// Copyright Catch2 Authors // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE.txt or copy at // https://www.boost.org/LICENSE_1_0.txt) // SPDX-License-Identifier: BSL-1.0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { namespace unrelated { template class needs_ADL_begin { std::vector m_elements; public: using iterator = typename std::vector::iterator; using const_iterator = typename std::vector::const_iterator; needs_ADL_begin(std::initializer_list init) : m_elements(init) {} const_iterator Begin() const { return m_elements.begin(); } const_iterator End() const { return m_elements.end(); } friend const_iterator begin(needs_ADL_begin const& lhs) { return lhs.Begin(); } friend const_iterator end(needs_ADL_begin const& rhs) { return rhs.End(); } }; } // end unrelated namespace #if defined(__clang__) # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wunused-function" #endif template class has_different_begin_end_types { // Using std::vector leads to annoying issues when T is bool // so we just use list because the perf is not critical and ugh. std::list m_elements; // Different type for the "end" iterator struct iterator_end {}; // Fake-ish forward iterator that only compares to a different type class iterator { using underlying_iter = typename std::list::const_iterator; underlying_iter m_start; underlying_iter m_end; public: iterator( underlying_iter start, underlying_iter end ): m_start( start ), m_end( end ) {} using iterator_category = std::forward_iterator_tag; using difference_type = std::ptrdiff_t; using value_type = T; using const_reference = T const&; using pointer = T const*; friend bool operator==( iterator iter, iterator_end ) { return iter.m_start == iter.m_end; } friend bool operator!=( iterator iter, iterator_end ) { return iter.m_start != iter.m_end; } iterator& operator++() { ++m_start; return *this; } iterator operator++(int) { auto tmp(*this); ++m_start; return tmp; } const_reference operator*() const { return *m_start; } pointer operator->() const { return m_start; } }; public: explicit has_different_begin_end_types( std::initializer_list init ): m_elements( init ) {} iterator begin() const { return { m_elements.begin(), m_elements.end() }; } iterator_end end() const { return {}; } }; #if defined(__clang__) # pragma clang diagnostic pop #endif template struct with_mocked_iterator_access { std::vector m_elements; // use plain arrays to have nicer printouts with CHECK(...) mutable std::unique_ptr m_derefed; // We want to check which elements were dereferenced when iterating, so // we can check whether iterator-using code traverses range correctly template class basic_iterator { template using constify_t = std::conditional_t, U>; constify_t* m_origin; size_t m_origin_idx; public: using iterator_category = std::forward_iterator_tag; using difference_type = std::ptrdiff_t; using value_type = constify_t; using const_reference = typename std::vector::const_reference; using reference = typename std::vector::reference; using pointer = typename std::vector::pointer; basic_iterator( constify_t* origin, std::size_t origin_idx ): m_origin{ origin }, m_origin_idx{ origin_idx } {} friend bool operator==( basic_iterator lhs, basic_iterator rhs ) { return lhs.m_origin == rhs.m_origin && lhs.m_origin_idx == rhs.m_origin_idx; } friend bool operator!=( basic_iterator lhs, basic_iterator rhs ) { return !( lhs == rhs ); } basic_iterator& operator++() { ++m_origin_idx; return *this; } basic_iterator operator++( int ) { auto tmp( *this ); ++( *this ); return tmp; } const_reference operator*() const { assert( m_origin_idx < m_origin->m_elements.size() && "Attempted to deref invalid position" ); m_origin->m_derefed[m_origin_idx] = true; return m_origin->m_elements[m_origin_idx]; } pointer operator->() const { assert( m_origin_idx < m_origin->m_elements.size() && "Attempted to deref invalid position" ); return &m_origin->m_elements[m_origin_idx]; } }; using iterator = basic_iterator; using const_iterator = basic_iterator; with_mocked_iterator_access( std::initializer_list init ): m_elements( init ), m_derefed( std::make_unique( m_elements.size() ) ) {} const_iterator begin() const { return { this, 0 }; } const_iterator end() const { return { this, m_elements.size() }; } iterator begin() { return { this, 0 }; } iterator end() { return { this, m_elements.size() }; } }; } // end anon namespace namespace Catch { // make sure with_mocked_iterator_access is not considered a range by Catch, // so that below StringMaker is used instead of the default one for ranges template struct is_range> : std::false_type {}; template struct StringMaker> { static std::string convert( with_mocked_iterator_access const& access ) { // We have to avoid the type's iterators, because we check // their use in tests return ::Catch::Detail::stringify( access.m_elements ); } }; } // namespace Catch struct MoveOnlyTestElement { int num = 0; MoveOnlyTestElement(int n) :num(n) {} MoveOnlyTestElement(MoveOnlyTestElement&& rhs) = default; MoveOnlyTestElement& operator=(MoveOnlyTestElement&& rhs) = default; friend bool operator==(MoveOnlyTestElement const& lhs, MoveOnlyTestElement const& rhs) { return lhs.num == rhs.num; } friend std::ostream& operator<<(std::ostream& out, MoveOnlyTestElement const& elem) { out << elem.num; return out; } }; TEST_CASE("Basic use of the Contains range matcher", "[matchers][templated][contains]") { using Catch::Matchers::Contains; SECTION("Different argument ranges, same element type, default comparison") { std::array a{ { 1,2,3 } }; std::vector b{ 0,1,2 }; std::list c{ 4,5,6 }; // A contains 1 REQUIRE_THAT(a, Contains(1)); // B contains 1 REQUIRE_THAT(b, Contains(1)); // C does not contain 1 REQUIRE_THAT(c, !Contains(1)); } SECTION("Different argument ranges, same element type, custom comparison") { std::array a{ { 1,2,3 } }; std::vector b{ 0,1,2 }; std::list c{ 4,5,6 }; auto close_enough = [](int lhs, int rhs) { return std::abs(lhs - rhs) <= 1; }; // A contains 1, which is "close enough" to 0 REQUIRE_THAT(a, Contains(0, close_enough)); // B contains 0 directly REQUIRE_THAT(b, Contains(0, close_enough)); // C does not contain anything "close enough" to 0 REQUIRE_THAT(c, !Contains(0, close_enough)); } SECTION("Different element type, custom comparisons") { std::array a{ { "abc", "abcd" , "abcde" } }; REQUIRE_THAT(a, Contains(4, [](auto&& lhs, size_t sz) { return lhs.size() == sz; })); } SECTION("Can handle type that requires ADL-found free function begin and end") { unrelated::needs_ADL_begin in{1, 2, 3, 4, 5}; REQUIRE_THAT(in, Contains(1)); REQUIRE_THAT(in, !Contains(8)); } SECTION("Initialization with move only types") { std::array in{ { MoveOnlyTestElement{ 1 }, MoveOnlyTestElement{ 2 }, MoveOnlyTestElement{ 3 } } }; REQUIRE_THAT(in, Contains(MoveOnlyTestElement{ 2 })); REQUIRE_THAT(in, !Contains(MoveOnlyTestElement{ 9 })); } SECTION("Matching using matcher") { std::array in{ {1, 2, 3} }; REQUIRE_THAT(in, Contains(Catch::Matchers::WithinAbs(0.5, 0.5))); } } namespace { struct has_empty { bool empty() const { return false; } }; namespace unrelated { struct ADL_empty { bool Empty() const { return true; } friend bool empty(ADL_empty e) { return e.Empty(); } }; } // end namespace unrelated } // end unnamed namespace TEST_CASE("Basic use of the Empty range matcher", "[matchers][templated][empty]") { using Catch::Matchers::IsEmpty; SECTION("Simple, std-provided containers") { std::array empty_array{}; std::array non_empty_array{}; REQUIRE_THAT(empty_array, IsEmpty()); REQUIRE_THAT(non_empty_array, !IsEmpty()); std::vector empty_vec; std::vector non_empty_vec{ 'a', 'b', 'c' }; REQUIRE_THAT(empty_vec, IsEmpty()); REQUIRE_THAT(non_empty_vec, !IsEmpty()); std::list>> inner_lists_are_empty; inner_lists_are_empty.push_back({}); REQUIRE_THAT(inner_lists_are_empty, !IsEmpty()); REQUIRE_THAT(inner_lists_are_empty.front(), IsEmpty()); } SECTION("Type with empty") { REQUIRE_THAT(has_empty{}, !IsEmpty()); } SECTION("Type requires ADL found empty free function") { REQUIRE_THAT(unrelated::ADL_empty{}, IsEmpty()); } } namespace { class LessThanMatcher final : public Catch::Matchers::MatcherBase { size_t m_target; public: explicit LessThanMatcher(size_t target): m_target(target) {} bool match(size_t const& size) const override { return size < m_target; } std::string describe() const override { return "is less than " + std::to_string(m_target); } }; LessThanMatcher Lt(size_t sz) { return LessThanMatcher{ sz }; } namespace unrelated { struct ADL_size { size_t sz() const { return 12; } friend size_t size(ADL_size s) { return s.sz(); } }; } // end namespace unrelated struct has_size { size_t size() const { return 13; } }; } // end unnamed namespace TEST_CASE("Usage of the SizeIs range matcher", "[matchers][templated][size]") { using Catch::Matchers::SizeIs; SECTION("Some with stdlib containers") { std::vector empty_vec; REQUIRE_THAT(empty_vec, SizeIs(0)); REQUIRE_THAT(empty_vec, !SizeIs(2)); REQUIRE_THAT(empty_vec, SizeIs(Lt(2))); std::array arr{}; REQUIRE_THAT(arr, SizeIs(2)); REQUIRE_THAT(arr, SizeIs( Lt(3))); REQUIRE_THAT(arr, !SizeIs(!Lt(3))); std::map map{ {1, 1}, {2, 2}, {3, 3} }; REQUIRE_THAT(map, SizeIs(3)); } SECTION("Type requires ADL found size free function") { REQUIRE_THAT(unrelated::ADL_size{}, SizeIs(12)); } SECTION("Type has size member") { REQUIRE_THAT(has_size{}, SizeIs(13)); } } TEST_CASE("Usage of AllMatch range matcher", "[matchers][templated][quantifiers]") { using Catch::Matchers::AllMatch; using Catch::Matchers::Predicate; SECTION("Basic usage") { using Catch::Matchers::Contains; using Catch::Matchers::SizeIs; std::array, 5> data{{ {{ 0, 1, 2, 3, 5 }}, {{ 4,-3,-2, 5, 0 }}, {{ 0, 0, 0, 5, 0 }}, {{ 0,-5, 0, 5, 0 }}, {{ 1, 0, 0,-1, 5 }} }}; REQUIRE_THAT(data, AllMatch(SizeIs(5))); REQUIRE_THAT(data, !AllMatch(Contains(0) && Contains(1))); } SECTION("Type requires ADL found begin and end") { unrelated::needs_ADL_begin needs_adl{ 1, 2, 3, 4, 5 }; REQUIRE_THAT( needs_adl, AllMatch( Predicate( []( int elem ) { return elem < 6; } ) ) ); } SECTION("Shortcircuiting") { with_mocked_iterator_access mocked{ 1, 2, 3, 4, 5 }; SECTION("All are read") { auto allMatch = AllMatch(Predicate([](int elem) { return elem < 10; })); REQUIRE_THAT(mocked, allMatch); REQUIRE(mocked.m_derefed[0]); REQUIRE(mocked.m_derefed[1]); REQUIRE(mocked.m_derefed[2]); REQUIRE(mocked.m_derefed[3]); REQUIRE(mocked.m_derefed[4]); } SECTION("Short-circuited") { auto allMatch = AllMatch(Predicate([](int elem) { return elem < 3; })); REQUIRE_THAT(mocked, !allMatch); REQUIRE(mocked.m_derefed[0]); REQUIRE(mocked.m_derefed[1]); REQUIRE(mocked.m_derefed[2]); REQUIRE_FALSE(mocked.m_derefed[3]); REQUIRE_FALSE(mocked.m_derefed[4]); } } } TEST_CASE("Usage of AnyMatch range matcher", "[matchers][templated][quantifiers]") { using Catch::Matchers::AnyMatch; using Catch::Matchers::Predicate; SECTION("Basic usage") { using Catch::Matchers::Contains; using Catch::Matchers::SizeIs; std::array, 5> data{ { {{ 0, 1, 2, 3, 5 }}, {{ 4,-3,-2, 5, 0 }}, {{ 0, 0, 0, 5, 0 }}, {{ 0,-5, 0, 5, 0 }}, {{ 1, 0, 0,-1, 5 }} } }; REQUIRE_THAT(data, AnyMatch(SizeIs(5))); REQUIRE_THAT(data, !AnyMatch(Contains(0) && Contains(10))); } SECTION( "Type requires ADL found begin and end" ) { unrelated::needs_ADL_begin needs_adl{ 1, 2, 3, 4, 5 }; REQUIRE_THAT( needs_adl, AnyMatch( Predicate( []( int elem ) { return elem < 3; } ) ) ); } SECTION("Shortcircuiting") { with_mocked_iterator_access mocked{ 1, 2, 3, 4, 5 }; SECTION("All are read") { auto anyMatch = AnyMatch( Predicate( []( int elem ) { return elem > 10; } ) ); REQUIRE_THAT( mocked, !anyMatch ); REQUIRE( mocked.m_derefed[0] ); REQUIRE( mocked.m_derefed[1] ); REQUIRE( mocked.m_derefed[2] ); REQUIRE( mocked.m_derefed[3] ); REQUIRE( mocked.m_derefed[4] ); } SECTION("Short-circuited") { auto anyMatch = AnyMatch( Predicate( []( int elem ) { return elem < 3; } ) ); REQUIRE_THAT( mocked, anyMatch ); REQUIRE( mocked.m_derefed[0] ); REQUIRE_FALSE( mocked.m_derefed[1] ); REQUIRE_FALSE( mocked.m_derefed[2] ); REQUIRE_FALSE( mocked.m_derefed[3] ); REQUIRE_FALSE( mocked.m_derefed[4] ); } } } TEST_CASE("Usage of NoneMatch range matcher", "[matchers][templated][quantifiers]") { using Catch::Matchers::NoneMatch; using Catch::Matchers::Predicate; SECTION("Basic usage") { using Catch::Matchers::Contains; using Catch::Matchers::SizeIs; std::array, 5> data{ { {{ 0, 1, 2, 3, 5 }}, {{ 4,-3,-2, 5, 0 }}, {{ 0, 0, 0, 5, 0 }}, {{ 0,-5, 0, 5, 0 }}, {{ 1, 0, 0,-1, 5 }} } }; REQUIRE_THAT(data, NoneMatch(SizeIs(6))); REQUIRE_THAT(data, !NoneMatch(Contains(0) && Contains(1))); } SECTION( "Type requires ADL found begin and end" ) { unrelated::needs_ADL_begin needs_adl{ 1, 2, 3, 4, 5 }; REQUIRE_THAT( needs_adl, NoneMatch( Predicate( []( int elem ) { return elem > 6; } ) ) ); } SECTION("Shortcircuiting") { with_mocked_iterator_access mocked{ 1, 2, 3, 4, 5 }; SECTION("All are read") { auto noneMatch = NoneMatch( Predicate([](int elem) { return elem > 10; })); REQUIRE_THAT(mocked, noneMatch); REQUIRE(mocked.m_derefed[0]); REQUIRE(mocked.m_derefed[1]); REQUIRE(mocked.m_derefed[2]); REQUIRE(mocked.m_derefed[3]); REQUIRE(mocked.m_derefed[4]); } SECTION("Short-circuited") { auto noneMatch = NoneMatch( Predicate([](int elem) { return elem < 3; })); REQUIRE_THAT(mocked, !noneMatch); REQUIRE(mocked.m_derefed[0]); REQUIRE_FALSE(mocked.m_derefed[1]); REQUIRE_FALSE(mocked.m_derefed[2]); REQUIRE_FALSE(mocked.m_derefed[3]); REQUIRE_FALSE(mocked.m_derefed[4]); } } } namespace { struct ConvertibleToBool { bool v; explicit operator bool() const { return v; } }; } namespace Catch { template <> struct StringMaker { static std::string convert( ConvertibleToBool const& convertible_to_bool ) { return ::Catch::Detail::stringify( convertible_to_bool.v ); } }; } // namespace Catch TEST_CASE("Usage of AllTrue range matcher", "[matchers][templated][quantifiers]") { using Catch::Matchers::AllTrue; SECTION( "Basic usage" ) { SECTION( "All true evaluates to true" ) { std::array const data{ { true, true, true, true, true } }; REQUIRE_THAT( data, AllTrue() ); } SECTION( "Empty evaluates to true" ) { std::array const data{}; REQUIRE_THAT( data, AllTrue() ); } SECTION( "One false evalutes to false" ) { std::array const data{ { true, true, false, true, true } }; REQUIRE_THAT( data, !AllTrue() ); } SECTION( "All false evaluates to false" ) { std::array const data{ { false, false, false, false, false } }; REQUIRE_THAT( data, !AllTrue() ); } } SECTION( "Contained type is convertible to bool" ) { SECTION( "All true evaluates to true" ) { std::array const data{ { { true }, { true }, { true }, { true }, { true } } }; REQUIRE_THAT( data, AllTrue() ); } SECTION( "One false evalutes to false" ) { std::array const data{ { { true }, { true }, { false }, { true }, { true } } }; REQUIRE_THAT( data, !AllTrue() ); } SECTION( "All false evaluates to false" ) { std::array const data{ { { false }, { false }, { false }, { false }, { false } } }; REQUIRE_THAT( data, !AllTrue() ); } } SECTION( "Shortcircuiting" ) { SECTION( "All are read" ) { with_mocked_iterator_access const mocked{ true, true, true, true, true }; REQUIRE_THAT( mocked, AllTrue() ); REQUIRE( mocked.m_derefed[0] ); REQUIRE( mocked.m_derefed[1] ); REQUIRE( mocked.m_derefed[2] ); REQUIRE( mocked.m_derefed[3] ); REQUIRE( mocked.m_derefed[4] ); } SECTION( "Short-circuited" ) { with_mocked_iterator_access const mocked{ true, true, false, true, true }; REQUIRE_THAT( mocked, !AllTrue() ); REQUIRE( mocked.m_derefed[0] ); REQUIRE( mocked.m_derefed[1] ); REQUIRE( mocked.m_derefed[2] ); REQUIRE_FALSE( mocked.m_derefed[3] ); REQUIRE_FALSE( mocked.m_derefed[4] ); } } } TEST_CASE( "Usage of NoneTrue range matcher", "[matchers][templated][quantifiers]" ) { using Catch::Matchers::NoneTrue; SECTION( "Basic usage" ) { SECTION( "All true evaluates to false" ) { std::array const data{ { true, true, true, true, true } }; REQUIRE_THAT( data, !NoneTrue() ); } SECTION( "Empty evaluates to true" ) { std::array const data{}; REQUIRE_THAT( data, NoneTrue() ); } SECTION( "One true evalutes to false" ) { std::array const data{ { false, false, true, false, false } }; REQUIRE_THAT( data, !NoneTrue() ); } SECTION( "All false evaluates to true" ) { std::array const data{ { false, false, false, false, false } }; REQUIRE_THAT( data, NoneTrue() ); } } SECTION( "Contained type is convertible to bool" ) { SECTION( "All true evaluates to false" ) { std::array const data{ { { true }, { true }, { true }, { true }, { true } } }; REQUIRE_THAT( data, !NoneTrue() ); } SECTION( "One true evalutes to false" ) { std::array const data{ { { false }, { false }, { true }, { false }, { false } } }; REQUIRE_THAT( data, !NoneTrue() ); } SECTION( "All false evaluates to true" ) { std::array const data{ { { false }, { false }, { false }, { false }, { false } } }; REQUIRE_THAT( data, NoneTrue() ); } } SECTION( "Shortcircuiting" ) { SECTION( "All are read" ) { with_mocked_iterator_access const mocked{ false, false, false, false, false }; REQUIRE_THAT( mocked, NoneTrue() ); REQUIRE( mocked.m_derefed[0] ); REQUIRE( mocked.m_derefed[1] ); REQUIRE( mocked.m_derefed[2] ); REQUIRE( mocked.m_derefed[3] ); REQUIRE( mocked.m_derefed[4] ); } SECTION( "Short-circuited" ) { with_mocked_iterator_access const mocked{ false, false, true, true, true }; REQUIRE_THAT( mocked, !NoneTrue() ); REQUIRE( mocked.m_derefed[0] ); REQUIRE( mocked.m_derefed[1] ); REQUIRE( mocked.m_derefed[2] ); REQUIRE_FALSE( mocked.m_derefed[3] ); REQUIRE_FALSE( mocked.m_derefed[4] ); } } } TEST_CASE( "Usage of AnyTrue range matcher", "[matchers][templated][quantifiers]" ) { using Catch::Matchers::AnyTrue; SECTION( "Basic usage" ) { SECTION( "All true evaluates to true" ) { std::array const data{ { true, true, true, true, true } }; REQUIRE_THAT( data, AnyTrue() ); } SECTION( "Empty evaluates to false" ) { std::array const data{}; REQUIRE_THAT( data, !AnyTrue() ); } SECTION( "One true evalutes to true" ) { std::array const data{ { false, false, true, false, false } }; REQUIRE_THAT( data, AnyTrue() ); } SECTION( "All false evaluates to false" ) { std::array const data{ { false, false, false, false, false } }; REQUIRE_THAT( data, !AnyTrue() ); } } SECTION( "Contained type is convertible to bool" ) { SECTION( "All true evaluates to true" ) { std::array const data{ { { true }, { true }, { true }, { true }, { true } } }; REQUIRE_THAT( data, AnyTrue() ); } SECTION( "One true evalutes to true" ) { std::array const data{ { { false }, { false }, { true }, { false }, { false } } }; REQUIRE_THAT( data, AnyTrue() ); } SECTION( "All false evaluates to false" ) { std::array const data{ { { false }, { false }, { false }, { false }, { false } } }; REQUIRE_THAT( data, !AnyTrue() ); } } SECTION( "Shortcircuiting" ) { SECTION( "All are read" ) { with_mocked_iterator_access const mocked{ false, false, false, false, true }; REQUIRE_THAT( mocked, AnyTrue() ); REQUIRE( mocked.m_derefed[0] ); REQUIRE( mocked.m_derefed[1] ); REQUIRE( mocked.m_derefed[2] ); REQUIRE( mocked.m_derefed[3] ); REQUIRE( mocked.m_derefed[4] ); } SECTION( "Short-circuited" ) { with_mocked_iterator_access const mocked{ false, false, true, true, true }; REQUIRE_THAT( mocked, AnyTrue() ); REQUIRE( mocked.m_derefed[0] ); REQUIRE( mocked.m_derefed[1] ); REQUIRE( mocked.m_derefed[2] ); REQUIRE_FALSE( mocked.m_derefed[3] ); REQUIRE_FALSE( mocked.m_derefed[4] ); } } } TEST_CASE("All/Any/None True matchers support types with ADL begin", "[approvals][matchers][quantifiers][templated]") { using Catch::Matchers::AllTrue; using Catch::Matchers::NoneTrue; using Catch::Matchers::AnyTrue; SECTION( "Type requires ADL found begin and end" ) { unrelated::needs_ADL_begin const needs_adl{ true, true, true, true, true }; REQUIRE_THAT( needs_adl, AllTrue() ); } SECTION( "Type requires ADL found begin and end" ) { unrelated::needs_ADL_begin const needs_adl{ false, false, false, false, false }; REQUIRE_THAT( needs_adl, NoneTrue() ); } SECTION( "Type requires ADL found begin and end" ) { unrelated::needs_ADL_begin const needs_adl{ false, false, true, false, false }; REQUIRE_THAT( needs_adl, AnyTrue() ); } } // Range loop iterating over range with different types for begin and end is a // C++17 feature, and GCC refuses to compile such code unless the lang mode is // set to C++17 or later. #if defined(CATCH_CPP17_OR_GREATER) TEST_CASE( "The quantifier range matchers support types with different types returned from begin and end", "[matchers][templated][quantifiers][approvals]" ) { using Catch::Matchers::AllMatch; using Catch::Matchers::AllTrue; using Catch::Matchers::AnyMatch; using Catch::Matchers::AnyTrue; using Catch::Matchers::NoneMatch; using Catch::Matchers::NoneTrue; using Catch::Matchers::Predicate; SECTION( "AllAnyNoneMatch" ) { has_different_begin_end_types diff_types{ 1, 2, 3, 4, 5 }; REQUIRE_THAT( diff_types, !AllMatch( Predicate( []( int elem ) { return elem < 3; } ) ) ); REQUIRE_THAT( diff_types, AnyMatch( Predicate( []( int elem ) { return elem < 2; } ) ) ); REQUIRE_THAT( diff_types, !NoneMatch( Predicate( []( int elem ) { return elem < 3; } ) ) ); } SECTION( "AllAnyNoneTrue" ) { has_different_begin_end_types diff_types{ false, false, true, false, false }; REQUIRE_THAT( diff_types, !AllTrue() ); REQUIRE_THAT( diff_types, AnyTrue() ); REQUIRE_THAT( diff_types, !NoneTrue() ); } } TEST_CASE( "RangeEquals supports ranges with different types returned from begin and end", "[matchers][templated][range][approvals] ") { using Catch::Matchers::RangeEquals; has_different_begin_end_types diff_types{ 1, 2, 3, 4, 5 }; std::array arr1{ { 1, 2, 3, 4, 5 } }, arr2{ { 2, 3, 4, 5, 6 } }; REQUIRE_THAT( diff_types, RangeEquals( arr1 ) ); REQUIRE_THAT( diff_types, RangeEquals( arr2, []( int l, int r ) { return l + 1 == r; } ) ); } #endif TEST_CASE( "Usage of RangeEquals range matcher", "[matchers][templated][quantifiers]" ) { using Catch::Matchers::RangeEquals; // In these tests, the types are always the same - type conversion is in the next section SECTION( "Basic usage" ) { SECTION( "Empty container matches empty container" ) { const std::vector empty_vector; CHECK_THAT( empty_vector, RangeEquals( empty_vector ) ); } SECTION( "Empty container does not match non-empty container" ) { const std::vector empty_vector; const std::vector non_empty_vector{ 1 }; CHECK_THAT( empty_vector, !RangeEquals( non_empty_vector ) ); // ...and in reverse CHECK_THAT( non_empty_vector, !RangeEquals( empty_vector ) ); } SECTION( "Two equal 1-length non-empty containers" ) { const std::array non_empty_array{ { 1 } }; CHECK_THAT( non_empty_array, RangeEquals( non_empty_array ) ); } SECTION( "Two equal-sized, equal, non-empty containers" ) { const std::array array_a{ { 1, 2, 3 } }; CHECK_THAT( array_a, RangeEquals( array_a ) ); } SECTION( "Two equal-sized, non-equal, non-empty containers" ) { const std::array array_a{ { 1, 2, 3 } }; const std::array array_b{ { 2, 2, 3 } }; const std::array array_c{ { 1, 2, 2 } }; CHECK_THAT( array_a, !RangeEquals( array_b ) ); CHECK_THAT( array_a, !RangeEquals( array_c ) ); } SECTION( "Two non-equal-sized, non-empty containers (with same first " "elements)" ) { const std::vector vector_a{ 1, 2, 3 }; const std::vector vector_b{ 1, 2, 3, 4 }; CHECK_THAT( vector_a, !RangeEquals( vector_b ) ); } } SECTION( "Custom predicate" ) { auto close_enough = []( int lhs, int rhs ) { return std::abs( lhs - rhs ) <= 1; }; SECTION( "Two equal non-empty containers (close enough)" ) { const std::vector vector_a{ { 1, 2, 3 } }; const std::vector vector_a_plus_1{ { 2, 3, 4 } }; CHECK_THAT( vector_a, RangeEquals( vector_a_plus_1, close_enough ) ); } SECTION( "Two non-equal non-empty containers (close enough)" ) { const std::vector vector_a{ { 1, 2, 3 } }; const std::vector vector_b{ { 3, 3, 4 } }; CHECK_THAT( vector_a, !RangeEquals( vector_b, close_enough ) ); } } SECTION( "Ranges that need ADL begin/end" ) { unrelated::needs_ADL_begin const needs_adl1{ 1, 2, 3, 4, 5 }, needs_adl2{ 1, 2, 3, 4, 5 }, needs_adl3{ 2, 3, 4, 5, 6 }; REQUIRE_THAT( needs_adl1, RangeEquals( needs_adl2 ) ); REQUIRE_THAT( needs_adl1, RangeEquals( needs_adl3, []( int l, int r ) { return l + 1 == r; } ) ); } SECTION("Check short-circuiting behaviour") { with_mocked_iterator_access const mocked1{ 1, 2, 3, 4 }; SECTION( "Check short-circuits on failure" ) { std::array arr{ { 1, 2, 4, 4 } }; REQUIRE_THAT( mocked1, !RangeEquals( arr ) ); REQUIRE( mocked1.m_derefed[0] ); REQUIRE( mocked1.m_derefed[1] ); REQUIRE( mocked1.m_derefed[2] ); REQUIRE_FALSE( mocked1.m_derefed[3] ); } SECTION("All elements are checked on success") { std::array arr{ { 1, 2, 3, 4 } }; REQUIRE_THAT( mocked1, RangeEquals( arr ) ); REQUIRE( mocked1.m_derefed[0] ); REQUIRE( mocked1.m_derefed[1] ); REQUIRE( mocked1.m_derefed[2] ); REQUIRE( mocked1.m_derefed[3] ); } } } TEST_CASE( "Usage of UnorderedRangeEquals range matcher", "[matchers][templated][quantifiers]" ) { using Catch::Matchers::UnorderedRangeEquals; // In these tests, the types are always the same - type conversion is in the // next section SECTION( "Basic usage" ) { SECTION( "Empty container matches empty container" ) { const std::vector empty_vector; CHECK_THAT( empty_vector, UnorderedRangeEquals( empty_vector ) ); } SECTION( "Empty container does not match non-empty container" ) { const std::vector empty_vector; const std::vector non_empty_vector{ 1 }; CHECK_THAT( empty_vector, !UnorderedRangeEquals( non_empty_vector ) ); // ...and in reverse CHECK_THAT( non_empty_vector, !UnorderedRangeEquals( empty_vector ) ); } SECTION( "Two equal 1-length non-empty containers" ) { const std::array non_empty_array{ { 1 } }; CHECK_THAT( non_empty_array, UnorderedRangeEquals( non_empty_array ) ); } SECTION( "Two equal-sized, equal, non-empty containers" ) { const std::array array_a{ { 1, 2, 3 } }; CHECK_THAT( array_a, UnorderedRangeEquals( array_a ) ); } SECTION( "Two equal-sized, non-equal, non-empty containers" ) { const std::array array_a{ { 1, 2, 3 } }; const std::array array_b{ { 2, 2, 3 } }; CHECK_THAT( array_a, !UnorderedRangeEquals( array_b ) ); } SECTION( "Two non-equal-sized, non-empty containers" ) { const std::vector vector_a{ 1, 2, 3 }; const std::vector vector_b{ 1, 2, 3, 4 }; CHECK_THAT( vector_a, !UnorderedRangeEquals( vector_b ) ); } } SECTION( "Custom predicate" ) { auto close_enough = []( int lhs, int rhs ) { return std::abs( lhs - rhs ) <= 1; }; SECTION( "Two equal non-empty containers (close enough)" ) { const std::vector vector_a{ { 1, 10, 20 } }; const std::vector vector_a_plus_1{ { 11, 21, 2 } }; CHECK_THAT( vector_a, UnorderedRangeEquals( vector_a_plus_1, close_enough ) ); } SECTION( "Two non-equal non-empty containers (close enough)" ) { const std::vector vector_a{ { 1, 10, 21 } }; const std::vector vector_b{ { 11, 21, 3 } }; CHECK_THAT( vector_a, !UnorderedRangeEquals( vector_b, close_enough ) ); } } // As above with RangeEquals, short cicuiting and other optimisations // are left to the STL implementation } /** * Return true if the type given has a random access iterator type. */ template static constexpr bool ContainerIsRandomAccess( const Container& ) { using array_iter_category = typename std::iterator_traits< typename Container::iterator>::iterator_category; return std::is_base_of::value; } TEST_CASE( "Type conversions of RangeEquals and similar", "[matchers][templated][quantifiers]" ) { using Catch::Matchers::RangeEquals; using Catch::Matchers::UnorderedRangeEquals; // In these test, we can always test RangeEquals and // UnorderedRangeEquals in the same way, since we're mostly // testing the template type deductions (and RangeEquals // implies UnorderedRangeEquals) SECTION( "Container conversions" ) { SECTION( "Two equal containers of different container types" ) { const std::array array_int_a{ { 1, 2, 3 } }; const int c_array[3] = { 1, 2, 3 }; CHECK_THAT( array_int_a, RangeEquals( c_array ) ); CHECK_THAT( array_int_a, UnorderedRangeEquals( c_array ) ); } SECTION( "Two equal containers of different container types " "(differ in array N)" ) { const std::array array_int_3{ { 1, 2, 3 } }; const std::array array_int_4{ { 1, 2, 3, 4 } }; CHECK_THAT( array_int_3, !RangeEquals( array_int_4 ) ); CHECK_THAT( array_int_3, !UnorderedRangeEquals( array_int_4 ) ); } SECTION( "Two equal containers of different container types and value " "types" ) { const std::array array_int_a{ { 1, 2, 3 } }; const std::vector vector_char_a{ 1, 2, 3 }; CHECK_THAT( array_int_a, RangeEquals( vector_char_a ) ); CHECK_THAT( array_int_a, UnorderedRangeEquals( vector_char_a ) ); } SECTION( "Two equal containers, one random access, one not" ) { const std::array array_int_a{ { 1, 2, 3 } }; const std::list list_char_a{ 1, 2, 3 }; // Verify these types really are different in random access nature STATIC_REQUIRE( ContainerIsRandomAccess( array_int_a ) != ContainerIsRandomAccess( list_char_a ) ); CHECK_THAT( array_int_a, RangeEquals( list_char_a ) ); CHECK_THAT( array_int_a, UnorderedRangeEquals( list_char_a ) ); } } SECTION( "Value type" ) { SECTION( "Two equal containers of different value types" ) { const std::vector vector_int_a{ 1, 2, 3 }; const std::vector vector_char_a{ 1, 2, 3 }; CHECK_THAT( vector_int_a, RangeEquals( vector_char_a ) ); CHECK_THAT( vector_int_a, UnorderedRangeEquals( vector_char_a ) ); } SECTION( "Two non-equal containers of different value types" ) { const std::vector vector_int_a{ 1, 2, 3 }; const std::vector vector_char_b{ 1, 2, 2 }; CHECK_THAT( vector_int_a, !RangeEquals( vector_char_b ) ); CHECK_THAT( vector_int_a, !UnorderedRangeEquals( vector_char_b ) ); } } SECTION( "Ranges with begin that needs ADL" ) { unrelated::needs_ADL_begin a{ 1, 2, 3 }, b{ 3, 2, 1 }; REQUIRE_THAT( a, !RangeEquals( b ) ); REQUIRE_THAT( a, UnorderedRangeEquals( b ) ); } SECTION( "Custom predicate" ) { auto close_enough = []( int lhs, int rhs ) { return std::abs( lhs - rhs ) <= 1; }; SECTION( "Two equal non-empty containers (close enough)" ) { const std::vector vector_a{ { 1, 2, 3 } }; const std::array array_a_plus_1{ { 2, 3, 4 } }; CHECK_THAT( vector_a, RangeEquals( array_a_plus_1, close_enough ) ); CHECK_THAT( vector_a, UnorderedRangeEquals( array_a_plus_1, close_enough ) ); } } }