
|
||||||
auto difference = jack_mean - x;
|
auto difference = jack_mean - x;
|
||||||
@ -116,8 +117,8 @@ namespace Catch {
|
|||||||
|
|
||||||
bootstrap_analysis analyse_samples(double confidence_level,
|
bootstrap_analysis analyse_samples(double confidence_level,
|
||||||
unsigned int n_resamples,
|
unsigned int n_resamples,
|
||||||
std::vector<double>::iterator first,
|
double* first,
|
||||||
std::vector<double>::iterator last);
|
double* last);
|
||||||
} // namespace Detail
|
} // namespace Detail
|
||||||
} // namespace Benchmark
|
} // namespace Benchmark
|
||||||
} // namespace Catch
|
} // namespace Catch
|
||||||
|
@ -156,8 +156,12 @@ TEST_CASE("uniform samples", "[benchmark]") {
|
|||||||
std::vector<double> samples(100);
|
std::vector<double> samples(100);
|
||||||
std::fill(samples.begin(), samples.end(), 23);
|
std::fill(samples.begin(), samples.end(), 23);
|
||||||
|
|
||||||
using it = std::vector<double>::iterator;
|
auto e = Catch::Benchmark::Detail::bootstrap(
|
||||||
auto e = Catch::Benchmark::Detail::bootstrap(0.95, samples.begin(), samples.end(), samples, [](it a, it b) {
|
0.95,
|
||||||
|
samples.data(),
|
||||||
|
samples.data() + samples.size(),
|
||||||
|
samples,
|
||||||
|
[]( double const* a, double const* b ) {
|
||||||
auto sum = std::accumulate(a, b, 0.);
|
auto sum = std::accumulate(a, b, 0.);
|
||||||
return sum / (b - a);
|
return sum / (b - a);
|
||||||
});
|
});
|
||||||
@ -198,7 +202,7 @@ TEST_CASE("normal_quantile", "[benchmark]") {
|
|||||||
TEST_CASE("mean", "[benchmark]") {
|
TEST_CASE("mean", "[benchmark]") {
|
||||||
std::vector<double> x{ 10., 20., 14., 16., 30., 24. };
|
std::vector<double> x{ 10., 20., 14., 16., 30., 24. };
|
||||||
|
|
||||||
auto m = Catch::Benchmark::Detail::mean(x.begin(), x.end());
|
auto m = Catch::Benchmark::Detail::mean(x.data(), x.data() + x.size());
|
||||||
|
|
||||||
REQUIRE(m == 19.);
|
REQUIRE(m == 19.);
|
||||||
}
|
}
|
||||||
@ -206,9 +210,9 @@ TEST_CASE("mean", "[benchmark]") {
|
|||||||
TEST_CASE("weighted_average_quantile", "[benchmark]") {
|
TEST_CASE("weighted_average_quantile", "[benchmark]") {
|
||||||
std::vector<double> x{ 10., 20., 14., 16., 30., 24. };
|
std::vector<double> x{ 10., 20., 14., 16., 30., 24. };
|
||||||
|
|
||||||
auto q1 = Catch::Benchmark::Detail::weighted_average_quantile(1, 4, x.begin(), x.end());
|
auto q1 = Catch::Benchmark::Detail::weighted_average_quantile(1, 4, x.data(), x.data() + x.size());
|
||||||
auto med = Catch::Benchmark::Detail::weighted_average_quantile(1, 2, x.begin(), x.end());
|
auto med = Catch::Benchmark::Detail::weighted_average_quantile(1, 2, x.data(), x.data() + x.size());
|
||||||
auto q3 = Catch::Benchmark::Detail::weighted_average_quantile(3, 4, x.begin(), x.end());
|
auto q3 = Catch::Benchmark::Detail::weighted_average_quantile(3, 4, x.data(), x.data() + x.size());
|
||||||
|
|
||||||
REQUIRE(q1 == 14.5);
|
REQUIRE(q1 == 14.5);
|
||||||
REQUIRE(med == 18.);
|
REQUIRE(med == 18.);
|
||||||
@ -227,7 +231,8 @@ TEST_CASE("classify_outliers", "[benchmark]") {
|
|||||||
SECTION("none") {
|
SECTION("none") {
|
||||||
std::vector<double> x{ 10., 20., 14., 16., 30., 24. };
|
std::vector<double> x{ 10., 20., 14., 16., 30., 24. };
|
||||||
|
|
||||||
auto o = Catch::Benchmark::Detail::classify_outliers(x.begin(), x.end());
|
auto o = Catch::Benchmark::Detail::classify_outliers(
|
||||||
|
x.data(), x.data() + x.size() );
|
||||||
|
|
||||||
REQUIRE(o.samples_seen == static_cast<int>(x.size()));
|
REQUIRE(o.samples_seen == static_cast<int>(x.size()));
|
||||||
require_outliers(o, 0, 0, 0, 0);
|
require_outliers(o, 0, 0, 0, 0);
|
||||||
@ -235,7 +240,8 @@ TEST_CASE("classify_outliers", "[benchmark]") {
|
|||||||
SECTION("low severe") {
|
SECTION("low severe") {
|
||||||
std::vector<double> x{ -12., 20., 14., 16., 30., 24. };
|
std::vector<double> x{ -12., 20., 14., 16., 30., 24. };
|
||||||
|
|
||||||
auto o = Catch::Benchmark::Detail::classify_outliers(x.begin(), x.end());
|
auto o = Catch::Benchmark::Detail::classify_outliers(
|
||||||
|
x.data(), x.data() + x.size() );
|
||||||
|
|
||||||
REQUIRE(o.samples_seen == static_cast<int>(x.size()));
|
REQUIRE(o.samples_seen == static_cast<int>(x.size()));
|
||||||
require_outliers(o, 1, 0, 0, 0);
|
require_outliers(o, 1, 0, 0, 0);
|
||||||
@ -243,7 +249,8 @@ TEST_CASE("classify_outliers", "[benchmark]") {
|
|||||||
SECTION("low mild") {
|
SECTION("low mild") {
|
||||||
std::vector<double> x{ 1., 20., 14., 16., 30., 24. };
|
std::vector<double> x{ 1., 20., 14., 16., 30., 24. };
|
||||||
|
|
||||||
auto o = Catch::Benchmark::Detail::classify_outliers(x.begin(), x.end());
|
auto o = Catch::Benchmark::Detail::classify_outliers(
|
||||||
|
x.data(), x.data() + x.size() );
|
||||||
|
|
||||||
REQUIRE(o.samples_seen == static_cast<int>(x.size()));
|
REQUIRE(o.samples_seen == static_cast<int>(x.size()));
|
||||||
require_outliers(o, 0, 1, 0, 0);
|
require_outliers(o, 0, 1, 0, 0);
|
||||||
@ -251,7 +258,8 @@ TEST_CASE("classify_outliers", "[benchmark]") {
|
|||||||
SECTION("high mild") {
|
SECTION("high mild") {
|
||||||
std::vector<double> x{ 10., 20., 14., 16., 36., 24. };
|
std::vector<double> x{ 10., 20., 14., 16., 36., 24. };
|
||||||
|
|
||||||
auto o = Catch::Benchmark::Detail::classify_outliers(x.begin(), x.end());
|
auto o = Catch::Benchmark::Detail::classify_outliers(
|
||||||
|
x.data(), x.data() + x.size() );
|
||||||
|
|
||||||
REQUIRE(o.samples_seen == static_cast<int>(x.size()));
|
REQUIRE(o.samples_seen == static_cast<int>(x.size()));
|
||||||
require_outliers(o, 0, 0, 1, 0);
|
require_outliers(o, 0, 0, 1, 0);
|
||||||
@ -259,7 +267,8 @@ TEST_CASE("classify_outliers", "[benchmark]") {
|
|||||||
SECTION("high severe") {
|
SECTION("high severe") {
|
||||||
std::vector<double> x{ 10., 20., 14., 16., 49., 24. };
|
std::vector<double> x{ 10., 20., 14., 16., 49., 24. };
|
||||||
|
|
||||||
auto o = Catch::Benchmark::Detail::classify_outliers(x.begin(), x.end());
|
auto o = Catch::Benchmark::Detail::classify_outliers(
|
||||||
|
x.data(), x.data() + x.size() );
|
||||||
|
|
||||||
REQUIRE(o.samples_seen == static_cast<int>(x.size()));
|
REQUIRE(o.samples_seen == static_cast<int>(x.size()));
|
||||||
require_outliers(o, 0, 0, 0, 1);
|
require_outliers(o, 0, 0, 0, 1);
|
||||||
@ -267,7 +276,8 @@ TEST_CASE("classify_outliers", "[benchmark]") {
|
|||||||
SECTION("mixed") {
|
SECTION("mixed") {
|
||||||
std::vector<double> x{ -20., 20., 14., 16., 39., 24. };
|
std::vector<double> x{ -20., 20., 14., 16., 39., 24. };
|
||||||
|
|
||||||
auto o = Catch::Benchmark::Detail::classify_outliers(x.begin(), x.end());
|
auto o = Catch::Benchmark::Detail::classify_outliers(
|
||||||
|
x.data(), x.data() + x.size() );
|
||||||
|
|
||||||
REQUIRE(o.samples_seen == static_cast<int>(x.size()));
|
REQUIRE(o.samples_seen == static_cast<int>(x.size()));
|
||||||
require_outliers(o, 1, 0, 1, 0);
|
require_outliers(o, 1, 0, 1, 0);
|
||||||
|
Loading…
Reference in New Issue
Block a user