The parameter given to `convert` may not be copyable therefore it has to be
captured by const reference. For example an `std::tuple` that contains a
non-copyable type is itself non-copyable.
The NonDefaultConstructible test-case was reduced by one example type
because it did not add any value.
* Fix non-default-constructible type lists used in TEMPLATE_LIST_TEST_CASE
std::tuple is not default constructible when the first type is not
default-constuctible. Therefore it can not be instantiated.
to circumvent this, we have to use std::declval in the unevaluate decltype
context.
support for generating test cases based on multiple template template
types combined with template arguments for each of the template template
types specified
e.g.
```
TEMPLATE_PRODUCT_TEST_CASE("template product","[template]",
(std::tuple, std::pair, std::map),
((int,float),(char,double),(int,char)))
```
will effectively create 9 test cases with types:
std::tuple<int,float>
std::tuple<char,double>
std::tuple<int,char>
std::pair<int,float>
std::pair<char, double>
std::pair<int,char>
std::map<int,float>
std::map<char,double>
std::map<int,char>
Tested type is accessible in test case body as TestType
Unique name is created by appending ` - <index>` to test name
since preprocessor has some limitations in recursions
Closes#1454
This adds support for templated tests and test methods via
`TEMPLATE_TEST_CASE` and `TEMPLATE_TEST_CASE_METHOD` macros. These
work mostly just like their regular counterparts*, but take an
unlimited** number of types as their last arguments.
* Unlike the plain `TEST_CASE*` macros, the `TEMPLATE*` variants
require a tag string.
** In practice there is limit of about 300 types.