// Copyright Catch2 Authors // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE.txt or copy at // https://www.boost.org/LICENSE_1_0.txt) // SPDX-License-Identifier: BSL-1.0 // Catch v3.8.0 // Generated: 2025-01-06 00:39:54.679994 // ---------------------------------------------------------- // This file is an amalgamation of multiple different files. // You probably shouldn't edit it directly. // ---------------------------------------------------------- #include "catch_amalgamated.hpp" #ifndef CATCH_WINDOWS_H_PROXY_HPP_INCLUDED #define CATCH_WINDOWS_H_PROXY_HPP_INCLUDED #if defined(CATCH_PLATFORM_WINDOWS) // We might end up with the define made globally through the compiler, // and we don't want to trigger warnings for this #if !defined(NOMINMAX) # define NOMINMAX #endif #if !defined(WIN32_LEAN_AND_MEAN) # define WIN32_LEAN_AND_MEAN #endif #include #endif // defined(CATCH_PLATFORM_WINDOWS) #endif // CATCH_WINDOWS_H_PROXY_HPP_INCLUDED namespace Catch { namespace Benchmark { namespace Detail { ChronometerConcept::~ChronometerConcept() = default; } // namespace Detail } // namespace Benchmark } // namespace Catch // Adapted from donated nonius code. #include namespace Catch { namespace Benchmark { namespace Detail { SampleAnalysis analyse(const IConfig &cfg, FDuration* first, FDuration* last) { if (!cfg.benchmarkNoAnalysis()) { std::vector samples; samples.reserve(static_cast(last - first)); for (auto current = first; current != last; ++current) { samples.push_back( current->count() ); } auto analysis = Catch::Benchmark::Detail::analyse_samples( cfg.benchmarkConfidenceInterval(), cfg.benchmarkResamples(), samples.data(), samples.data() + samples.size() ); auto outliers = Catch::Benchmark::Detail::classify_outliers( samples.data(), samples.data() + samples.size() ); auto wrap_estimate = [](Estimate e) { return Estimate { FDuration(e.point), FDuration(e.lower_bound), FDuration(e.upper_bound), e.confidence_interval, }; }; std::vector samples2; samples2.reserve(samples.size()); for (auto s : samples) { samples2.push_back( FDuration( s ) ); } return { CATCH_MOVE(samples2), wrap_estimate(analysis.mean), wrap_estimate(analysis.standard_deviation), outliers, analysis.outlier_variance, }; } else { std::vector samples; samples.reserve(static_cast(last - first)); FDuration mean = FDuration(0); int i = 0; for (auto it = first; it < last; ++it, ++i) { samples.push_back(*it); mean += *it; } mean /= i; return SampleAnalysis{ CATCH_MOVE(samples), Estimate{ mean, mean, mean, 0.0 }, Estimate{ FDuration( 0 ), FDuration( 0 ), FDuration( 0 ), 0.0 }, OutlierClassification{}, 0.0 }; } } } // namespace Detail } // namespace Benchmark } // namespace Catch namespace Catch { namespace Benchmark { namespace Detail { struct do_nothing { void operator()() const {} }; BenchmarkFunction::callable::~callable() = default; BenchmarkFunction::BenchmarkFunction(): f( new model{ {} } ){} } // namespace Detail } // namespace Benchmark } // namespace Catch #include namespace Catch { namespace Benchmark { namespace Detail { struct optimized_away_error : std::exception { const char* what() const noexcept override; }; const char* optimized_away_error::what() const noexcept { return "could not measure benchmark, maybe it was optimized away"; } void throw_optimized_away_error() { Catch::throw_exception(optimized_away_error{}); } } // namespace Detail } // namespace Benchmark } // namespace Catch // Adapted from donated nonius code. #include #include #include #include #include #include #if defined(CATCH_CONFIG_USE_ASYNC) #include #endif namespace Catch { namespace Benchmark { namespace Detail { namespace { template static sample resample( URng& rng, unsigned int resamples, double const* first, double const* last, Estimator& estimator ) { auto n = static_cast( last - first ); Catch::uniform_integer_distribution dist( 0, n - 1 ); sample out; out.reserve( resamples ); std::vector resampled; resampled.reserve( n ); for ( size_t i = 0; i < resamples; ++i ) { resampled.clear(); for ( size_t s = 0; s < n; ++s ) { resampled.push_back( first[dist( rng )] ); } const auto estimate = estimator( resampled.data(), resampled.data() + resampled.size() ); out.push_back( estimate ); } std::sort( out.begin(), out.end() ); return out; } static double outlier_variance( Estimate mean, Estimate stddev, int n ) { double sb = stddev.point; double mn = mean.point / n; double mg_min = mn / 2.; double sg = (std::min)( mg_min / 4., sb / std::sqrt( n ) ); double sg2 = sg * sg; double sb2 = sb * sb; auto c_max = [n, mn, sb2, sg2]( double x ) -> double { double k = mn - x; double d = k * k; double nd = n * d; double k0 = -n * nd; double k1 = sb2 - n * sg2 + nd; double det = k1 * k1 - 4 * sg2 * k0; return static_cast( -2. * k0 / ( k1 + std::sqrt( det ) ) ); }; auto var_out = [n, sb2, sg2]( double c ) { double nc = n - c; return ( nc / n ) * ( sb2 - nc * sg2 ); }; return (std::min)( var_out( 1 ), var_out( (std::min)( c_max( 0. ), c_max( mg_min ) ) ) ) / sb2; } static double erf_inv( double x ) { // Code accompanying the article "Approximating the erfinv // function" in GPU Computing Gems, Volume 2 double w, p; w = -log( ( 1.0 - x ) * ( 1.0 + x ) ); if ( w < 6.250000 ) { w = w - 3.125000; p = -3.6444120640178196996e-21; p = -1.685059138182016589e-19 + p * w; p = 1.2858480715256400167e-18 + p * w; p = 1.115787767802518096e-17 + p * w; p = -1.333171662854620906e-16 + p * w; p = 2.0972767875968561637e-17 + p * w; p = 6.6376381343583238325e-15 + p * w; p = -4.0545662729752068639e-14 + p * w; p = -8.1519341976054721522e-14 + p * w; p = 2.6335093153082322977e-12 + p * w; p = -1.2975133253453532498e-11 + p * w; p = -5.4154120542946279317e-11 + p * w; p = 1.051212273321532285e-09 + p * w; p = -4.1126339803469836976e-09 + p * w; p = -2.9070369957882005086e-08 + p * w; p = 4.2347877827932403518e-07 + p * w; p = -1.3654692000834678645e-06 + p * w; p = -1.3882523362786468719e-05 + p * w; p = 0.0001867342080340571352 + p * w; p = -0.00074070253416626697512 + p * w; p = -0.0060336708714301490533 + p * w; p = 0.24015818242558961693 + p * w; p = 1.6536545626831027356 + p * w; } else if ( w < 16.000000 ) { w = sqrt( w ) - 3.250000; p = 2.2137376921775787049e-09; p = 9.0756561938885390979e-08 + p * w; p = -2.7517406297064545428e-07 + p * w; p = 1.8239629214389227755e-08 + p * w; p = 1.5027403968909827627e-06 + p * w; p = -4.013867526981545969e-06 + p * w; p = 2.9234449089955446044e-06 + p * w; p = 1.2475304481671778723e-05 + p * w; p = -4.7318229009055733981e-05 + p * w; p = 6.8284851459573175448e-05 + p * w; p = 2.4031110387097893999e-05 + p * w; p = -0.0003550375203628474796 + p * w; p = 0.00095328937973738049703 + p * w; p = -0.0016882755560235047313 + p * w; p = 0.0024914420961078508066 + p * w; p = -0.0037512085075692412107 + p * w; p = 0.005370914553590063617 + p * w; p = 1.0052589676941592334 + p * w; p = 3.0838856104922207635 + p * w; } else { w = sqrt( w ) - 5.000000; p = -2.7109920616438573243e-11; p = -2.5556418169965252055e-10 + p * w; p = 1.5076572693500548083e-09 + p * w; p = -3.7894654401267369937e-09 + p * w; p = 7.6157012080783393804e-09 + p * w; p = -1.4960026627149240478e-08 + p * w; p = 2.9147953450901080826e-08 + p * w; p = -6.7711997758452339498e-08 + p * w; p = 2.2900482228026654717e-07 + p * w; p = -9.9298272942317002539e-07 + p * w; p = 4.5260625972231537039e-06 + p * w; p = -1.9681778105531670567e-05 + p * w; p = 7.5995277030017761139e-05 + p * w; p = -0.00021503011930044477347 + p * w; p = -0.00013871931833623122026 + p * w; p = 1.0103004648645343977 + p * w; p = 4.8499064014085844221 + p * w; } return p * x; } static double standard_deviation( double const* first, double const* last ) { auto m = Catch::Benchmark::Detail::mean( first, last ); double variance = std::accumulate( first, last, 0., [m]( double a, double b ) { double diff = b - m; return a + diff * diff; } ) / static_cast( last - first ); return std::sqrt( variance ); } static sample jackknife( double ( *estimator )( double const*, double const* ), double* first, double* last ) { const auto second = first + 1; sample results; results.reserve( static_cast( last - first ) ); for ( auto it = first; it != last; ++it ) { std::iter_swap( it, first ); results.push_back( estimator( second, last ) ); } return results; } } // namespace } // namespace Detail } // namespace Benchmark } // namespace Catch namespace Catch { namespace Benchmark { namespace Detail { double weighted_average_quantile( int k, int q, double* first, double* last ) { auto count = last - first; double idx = static_cast((count - 1) * k) / static_cast(q); int j = static_cast(idx); double g = idx - j; std::nth_element(first, first + j, last); auto xj = first[j]; if ( Catch::Detail::directCompare( g, 0 ) ) { return xj; } auto xj1 = *std::min_element(first + (j + 1), last); return xj + g * (xj1 - xj); } OutlierClassification classify_outliers( double const* first, double const* last ) { std::vector copy( first, last ); auto q1 = weighted_average_quantile( 1, 4, copy.data(), copy.data() + copy.size() ); auto q3 = weighted_average_quantile( 3, 4, copy.data(), copy.data() + copy.size() ); auto iqr = q3 - q1; auto los = q1 - ( iqr * 3. ); auto lom = q1 - ( iqr * 1.5 ); auto him = q3 + ( iqr * 1.5 ); auto his = q3 + ( iqr * 3. ); OutlierClassification o; for ( ; first != last; ++first ) { const double t = *first; if ( t < los ) { ++o.low_severe; } else if ( t < lom ) { ++o.low_mild; } else if ( t > his ) { ++o.high_severe; } else if ( t > him ) { ++o.high_mild; } ++o.samples_seen; } return o; } double mean( double const* first, double const* last ) { auto count = last - first; double sum = 0.; while (first != last) { sum += *first; ++first; } return sum / static_cast(count); } double normal_cdf( double x ) { return std::erfc( -x / std::sqrt( 2.0 ) ) / 2.0; } double erfc_inv(double x) { return erf_inv(1.0 - x); } double normal_quantile(double p) { static const double ROOT_TWO = std::sqrt(2.0); double result = 0.0; assert(p >= 0 && p <= 1); if (p < 0 || p > 1) { return result; } result = -erfc_inv(2.0 * p); // result *= normal distribution standard deviation (1.0) * sqrt(2) result *= /*sd * */ ROOT_TWO; // result += normal disttribution mean (0) return result; } Estimate bootstrap( double confidence_level, double* first, double* last, sample const& resample, double ( *estimator )( double const*, double const* ) ) { auto n_samples = last - first; double point = estimator( first, last ); // Degenerate case with a single sample if ( n_samples == 1 ) return { point, point, point, confidence_level }; sample jack = jackknife( estimator, first, last ); double jack_mean = mean( jack.data(), jack.data() + jack.size() ); double sum_squares = 0, sum_cubes = 0; for ( double x : jack ) { auto difference = jack_mean - x; auto square = difference * difference; auto cube = square * difference; sum_squares += square; sum_cubes += cube; } double accel = sum_cubes / ( 6 * std::pow( sum_squares, 1.5 ) ); long n = static_cast( resample.size() ); double prob_n = static_cast( std::count_if( resample.begin(), resample.end(), [point]( double x ) { return x < point; } )) / static_cast( n ); // degenerate case with uniform samples if ( Catch::Detail::directCompare( prob_n, 0. ) ) { return { point, point, point, confidence_level }; } double bias = normal_quantile( prob_n ); double z1 = normal_quantile( ( 1. - confidence_level ) / 2. ); auto cumn = [n]( double x ) -> long { return std::lround( normal_cdf( x ) * static_cast( n ) ); }; auto a = [bias, accel]( double b ) { return bias + b / ( 1. - accel * b ); }; double b1 = bias + z1; double b2 = bias - z1; double a1 = a( b1 ); double a2 = a( b2 ); auto lo = static_cast( (std::max)( cumn( a1 ), 0l ) ); auto hi = static_cast( (std::min)( cumn( a2 ), n - 1 ) ); return { point, resample[lo], resample[hi], confidence_level }; } bootstrap_analysis analyse_samples(double confidence_level, unsigned int n_resamples, double* first, double* last) { auto mean = &Detail::mean; auto stddev = &standard_deviation; #if defined(CATCH_CONFIG_USE_ASYNC) auto Estimate = [=](double(*f)(double const*, double const*)) { std::random_device rd; auto seed = rd(); return std::async(std::launch::async, [=] { SimplePcg32 rng( seed ); auto resampled = resample(rng, n_resamples, first, last, f); return bootstrap(confidence_level, first, last, resampled, f); }); }; auto mean_future = Estimate(mean); auto stddev_future = Estimate(stddev); auto mean_estimate = mean_future.get(); auto stddev_estimate = stddev_future.get(); #else auto Estimate = [=](double(*f)(double const* , double const*)) { std::random_device rd; auto seed = rd(); SimplePcg32 rng( seed ); auto resampled = resample(rng, n_resamples, first, last, f); return bootstrap(confidence_level, first, last, resampled, f); }; auto mean_estimate = Estimate(mean); auto stddev_estimate = Estimate(stddev); #endif // CATCH_USE_ASYNC auto n = static_cast(last - first); // seriously, one can't use integral types without hell in C++ double outlier_variance = Detail::outlier_variance(mean_estimate, stddev_estimate, n); return { mean_estimate, stddev_estimate, outlier_variance }; } } // namespace Detail } // namespace Benchmark } // namespace Catch #include #include namespace { // Performs equivalent check of std::fabs(lhs - rhs) <= margin // But without the subtraction to allow for INFINITY in comparison bool marginComparison(double lhs, double rhs, double margin) { return (lhs + margin >= rhs) && (rhs + margin >= lhs); } } namespace Catch { Approx::Approx ( double value ) : m_epsilon( static_cast(std::numeric_limits::epsilon())*100. ), m_margin( 0.0 ), m_scale( 0.0 ), m_value( value ) {} Approx Approx::custom() { return Approx( 0 ); } Approx Approx::operator-() const { auto temp(*this); temp.m_value = -temp.m_value; return temp; } std::string Approx::toString() const { ReusableStringStream rss; rss << "Approx( " << ::Catch::Detail::stringify( m_value ) << " )"; return rss.str(); } bool Approx::equalityComparisonImpl(const double other) const { // First try with fixed margin, then compute margin based on epsilon, scale and Approx's value // Thanks to Richard Harris for his help refining the scaled margin value return marginComparison(m_value, other, m_margin) || marginComparison(m_value, other, m_epsilon * (m_scale + std::fabs(std::isinf(m_value)? 0 : m_value))); } void Approx::setMargin(double newMargin) { CATCH_ENFORCE(newMargin >= 0, "Invalid Approx::margin: " << newMargin << '.' << " Approx::Margin has to be non-negative."); m_margin = newMargin; } void Approx::setEpsilon(double newEpsilon) { CATCH_ENFORCE(newEpsilon >= 0 && newEpsilon <= 1.0, "Invalid Approx::epsilon: " << newEpsilon << '.' << " Approx::epsilon has to be in [0, 1]"); m_epsilon = newEpsilon; } namespace literals { Approx operator ""_a(long double val) { return Approx(val); } Approx operator ""_a(unsigned long long val) { return Approx(val); } } // end namespace literals std::string StringMaker::convert(Catch::Approx const& value) { return value.toString(); } } // end namespace Catch namespace Catch { AssertionResultData::AssertionResultData(ResultWas::OfType _resultType, LazyExpression const& _lazyExpression): lazyExpression(_lazyExpression), resultType(_resultType) {} std::string AssertionResultData::reconstructExpression() const { if( reconstructedExpression.empty() ) { if( lazyExpression ) { ReusableStringStream rss; rss << lazyExpression; reconstructedExpression = rss.str(); } } return reconstructedExpression; } AssertionResult::AssertionResult( AssertionInfo const& info, AssertionResultData&& data ) : m_info( info ), m_resultData( CATCH_MOVE(data) ) {} // Result was a success bool AssertionResult::succeeded() const { return Catch::isOk( m_resultData.resultType ); } // Result was a success, or failure is suppressed bool AssertionResult::isOk() const { return Catch::isOk( m_resultData.resultType ) || shouldSuppressFailure( m_info.resultDisposition ); } ResultWas::OfType AssertionResult::getResultType() const { return m_resultData.resultType; } bool AssertionResult::hasExpression() const { return !m_info.capturedExpression.empty(); } bool AssertionResult::hasMessage() const { return !m_resultData.message.empty(); } std::string AssertionResult::getExpression() const { // Possibly overallocating by 3 characters should be basically free std::string expr; expr.reserve(m_info.capturedExpression.size() + 3); if (isFalseTest(m_info.resultDisposition)) { expr += "!("; } expr += m_info.capturedExpression; if (isFalseTest(m_info.resultDisposition)) { expr += ')'; } return expr; } std::string AssertionResult::getExpressionInMacro() const { if ( m_info.macroName.empty() ) { return static_cast( m_info.capturedExpression ); } std::string expr; expr.reserve( m_info.macroName.size() + m_info.capturedExpression.size() + 4 ); expr += m_info.macroName; expr += "( "; expr += m_info.capturedExpression; expr += " )"; return expr; } bool AssertionResult::hasExpandedExpression() const { return hasExpression() && getExpandedExpression() != getExpression(); } std::string AssertionResult::getExpandedExpression() const { std::string expr = m_resultData.reconstructExpression(); return expr.empty() ? getExpression() : expr; } StringRef AssertionResult::getMessage() const { return m_resultData.message; } SourceLineInfo AssertionResult::getSourceInfo() const { return m_info.lineInfo; } StringRef AssertionResult::getTestMacroName() const { return m_info.macroName; } } // end namespace Catch #include namespace Catch { namespace { static bool enableBazelEnvSupport() { #if defined( CATCH_CONFIG_BAZEL_SUPPORT ) return true; #else return Detail::getEnv( "BAZEL_TEST" ) != nullptr; #endif } struct bazelShardingOptions { unsigned int shardIndex, shardCount; std::string shardFilePath; }; static Optional readBazelShardingOptions() { const auto bazelShardIndex = Detail::getEnv( "TEST_SHARD_INDEX" ); const auto bazelShardTotal = Detail::getEnv( "TEST_TOTAL_SHARDS" ); const auto bazelShardInfoFile = Detail::getEnv( "TEST_SHARD_STATUS_FILE" ); const bool has_all = bazelShardIndex && bazelShardTotal && bazelShardInfoFile; if ( !has_all ) { // We provide nice warning message if the input is // misconfigured. auto warn = []( const char* env_var ) { Catch::cerr() << "Warning: Bazel shard configuration is missing '" << env_var << "'. Shard configuration is skipped.\n"; }; if ( !bazelShardIndex ) { warn( "TEST_SHARD_INDEX" ); } if ( !bazelShardTotal ) { warn( "TEST_TOTAL_SHARDS" ); } if ( !bazelShardInfoFile ) { warn( "TEST_SHARD_STATUS_FILE" ); } return {}; } auto shardIndex = parseUInt( bazelShardIndex ); if ( !shardIndex ) { Catch::cerr() << "Warning: could not parse 'TEST_SHARD_INDEX' ('" << bazelShardIndex << "') as unsigned int.\n"; return {}; } auto shardTotal = parseUInt( bazelShardTotal ); if ( !shardTotal ) { Catch::cerr() << "Warning: could not parse 'TEST_TOTAL_SHARD' ('" << bazelShardTotal << "') as unsigned int.\n"; return {}; } return bazelShardingOptions{ *shardIndex, *shardTotal, bazelShardInfoFile }; } } // end namespace bool operator==( ProcessedReporterSpec const& lhs, ProcessedReporterSpec const& rhs ) { return lhs.name == rhs.name && lhs.outputFilename == rhs.outputFilename && lhs.colourMode == rhs.colourMode && lhs.customOptions == rhs.customOptions; } Config::Config( ConfigData const& data ): m_data( data ) { // We need to trim filter specs to avoid trouble with superfluous // whitespace (esp. important for bdd macros, as those are manually // aligned with whitespace). for (auto& elem : m_data.testsOrTags) { elem = trim(elem); } for (auto& elem : m_data.sectionsToRun) { elem = trim(elem); } // Insert the default reporter if user hasn't asked for a specific one if ( m_data.reporterSpecifications.empty() ) { #if defined( CATCH_CONFIG_DEFAULT_REPORTER ) const auto default_spec = CATCH_CONFIG_DEFAULT_REPORTER; #else const auto default_spec = "console"; #endif auto parsed = parseReporterSpec(default_spec); CATCH_ENFORCE( parsed, "Cannot parse the provided default reporter spec: '" << default_spec << '\'' ); m_data.reporterSpecifications.push_back( std::move( *parsed ) ); } if ( enableBazelEnvSupport() ) { readBazelEnvVars(); } // Bazel support can modify the test specs, so parsing has to happen // after reading Bazel env vars. TestSpecParser parser( ITagAliasRegistry::get() ); if ( !m_data.testsOrTags.empty() ) { m_hasTestFilters = true; for ( auto const& testOrTags : m_data.testsOrTags ) { parser.parse( testOrTags ); } } m_testSpec = parser.testSpec(); // We now fixup the reporter specs to handle default output spec, // default colour spec, etc bool defaultOutputUsed = false; for ( auto const& reporterSpec : m_data.reporterSpecifications ) { // We do the default-output check separately, while always // using the default output below to make the code simpler // and avoid superfluous copies. if ( reporterSpec.outputFile().none() ) { CATCH_ENFORCE( !defaultOutputUsed, "Internal error: cannot use default output for " "multiple reporters" ); defaultOutputUsed = true; } m_processedReporterSpecs.push_back( ProcessedReporterSpec{ reporterSpec.name(), reporterSpec.outputFile() ? *reporterSpec.outputFile() : data.defaultOutputFilename, reporterSpec.colourMode().valueOr( data.defaultColourMode ), reporterSpec.customOptions() } ); } } Config::~Config() = default; bool Config::listTests() const { return m_data.listTests; } bool Config::listTags() const { return m_data.listTags; } bool Config::listReporters() const { return m_data.listReporters; } bool Config::listListeners() const { return m_data.listListeners; } std::vector const& Config::getTestsOrTags() const { return m_data.testsOrTags; } std::vector const& Config::getSectionsToRun() const { return m_data.sectionsToRun; } std::vector const& Config::getReporterSpecs() const { return m_data.reporterSpecifications; } std::vector const& Config::getProcessedReporterSpecs() const { return m_processedReporterSpecs; } TestSpec const& Config::testSpec() const { return m_testSpec; } bool Config::hasTestFilters() const { return m_hasTestFilters; } bool Config::showHelp() const { return m_data.showHelp; } // IConfig interface bool Config::allowThrows() const { return !m_data.noThrow; } StringRef Config::name() const { return m_data.name.empty() ? m_data.processName : m_data.name; } bool Config::includeSuccessfulResults() const { return m_data.showSuccessfulTests; } bool Config::warnAboutMissingAssertions() const { return !!( m_data.warnings & WarnAbout::NoAssertions ); } bool Config::warnAboutUnmatchedTestSpecs() const { return !!( m_data.warnings & WarnAbout::UnmatchedTestSpec ); } bool Config::zeroTestsCountAsSuccess() const { return m_data.allowZeroTests; } ShowDurations Config::showDurations() const { return m_data.showDurations; } double Config::minDuration() const { return m_data.minDuration; } TestRunOrder Config::runOrder() const { return m_data.runOrder; } uint32_t Config::rngSeed() const { return m_data.rngSeed; } unsigned int Config::shardCount() const { return m_data.shardCount; } unsigned int Config::shardIndex() const { return m_data.shardIndex; } ColourMode Config::defaultColourMode() const { return m_data.defaultColourMode; } bool Config::shouldDebugBreak() const { return m_data.shouldDebugBreak; } int Config::abortAfter() const { return m_data.abortAfter; } bool Config::showInvisibles() const { return m_data.showInvisibles; } Verbosity Config::verbosity() const { return m_data.verbosity; } bool Config::skipBenchmarks() const { return m_data.skipBenchmarks; } bool Config::benchmarkNoAnalysis() const { return m_data.benchmarkNoAnalysis; } unsigned int Config::benchmarkSamples() const { return m_data.benchmarkSamples; } double Config::benchmarkConfidenceInterval() const { return m_data.benchmarkConfidenceInterval; } unsigned int Config::benchmarkResamples() const { return m_data.benchmarkResamples; } std::chrono::milliseconds Config::benchmarkWarmupTime() const { return std::chrono::milliseconds(m_data.benchmarkWarmupTime); } void Config::readBazelEnvVars() { // Register a JUnit reporter for Bazel. Bazel sets an environment // variable with the path to XML output. If this file is written to // during test, Bazel will not generate a default XML output. // This allows the XML output file to contain higher level of detail // than what is possible otherwise. const auto bazelOutputFile = Detail::getEnv( "XML_OUTPUT_FILE" ); if ( bazelOutputFile ) { m_data.reporterSpecifications.push_back( { "junit", std::string( bazelOutputFile ), {}, {} } ); } const auto bazelTestSpec = Detail::getEnv( "TESTBRIDGE_TEST_ONLY" ); if ( bazelTestSpec ) { // Presumably the test spec from environment should overwrite // the one we got from CLI (if we got any) m_data.testsOrTags.clear(); m_data.testsOrTags.push_back( bazelTestSpec ); } const auto bazelShardOptions = readBazelShardingOptions(); if ( bazelShardOptions ) { std::ofstream f( bazelShardOptions->shardFilePath, std::ios_base::out | std::ios_base::trunc ); if ( f.is_open() ) { f << ""; m_data.shardIndex = bazelShardOptions->shardIndex; m_data.shardCount = bazelShardOptions->shardCount; } } } } // end namespace Catch namespace Catch { std::uint32_t getSeed() { return getCurrentContext().getConfig()->rngSeed(); } } #include #include namespace Catch { //////////////////////////////////////////////////////////////////////////// ScopedMessage::ScopedMessage( MessageBuilder&& builder ): m_info( CATCH_MOVE(builder.m_info) ) { m_info.message = builder.m_stream.str(); getResultCapture().pushScopedMessage( m_info ); } ScopedMessage::ScopedMessage( ScopedMessage&& old ) noexcept: m_info( CATCH_MOVE( old.m_info ) ) { old.m_moved = true; } ScopedMessage::~ScopedMessage() { if ( !uncaught_exceptions() && !m_moved ){ getResultCapture().popScopedMessage(m_info); } } Capturer::Capturer( StringRef macroName, SourceLineInfo const& lineInfo, ResultWas::OfType resultType, StringRef names ): m_resultCapture( getResultCapture() ) { auto trimmed = [&] (size_t start, size_t end) { while (names[start] == ',' || isspace(static_cast(names[start]))) { ++start; } while (names[end] == ',' || isspace(static_cast(names[end]))) { --end; } return names.substr(start, end - start + 1); }; auto skipq = [&] (size_t start, char quote) { for (auto i = start + 1; i < names.size() ; ++i) { if (names[i] == quote) return i; if (names[i] == '\\') ++i; } CATCH_INTERNAL_ERROR("CAPTURE parsing encountered unmatched quote"); }; size_t start = 0; std::stack openings; for (size_t pos = 0; pos < names.size(); ++pos) { char c = names[pos]; switch (c) { case '[': case '{': case '(': // It is basically impossible to disambiguate between // comparison and start of template args in this context // case '<': openings.push(c); break; case ']': case '}': case ')': // case '>': openings.pop(); break; case '"': case '\'': pos = skipq(pos, c); break; case ',': if (start != pos && openings.empty()) { m_messages.emplace_back(macroName, lineInfo, resultType); m_messages.back().message = static_cast(trimmed(start, pos)); m_messages.back().message += " := "; start = pos; } break; default:; // noop } } assert(openings.empty() && "Mismatched openings"); m_messages.emplace_back(macroName, lineInfo, resultType); m_messages.back().message = static_cast(trimmed(start, names.size() - 1)); m_messages.back().message += " := "; } Capturer::~Capturer() { if ( !uncaught_exceptions() ){ assert( m_captured == m_messages.size() ); for( size_t i = 0; i < m_captured; ++i ) m_resultCapture.popScopedMessage( m_messages[i] ); } } void Capturer::captureValue( size_t index, std::string const& value ) { assert( index < m_messages.size() ); m_messages[index].message += value; m_resultCapture.pushScopedMessage( m_messages[index] ); m_captured++; } } // end namespace Catch #include namespace Catch { namespace { class RegistryHub : public IRegistryHub, public IMutableRegistryHub, private Detail::NonCopyable { public: // IRegistryHub RegistryHub() = default; ReporterRegistry const& getReporterRegistry() const override { return m_reporterRegistry; } ITestCaseRegistry const& getTestCaseRegistry() const override { return m_testCaseRegistry; } IExceptionTranslatorRegistry const& getExceptionTranslatorRegistry() const override { return m_exceptionTranslatorRegistry; } ITagAliasRegistry const& getTagAliasRegistry() const override { return m_tagAliasRegistry; } StartupExceptionRegistry const& getStartupExceptionRegistry() const override { return m_exceptionRegistry; } public: // IMutableRegistryHub void registerReporter( std::string const& name, IReporterFactoryPtr factory ) override { m_reporterRegistry.registerReporter( name, CATCH_MOVE(factory) ); } void registerListener( Detail::unique_ptr factory ) override { m_reporterRegistry.registerListener( CATCH_MOVE(factory) ); } void registerTest( Detail::unique_ptr&& testInfo, Detail::unique_ptr&& invoker ) override { m_testCaseRegistry.registerTest( CATCH_MOVE(testInfo), CATCH_MOVE(invoker) ); } void registerTranslator( Detail::unique_ptr&& translator ) override { m_exceptionTranslatorRegistry.registerTranslator( CATCH_MOVE(translator) ); } void registerTagAlias( std::string const& alias, std::string const& tag, SourceLineInfo const& lineInfo ) override { m_tagAliasRegistry.add( alias, tag, lineInfo ); } void registerStartupException() noexcept override { #if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS) m_exceptionRegistry.add(std::current_exception()); #else CATCH_INTERNAL_ERROR("Attempted to register active exception under CATCH_CONFIG_DISABLE_EXCEPTIONS!"); #endif } IMutableEnumValuesRegistry& getMutableEnumValuesRegistry() override { return m_enumValuesRegistry; } private: TestRegistry m_testCaseRegistry; ReporterRegistry m_reporterRegistry; ExceptionTranslatorRegistry m_exceptionTranslatorRegistry; TagAliasRegistry m_tagAliasRegistry; StartupExceptionRegistry m_exceptionRegistry; Detail::EnumValuesRegistry m_enumValuesRegistry; }; } using RegistryHubSingleton = Singleton; IRegistryHub const& getRegistryHub() { return RegistryHubSingleton::get(); } IMutableRegistryHub& getMutableRegistryHub() { return RegistryHubSingleton::getMutable(); } void cleanUp() { cleanupSingletons(); cleanUpContext(); } std::string translateActiveException() { return getRegistryHub().getExceptionTranslatorRegistry().translateActiveException(); } } // end namespace Catch #include #include #include #include #include namespace Catch { namespace { static constexpr int TestFailureExitCode = 42; static constexpr int UnspecifiedErrorExitCode = 1; static constexpr int AllTestsSkippedExitCode = 4; static constexpr int NoTestsRunExitCode = 2; static constexpr int UnmatchedTestSpecExitCode = 3; static constexpr int InvalidTestSpecExitCode = 5; IEventListenerPtr createReporter(std::string const& reporterName, ReporterConfig&& config) { auto reporter = Catch::getRegistryHub().getReporterRegistry().create(reporterName, CATCH_MOVE(config)); CATCH_ENFORCE(reporter, "No reporter registered with name: '" << reporterName << '\''); return reporter; } IEventListenerPtr prepareReporters(Config const* config) { if (Catch::getRegistryHub().getReporterRegistry().getListeners().empty() && config->getProcessedReporterSpecs().size() == 1) { auto const& spec = config->getProcessedReporterSpecs()[0]; return createReporter( spec.name, ReporterConfig( config, makeStream( spec.outputFilename ), spec.colourMode, spec.customOptions ) ); } auto multi = Detail::make_unique(config); auto const& listeners = Catch::getRegistryHub().getReporterRegistry().getListeners(); for (auto const& listener : listeners) { multi->addListener(listener->create(config)); } for ( auto const& reporterSpec : config->getProcessedReporterSpecs() ) { multi->addReporter( createReporter( reporterSpec.name, ReporterConfig( config, makeStream( reporterSpec.outputFilename ), reporterSpec.colourMode, reporterSpec.customOptions ) ) ); } return multi; } class TestGroup { public: explicit TestGroup(IEventListenerPtr&& reporter, Config const* config): m_reporter(reporter.get()), m_config{config}, m_context{config, CATCH_MOVE(reporter)} { assert( m_config->testSpec().getInvalidSpecs().empty() && "Invalid test specs should be handled before running tests" ); auto const& allTestCases = getAllTestCasesSorted(*m_config); auto const& testSpec = m_config->testSpec(); if ( !testSpec.hasFilters() ) { for ( auto const& test : allTestCases ) { if ( !test.getTestCaseInfo().isHidden() ) { m_tests.emplace( &test ); } } } else { m_matches = testSpec.matchesByFilter( allTestCases, *m_config ); for ( auto const& match : m_matches ) { m_tests.insert( match.tests.begin(), match.tests.end() ); } } m_tests = createShard(m_tests, m_config->shardCount(), m_config->shardIndex()); } Totals execute() { Totals totals; for (auto const& testCase : m_tests) { if (!m_context.aborting()) totals += m_context.runTest(*testCase); else m_reporter->skipTest(testCase->getTestCaseInfo()); } for (auto const& match : m_matches) { if (match.tests.empty()) { m_unmatchedTestSpecs = true; m_reporter->noMatchingTestCases( match.name ); } } return totals; } bool hadUnmatchedTestSpecs() const { return m_unmatchedTestSpecs; } private: IEventListener* m_reporter; Config const* m_config; RunContext m_context; std::set m_tests; TestSpec::Matches m_matches; bool m_unmatchedTestSpecs = false; }; void applyFilenamesAsTags() { for (auto const& testInfo : getRegistryHub().getTestCaseRegistry().getAllInfos()) { testInfo->addFilenameTag(); } } } // anon namespace Session::Session() { static bool alreadyInstantiated = false; if( alreadyInstantiated ) { CATCH_TRY { CATCH_INTERNAL_ERROR( "Only one instance of Catch::Session can ever be used" ); } CATCH_CATCH_ALL { getMutableRegistryHub().registerStartupException(); } } // There cannot be exceptions at startup in no-exception mode. #if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS) const auto& exceptions = getRegistryHub().getStartupExceptionRegistry().getExceptions(); if ( !exceptions.empty() ) { config(); getCurrentMutableContext().setConfig(m_config.get()); m_startupExceptions = true; auto errStream = makeStream( "%stderr" ); auto colourImpl = makeColourImpl( ColourMode::PlatformDefault, errStream.get() ); auto guard = colourImpl->guardColour( Colour::Red ); errStream->stream() << "Errors occurred during startup!" << '\n'; // iterate over all exceptions and notify user for ( const auto& ex_ptr : exceptions ) { try { std::rethrow_exception(ex_ptr); } catch ( std::exception const& ex ) { errStream->stream() << TextFlow::Column( ex.what() ).indent(2) << '\n'; } } } #endif alreadyInstantiated = true; m_cli = makeCommandLineParser( m_configData ); } Session::~Session() { Catch::cleanUp(); } void Session::showHelp() const { Catch::cout() << "\nCatch2 v" << libraryVersion() << '\n' << m_cli << '\n' << "For more detailed usage please see the project docs\n\n" << std::flush; } void Session::libIdentify() { Catch::cout() << std::left << std::setw(16) << "description: " << "A Catch2 test executable\n" << std::left << std::setw(16) << "category: " << "testframework\n" << std::left << std::setw(16) << "framework: " << "Catch2\n" << std::left << std::setw(16) << "version: " << libraryVersion() << '\n' << std::flush; } int Session::applyCommandLine( int argc, char const * const * argv ) { if ( m_startupExceptions ) { return UnspecifiedErrorExitCode; } auto result = m_cli.parse( Clara::Args( argc, argv ) ); if( !result ) { config(); getCurrentMutableContext().setConfig(m_config.get()); auto errStream = makeStream( "%stderr" ); auto colour = makeColourImpl( ColourMode::PlatformDefault, errStream.get() ); errStream->stream() << colour->guardColour( Colour::Red ) << "\nError(s) in input:\n" << TextFlow::Column( result.errorMessage() ).indent( 2 ) << "\n\n"; errStream->stream() << "Run with -? for usage\n\n" << std::flush; return UnspecifiedErrorExitCode; } if( m_configData.showHelp ) showHelp(); if( m_configData.libIdentify ) libIdentify(); m_config.reset(); return 0; } #if defined(CATCH_CONFIG_WCHAR) && defined(_WIN32) && defined(UNICODE) int Session::applyCommandLine( int argc, wchar_t const * const * argv ) { char **utf8Argv = new char *[ argc ]; for ( int i = 0; i < argc; ++i ) { int bufSize = WideCharToMultiByte( CP_UTF8, 0, argv[i], -1, nullptr, 0, nullptr, nullptr ); utf8Argv[ i ] = new char[ bufSize ]; WideCharToMultiByte( CP_UTF8, 0, argv[i], -1, utf8Argv[i], bufSize, nullptr, nullptr ); } int returnCode = applyCommandLine( argc, utf8Argv ); for ( int i = 0; i < argc; ++i ) delete [] utf8Argv[ i ]; delete [] utf8Argv; return returnCode; } #endif void Session::useConfigData( ConfigData const& configData ) { m_configData = configData; m_config.reset(); } int Session::run() { if( ( m_configData.waitForKeypress & WaitForKeypress::BeforeStart ) != 0 ) { Catch::cout() << "...waiting for enter/ return before starting\n" << std::flush; static_cast(std::getchar()); } int exitCode = runInternal(); if( ( m_configData.waitForKeypress & WaitForKeypress::BeforeExit ) != 0 ) { Catch::cout() << "...waiting for enter/ return before exiting, with code: " << exitCode << '\n' << std::flush; static_cast(std::getchar()); } return exitCode; } Clara::Parser const& Session::cli() const { return m_cli; } void Session::cli( Clara::Parser const& newParser ) { m_cli = newParser; } ConfigData& Session::configData() { return m_configData; } Config& Session::config() { if( !m_config ) m_config = Detail::make_unique( m_configData ); return *m_config; } int Session::runInternal() { if ( m_startupExceptions ) { return UnspecifiedErrorExitCode; } if (m_configData.showHelp || m_configData.libIdentify) { return 0; } if ( m_configData.shardIndex >= m_configData.shardCount ) { Catch::cerr() << "The shard count (" << m_configData.shardCount << ") must be greater than the shard index (" << m_configData.shardIndex << ")\n" << std::flush; return UnspecifiedErrorExitCode; } CATCH_TRY { config(); // Force config to be constructed seedRng( *m_config ); if (m_configData.filenamesAsTags) { applyFilenamesAsTags(); } // Set up global config instance before we start calling into other functions getCurrentMutableContext().setConfig(m_config.get()); // Create reporter(s) so we can route listings through them auto reporter = prepareReporters(m_config.get()); auto const& invalidSpecs = m_config->testSpec().getInvalidSpecs(); if ( !invalidSpecs.empty() ) { for ( auto const& spec : invalidSpecs ) { reporter->reportInvalidTestSpec( spec ); } return InvalidTestSpecExitCode; } // Handle list request if (list(*reporter, *m_config)) { return 0; } TestGroup tests { CATCH_MOVE(reporter), m_config.get() }; auto const totals = tests.execute(); if ( tests.hadUnmatchedTestSpecs() && m_config->warnAboutUnmatchedTestSpecs() ) { // UnmatchedTestSpecExitCode return UnmatchedTestSpecExitCode; } if ( totals.testCases.total() == 0 && !m_config->zeroTestsCountAsSuccess() ) { return NoTestsRunExitCode; } if ( totals.testCases.total() > 0 && totals.testCases.total() == totals.testCases.skipped && !m_config->zeroTestsCountAsSuccess() ) { return AllTestsSkippedExitCode; } if ( totals.assertions.failed ) { return TestFailureExitCode; } return 0; } #if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS) catch( std::exception& ex ) { Catch::cerr() << ex.what() << '\n' << std::flush; return UnspecifiedErrorExitCode; } #endif } } // end namespace Catch namespace Catch { RegistrarForTagAliases::RegistrarForTagAliases(char const* alias, char const* tag, SourceLineInfo const& lineInfo) { CATCH_TRY { getMutableRegistryHub().registerTagAlias(alias, tag, lineInfo); } CATCH_CATCH_ALL { // Do not throw when constructing global objects, instead register the exception to be processed later getMutableRegistryHub().registerStartupException(); } } } #include #include #include namespace Catch { namespace { using TCP_underlying_type = uint8_t; static_assert(sizeof(TestCaseProperties) == sizeof(TCP_underlying_type), "The size of the TestCaseProperties is different from the assumed size"); constexpr TestCaseProperties operator|(TestCaseProperties lhs, TestCaseProperties rhs) { return static_cast( static_cast(lhs) | static_cast(rhs) ); } constexpr TestCaseProperties& operator|=(TestCaseProperties& lhs, TestCaseProperties rhs) { lhs = static_cast( static_cast(lhs) | static_cast(rhs) ); return lhs; } constexpr TestCaseProperties operator&(TestCaseProperties lhs, TestCaseProperties rhs) { return static_cast( static_cast(lhs) & static_cast(rhs) ); } constexpr bool applies(TestCaseProperties tcp) { static_assert(static_cast(TestCaseProperties::None) == 0, "TestCaseProperties::None must be equal to 0"); return tcp != TestCaseProperties::None; } TestCaseProperties parseSpecialTag( StringRef tag ) { if( !tag.empty() && tag[0] == '.' ) return TestCaseProperties::IsHidden; else if( tag == "!throws"_sr ) return TestCaseProperties::Throws; else if( tag == "!shouldfail"_sr ) return TestCaseProperties::ShouldFail; else if( tag == "!mayfail"_sr ) return TestCaseProperties::MayFail; else if( tag == "!nonportable"_sr ) return TestCaseProperties::NonPortable; else if( tag == "!benchmark"_sr ) return TestCaseProperties::Benchmark | TestCaseProperties::IsHidden; else return TestCaseProperties::None; } bool isReservedTag( StringRef tag ) { return parseSpecialTag( tag ) == TestCaseProperties::None && tag.size() > 0 && !std::isalnum( static_cast(tag[0]) ); } void enforceNotReservedTag( StringRef tag, SourceLineInfo const& _lineInfo ) { CATCH_ENFORCE( !isReservedTag(tag), "Tag name: [" << tag << "] is not allowed.\n" << "Tag names starting with non alphanumeric characters are reserved\n" << _lineInfo ); } std::string makeDefaultName() { static size_t counter = 0; return "Anonymous test case " + std::to_string(++counter); } constexpr StringRef extractFilenamePart(StringRef filename) { size_t lastDot = filename.size(); while (lastDot > 0 && filename[lastDot - 1] != '.') { --lastDot; } // In theory we could have filename without any extension in it if ( lastDot == 0 ) { return StringRef(); } --lastDot; size_t nameStart = lastDot; while (nameStart > 0 && filename[nameStart - 1] != '/' && filename[nameStart - 1] != '\\') { --nameStart; } return filename.substr(nameStart, lastDot - nameStart); } // Returns the upper bound on size of extra tags ([#file]+[.]) constexpr size_t sizeOfExtraTags(StringRef filepath) { // [.] is 3, [#] is another 3 const size_t extras = 3 + 3; return extractFilenamePart(filepath).size() + extras; } } // end unnamed namespace bool operator<( Tag const& lhs, Tag const& rhs ) { Detail::CaseInsensitiveLess cmp; return cmp( lhs.original, rhs.original ); } bool operator==( Tag const& lhs, Tag const& rhs ) { Detail::CaseInsensitiveEqualTo cmp; return cmp( lhs.original, rhs.original ); } Detail::unique_ptr makeTestCaseInfo(StringRef _className, NameAndTags const& nameAndTags, SourceLineInfo const& _lineInfo ) { return Detail::make_unique(_className, nameAndTags, _lineInfo); } TestCaseInfo::TestCaseInfo(StringRef _className, NameAndTags const& _nameAndTags, SourceLineInfo const& _lineInfo): name( _nameAndTags.name.empty() ? makeDefaultName() : _nameAndTags.name ), className( _className ), lineInfo( _lineInfo ) { StringRef originalTags = _nameAndTags.tags; // We need to reserve enough space to store all of the tags // (including optional hidden tag and filename tag) auto requiredSize = originalTags.size() + sizeOfExtraTags(_lineInfo.file); backingTags.reserve(requiredSize); // We cannot copy the tags directly, as we need to normalize // some tags, so that [.foo] is copied as [.][foo]. size_t tagStart = 0; size_t tagEnd = 0; bool inTag = false; for (size_t idx = 0; idx < originalTags.size(); ++idx) { auto c = originalTags[idx]; if (c == '[') { CATCH_ENFORCE( !inTag, "Found '[' inside a tag while registering test case '" << _nameAndTags.name << "' at " << _lineInfo ); inTag = true; tagStart = idx; } if (c == ']') { CATCH_ENFORCE( inTag, "Found unmatched ']' while registering test case '" << _nameAndTags.name << "' at " << _lineInfo ); inTag = false; tagEnd = idx; assert(tagStart < tagEnd); // We need to check the tag for special meanings, copy // it over to backing storage and actually reference the // backing storage in the saved tags StringRef tagStr = originalTags.substr(tagStart+1, tagEnd - tagStart - 1); CATCH_ENFORCE( !tagStr.empty(), "Found an empty tag while registering test case '" << _nameAndTags.name << "' at " << _lineInfo ); enforceNotReservedTag(tagStr, lineInfo); properties |= parseSpecialTag(tagStr); // When copying a tag to the backing storage, we need to // check if it is a merged hide tag, such as [.foo], and // if it is, we need to handle it as if it was [foo]. if (tagStr.size() > 1 && tagStr[0] == '.') { tagStr = tagStr.substr(1, tagStr.size() - 1); } // We skip over dealing with the [.] tag, as we will add // it later unconditionally and then sort and unique all // the tags. internalAppendTag(tagStr); } } CATCH_ENFORCE( !inTag, "Found an unclosed tag while registering test case '" << _nameAndTags.name << "' at " << _lineInfo ); // Add [.] if relevant if (isHidden()) { internalAppendTag("."_sr); } // Sort and prepare tags std::sort(begin(tags), end(tags)); tags.erase(std::unique(begin(tags), end(tags)), end(tags)); } bool TestCaseInfo::isHidden() const { return applies( properties & TestCaseProperties::IsHidden ); } bool TestCaseInfo::throws() const { return applies( properties & TestCaseProperties::Throws ); } bool TestCaseInfo::okToFail() const { return applies( properties & (TestCaseProperties::ShouldFail | TestCaseProperties::MayFail ) ); } bool TestCaseInfo::expectedToFail() const { return applies( properties & (TestCaseProperties::ShouldFail) ); } void TestCaseInfo::addFilenameTag() { std::string combined("#"); combined += extractFilenamePart(lineInfo.file); internalAppendTag(combined); } std::string TestCaseInfo::tagsAsString() const { std::string ret; // '[' and ']' per tag std::size_t full_size = 2 * tags.size(); for (const auto& tag : tags) { full_size += tag.original.size(); } ret.reserve(full_size); for (const auto& tag : tags) { ret.push_back('['); ret += tag.original; ret.push_back(']'); } return ret; } void TestCaseInfo::internalAppendTag(StringRef tagStr) { backingTags += '['; const auto backingStart = backingTags.size(); backingTags += tagStr; const auto backingEnd = backingTags.size(); backingTags += ']'; tags.emplace_back(StringRef(backingTags.c_str() + backingStart, backingEnd - backingStart)); } bool operator<( TestCaseInfo const& lhs, TestCaseInfo const& rhs ) { // We want to avoid redoing the string comparisons multiple times, // so we store the result of a three-way comparison before using // it in the actual comparison logic. const auto cmpName = lhs.name.compare( rhs.name ); if ( cmpName != 0 ) { return cmpName < 0; } const auto cmpClassName = lhs.className.compare( rhs.className ); if ( cmpClassName != 0 ) { return cmpClassName < 0; } return lhs.tags < rhs.tags; } } // end namespace Catch #include #include #include #include namespace Catch { TestSpec::Pattern::Pattern( std::string const& name ) : m_name( name ) {} TestSpec::Pattern::~Pattern() = default; std::string const& TestSpec::Pattern::name() const { return m_name; } TestSpec::NamePattern::NamePattern( std::string const& name, std::string const& filterString ) : Pattern( filterString ) , m_wildcardPattern( toLower( name ), CaseSensitive::No ) {} bool TestSpec::NamePattern::matches( TestCaseInfo const& testCase ) const { return m_wildcardPattern.matches( testCase.name ); } void TestSpec::NamePattern::serializeTo( std::ostream& out ) const { out << '"' << name() << '"'; } TestSpec::TagPattern::TagPattern( std::string const& tag, std::string const& filterString ) : Pattern( filterString ) , m_tag( tag ) {} bool TestSpec::TagPattern::matches( TestCaseInfo const& testCase ) const { return std::find( begin( testCase.tags ), end( testCase.tags ), Tag( m_tag ) ) != end( testCase.tags ); } void TestSpec::TagPattern::serializeTo( std::ostream& out ) const { out << name(); } bool TestSpec::Filter::matches( TestCaseInfo const& testCase ) const { bool should_use = !testCase.isHidden(); for (auto const& pattern : m_required) { should_use = true; if (!pattern->matches(testCase)) { return false; } } for (auto const& pattern : m_forbidden) { if (pattern->matches(testCase)) { return false; } } return should_use; } void TestSpec::Filter::serializeTo( std::ostream& out ) const { bool first = true; for ( auto const& pattern : m_required ) { if ( !first ) { out << ' '; } out << *pattern; first = false; } for ( auto const& pattern : m_forbidden ) { if ( !first ) { out << ' '; } out << *pattern; first = false; } } std::string TestSpec::extractFilterName( Filter const& filter ) { Catch::ReusableStringStream sstr; sstr << filter; return sstr.str(); } bool TestSpec::hasFilters() const { return !m_filters.empty(); } bool TestSpec::matches( TestCaseInfo const& testCase ) const { return std::any_of( m_filters.begin(), m_filters.end(), [&]( Filter const& f ){ return f.matches( testCase ); } ); } TestSpec::Matches TestSpec::matchesByFilter( std::vector const& testCases, IConfig const& config ) const { Matches matches; matches.reserve( m_filters.size() ); for ( auto const& filter : m_filters ) { std::vector currentMatches; for ( auto const& test : testCases ) if ( isThrowSafe( test, config ) && filter.matches( test.getTestCaseInfo() ) ) currentMatches.emplace_back( &test ); matches.push_back( FilterMatch{ extractFilterName( filter ), currentMatches } ); } return matches; } const TestSpec::vectorStrings& TestSpec::getInvalidSpecs() const { return m_invalidSpecs; } void TestSpec::serializeTo( std::ostream& out ) const { bool first = true; for ( auto const& filter : m_filters ) { if ( !first ) { out << ','; } out << filter; first = false; } } } #include namespace Catch { namespace { static auto getCurrentNanosecondsSinceEpoch() -> uint64_t { return std::chrono::duration_cast(std::chrono::steady_clock::now().time_since_epoch()).count(); } } // end unnamed namespace void Timer::start() { m_nanoseconds = getCurrentNanosecondsSinceEpoch(); } auto Timer::getElapsedNanoseconds() const -> uint64_t { return getCurrentNanosecondsSinceEpoch() - m_nanoseconds; } auto Timer::getElapsedMicroseconds() const -> uint64_t { return getElapsedNanoseconds()/1000; } auto Timer::getElapsedMilliseconds() const -> unsigned int { return static_cast(getElapsedMicroseconds()/1000); } auto Timer::getElapsedSeconds() const -> double { return static_cast(getElapsedMicroseconds())/1000000.0; } } // namespace Catch #include #include namespace Catch { namespace Detail { namespace { const int hexThreshold = 255; struct Endianness { enum Arch : uint8_t { Big, Little }; static Arch which() { int one = 1; // If the lowest byte we read is non-zero, we can assume // that little endian format is used. auto value = *reinterpret_cast(&one); return value ? Little : Big; } }; template std::string fpToString(T value, int precision) { if (Catch::isnan(value)) { return "nan"; } ReusableStringStream rss; rss << std::setprecision(precision) << std::fixed << value; std::string d = rss.str(); std::size_t i = d.find_last_not_of('0'); if (i != std::string::npos && i != d.size() - 1) { if (d[i] == '.') i++; d = d.substr(0, i + 1); } return d; } } // end unnamed namespace std::string convertIntoString(StringRef string, bool escapeInvisibles) { std::string ret; // This is enough for the "don't escape invisibles" case, and a good // lower bound on the "escape invisibles" case. ret.reserve(string.size() + 2); if (!escapeInvisibles) { ret += '"'; ret += string; ret += '"'; return ret; } ret += '"'; for (char c : string) { switch (c) { case '\r': ret.append("\\r"); break; case '\n': ret.append("\\n"); break; case '\t': ret.append("\\t"); break; case '\f': ret.append("\\f"); break; default: ret.push_back(c); break; } } ret += '"'; return ret; } std::string convertIntoString(StringRef string) { return convertIntoString(string, getCurrentContext().getConfig()->showInvisibles()); } std::string rawMemoryToString( const void *object, std::size_t size ) { // Reverse order for little endian architectures int i = 0, end = static_cast( size ), inc = 1; if( Endianness::which() == Endianness::Little ) { i = end-1; end = inc = -1; } unsigned char const *bytes = static_cast(object); ReusableStringStream rss; rss << "0x" << std::setfill('0') << std::hex; for( ; i != end; i += inc ) rss << std::setw(2) << static_cast(bytes[i]); return rss.str(); } } // end Detail namespace //// ======================================================= //// // // Out-of-line defs for full specialization of StringMaker // //// ======================================================= //// std::string StringMaker::convert(const std::string& str) { return Detail::convertIntoString( str ); } #ifdef CATCH_CONFIG_CPP17_STRING_VIEW std::string StringMaker::convert(std::string_view str) { return Detail::convertIntoString( StringRef( str.data(), str.size() ) ); } #endif std::string StringMaker::convert(char const* str) { if (str) { return Detail::convertIntoString( str ); } else { return{ "{null string}" }; } } std::string StringMaker::convert(char* str) { // NOLINT(readability-non-const-parameter) if (str) { return Detail::convertIntoString( str ); } else { return{ "{null string}" }; } } #ifdef CATCH_CONFIG_WCHAR std::string StringMaker::convert(const std::wstring& wstr) { std::string s; s.reserve(wstr.size()); for (auto c : wstr) { s += (c <= 0xff) ? static_cast(c) : '?'; } return ::Catch::Detail::stringify(s); } # ifdef CATCH_CONFIG_CPP17_STRING_VIEW std::string StringMaker::convert(std::wstring_view str) { return StringMaker::convert(std::wstring(str)); } # endif std::string StringMaker::convert(wchar_t const * str) { if (str) { return ::Catch::Detail::stringify(std::wstring{ str }); } else { return{ "{null string}" }; } } std::string StringMaker::convert(wchar_t * str) { if (str) { return ::Catch::Detail::stringify(std::wstring{ str }); } else { return{ "{null string}" }; } } #endif #if defined(CATCH_CONFIG_CPP17_BYTE) #include std::string StringMaker::convert(std::byte value) { return ::Catch::Detail::stringify(std::to_integer(value)); } #endif // defined(CATCH_CONFIG_CPP17_BYTE) std::string StringMaker::convert(int value) { return ::Catch::Detail::stringify(static_cast(value)); } std::string StringMaker::convert(long value) { return ::Catch::Detail::stringify(static_cast(value)); } std::string StringMaker::convert(long long value) { ReusableStringStream rss; rss << value; if (value > Detail::hexThreshold) { rss << " (0x" << std::hex << value << ')'; } return rss.str(); } std::string StringMaker::convert(unsigned int value) { return ::Catch::Detail::stringify(static_cast(value)); } std::string StringMaker::convert(unsigned long value) { return ::Catch::Detail::stringify(static_cast(value)); } std::string StringMaker::convert(unsigned long long value) { ReusableStringStream rss; rss << value; if (value > Detail::hexThreshold) { rss << " (0x" << std::hex << value << ')'; } return rss.str(); } std::string StringMaker::convert(signed char value) { if (value == '\r') { return "'\\r'"; } else if (value == '\f') { return "'\\f'"; } else if (value == '\n') { return "'\\n'"; } else if (value == '\t') { return "'\\t'"; } else if ('\0' <= value && value < ' ') { return ::Catch::Detail::stringify(static_cast(value)); } else { char chstr[] = "' '"; chstr[1] = value; return chstr; } } std::string StringMaker::convert(char c) { return ::Catch::Detail::stringify(static_cast(c)); } std::string StringMaker::convert(unsigned char value) { return ::Catch::Detail::stringify(static_cast(value)); } int StringMaker::precision = std::numeric_limits::max_digits10; std::string StringMaker::convert(float value) { return Detail::fpToString(value, precision) + 'f'; } int StringMaker::precision = std::numeric_limits::max_digits10; std::string StringMaker::convert(double value) { return Detail::fpToString(value, precision); } } // end namespace Catch namespace Catch { Counts Counts::operator - ( Counts const& other ) const { Counts diff; diff.passed = passed - other.passed; diff.failed = failed - other.failed; diff.failedButOk = failedButOk - other.failedButOk; diff.skipped = skipped - other.skipped; return diff; } Counts& Counts::operator += ( Counts const& other ) { passed += other.passed; failed += other.failed; failedButOk += other.failedButOk; skipped += other.skipped; return *this; } std::uint64_t Counts::total() const { return passed + failed + failedButOk + skipped; } bool Counts::allPassed() const { return failed == 0 && failedButOk == 0 && skipped == 0; } bool Counts::allOk() const { return failed == 0; } Totals Totals::operator - ( Totals const& other ) const { Totals diff; diff.assertions = assertions - other.assertions; diff.testCases = testCases - other.testCases; return diff; } Totals& Totals::operator += ( Totals const& other ) { assertions += other.assertions; testCases += other.testCases; return *this; } Totals Totals::delta( Totals const& prevTotals ) const { Totals diff = *this - prevTotals; if( diff.assertions.failed > 0 ) ++diff.testCases.failed; else if( diff.assertions.failedButOk > 0 ) ++diff.testCases.failedButOk; else if ( diff.assertions.skipped > 0 ) ++ diff.testCases.skipped; else ++diff.testCases.passed; return diff; } } namespace Catch { namespace Detail { void registerTranslatorImpl( Detail::unique_ptr&& translator ) { getMutableRegistryHub().registerTranslator( CATCH_MOVE( translator ) ); } } // namespace Detail } // namespace Catch #include namespace Catch { Version::Version ( unsigned int _majorVersion, unsigned int _minorVersion, unsigned int _patchNumber, char const * const _branchName, unsigned int _buildNumber ) : majorVersion( _majorVersion ), minorVersion( _minorVersion ), patchNumber( _patchNumber ), branchName( _branchName ), buildNumber( _buildNumber ) {} std::ostream& operator << ( std::ostream& os, Version const& version ) { os << version.majorVersion << '.' << version.minorVersion << '.' << version.patchNumber; // branchName is never null -> 0th char is \0 if it is empty if (version.branchName[0]) { os << '-' << version.branchName << '.' << version.buildNumber; } return os; } Version const& libraryVersion() { static Version version( 3, 8, 0, "", 0 ); return version; } } namespace Catch { const char* GeneratorException::what() const noexcept { return m_msg; } } // end namespace Catch namespace Catch { IGeneratorTracker::~IGeneratorTracker() = default; namespace Generators { namespace Detail { [[noreturn]] void throw_generator_exception(char const* msg) { Catch::throw_exception(GeneratorException{ msg }); } } // end namespace Detail GeneratorUntypedBase::~GeneratorUntypedBase() = default; IGeneratorTracker* acquireGeneratorTracker(StringRef generatorName, SourceLineInfo const& lineInfo ) { return getResultCapture().acquireGeneratorTracker( generatorName, lineInfo ); } IGeneratorTracker* createGeneratorTracker( StringRef generatorName, SourceLineInfo lineInfo, GeneratorBasePtr&& generator ) { return getResultCapture().createGeneratorTracker( generatorName, lineInfo, CATCH_MOVE( generator ) ); } } // namespace Generators } // namespace Catch #include namespace Catch { namespace Generators { namespace Detail { std::uint32_t getSeed() { return sharedRng()(); } } // namespace Detail struct RandomFloatingGenerator::PImpl { PImpl( long double a, long double b, uint32_t seed ): rng( seed ), dist( a, b ) {} Catch::SimplePcg32 rng; std::uniform_real_distribution dist; }; RandomFloatingGenerator::RandomFloatingGenerator( long double a, long double b, std::uint32_t seed) : m_pimpl(Catch::Detail::make_unique(a, b, seed)) { static_cast( next() ); } RandomFloatingGenerator::~RandomFloatingGenerator() = default; bool RandomFloatingGenerator::next() { m_current_number = m_pimpl->dist( m_pimpl->rng ); return true; } } // namespace Generators } // namespace Catch namespace Catch { IResultCapture::~IResultCapture() = default; } namespace Catch { IConfig::~IConfig() = default; } namespace Catch { IExceptionTranslator::~IExceptionTranslator() = default; IExceptionTranslatorRegistry::~IExceptionTranslatorRegistry() = default; } #include namespace Catch { namespace Generators { bool GeneratorUntypedBase::countedNext() { auto ret = next(); if ( ret ) { m_stringReprCache.clear(); ++m_currentElementIndex; } return ret; } StringRef GeneratorUntypedBase::currentElementAsString() const { if ( m_stringReprCache.empty() ) { m_stringReprCache = stringifyImpl(); } return m_stringReprCache; } } // namespace Generators } // namespace Catch namespace Catch { IRegistryHub::~IRegistryHub() = default; IMutableRegistryHub::~IMutableRegistryHub() = default; } #include namespace Catch { ReporterConfig::ReporterConfig( IConfig const* _fullConfig, Detail::unique_ptr _stream, ColourMode colourMode, std::map customOptions ): m_stream( CATCH_MOVE(_stream) ), m_fullConfig( _fullConfig ), m_colourMode( colourMode ), m_customOptions( CATCH_MOVE( customOptions ) ) {} Detail::unique_ptr ReporterConfig::takeStream() && { assert( m_stream ); return CATCH_MOVE( m_stream ); } IConfig const * ReporterConfig::fullConfig() const { return m_fullConfig; } ColourMode ReporterConfig::colourMode() const { return m_colourMode; } std::map const& ReporterConfig::customOptions() const { return m_customOptions; } ReporterConfig::~ReporterConfig() = default; AssertionStats::AssertionStats( AssertionResult const& _assertionResult, std::vector const& _infoMessages, Totals const& _totals ) : assertionResult( _assertionResult ), infoMessages( _infoMessages ), totals( _totals ) { if( assertionResult.hasMessage() ) { // Copy message into messages list. // !TBD This should have been done earlier, somewhere MessageBuilder builder( assertionResult.getTestMacroName(), assertionResult.getSourceInfo(), assertionResult.getResultType() ); builder.m_info.message = static_cast(assertionResult.getMessage()); infoMessages.push_back( CATCH_MOVE(builder.m_info) ); } } SectionStats::SectionStats( SectionInfo&& _sectionInfo, Counts const& _assertions, double _durationInSeconds, bool _missingAssertions ) : sectionInfo( CATCH_MOVE(_sectionInfo) ), assertions( _assertions ), durationInSeconds( _durationInSeconds ), missingAssertions( _missingAssertions ) {} TestCaseStats::TestCaseStats( TestCaseInfo const& _testInfo, Totals const& _totals, std::string&& _stdOut, std::string&& _stdErr, bool _aborting ) : testInfo( &_testInfo ), totals( _totals ), stdOut( CATCH_MOVE(_stdOut) ), stdErr( CATCH_MOVE(_stdErr) ), aborting( _aborting ) {} TestRunStats::TestRunStats( TestRunInfo const& _runInfo, Totals const& _totals, bool _aborting ) : runInfo( _runInfo ), totals( _totals ), aborting( _aborting ) {} IEventListener::~IEventListener() = default; } // end namespace Catch namespace Catch { IReporterFactory::~IReporterFactory() = default; EventListenerFactory::~EventListenerFactory() = default; } namespace Catch { ITestCaseRegistry::~ITestCaseRegistry() = default; } namespace Catch { AssertionHandler::AssertionHandler ( StringRef macroName, SourceLineInfo const& lineInfo, StringRef capturedExpression, ResultDisposition::Flags resultDisposition ) : m_assertionInfo{ macroName, lineInfo, capturedExpression, resultDisposition }, m_resultCapture( getResultCapture() ) { m_resultCapture.notifyAssertionStarted( m_assertionInfo ); } void AssertionHandler::handleExpr( ITransientExpression const& expr ) { m_resultCapture.handleExpr( m_assertionInfo, expr, m_reaction ); } void AssertionHandler::handleMessage(ResultWas::OfType resultType, std::string&& message) { m_resultCapture.handleMessage( m_assertionInfo, resultType, CATCH_MOVE(message), m_reaction ); } auto AssertionHandler::allowThrows() const -> bool { return getCurrentContext().getConfig()->allowThrows(); } void AssertionHandler::complete() { m_completed = true; if( m_reaction.shouldDebugBreak ) { // If you find your debugger stopping you here then go one level up on the // call-stack for the code that caused it (typically a failed assertion) // (To go back to the test and change execution, jump over the throw, next) CATCH_BREAK_INTO_DEBUGGER(); } if (m_reaction.shouldThrow) { throw_test_failure_exception(); } if ( m_reaction.shouldSkip ) { throw_test_skip_exception(); } } void AssertionHandler::handleUnexpectedInflightException() { m_resultCapture.handleUnexpectedInflightException( m_assertionInfo, Catch::translateActiveException(), m_reaction ); } void AssertionHandler::handleExceptionThrownAsExpected() { m_resultCapture.handleNonExpr(m_assertionInfo, ResultWas::Ok, m_reaction); } void AssertionHandler::handleExceptionNotThrownAsExpected() { m_resultCapture.handleNonExpr(m_assertionInfo, ResultWas::Ok, m_reaction); } void AssertionHandler::handleUnexpectedExceptionNotThrown() { m_resultCapture.handleUnexpectedExceptionNotThrown( m_assertionInfo, m_reaction ); } void AssertionHandler::handleThrowingCallSkipped() { m_resultCapture.handleNonExpr(m_assertionInfo, ResultWas::Ok, m_reaction); } // This is the overload that takes a string and infers the Equals matcher from it // The more general overload, that takes any string matcher, is in catch_capture_matchers.cpp void handleExceptionMatchExpr( AssertionHandler& handler, std::string const& str ) { handleExceptionMatchExpr( handler, Matchers::Equals( str ) ); } } // namespace Catch #include namespace Catch { namespace Detail { bool CaseInsensitiveLess::operator()( StringRef lhs, StringRef rhs ) const { return std::lexicographical_compare( lhs.begin(), lhs.end(), rhs.begin(), rhs.end(), []( char l, char r ) { return toLower( l ) < toLower( r ); } ); } bool CaseInsensitiveEqualTo::operator()( StringRef lhs, StringRef rhs ) const { return std::equal( lhs.begin(), lhs.end(), rhs.begin(), rhs.end(), []( char l, char r ) { return toLower( l ) == toLower( r ); } ); } } // namespace Detail } // namespace Catch #include #include namespace { bool isOptPrefix( char c ) { return c == '-' #ifdef CATCH_PLATFORM_WINDOWS || c == '/' #endif ; } Catch::StringRef normaliseOpt( Catch::StringRef optName ) { if ( optName[0] == '-' #if defined(CATCH_PLATFORM_WINDOWS) || optName[0] == '/' #endif ) { return optName.substr( 1, optName.size() ); } return optName; } static size_t find_first_separator(Catch::StringRef sr) { auto is_separator = []( char c ) { return c == ' ' || c == ':' || c == '='; }; size_t pos = 0; while (pos < sr.size()) { if (is_separator(sr[pos])) { return pos; } ++pos; } return Catch::StringRef::npos; } } // namespace namespace Catch { namespace Clara { namespace Detail { void TokenStream::loadBuffer() { m_tokenBuffer.clear(); // Skip any empty strings while ( it != itEnd && it->empty() ) { ++it; } if ( it != itEnd ) { StringRef next = *it; if ( isOptPrefix( next[0] ) ) { auto delimiterPos = find_first_separator(next); if ( delimiterPos != StringRef::npos ) { m_tokenBuffer.push_back( { TokenType::Option, next.substr( 0, delimiterPos ) } ); m_tokenBuffer.push_back( { TokenType::Argument, next.substr( delimiterPos + 1, next.size() ) } ); } else { if ( next.size() > 1 && next[1] != '-' && next.size() > 2 ) { // Combined short args, e.g. "-ab" for "-a -b" for ( size_t i = 1; i < next.size(); ++i ) { m_tokenBuffer.push_back( { TokenType::Option, next.substr( i, 1 ) } ); } } else { m_tokenBuffer.push_back( { TokenType::Option, next } ); } } } else { m_tokenBuffer.push_back( { TokenType::Argument, next } ); } } } TokenStream::TokenStream( Args const& args ): TokenStream( args.m_args.begin(), args.m_args.end() ) {} TokenStream::TokenStream( Iterator it_, Iterator itEnd_ ): it( it_ ), itEnd( itEnd_ ) { loadBuffer(); } TokenStream& TokenStream::operator++() { if ( m_tokenBuffer.size() >= 2 ) { m_tokenBuffer.erase( m_tokenBuffer.begin() ); } else { if ( it != itEnd ) ++it; loadBuffer(); } return *this; } ParserResult convertInto( std::string const& source, std::string& target ) { target = source; return ParserResult::ok( ParseResultType::Matched ); } ParserResult convertInto( std::string const& source, bool& target ) { std::string srcLC = toLower( source ); if ( srcLC == "y" || srcLC == "1" || srcLC == "true" || srcLC == "yes" || srcLC == "on" ) { target = true; } else if ( srcLC == "n" || srcLC == "0" || srcLC == "false" || srcLC == "no" || srcLC == "off" ) { target = false; } else { return ParserResult::runtimeError( "Expected a boolean value but did not recognise: '" + source + '\'' ); } return ParserResult::ok( ParseResultType::Matched ); } size_t ParserBase::cardinality() const { return 1; } InternalParseResult ParserBase::parse( Args const& args ) const { return parse( static_cast(args.exeName()), TokenStream( args ) ); } ParseState::ParseState( ParseResultType type, TokenStream remainingTokens ): m_type( type ), m_remainingTokens( CATCH_MOVE(remainingTokens) ) {} ParserResult BoundFlagRef::setFlag( bool flag ) { m_ref = flag; return ParserResult::ok( ParseResultType::Matched ); } ResultBase::~ResultBase() = default; bool BoundRef::isContainer() const { return false; } bool BoundRef::isFlag() const { return false; } bool BoundFlagRefBase::isFlag() const { return true; } } // namespace Detail Detail::InternalParseResult Arg::parse(std::string const&, Detail::TokenStream tokens) const { auto validationResult = validate(); if (!validationResult) return Detail::InternalParseResult(validationResult); auto token = *tokens; if (token.type != Detail::TokenType::Argument) return Detail::InternalParseResult::ok(Detail::ParseState( ParseResultType::NoMatch, CATCH_MOVE(tokens))); assert(!m_ref->isFlag()); auto valueRef = static_cast(m_ref.get()); auto result = valueRef->setValue(static_cast(token.token)); if ( !result ) return Detail::InternalParseResult( result ); else return Detail::InternalParseResult::ok( Detail::ParseState( ParseResultType::Matched, CATCH_MOVE( ++tokens ) ) ); } Opt::Opt(bool& ref) : ParserRefImpl(std::make_shared(ref)) {} Detail::HelpColumns Opt::getHelpColumns() const { ReusableStringStream oss; bool first = true; for (auto const& opt : m_optNames) { if (first) first = false; else oss << ", "; oss << opt; } if (!m_hint.empty()) oss << " <" << m_hint << '>'; return { oss.str(), m_description }; } bool Opt::isMatch(StringRef optToken) const { auto normalisedToken = normaliseOpt(optToken); for (auto const& name : m_optNames) { if (normaliseOpt(name) == normalisedToken) return true; } return false; } Detail::InternalParseResult Opt::parse(std::string const&, Detail::TokenStream tokens) const { auto validationResult = validate(); if (!validationResult) return Detail::InternalParseResult(validationResult); if (tokens && tokens->type == Detail::TokenType::Option) { auto const& token = *tokens; if (isMatch(token.token)) { if (m_ref->isFlag()) { auto flagRef = static_cast( m_ref.get()); auto result = flagRef->setFlag(true); if (!result) return Detail::InternalParseResult(result); if (result.value() == ParseResultType::ShortCircuitAll) return Detail::InternalParseResult::ok(Detail::ParseState( result.value(), CATCH_MOVE(tokens))); } else { auto valueRef = static_cast( m_ref.get()); ++tokens; if (!tokens) return Detail::InternalParseResult::runtimeError( "Expected argument following " + token.token); auto const& argToken = *tokens; if (argToken.type != Detail::TokenType::Argument) return Detail::InternalParseResult::runtimeError( "Expected argument following " + token.token); const auto result = valueRef->setValue(static_cast(argToken.token)); if (!result) return Detail::InternalParseResult(result); if (result.value() == ParseResultType::ShortCircuitAll) return Detail::InternalParseResult::ok(Detail::ParseState( result.value(), CATCH_MOVE(tokens))); } return Detail::InternalParseResult::ok(Detail::ParseState( ParseResultType::Matched, CATCH_MOVE(++tokens))); } } return Detail::InternalParseResult::ok( Detail::ParseState(ParseResultType::NoMatch, CATCH_MOVE(tokens))); } Detail::Result Opt::validate() const { if (m_optNames.empty()) return Detail::Result::logicError("No options supplied to Opt"); for (auto const& name : m_optNames) { if (name.empty()) return Detail::Result::logicError( "Option name cannot be empty"); #ifdef CATCH_PLATFORM_WINDOWS if (name[0] != '-' && name[0] != '/') return Detail::Result::logicError( "Option name must begin with '-' or '/'"); #else if (name[0] != '-') return Detail::Result::logicError( "Option name must begin with '-'"); #endif } return ParserRefImpl::validate(); } ExeName::ExeName() : m_name(std::make_shared("")) {} ExeName::ExeName(std::string& ref) : ExeName() { m_ref = std::make_shared>(ref); } Detail::InternalParseResult ExeName::parse(std::string const&, Detail::TokenStream tokens) const { return Detail::InternalParseResult::ok( Detail::ParseState(ParseResultType::NoMatch, CATCH_MOVE(tokens))); } ParserResult ExeName::set(std::string const& newName) { auto lastSlash = newName.find_last_of("\\/"); auto filename = (lastSlash == std::string::npos) ? newName : newName.substr(lastSlash + 1); *m_name = filename; if (m_ref) return m_ref->setValue(filename); else return ParserResult::ok(ParseResultType::Matched); } Parser& Parser::operator|=( Parser const& other ) { m_options.insert( m_options.end(), other.m_options.begin(), other.m_options.end() ); m_args.insert( m_args.end(), other.m_args.begin(), other.m_args.end() ); return *this; } std::vector Parser::getHelpColumns() const { std::vector cols; cols.reserve( m_options.size() ); for ( auto const& o : m_options ) { cols.push_back(o.getHelpColumns()); } return cols; } void Parser::writeToStream( std::ostream& os ) const { if ( !m_exeName.name().empty() ) { os << "usage:\n" << " " << m_exeName.name() << ' '; bool required = true, first = true; for ( auto const& arg : m_args ) { if ( first ) first = false; else os << ' '; if ( arg.isOptional() && required ) { os << '['; required = false; } os << '<' << arg.hint() << '>'; if ( arg.cardinality() == 0 ) os << " ... "; } if ( !required ) os << ']'; if ( !m_options.empty() ) os << " options"; os << "\n\nwhere options are:\n"; } auto rows = getHelpColumns(); size_t consoleWidth = CATCH_CONFIG_CONSOLE_WIDTH; size_t optWidth = 0; for ( auto const& cols : rows ) optWidth = ( std::max )( optWidth, cols.left.size() + 2 ); optWidth = ( std::min )( optWidth, consoleWidth / 2 ); for ( auto& cols : rows ) { auto row = TextFlow::Column( CATCH_MOVE(cols.left) ) .width( optWidth ) .indent( 2 ) + TextFlow::Spacer( 4 ) + TextFlow::Column( static_cast(cols.descriptions) ) .width( consoleWidth - 7 - optWidth ); os << row << '\n'; } } Detail::Result Parser::validate() const { for ( auto const& opt : m_options ) { auto result = opt.validate(); if ( !result ) return result; } for ( auto const& arg : m_args ) { auto result = arg.validate(); if ( !result ) return result; } return Detail::Result::ok(); } Detail::InternalParseResult Parser::parse( std::string const& exeName, Detail::TokenStream tokens ) const { struct ParserInfo { ParserBase const* parser = nullptr; size_t count = 0; }; std::vector parseInfos; parseInfos.reserve( m_options.size() + m_args.size() ); for ( auto const& opt : m_options ) { parseInfos.push_back( { &opt, 0 } ); } for ( auto const& arg : m_args ) { parseInfos.push_back( { &arg, 0 } ); } m_exeName.set( exeName ); auto result = Detail::InternalParseResult::ok( Detail::ParseState( ParseResultType::NoMatch, CATCH_MOVE(tokens) ) ); while ( result.value().remainingTokens() ) { bool tokenParsed = false; for ( auto& parseInfo : parseInfos ) { if ( parseInfo.parser->cardinality() == 0 || parseInfo.count < parseInfo.parser->cardinality() ) { result = parseInfo.parser->parse( exeName, CATCH_MOVE(result).value().remainingTokens() ); if ( !result ) return result; if ( result.value().type() != ParseResultType::NoMatch ) { tokenParsed = true; ++parseInfo.count; break; } } } if ( result.value().type() == ParseResultType::ShortCircuitAll ) return result; if ( !tokenParsed ) return Detail::InternalParseResult::runtimeError( "Unrecognised token: " + result.value().remainingTokens()->token ); } // !TBD Check missing required options return result; } Args::Args(int argc, char const* const* argv) : m_exeName(argv[0]), m_args(argv + 1, argv + argc) {} Args::Args(std::initializer_list args) : m_exeName(*args.begin()), m_args(args.begin() + 1, args.end()) {} Help::Help( bool& showHelpFlag ): Opt( [&]( bool flag ) { showHelpFlag = flag; return ParserResult::ok( ParseResultType::ShortCircuitAll ); } ) { static_cast ( *this )( "display usage information" )["-?"]["-h"]["--help"] .optional(); } } // namespace Clara } // namespace Catch #include #include namespace Catch { Clara::Parser makeCommandLineParser( ConfigData& config ) { using namespace Clara; auto const setWarning = [&]( std::string const& warning ) { if ( warning == "NoAssertions" ) { config.warnings = static_cast(config.warnings | WarnAbout::NoAssertions); return ParserResult::ok( ParseResultType::Matched ); } else if ( warning == "UnmatchedTestSpec" ) { config.warnings = static_cast(config.warnings | WarnAbout::UnmatchedTestSpec); return ParserResult::ok( ParseResultType::Matched ); } return ParserResult ::runtimeError( "Unrecognised warning option: '" + warning + '\'' ); }; auto const loadTestNamesFromFile = [&]( std::string const& filename ) { std::ifstream f( filename.c_str() ); if( !f.is_open() ) return ParserResult::runtimeError( "Unable to load input file: '" + filename + '\'' ); std::string line; while( std::getline( f, line ) ) { line = trim(line); if( !line.empty() && !startsWith( line, '#' ) ) { if( !startsWith( line, '"' ) ) line = '"' + CATCH_MOVE(line) + '"'; config.testsOrTags.push_back( line ); config.testsOrTags.emplace_back( "," ); } } //Remove comma in the end if(!config.testsOrTags.empty()) config.testsOrTags.erase( config.testsOrTags.end()-1 ); return ParserResult::ok( ParseResultType::Matched ); }; auto const setTestOrder = [&]( std::string const& order ) { if( startsWith( "declared", order ) ) config.runOrder = TestRunOrder::Declared; else if( startsWith( "lexical", order ) ) config.runOrder = TestRunOrder::LexicographicallySorted; else if( startsWith( "random", order ) ) config.runOrder = TestRunOrder::Randomized; else return ParserResult::runtimeError( "Unrecognised ordering: '" + order + '\'' ); return ParserResult::ok( ParseResultType::Matched ); }; auto const setRngSeed = [&]( std::string const& seed ) { if( seed == "time" ) { config.rngSeed = generateRandomSeed(GenerateFrom::Time); return ParserResult::ok(ParseResultType::Matched); } else if (seed == "random-device") { config.rngSeed = generateRandomSeed(GenerateFrom::RandomDevice); return ParserResult::ok(ParseResultType::Matched); } // TODO: ideally we should be parsing uint32_t directly // fix this later when we add new parse overload auto parsedSeed = parseUInt( seed, 0 ); if ( !parsedSeed ) { return ParserResult::runtimeError( "Could not parse '" + seed + "' as seed" ); } config.rngSeed = *parsedSeed; return ParserResult::ok( ParseResultType::Matched ); }; auto const setDefaultColourMode = [&]( std::string const& colourMode ) { Optional maybeMode = Catch::Detail::stringToColourMode(toLower( colourMode )); if ( !maybeMode ) { return ParserResult::runtimeError( "colour mode must be one of: default, ansi, win32, " "or none. '" + colourMode + "' is not recognised" ); } auto mode = *maybeMode; if ( !isColourImplAvailable( mode ) ) { return ParserResult::runtimeError( "colour mode '" + colourMode + "' is not supported in this binary" ); } config.defaultColourMode = mode; return ParserResult::ok( ParseResultType::Matched ); }; auto const setWaitForKeypress = [&]( std::string const& keypress ) { auto keypressLc = toLower( keypress ); if (keypressLc == "never") config.waitForKeypress = WaitForKeypress::Never; else if( keypressLc == "start" ) config.waitForKeypress = WaitForKeypress::BeforeStart; else if( keypressLc == "exit" ) config.waitForKeypress = WaitForKeypress::BeforeExit; else if( keypressLc == "both" ) config.waitForKeypress = WaitForKeypress::BeforeStartAndExit; else return ParserResult::runtimeError( "keypress argument must be one of: never, start, exit or both. '" + keypress + "' not recognised" ); return ParserResult::ok( ParseResultType::Matched ); }; auto const setVerbosity = [&]( std::string const& verbosity ) { auto lcVerbosity = toLower( verbosity ); if( lcVerbosity == "quiet" ) config.verbosity = Verbosity::Quiet; else if( lcVerbosity == "normal" ) config.verbosity = Verbosity::Normal; else if( lcVerbosity == "high" ) config.verbosity = Verbosity::High; else return ParserResult::runtimeError( "Unrecognised verbosity, '" + verbosity + '\'' ); return ParserResult::ok( ParseResultType::Matched ); }; auto const setReporter = [&]( std::string const& userReporterSpec ) { if ( userReporterSpec.empty() ) { return ParserResult::runtimeError( "Received empty reporter spec." ); } Optional parsed = parseReporterSpec( userReporterSpec ); if ( !parsed ) { return ParserResult::runtimeError( "Could not parse reporter spec '" + userReporterSpec + "'" ); } auto const& reporterSpec = *parsed; auto const& factories = getRegistryHub().getReporterRegistry().getFactories(); auto result = factories.find( reporterSpec.name() ); if ( result == factories.end() ) { return ParserResult::runtimeError( "Unrecognized reporter, '" + reporterSpec.name() + "'. Check available with --list-reporters" ); } const bool hadOutputFile = reporterSpec.outputFile().some(); config.reporterSpecifications.push_back( CATCH_MOVE( *parsed ) ); // It would be enough to check this only once at the very end, but // there is not a place where we could call this check, so do it // every time it could fail. For valid inputs, this is still called // at most once. if (!hadOutputFile) { int n_reporters_without_file = 0; for (auto const& spec : config.reporterSpecifications) { if (spec.outputFile().none()) { n_reporters_without_file++; } } if (n_reporters_without_file > 1) { return ParserResult::runtimeError( "Only one reporter may have unspecified output file." ); } } return ParserResult::ok( ParseResultType::Matched ); }; auto const setShardCount = [&]( std::string const& shardCount ) { auto parsedCount = parseUInt( shardCount ); if ( !parsedCount ) { return ParserResult::runtimeError( "Could not parse '" + shardCount + "' as shard count" ); } if ( *parsedCount == 0 ) { return ParserResult::runtimeError( "Shard count must be positive" ); } config.shardCount = *parsedCount; return ParserResult::ok( ParseResultType::Matched ); }; auto const setShardIndex = [&](std::string const& shardIndex) { auto parsedIndex = parseUInt( shardIndex ); if ( !parsedIndex ) { return ParserResult::runtimeError( "Could not parse '" + shardIndex + "' as shard index" ); } config.shardIndex = *parsedIndex; return ParserResult::ok( ParseResultType::Matched ); }; auto cli = ExeName( config.processName ) | Help( config.showHelp ) | Opt( config.showSuccessfulTests ) ["-s"]["--success"] ( "include successful tests in output" ) | Opt( config.shouldDebugBreak ) ["-b"]["--break"] ( "break into debugger on failure" ) | Opt( config.noThrow ) ["-e"]["--nothrow"] ( "skip exception tests" ) | Opt( config.showInvisibles ) ["-i"]["--invisibles"] ( "show invisibles (tabs, newlines)" ) | Opt( config.defaultOutputFilename, "filename" ) ["-o"]["--out"] ( "default output filename" ) | Opt( accept_many, setReporter, "name[::key=value]*" ) ["-r"]["--reporter"] ( "reporter to use (defaults to console)" ) | Opt( config.name, "name" ) ["-n"]["--name"] ( "suite name" ) | Opt( [&]( bool ){ config.abortAfter = 1; } ) ["-a"]["--abort"] ( "abort at first failure" ) | Opt( [&]( int x ){ config.abortAfter = x; }, "no. failures" ) ["-x"]["--abortx"] ( "abort after x failures" ) | Opt( accept_many, setWarning, "warning name" ) ["-w"]["--warn"] ( "enable warnings" ) | Opt( [&]( bool flag ) { config.showDurations = flag ? ShowDurations::Always : ShowDurations::Never; }, "yes|no" ) ["-d"]["--durations"] ( "show test durations" ) | Opt( config.minDuration, "seconds" ) ["-D"]["--min-duration"] ( "show test durations for tests taking at least the given number of seconds" ) | Opt( loadTestNamesFromFile, "filename" ) ["-f"]["--input-file"] ( "load test names to run from a file" ) | Opt( config.filenamesAsTags ) ["-#"]["--filenames-as-tags"] ( "adds a tag for the filename" ) | Opt( config.sectionsToRun, "section name" ) ["-c"]["--section"] ( "specify section to run" ) | Opt( setVerbosity, "quiet|normal|high" ) ["-v"]["--verbosity"] ( "set output verbosity" ) | Opt( config.listTests ) ["--list-tests"] ( "list all/matching test cases" ) | Opt( config.listTags ) ["--list-tags"] ( "list all/matching tags" ) | Opt( config.listReporters ) ["--list-reporters"] ( "list all available reporters" ) | Opt( config.listListeners ) ["--list-listeners"] ( "list all listeners" ) | Opt( setTestOrder, "decl|lex|rand" ) ["--order"] ( "test case order (defaults to decl)" ) | Opt( setRngSeed, "'time'|'random-device'|number" ) ["--rng-seed"] ( "set a specific seed for random numbers" ) | Opt( setDefaultColourMode, "ansi|win32|none|default" ) ["--colour-mode"] ( "what color mode should be used as default" ) | Opt( config.libIdentify ) ["--libidentify"] ( "report name and version according to libidentify standard" ) | Opt( setWaitForKeypress, "never|start|exit|both" ) ["--wait-for-keypress"] ( "waits for a keypress before exiting" ) | Opt( config.skipBenchmarks) ["--skip-benchmarks"] ( "disable running benchmarks") | Opt( config.benchmarkSamples, "samples" ) ["--benchmark-samples"] ( "number of samples to collect (default: 100)" ) | Opt( config.benchmarkResamples, "resamples" ) ["--benchmark-resamples"] ( "number of resamples for the bootstrap (default: 100000)" ) | Opt( config.benchmarkConfidenceInterval, "confidence interval" ) ["--benchmark-confidence-interval"] ( "confidence interval for the bootstrap (between 0 and 1, default: 0.95)" ) | Opt( config.benchmarkNoAnalysis ) ["--benchmark-no-analysis"] ( "perform only measurements; do not perform any analysis" ) | Opt( config.benchmarkWarmupTime, "benchmarkWarmupTime" ) ["--benchmark-warmup-time"] ( "amount of time in milliseconds spent on warming up each test (default: 100)" ) | Opt( setShardCount, "shard count" ) ["--shard-count"] ( "split the tests to execute into this many groups" ) | Opt( setShardIndex, "shard index" ) ["--shard-index"] ( "index of the group of tests to execute (see --shard-count)" ) | Opt( config.allowZeroTests ) ["--allow-running-no-tests"] ( "Treat 'No tests run' as a success" ) | Arg( config.testsOrTags, "test name|pattern|tags" ) ( "which test or tests to use" ); return cli; } } // end namespace Catch #if defined(__clang__) # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wexit-time-destructors" #endif #include #include #include namespace Catch { ColourImpl::~ColourImpl() = default; ColourImpl::ColourGuard ColourImpl::guardColour( Colour::Code colourCode ) { return ColourGuard(colourCode, this ); } void ColourImpl::ColourGuard::engageImpl( std::ostream& stream ) { assert( &stream == &m_colourImpl->m_stream->stream() && "Engaging colour guard for different stream than used by the " "parent colour implementation" ); static_cast( stream ); m_engaged = true; m_colourImpl->use( m_code ); } ColourImpl::ColourGuard::ColourGuard( Colour::Code code, ColourImpl const* colour ): m_colourImpl( colour ), m_code( code ) { } ColourImpl::ColourGuard::ColourGuard( ColourGuard&& rhs ) noexcept: m_colourImpl( rhs.m_colourImpl ), m_code( rhs.m_code ), m_engaged( rhs.m_engaged ) { rhs.m_engaged = false; } ColourImpl::ColourGuard& ColourImpl::ColourGuard::operator=( ColourGuard&& rhs ) noexcept { using std::swap; swap( m_colourImpl, rhs.m_colourImpl ); swap( m_code, rhs.m_code ); swap( m_engaged, rhs.m_engaged ); return *this; } ColourImpl::ColourGuard::~ColourGuard() { if ( m_engaged ) { m_colourImpl->use( Colour::None ); } } ColourImpl::ColourGuard& ColourImpl::ColourGuard::engage( std::ostream& stream ) & { engageImpl( stream ); return *this; } ColourImpl::ColourGuard&& ColourImpl::ColourGuard::engage( std::ostream& stream ) && { engageImpl( stream ); return CATCH_MOVE(*this); } namespace { //! A do-nothing implementation of colour, used as fallback for unknown //! platforms, and when the user asks to deactivate all colours. class NoColourImpl final : public ColourImpl { public: NoColourImpl( IStream* stream ): ColourImpl( stream ) {} private: void use( Colour::Code ) const override {} }; } // namespace } // namespace Catch #if defined ( CATCH_CONFIG_COLOUR_WIN32 ) ///////////////////////////////////////// namespace Catch { namespace { class Win32ColourImpl final : public ColourImpl { public: Win32ColourImpl(IStream* stream): ColourImpl(stream) { CONSOLE_SCREEN_BUFFER_INFO csbiInfo; GetConsoleScreenBufferInfo( GetStdHandle( STD_OUTPUT_HANDLE ), &csbiInfo ); originalForegroundAttributes = csbiInfo.wAttributes & ~( BACKGROUND_GREEN | BACKGROUND_RED | BACKGROUND_BLUE | BACKGROUND_INTENSITY ); originalBackgroundAttributes = csbiInfo.wAttributes & ~( FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_BLUE | FOREGROUND_INTENSITY ); } static bool useImplementationForStream(IStream const& stream) { // Win32 text colour APIs can only be used on console streams // We cannot check that the output hasn't been redirected, // so we just check that the original stream is console stream. return stream.isConsole(); } private: void use( Colour::Code _colourCode ) const override { switch( _colourCode ) { case Colour::None: return setTextAttribute( originalForegroundAttributes ); case Colour::White: return setTextAttribute( FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_BLUE ); case Colour::Red: return setTextAttribute( FOREGROUND_RED ); case Colour::Green: return setTextAttribute( FOREGROUND_GREEN ); case Colour::Blue: return setTextAttribute( FOREGROUND_BLUE ); case Colour::Cyan: return setTextAttribute( FOREGROUND_BLUE | FOREGROUND_GREEN ); case Colour::Yellow: return setTextAttribute( FOREGROUND_RED | FOREGROUND_GREEN ); case Colour::Grey: return setTextAttribute( 0 ); case Colour::LightGrey: return setTextAttribute( FOREGROUND_INTENSITY ); case Colour::BrightRed: return setTextAttribute( FOREGROUND_INTENSITY | FOREGROUND_RED ); case Colour::BrightGreen: return setTextAttribute( FOREGROUND_INTENSITY | FOREGROUND_GREEN ); case Colour::BrightWhite: return setTextAttribute( FOREGROUND_INTENSITY | FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_BLUE ); case Colour::BrightYellow: return setTextAttribute( FOREGROUND_INTENSITY | FOREGROUND_RED | FOREGROUND_GREEN ); case Colour::Bright: CATCH_INTERNAL_ERROR( "not a colour" ); default: CATCH_ERROR( "Unknown colour requested" ); } } void setTextAttribute( WORD _textAttribute ) const { SetConsoleTextAttribute( GetStdHandle( STD_OUTPUT_HANDLE ), _textAttribute | originalBackgroundAttributes ); } WORD originalForegroundAttributes; WORD originalBackgroundAttributes; }; } // end anon namespace } // end namespace Catch #endif // Windows/ ANSI/ None #if defined( CATCH_PLATFORM_LINUX ) || defined( CATCH_PLATFORM_MAC ) || defined( __GLIBC__ ) # define CATCH_INTERNAL_HAS_ISATTY # include #endif namespace Catch { namespace { class ANSIColourImpl final : public ColourImpl { public: ANSIColourImpl( IStream* stream ): ColourImpl( stream ) {} static bool useImplementationForStream(IStream const& stream) { // This is kinda messy due to trying to support a bunch of // different platforms at once. // The basic idea is that if we are asked to do autodetection (as // opposed to being told to use posixy colours outright), then we // only want to use the colours if we are writing to console. // However, console might be redirected, so we make an attempt at // checking for that on platforms where we know how to do that. bool useColour = stream.isConsole(); #if defined( CATCH_INTERNAL_HAS_ISATTY ) && \ !( defined( __DJGPP__ ) && defined( __STRICT_ANSI__ ) ) ErrnoGuard _; // for isatty useColour = useColour && isatty( STDOUT_FILENO ); # endif # if defined( CATCH_PLATFORM_MAC ) || defined( CATCH_PLATFORM_IPHONE ) useColour = useColour && !isDebuggerActive(); # endif return useColour; } private: void use( Colour::Code _colourCode ) const override { auto setColour = [&out = m_stream->stream()]( char const* escapeCode ) { // The escape sequence must be flushed to console, otherwise // if stdin and stderr are intermixed, we'd get accidentally // coloured output. out << '\033' << escapeCode << std::flush; }; switch( _colourCode ) { case Colour::None: case Colour::White: return setColour( "[0m" ); case Colour::Red: return setColour( "[0;31m" ); case Colour::Green: return setColour( "[0;32m" ); case Colour::Blue: return setColour( "[0;34m" ); case Colour::Cyan: return setColour( "[0;36m" ); case Colour::Yellow: return setColour( "[0;33m" ); case Colour::Grey: return setColour( "[1;30m" ); case Colour::LightGrey: return setColour( "[0;37m" ); case Colour::BrightRed: return setColour( "[1;31m" ); case Colour::BrightGreen: return setColour( "[1;32m" ); case Colour::BrightWhite: return setColour( "[1;37m" ); case Colour::BrightYellow: return setColour( "[1;33m" ); case Colour::Bright: CATCH_INTERNAL_ERROR( "not a colour" ); default: CATCH_INTERNAL_ERROR( "Unknown colour requested" ); } } }; } // end anon namespace } // end namespace Catch namespace Catch { Detail::unique_ptr makeColourImpl( ColourMode colourSelection, IStream* stream ) { #if defined( CATCH_CONFIG_COLOUR_WIN32 ) if ( colourSelection == ColourMode::Win32 ) { return Detail::make_unique( stream ); } #endif if ( colourSelection == ColourMode::ANSI ) { return Detail::make_unique( stream ); } if ( colourSelection == ColourMode::None ) { return Detail::make_unique( stream ); } if ( colourSelection == ColourMode::PlatformDefault) { #if defined( CATCH_CONFIG_COLOUR_WIN32 ) if ( Win32ColourImpl::useImplementationForStream( *stream ) ) { return Detail::make_unique( stream ); } #endif if ( ANSIColourImpl::useImplementationForStream( *stream ) ) { return Detail::make_unique( stream ); } return Detail::make_unique( stream ); } CATCH_ERROR( "Could not create colour impl for selection " << static_cast(colourSelection) ); } bool isColourImplAvailable( ColourMode colourSelection ) { switch ( colourSelection ) { #if defined( CATCH_CONFIG_COLOUR_WIN32 ) case ColourMode::Win32: #endif case ColourMode::ANSI: case ColourMode::None: case ColourMode::PlatformDefault: return true; default: return false; } } } // end namespace Catch #if defined(__clang__) # pragma clang diagnostic pop #endif namespace Catch { Context* Context::currentContext = nullptr; void cleanUpContext() { delete Context::currentContext; Context::currentContext = nullptr; } void Context::createContext() { currentContext = new Context(); } Context& getCurrentMutableContext() { if ( !Context::currentContext ) { Context::createContext(); } // NOLINTNEXTLINE(clang-analyzer-core.uninitialized.UndefReturn) return *Context::currentContext; } SimplePcg32& sharedRng() { static SimplePcg32 s_rng; return s_rng; } } #include #if defined(CATCH_CONFIG_ANDROID_LOGWRITE) #include namespace Catch { void writeToDebugConsole( std::string const& text ) { __android_log_write( ANDROID_LOG_DEBUG, "Catch", text.c_str() ); } } #elif defined(CATCH_PLATFORM_WINDOWS) namespace Catch { void writeToDebugConsole( std::string const& text ) { ::OutputDebugStringA( text.c_str() ); } } #else namespace Catch { void writeToDebugConsole( std::string const& text ) { // !TBD: Need a version for Mac/ XCode and other IDEs Catch::cout() << text; } } #endif // Platform #if defined(CATCH_PLATFORM_MAC) || defined(CATCH_PLATFORM_IPHONE) # include # include # include # include # include #ifdef __apple_build_version__ // These headers will only compile with AppleClang (XCode) // For other compilers (Clang, GCC, ... ) we need to exclude them # include #endif namespace Catch { #ifdef __apple_build_version__ // The following function is taken directly from the following technical note: // https://developer.apple.com/library/archive/qa/qa1361/_index.html // Returns true if the current process is being debugged (either // running under the debugger or has a debugger attached post facto). bool isDebuggerActive(){ int mib[4]; struct kinfo_proc info; std::size_t size; // Initialize the flags so that, if sysctl fails for some bizarre // reason, we get a predictable result. info.kp_proc.p_flag = 0; // Initialize mib, which tells sysctl the info we want, in this case // we're looking for information about a specific process ID. mib[0] = CTL_KERN; mib[1] = KERN_PROC; mib[2] = KERN_PROC_PID; mib[3] = getpid(); // Call sysctl. size = sizeof(info); if( sysctl(mib, sizeof(mib) / sizeof(*mib), &info, &size, nullptr, 0) != 0 ) { Catch::cerr() << "\n** Call to sysctl failed - unable to determine if debugger is active **\n\n" << std::flush; return false; } // We're being debugged if the P_TRACED flag is set. return ( (info.kp_proc.p_flag & P_TRACED) != 0 ); } #else bool isDebuggerActive() { // We need to find another way to determine this for non-appleclang compilers on macOS return false; } #endif } // namespace Catch #elif defined(CATCH_PLATFORM_LINUX) #include #include namespace Catch{ // The standard POSIX way of detecting a debugger is to attempt to // ptrace() the process, but this needs to be done from a child and not // this process itself to still allow attaching to this process later // if wanted, so is rather heavy. Under Linux we have the PID of the // "debugger" (which doesn't need to be gdb, of course, it could also // be strace, for example) in /proc/$PID/status, so just get it from // there instead. bool isDebuggerActive(){ // Libstdc++ has a bug, where std::ifstream sets errno to 0 // This way our users can properly assert over errno values ErrnoGuard guard; std::ifstream in("/proc/self/status"); for( std::string line; std::getline(in, line); ) { static const int PREFIX_LEN = 11; if( line.compare(0, PREFIX_LEN, "TracerPid:\t") == 0 ) { // We're traced if the PID is not 0 and no other PID starts // with 0 digit, so it's enough to check for just a single // character. return line.length() > PREFIX_LEN && line[PREFIX_LEN] != '0'; } } return false; } } // namespace Catch #elif defined(_MSC_VER) extern "C" __declspec(dllimport) int __stdcall IsDebuggerPresent(); namespace Catch { bool isDebuggerActive() { return IsDebuggerPresent() != 0; } } #elif defined(__MINGW32__) extern "C" __declspec(dllimport) int __stdcall IsDebuggerPresent(); namespace Catch { bool isDebuggerActive() { return IsDebuggerPresent() != 0; } } #else namespace Catch { bool isDebuggerActive() { return false; } } #endif // Platform namespace Catch { void ITransientExpression::streamReconstructedExpression( std::ostream& os ) const { // We can't make this function pure virtual to keep ITransientExpression // constexpr, so we write error message instead os << "Some class derived from ITransientExpression without overriding streamReconstructedExpression"; } void formatReconstructedExpression( std::ostream &os, std::string const& lhs, StringRef op, std::string const& rhs ) { if( lhs.size() + rhs.size() < 40 && lhs.find('\n') == std::string::npos && rhs.find('\n') == std::string::npos ) os << lhs << ' ' << op << ' ' << rhs; else os << lhs << '\n' << op << '\n' << rhs; } } #include namespace Catch { #if defined(CATCH_CONFIG_DISABLE_EXCEPTIONS) && !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS_CUSTOM_HANDLER) [[noreturn]] void throw_exception(std::exception const& e) { Catch::cerr() << "Catch will terminate because it needed to throw an exception.\n" << "The message was: " << e.what() << '\n'; std::terminate(); } #endif [[noreturn]] void throw_logic_error(std::string const& msg) { throw_exception(std::logic_error(msg)); } [[noreturn]] void throw_domain_error(std::string const& msg) { throw_exception(std::domain_error(msg)); } [[noreturn]] void throw_runtime_error(std::string const& msg) { throw_exception(std::runtime_error(msg)); } } // namespace Catch; #include namespace Catch { IMutableEnumValuesRegistry::~IMutableEnumValuesRegistry() = default; namespace Detail { namespace { // Extracts the actual name part of an enum instance // In other words, it returns the Blue part of Bikeshed::Colour::Blue StringRef extractInstanceName(StringRef enumInstance) { // Find last occurrence of ":" size_t name_start = enumInstance.size(); while (name_start > 0 && enumInstance[name_start - 1] != ':') { --name_start; } return enumInstance.substr(name_start, enumInstance.size() - name_start); } } std::vector parseEnums( StringRef enums ) { auto enumValues = splitStringRef( enums, ',' ); std::vector parsed; parsed.reserve( enumValues.size() ); for( auto const& enumValue : enumValues ) { parsed.push_back(trim(extractInstanceName(enumValue))); } return parsed; } EnumInfo::~EnumInfo() = default; StringRef EnumInfo::lookup( int value ) const { for( auto const& valueToName : m_values ) { if( valueToName.first == value ) return valueToName.second; } return "{** unexpected enum value **}"_sr; } Catch::Detail::unique_ptr makeEnumInfo( StringRef enumName, StringRef allValueNames, std::vector const& values ) { auto enumInfo = Catch::Detail::make_unique(); enumInfo->m_name = enumName; enumInfo->m_values.reserve( values.size() ); const auto valueNames = Catch::Detail::parseEnums( allValueNames ); assert( valueNames.size() == values.size() ); std::size_t i = 0; for( auto value : values ) enumInfo->m_values.emplace_back(value, valueNames[i++]); return enumInfo; } EnumInfo const& EnumValuesRegistry::registerEnum( StringRef enumName, StringRef allValueNames, std::vector const& values ) { m_enumInfos.push_back(makeEnumInfo(enumName, allValueNames, values)); return *m_enumInfos.back(); } } // Detail } // Catch #include namespace Catch { ErrnoGuard::ErrnoGuard():m_oldErrno(errno){} ErrnoGuard::~ErrnoGuard() { errno = m_oldErrno; } } #include namespace Catch { #if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS) namespace { static std::string tryTranslators( std::vector< Detail::unique_ptr> const& translators ) { if ( translators.empty() ) { std::rethrow_exception( std::current_exception() ); } else { return translators[0]->translate( translators.begin() + 1, translators.end() ); } } } #endif //!defined(CATCH_CONFIG_DISABLE_EXCEPTIONS) ExceptionTranslatorRegistry::~ExceptionTranslatorRegistry() = default; void ExceptionTranslatorRegistry::registerTranslator( Detail::unique_ptr&& translator ) { m_translators.push_back( CATCH_MOVE( translator ) ); } #if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS) std::string ExceptionTranslatorRegistry::translateActiveException() const { // Compiling a mixed mode project with MSVC means that CLR // exceptions will be caught in (...) as well. However, these do // do not fill-in std::current_exception and thus lead to crash // when attempting rethrow. // /EHa switch also causes structured exceptions to be caught // here, but they fill-in current_exception properly, so // at worst the output should be a little weird, instead of // causing a crash. if ( std::current_exception() == nullptr ) { return "Non C++ exception. Possibly a CLR exception."; } // First we try user-registered translators. If none of them can // handle the exception, it will be rethrown handled by our defaults. try { return tryTranslators(m_translators); } // To avoid having to handle TFE explicitly everywhere, we just // rethrow it so that it goes back up the caller. catch( TestFailureException& ) { std::rethrow_exception(std::current_exception()); } catch( TestSkipException& ) { std::rethrow_exception(std::current_exception()); } catch( std::exception const& ex ) { return ex.what(); } catch( std::string const& msg ) { return msg; } catch( const char* msg ) { return msg; } catch(...) { return "Unknown exception"; } } #else // ^^ Exceptions are enabled // Exceptions are disabled vv std::string ExceptionTranslatorRegistry::translateActiveException() const { CATCH_INTERNAL_ERROR("Attempted to translate active exception under CATCH_CONFIG_DISABLE_EXCEPTIONS!"); } #endif } /** \file * This file provides platform specific implementations of FatalConditionHandler * * This means that there is a lot of conditional compilation, and platform * specific code. Currently, Catch2 supports a dummy handler (if no * handler is desired), and 2 platform specific handlers: * * Windows' SEH * * POSIX signals * * Consequently, various pieces of code below are compiled if either of * the platform specific handlers is enabled, or if none of them are * enabled. It is assumed that both cannot be enabled at the same time, * and doing so should cause a compilation error. * * If another platform specific handler is added, the compile guards * below will need to be updated taking these assumptions into account. */ #include #if !defined( CATCH_CONFIG_WINDOWS_SEH ) && !defined( CATCH_CONFIG_POSIX_SIGNALS ) namespace Catch { // If neither SEH nor signal handling is required, the handler impls // do not have to do anything, and can be empty. void FatalConditionHandler::engage_platform() {} void FatalConditionHandler::disengage_platform() noexcept {} FatalConditionHandler::FatalConditionHandler() = default; FatalConditionHandler::~FatalConditionHandler() = default; } // end namespace Catch #endif // !CATCH_CONFIG_WINDOWS_SEH && !CATCH_CONFIG_POSIX_SIGNALS #if defined( CATCH_CONFIG_WINDOWS_SEH ) && defined( CATCH_CONFIG_POSIX_SIGNALS ) #error "Inconsistent configuration: Windows' SEH handling and POSIX signals cannot be enabled at the same time" #endif // CATCH_CONFIG_WINDOWS_SEH && CATCH_CONFIG_POSIX_SIGNALS #if defined( CATCH_CONFIG_WINDOWS_SEH ) || defined( CATCH_CONFIG_POSIX_SIGNALS ) namespace { //! Signals fatal error message to the run context void reportFatal( char const * const message ) { Catch::getCurrentContext().getResultCapture()->handleFatalErrorCondition( message ); } //! Minimal size Catch2 needs for its own fatal error handling. //! Picked empirically, so it might not be sufficient on all //! platforms, and for all configurations. constexpr std::size_t minStackSizeForErrors = 32 * 1024; } // end unnamed namespace #endif // CATCH_CONFIG_WINDOWS_SEH || CATCH_CONFIG_POSIX_SIGNALS #if defined( CATCH_CONFIG_WINDOWS_SEH ) namespace Catch { struct SignalDefs { DWORD id; const char* name; }; // There is no 1-1 mapping between signals and windows exceptions. // Windows can easily distinguish between SO and SigSegV, // but SigInt, SigTerm, etc are handled differently. static SignalDefs signalDefs[] = { { EXCEPTION_ILLEGAL_INSTRUCTION, "SIGILL - Illegal instruction signal" }, { EXCEPTION_STACK_OVERFLOW, "SIGSEGV - Stack overflow" }, { EXCEPTION_ACCESS_VIOLATION, "SIGSEGV - Segmentation violation signal" }, { EXCEPTION_INT_DIVIDE_BY_ZERO, "Divide by zero error" }, }; static LONG CALLBACK topLevelExceptionFilter(PEXCEPTION_POINTERS ExceptionInfo) { for (auto const& def : signalDefs) { if (ExceptionInfo->ExceptionRecord->ExceptionCode == def.id) { reportFatal(def.name); } } // If its not an exception we care about, pass it along. // This stops us from eating debugger breaks etc. return EXCEPTION_CONTINUE_SEARCH; } // Since we do not support multiple instantiations, we put these // into global variables and rely on cleaning them up in outlined // constructors/destructors static LPTOP_LEVEL_EXCEPTION_FILTER previousTopLevelExceptionFilter = nullptr; // For MSVC, we reserve part of the stack memory for handling // memory overflow structured exception. FatalConditionHandler::FatalConditionHandler() { ULONG guaranteeSize = static_cast(minStackSizeForErrors); if (!SetThreadStackGuarantee(&guaranteeSize)) { // We do not want to fully error out, because needing // the stack reserve should be rare enough anyway. Catch::cerr() << "Failed to reserve piece of stack." << " Stack overflows will not be reported successfully."; } } // We do not attempt to unset the stack guarantee, because // Windows does not support lowering the stack size guarantee. FatalConditionHandler::~FatalConditionHandler() = default; void FatalConditionHandler::engage_platform() { // Register as a the top level exception filter. previousTopLevelExceptionFilter = SetUnhandledExceptionFilter(topLevelExceptionFilter); } void FatalConditionHandler::disengage_platform() noexcept { if (SetUnhandledExceptionFilter(previousTopLevelExceptionFilter) != topLevelExceptionFilter) { Catch::cerr() << "Unexpected SEH unhandled exception filter on disengage." << " The filter was restored, but might be rolled back unexpectedly."; } previousTopLevelExceptionFilter = nullptr; } } // end namespace Catch #endif // CATCH_CONFIG_WINDOWS_SEH #if defined( CATCH_CONFIG_POSIX_SIGNALS ) #include namespace Catch { struct SignalDefs { int id; const char* name; }; static SignalDefs signalDefs[] = { { SIGINT, "SIGINT - Terminal interrupt signal" }, { SIGILL, "SIGILL - Illegal instruction signal" }, { SIGFPE, "SIGFPE - Floating point error signal" }, { SIGSEGV, "SIGSEGV - Segmentation violation signal" }, { SIGTERM, "SIGTERM - Termination request signal" }, { SIGABRT, "SIGABRT - Abort (abnormal termination) signal" } }; // Older GCCs trigger -Wmissing-field-initializers for T foo = {} // which is zero initialization, but not explicit. We want to avoid // that. #if defined(__GNUC__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wmissing-field-initializers" #endif static char* altStackMem = nullptr; static std::size_t altStackSize = 0; static stack_t oldSigStack{}; static struct sigaction oldSigActions[sizeof(signalDefs) / sizeof(SignalDefs)]{}; static void restorePreviousSignalHandlers() noexcept { // We set signal handlers back to the previous ones. Hopefully // nobody overwrote them in the meantime, and doesn't expect // their signal handlers to live past ours given that they // installed them after ours.. for (std::size_t i = 0; i < sizeof(signalDefs) / sizeof(SignalDefs); ++i) { sigaction(signalDefs[i].id, &oldSigActions[i], nullptr); } // Return the old stack sigaltstack(&oldSigStack, nullptr); } static void handleSignal( int sig ) { char const * name = ""; for (auto const& def : signalDefs) { if (sig == def.id) { name = def.name; break; } } // We need to restore previous signal handlers and let them do // their thing, so that the users can have the debugger break // when a signal is raised, and so on. restorePreviousSignalHandlers(); reportFatal( name ); raise( sig ); } FatalConditionHandler::FatalConditionHandler() { assert(!altStackMem && "Cannot initialize POSIX signal handler when one already exists"); if (altStackSize == 0) { altStackSize = std::max(static_cast(SIGSTKSZ), minStackSizeForErrors); } altStackMem = new char[altStackSize](); } FatalConditionHandler::~FatalConditionHandler() { delete[] altStackMem; // We signal that another instance can be constructed by zeroing // out the pointer. altStackMem = nullptr; } void FatalConditionHandler::engage_platform() { stack_t sigStack; sigStack.ss_sp = altStackMem; sigStack.ss_size = altStackSize; sigStack.ss_flags = 0; sigaltstack(&sigStack, &oldSigStack); struct sigaction sa = { }; sa.sa_handler = handleSignal; sa.sa_flags = SA_ONSTACK; for (std::size_t i = 0; i < sizeof(signalDefs)/sizeof(SignalDefs); ++i) { sigaction(signalDefs[i].id, &sa, &oldSigActions[i]); } } #if defined(__GNUC__) # pragma GCC diagnostic pop #endif void FatalConditionHandler::disengage_platform() noexcept { restorePreviousSignalHandlers(); } } // end namespace Catch #endif // CATCH_CONFIG_POSIX_SIGNALS #include namespace Catch { namespace Detail { uint32_t convertToBits(float f) { static_assert(sizeof(float) == sizeof(uint32_t), "Important ULP matcher assumption violated"); uint32_t i; std::memcpy(&i, &f, sizeof(f)); return i; } uint64_t convertToBits(double d) { static_assert(sizeof(double) == sizeof(uint64_t), "Important ULP matcher assumption violated"); uint64_t i; std::memcpy(&i, &d, sizeof(d)); return i; } #if defined( __GNUC__ ) || defined( __clang__ ) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wfloat-equal" #endif bool directCompare( float lhs, float rhs ) { return lhs == rhs; } bool directCompare( double lhs, double rhs ) { return lhs == rhs; } #if defined( __GNUC__ ) || defined( __clang__ ) # pragma GCC diagnostic pop #endif } // end namespace Detail } // end namespace Catch #include namespace Catch { namespace Detail { #if !defined (CATCH_CONFIG_GETENV) char const* getEnv( char const* ) { return nullptr; } #else char const* getEnv( char const* varName ) { # if defined( _MSC_VER ) # pragma warning( push ) # pragma warning( disable : 4996 ) // use getenv_s instead of getenv # endif return std::getenv( varName ); # if defined( _MSC_VER ) # pragma warning( pop ) # endif } #endif } // namespace Detail } // namespace Catch #include #include #include #include namespace Catch { Catch::IStream::~IStream() = default; namespace Detail { namespace { template class StreamBufImpl final : public std::streambuf { char data[bufferSize]; WriterF m_writer; public: StreamBufImpl() { setp( data, data + sizeof(data) ); } ~StreamBufImpl() noexcept override { StreamBufImpl::sync(); } private: int overflow( int c ) override { sync(); if( c != EOF ) { if( pbase() == epptr() ) m_writer( std::string( 1, static_cast( c ) ) ); else sputc( static_cast( c ) ); } return 0; } int sync() override { if( pbase() != pptr() ) { m_writer( std::string( pbase(), static_cast( pptr() - pbase() ) ) ); setp( pbase(), epptr() ); } return 0; } }; /////////////////////////////////////////////////////////////////////////// struct OutputDebugWriter { void operator()( std::string const& str ) { if ( !str.empty() ) { writeToDebugConsole( str ); } } }; /////////////////////////////////////////////////////////////////////////// class FileStream final : public IStream { std::ofstream m_ofs; public: FileStream( std::string const& filename ) { m_ofs.open( filename.c_str() ); CATCH_ENFORCE( !m_ofs.fail(), "Unable to open file: '" << filename << '\'' ); m_ofs << std::unitbuf; } public: // IStream std::ostream& stream() override { return m_ofs; } }; /////////////////////////////////////////////////////////////////////////// class CoutStream final : public IStream { std::ostream m_os; public: // Store the streambuf from cout up-front because // cout may get redirected when running tests CoutStream() : m_os( Catch::cout().rdbuf() ) {} public: // IStream std::ostream& stream() override { return m_os; } bool isConsole() const override { return true; } }; class CerrStream : public IStream { std::ostream m_os; public: // Store the streambuf from cerr up-front because // cout may get redirected when running tests CerrStream(): m_os( Catch::cerr().rdbuf() ) {} public: // IStream std::ostream& stream() override { return m_os; } bool isConsole() const override { return true; } }; /////////////////////////////////////////////////////////////////////////// class DebugOutStream final : public IStream { Detail::unique_ptr> m_streamBuf; std::ostream m_os; public: DebugOutStream() : m_streamBuf( Detail::make_unique>() ), m_os( m_streamBuf.get() ) {} public: // IStream std::ostream& stream() override { return m_os; } }; } // unnamed namespace } // namespace Detail /////////////////////////////////////////////////////////////////////////// auto makeStream( std::string const& filename ) -> Detail::unique_ptr { if ( filename.empty() || filename == "-" ) { return Detail::make_unique(); } if( filename[0] == '%' ) { if ( filename == "%debug" ) { return Detail::make_unique(); } else if ( filename == "%stderr" ) { return Detail::make_unique(); } else if ( filename == "%stdout" ) { return Detail::make_unique(); } else { CATCH_ERROR( "Unrecognised stream: '" << filename << '\'' ); } } return Detail::make_unique( filename ); } } namespace Catch { void JsonUtils::indent( std::ostream& os, std::uint64_t level ) { for ( std::uint64_t i = 0; i < level; ++i ) { os << " "; } } void JsonUtils::appendCommaNewline( std::ostream& os, bool& should_comma, std::uint64_t level ) { if ( should_comma ) { os << ','; } should_comma = true; os << '\n'; indent( os, level ); } JsonObjectWriter::JsonObjectWriter( std::ostream& os ): JsonObjectWriter{ os, 0 } {} JsonObjectWriter::JsonObjectWriter( std::ostream& os, std::uint64_t indent_level ): m_os{ os }, m_indent_level{ indent_level } { m_os << '{'; } JsonObjectWriter::JsonObjectWriter( JsonObjectWriter&& source ) noexcept: m_os{ source.m_os }, m_indent_level{ source.m_indent_level }, m_should_comma{ source.m_should_comma }, m_active{ source.m_active } { source.m_active = false; } JsonObjectWriter::~JsonObjectWriter() { if ( !m_active ) { return; } m_os << '\n'; JsonUtils::indent( m_os, m_indent_level ); m_os << '}'; } JsonValueWriter JsonObjectWriter::write( StringRef key ) { JsonUtils::appendCommaNewline( m_os, m_should_comma, m_indent_level + 1 ); m_os << '"' << key << "\": "; return JsonValueWriter{ m_os, m_indent_level + 1 }; } JsonArrayWriter::JsonArrayWriter( std::ostream& os ): JsonArrayWriter{ os, 0 } {} JsonArrayWriter::JsonArrayWriter( std::ostream& os, std::uint64_t indent_level ): m_os{ os }, m_indent_level{ indent_level } { m_os << '['; } JsonArrayWriter::JsonArrayWriter( JsonArrayWriter&& source ) noexcept: m_os{ source.m_os }, m_indent_level{ source.m_indent_level }, m_should_comma{ source.m_should_comma }, m_active{ source.m_active } { source.m_active = false; } JsonArrayWriter::~JsonArrayWriter() { if ( !m_active ) { return; } m_os << '\n'; JsonUtils::indent( m_os, m_indent_level ); m_os << ']'; } JsonObjectWriter JsonArrayWriter::writeObject() { JsonUtils::appendCommaNewline( m_os, m_should_comma, m_indent_level + 1 ); return JsonObjectWriter{ m_os, m_indent_level + 1 }; } JsonArrayWriter JsonArrayWriter::writeArray() { JsonUtils::appendCommaNewline( m_os, m_should_comma, m_indent_level + 1 ); return JsonArrayWriter{ m_os, m_indent_level + 1 }; } JsonArrayWriter& JsonArrayWriter::write( bool value ) { return writeImpl( value ); } JsonValueWriter::JsonValueWriter( std::ostream& os ): JsonValueWriter{ os, 0 } {} JsonValueWriter::JsonValueWriter( std::ostream& os, std::uint64_t indent_level ): m_os{ os }, m_indent_level{ indent_level } {} JsonObjectWriter JsonValueWriter::writeObject() && { return JsonObjectWriter{ m_os, m_indent_level }; } JsonArrayWriter JsonValueWriter::writeArray() && { return JsonArrayWriter{ m_os, m_indent_level }; } void JsonValueWriter::write( Catch::StringRef value ) && { writeImpl( value, true ); } void JsonValueWriter::write( bool value ) && { writeImpl( value ? "true"_sr : "false"_sr, false ); } void JsonValueWriter::writeImpl( Catch::StringRef value, bool quote ) { if ( quote ) { m_os << '"'; } for (char c : value) { // Escape list taken from https://www.json.org/json-en.html, // string definition. // Note that while forward slash _can_ be escaped, it does // not have to be, if JSON is not further embedded somewhere // where forward slash is meaningful. if ( c == '"' ) { m_os << "\\\""; } else if ( c == '\\' ) { m_os << "\\\\"; } else if ( c == '\b' ) { m_os << "\\b"; } else if ( c == '\f' ) { m_os << "\\f"; } else if ( c == '\n' ) { m_os << "\\n"; } else if ( c == '\r' ) { m_os << "\\r"; } else if ( c == '\t' ) { m_os << "\\t"; } else { m_os << c; } } if ( quote ) { m_os << '"'; } } } // namespace Catch namespace Catch { auto operator << (std::ostream& os, LazyExpression const& lazyExpr) -> std::ostream& { if (lazyExpr.m_isNegated) os << '!'; if (lazyExpr) { if (lazyExpr.m_isNegated && lazyExpr.m_transientExpression->isBinaryExpression()) os << '(' << *lazyExpr.m_transientExpression << ')'; else os << *lazyExpr.m_transientExpression; } else { os << "{** error - unchecked empty expression requested **}"; } return os; } } // namespace Catch #ifdef CATCH_CONFIG_WINDOWS_CRTDBG #include namespace Catch { LeakDetector::LeakDetector() { int flag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG); flag |= _CRTDBG_LEAK_CHECK_DF; flag |= _CRTDBG_ALLOC_MEM_DF; _CrtSetDbgFlag(flag); _CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE | _CRTDBG_MODE_DEBUG); _CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDERR); // Change this to leaking allocation's number to break there _CrtSetBreakAlloc(-1); } } #else // ^^ Windows crt debug heap enabled // Windows crt debug heap disabled vv Catch::LeakDetector::LeakDetector() = default; #endif // CATCH_CONFIG_WINDOWS_CRTDBG Catch::LeakDetector::~LeakDetector() { Catch::cleanUp(); } namespace Catch { namespace { void listTests(IEventListener& reporter, IConfig const& config) { auto const& testSpec = config.testSpec(); auto matchedTestCases = filterTests(getAllTestCasesSorted(config), testSpec, config); reporter.listTests(matchedTestCases); } void listTags(IEventListener& reporter, IConfig const& config) { auto const& testSpec = config.testSpec(); std::vector matchedTestCases = filterTests(getAllTestCasesSorted(config), testSpec, config); std::map tagCounts; for (auto const& testCase : matchedTestCases) { for (auto const& tagName : testCase.getTestCaseInfo().tags) { auto it = tagCounts.find(tagName.original); if (it == tagCounts.end()) it = tagCounts.insert(std::make_pair(tagName.original, TagInfo())).first; it->second.add(tagName.original); } } std::vector infos; infos.reserve(tagCounts.size()); for (auto& tagc : tagCounts) { infos.push_back(CATCH_MOVE(tagc.second)); } reporter.listTags(infos); } void listReporters(IEventListener& reporter) { std::vector descriptions; auto const& factories = getRegistryHub().getReporterRegistry().getFactories(); descriptions.reserve(factories.size()); for (auto const& fac : factories) { descriptions.push_back({ fac.first, fac.second->getDescription() }); } reporter.listReporters(descriptions); } void listListeners(IEventListener& reporter) { std::vector descriptions; auto const& factories = getRegistryHub().getReporterRegistry().getListeners(); descriptions.reserve( factories.size() ); for ( auto const& fac : factories ) { descriptions.push_back( { fac->getName(), fac->getDescription() } ); } reporter.listListeners( descriptions ); } } // end anonymous namespace void TagInfo::add( StringRef spelling ) { ++count; spellings.insert( spelling ); } std::string TagInfo::all() const { // 2 per tag for brackets '[' and ']' size_t size = spellings.size() * 2; for (auto const& spelling : spellings) { size += spelling.size(); } std::string out; out.reserve(size); for (auto const& spelling : spellings) { out += '['; out += spelling; out += ']'; } return out; } bool list( IEventListener& reporter, Config const& config ) { bool listed = false; if (config.listTests()) { listed = true; listTests(reporter, config); } if (config.listTags()) { listed = true; listTags(reporter, config); } if (config.listReporters()) { listed = true; listReporters(reporter); } if ( config.listListeners() ) { listed = true; listListeners( reporter ); } return listed; } } // end namespace Catch namespace Catch { CATCH_INTERNAL_START_WARNINGS_SUPPRESSION CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS static LeakDetector leakDetector; CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION } // Allow users of amalgamated .cpp file to remove our main and provide their own. #if !defined(CATCH_AMALGAMATED_CUSTOM_MAIN) #if defined(CATCH_CONFIG_WCHAR) && defined(CATCH_PLATFORM_WINDOWS) && defined(_UNICODE) && !defined(DO_NOT_USE_WMAIN) // Standard C/C++ Win32 Unicode wmain entry point extern "C" int __cdecl wmain (int argc, wchar_t * argv[], wchar_t * []) { #else // Standard C/C++ main entry point int main (int argc, char * argv[]) { #endif // We want to force the linker not to discard the global variable // and its constructor, as it (optionally) registers leak detector (void)&Catch::leakDetector; return Catch::Session().run( argc, argv ); } #endif // !defined(CATCH_AMALGAMATED_CUSTOM_MAIN namespace Catch { MessageInfo::MessageInfo( StringRef _macroName, SourceLineInfo const& _lineInfo, ResultWas::OfType _type ) : macroName( _macroName ), lineInfo( _lineInfo ), type( _type ), sequence( ++globalCount ) {} // This may need protecting if threading support is added unsigned int MessageInfo::globalCount = 0; } // end namespace Catch #include #include #include #include #if defined( CATCH_CONFIG_NEW_CAPTURE ) # if defined( _MSC_VER ) # include //_dup and _dup2 # define dup _dup # define dup2 _dup2 # define fileno _fileno # else # include // dup and dup2 # endif #endif namespace Catch { namespace { //! A no-op implementation, used if no reporter wants output //! redirection. class NoopRedirect : public OutputRedirect { void activateImpl() override {} void deactivateImpl() override {} std::string getStdout() override { return {}; } std::string getStderr() override { return {}; } void clearBuffers() override {} }; /** * Redirects specific stream's rdbuf with another's. * * Redirection can be stopped and started on-demand, assumes * that the underlying stream's rdbuf aren't changed by other * users. */ class RedirectedStreamNew { std::ostream& m_originalStream; std::ostream& m_redirectionStream; std::streambuf* m_prevBuf; public: RedirectedStreamNew( std::ostream& originalStream, std::ostream& redirectionStream ): m_originalStream( originalStream ), m_redirectionStream( redirectionStream ), m_prevBuf( m_originalStream.rdbuf() ) {} void startRedirect() { m_originalStream.rdbuf( m_redirectionStream.rdbuf() ); } void stopRedirect() { m_originalStream.rdbuf( m_prevBuf ); } }; /** * Redirects the `std::cout`, `std::cerr`, `std::clog` streams, * but does not touch the actual `stdout`/`stderr` file descriptors. */ class StreamRedirect : public OutputRedirect { ReusableStringStream m_redirectedOut, m_redirectedErr; RedirectedStreamNew m_cout, m_cerr, m_clog; public: StreamRedirect(): m_cout( Catch::cout(), m_redirectedOut.get() ), m_cerr( Catch::cerr(), m_redirectedErr.get() ), m_clog( Catch::clog(), m_redirectedErr.get() ) {} void activateImpl() override { m_cout.startRedirect(); m_cerr.startRedirect(); m_clog.startRedirect(); } void deactivateImpl() override { m_cout.stopRedirect(); m_cerr.stopRedirect(); m_clog.stopRedirect(); } std::string getStdout() override { return m_redirectedOut.str(); } std::string getStderr() override { return m_redirectedErr.str(); } void clearBuffers() override { m_redirectedOut.str( "" ); m_redirectedErr.str( "" ); } }; #if defined( CATCH_CONFIG_NEW_CAPTURE ) // Windows's implementation of std::tmpfile is terrible (it tries // to create a file inside system folder, thus requiring elevated // privileges for the binary), so we have to use tmpnam(_s) and // create the file ourselves there. class TempFile { public: TempFile( TempFile const& ) = delete; TempFile& operator=( TempFile const& ) = delete; TempFile( TempFile&& ) = delete; TempFile& operator=( TempFile&& ) = delete; # if defined( _MSC_VER ) TempFile() { if ( tmpnam_s( m_buffer ) ) { CATCH_RUNTIME_ERROR( "Could not get a temp filename" ); } if ( fopen_s( &m_file, m_buffer, "wb+" ) ) { char buffer[100]; if ( strerror_s( buffer, errno ) ) { CATCH_RUNTIME_ERROR( "Could not translate errno to a string" ); } CATCH_RUNTIME_ERROR( "Could not open the temp file: '" << m_buffer << "' because: " << buffer ); } } # else TempFile() { m_file = std::tmpfile(); if ( !m_file ) { CATCH_RUNTIME_ERROR( "Could not create a temp file." ); } } # endif ~TempFile() { // TBD: What to do about errors here? std::fclose( m_file ); // We manually create the file on Windows only, on Linux // it will be autodeleted # if defined( _MSC_VER ) std::remove( m_buffer ); # endif } std::FILE* getFile() { return m_file; } std::string getContents() { ReusableStringStream sstr; constexpr long buffer_size = 100; char buffer[buffer_size + 1] = {}; long current_pos = ftell( m_file ); CATCH_ENFORCE( current_pos >= 0, "ftell failed, errno: " << errno ); std::rewind( m_file ); while ( current_pos > 0 ) { auto read_characters = std::fread( buffer, 1, std::min( buffer_size, current_pos ), m_file ); buffer[read_characters] = '\0'; sstr << buffer; current_pos -= static_cast( read_characters ); } return sstr.str(); } void clear() { std::rewind( m_file ); } private: std::FILE* m_file = nullptr; char m_buffer[L_tmpnam] = { 0 }; }; /** * Redirects the actual `stdout`/`stderr` file descriptors. * * Works by replacing the file descriptors numbered 1 and 2 * with an open temporary file. */ class FileRedirect : public OutputRedirect { TempFile m_outFile, m_errFile; int m_originalOut = -1; int m_originalErr = -1; // Flushes cout/cerr/clog streams and stdout/stderr FDs void flushEverything() { Catch::cout() << std::flush; fflush( stdout ); // Since we support overriding these streams, we flush cerr // even though std::cerr is unbuffered Catch::cerr() << std::flush; Catch::clog() << std::flush; fflush( stderr ); } public: FileRedirect(): m_originalOut( dup( fileno( stdout ) ) ), m_originalErr( dup( fileno( stderr ) ) ) { CATCH_ENFORCE( m_originalOut >= 0, "Could not dup stdout" ); CATCH_ENFORCE( m_originalErr >= 0, "Could not dup stderr" ); } std::string getStdout() override { return m_outFile.getContents(); } std::string getStderr() override { return m_errFile.getContents(); } void clearBuffers() override { m_outFile.clear(); m_errFile.clear(); } void activateImpl() override { // We flush before starting redirect, to ensure that we do // not capture the end of message sent before activation. flushEverything(); int ret; ret = dup2( fileno( m_outFile.getFile() ), fileno( stdout ) ); CATCH_ENFORCE( ret >= 0, "dup2 to stdout has failed, errno: " << errno ); ret = dup2( fileno( m_errFile.getFile() ), fileno( stderr ) ); CATCH_ENFORCE( ret >= 0, "dup2 to stderr has failed, errno: " << errno ); } void deactivateImpl() override { // We flush before ending redirect, to ensure that we // capture all messages sent while the redirect was active. flushEverything(); int ret; ret = dup2( m_originalOut, fileno( stdout ) ); CATCH_ENFORCE( ret >= 0, "dup2 of original stdout has failed, errno: " << errno ); ret = dup2( m_originalErr, fileno( stderr ) ); CATCH_ENFORCE( ret >= 0, "dup2 of original stderr has failed, errno: " << errno ); } }; #endif // CATCH_CONFIG_NEW_CAPTURE } // end namespace bool isRedirectAvailable( OutputRedirect::Kind kind ) { switch ( kind ) { // These two are always available case OutputRedirect::None: case OutputRedirect::Streams: return true; #if defined( CATCH_CONFIG_NEW_CAPTURE ) case OutputRedirect::FileDescriptors: return true; #endif default: return false; } } Detail::unique_ptr makeOutputRedirect( bool actual ) { if ( actual ) { // TODO: Clean this up later #if defined( CATCH_CONFIG_NEW_CAPTURE ) return Detail::make_unique(); #else return Detail::make_unique(); #endif } else { return Detail::make_unique(); } } RedirectGuard scopedActivate( OutputRedirect& redirectImpl ) { return RedirectGuard( true, redirectImpl ); } RedirectGuard scopedDeactivate( OutputRedirect& redirectImpl ) { return RedirectGuard( false, redirectImpl ); } OutputRedirect::~OutputRedirect() = default; RedirectGuard::RedirectGuard( bool activate, OutputRedirect& redirectImpl ): m_redirect( &redirectImpl ), m_activate( activate ), m_previouslyActive( redirectImpl.isActive() ) { // Skip cases where there is no actual state change. if ( m_activate == m_previouslyActive ) { return; } if ( m_activate ) { m_redirect->activate(); } else { m_redirect->deactivate(); } } RedirectGuard::~RedirectGuard() noexcept( false ) { if ( m_moved ) { return; } // Skip cases where there is no actual state change. if ( m_activate == m_previouslyActive ) { return; } if ( m_activate ) { m_redirect->deactivate(); } else { m_redirect->activate(); } } RedirectGuard::RedirectGuard( RedirectGuard&& rhs ) noexcept: m_redirect( rhs.m_redirect ), m_activate( rhs.m_activate ), m_previouslyActive( rhs.m_previouslyActive ), m_moved( false ) { rhs.m_moved = true; } RedirectGuard& RedirectGuard::operator=( RedirectGuard&& rhs ) noexcept { m_redirect = rhs.m_redirect; m_activate = rhs.m_activate; m_previouslyActive = rhs.m_previouslyActive; m_moved = false; rhs.m_moved = true; return *this; } } // namespace Catch #if defined( CATCH_CONFIG_NEW_CAPTURE ) # if defined( _MSC_VER ) # undef dup # undef dup2 # undef fileno # endif #endif #include #include namespace Catch { Optional parseUInt(std::string const& input, int base) { auto trimmed = trim( input ); // std::stoull is annoying and accepts numbers starting with '-', // it just negates them into unsigned int if ( trimmed.empty() || trimmed[0] == '-' ) { return {}; } CATCH_TRY { size_t pos = 0; const auto ret = std::stoull( trimmed, &pos, base ); // We did not consume the whole input, so there is an issue // This can be bunch of different stuff, like multiple numbers // in the input, or invalid digits/characters and so on. Either // way, we do not want to return the partially parsed result. if ( pos != trimmed.size() ) { return {}; } // Too large if ( ret > std::numeric_limits::max() ) { return {}; } return static_cast(ret); } CATCH_CATCH_ANON( std::invalid_argument const& ) { // no conversion could be performed } CATCH_CATCH_ANON( std::out_of_range const& ) { // the input does not fit into an unsigned long long } return {}; } } // namespace Catch #include namespace Catch { #if !defined(CATCH_CONFIG_POLYFILL_ISNAN) bool isnan(float f) { return std::isnan(f); } bool isnan(double d) { return std::isnan(d); } #else // For now we only use this for embarcadero bool isnan(float f) { return std::_isnan(f); } bool isnan(double d) { return std::_isnan(d); } #endif #if !defined( CATCH_CONFIG_GLOBAL_NEXTAFTER ) float nextafter( float x, float y ) { return std::nextafter( x, y ); } double nextafter( double x, double y ) { return std::nextafter( x, y ); } #else float nextafter( float x, float y ) { return ::nextafterf( x, y ); } double nextafter( double x, double y ) { return ::nextafter( x, y ); } #endif } // end namespace Catch namespace Catch { namespace { #if defined(_MSC_VER) #pragma warning(push) #pragma warning(disable:4146) // we negate uint32 during the rotate #endif // Safe rotr implementation thanks to John Regehr uint32_t rotate_right(uint32_t val, uint32_t count) { const uint32_t mask = 31; count &= mask; return (val >> count) | (val << (-count & mask)); } #if defined(_MSC_VER) #pragma warning(pop) #endif } SimplePcg32::SimplePcg32(result_type seed_) { seed(seed_); } void SimplePcg32::seed(result_type seed_) { m_state = 0; (*this)(); m_state += seed_; (*this)(); } void SimplePcg32::discard(uint64_t skip) { // We could implement this to run in O(log n) steps, but this // should suffice for our use case. for (uint64_t s = 0; s < skip; ++s) { static_cast((*this)()); } } SimplePcg32::result_type SimplePcg32::operator()() { // prepare the output value const uint32_t xorshifted = static_cast(((m_state >> 18u) ^ m_state) >> 27u); const auto output = rotate_right(xorshifted, static_cast(m_state >> 59u)); // advance state m_state = m_state * 6364136223846793005ULL + s_inc; return output; } bool operator==(SimplePcg32 const& lhs, SimplePcg32 const& rhs) { return lhs.m_state == rhs.m_state; } bool operator!=(SimplePcg32 const& lhs, SimplePcg32 const& rhs) { return lhs.m_state != rhs.m_state; } } #include #include namespace Catch { std::uint32_t generateRandomSeed( GenerateFrom from ) { switch ( from ) { case GenerateFrom::Time: return static_cast( std::time( nullptr ) ); case GenerateFrom::Default: case GenerateFrom::RandomDevice: { std::random_device rd; return Detail::fillBitsFrom( rd ); } default: CATCH_ERROR("Unknown generation method"); } } } // end namespace Catch namespace Catch { struct ReporterRegistry::ReporterRegistryImpl { std::vector> listeners; std::map factories; }; ReporterRegistry::ReporterRegistry(): m_impl( Detail::make_unique() ) { // Because it is impossible to move out of initializer list, // we have to add the elements manually m_impl->factories["Automake"] = Detail::make_unique>(); m_impl->factories["compact"] = Detail::make_unique>(); m_impl->factories["console"] = Detail::make_unique>(); m_impl->factories["JUnit"] = Detail::make_unique>(); m_impl->factories["SonarQube"] = Detail::make_unique>(); m_impl->factories["TAP"] = Detail::make_unique>(); m_impl->factories["TeamCity"] = Detail::make_unique>(); m_impl->factories["XML"] = Detail::make_unique>(); m_impl->factories["JSON"] = Detail::make_unique>(); } ReporterRegistry::~ReporterRegistry() = default; IEventListenerPtr ReporterRegistry::create( std::string const& name, ReporterConfig&& config ) const { auto it = m_impl->factories.find( name ); if ( it == m_impl->factories.end() ) return nullptr; return it->second->create( CATCH_MOVE( config ) ); } void ReporterRegistry::registerReporter( std::string const& name, IReporterFactoryPtr factory ) { CATCH_ENFORCE( name.find( "::" ) == name.npos, "'::' is not allowed in reporter name: '" + name + '\'' ); auto ret = m_impl->factories.emplace( name, CATCH_MOVE( factory ) ); CATCH_ENFORCE( ret.second, "reporter using '" + name + "' as name was already registered" ); } void ReporterRegistry::registerListener( Detail::unique_ptr factory ) { m_impl->listeners.push_back( CATCH_MOVE( factory ) ); } std::map const& ReporterRegistry::getFactories() const { return m_impl->factories; } std::vector> const& ReporterRegistry::getListeners() const { return m_impl->listeners; } } // namespace Catch #include namespace Catch { namespace { struct kvPair { StringRef key, value; }; kvPair splitKVPair(StringRef kvString) { auto splitPos = static_cast( std::find( kvString.begin(), kvString.end(), '=' ) - kvString.begin() ); return { kvString.substr( 0, splitPos ), kvString.substr( splitPos + 1, kvString.size() ) }; } } namespace Detail { std::vector splitReporterSpec( StringRef reporterSpec ) { static constexpr auto separator = "::"; static constexpr size_t separatorSize = 2; size_t separatorPos = 0; auto findNextSeparator = [&reporterSpec]( size_t startPos ) { static_assert( separatorSize == 2, "The code below currently assumes 2 char separator" ); auto currentPos = startPos; do { while ( currentPos < reporterSpec.size() && reporterSpec[currentPos] != separator[0] ) { ++currentPos; } if ( currentPos + 1 < reporterSpec.size() && reporterSpec[currentPos + 1] == separator[1] ) { return currentPos; } ++currentPos; } while ( currentPos < reporterSpec.size() ); return static_cast( -1 ); }; std::vector parts; while ( separatorPos < reporterSpec.size() ) { const auto nextSeparator = findNextSeparator( separatorPos ); parts.push_back( static_cast( reporterSpec.substr( separatorPos, nextSeparator - separatorPos ) ) ); if ( nextSeparator == static_cast( -1 ) ) { break; } separatorPos = nextSeparator + separatorSize; } // Handle a separator at the end. // This is not a valid spec, but we want to do validation in a // centralized place if ( separatorPos == reporterSpec.size() ) { parts.emplace_back(); } return parts; } Optional stringToColourMode( StringRef colourMode ) { if ( colourMode == "default" ) { return ColourMode::PlatformDefault; } else if ( colourMode == "ansi" ) { return ColourMode::ANSI; } else if ( colourMode == "win32" ) { return ColourMode::Win32; } else if ( colourMode == "none" ) { return ColourMode::None; } else { return {}; } } } // namespace Detail bool operator==( ReporterSpec const& lhs, ReporterSpec const& rhs ) { return lhs.m_name == rhs.m_name && lhs.m_outputFileName == rhs.m_outputFileName && lhs.m_colourMode == rhs.m_colourMode && lhs.m_customOptions == rhs.m_customOptions; } Optional parseReporterSpec( StringRef reporterSpec ) { auto parts = Detail::splitReporterSpec( reporterSpec ); assert( parts.size() > 0 && "Split should never return empty vector" ); std::map kvPairs; Optional outputFileName; Optional colourMode; // First part is always reporter name, so we skip it for ( size_t i = 1; i < parts.size(); ++i ) { auto kv = splitKVPair( parts[i] ); auto key = kv.key, value = kv.value; if ( key.empty() || value.empty() ) { // NOLINT(bugprone-branch-clone) return {}; } else if ( key[0] == 'X' ) { // This is a reporter-specific option, we don't check these // apart from basic sanity checks if ( key.size() == 1 ) { return {}; } auto ret = kvPairs.emplace( std::string(kv.key), std::string(kv.value) ); if ( !ret.second ) { // Duplicated key. We might want to handle this differently, // e.g. by overwriting the existing value? return {}; } } else if ( key == "out" ) { // Duplicated key if ( outputFileName ) { return {}; } outputFileName = static_cast( value ); } else if ( key == "colour-mode" ) { // Duplicated key if ( colourMode ) { return {}; } colourMode = Detail::stringToColourMode( value ); // Parsing failed if ( !colourMode ) { return {}; } } else { // Unrecognized option return {}; } } return ReporterSpec{ CATCH_MOVE( parts[0] ), CATCH_MOVE( outputFileName ), CATCH_MOVE( colourMode ), CATCH_MOVE( kvPairs ) }; } ReporterSpec::ReporterSpec( std::string name, Optional outputFileName, Optional colourMode, std::map customOptions ): m_name( CATCH_MOVE( name ) ), m_outputFileName( CATCH_MOVE( outputFileName ) ), m_colourMode( CATCH_MOVE( colourMode ) ), m_customOptions( CATCH_MOVE( customOptions ) ) {} } // namespace Catch #include #include #include namespace Catch { // This class encapsulates the idea of a pool of ostringstreams that can be reused. struct StringStreams { std::vector> m_streams; std::vector m_unused; std::ostringstream m_referenceStream; // Used for copy state/ flags from auto add() -> std::size_t { if( m_unused.empty() ) { m_streams.push_back( Detail::make_unique() ); return m_streams.size()-1; } else { auto index = m_unused.back(); m_unused.pop_back(); return index; } } void release( std::size_t index ) { m_streams[index]->copyfmt( m_referenceStream ); // Restore initial flags and other state m_unused.push_back(index); } }; ReusableStringStream::ReusableStringStream() : m_index( Singleton::getMutable().add() ), m_oss( Singleton::getMutable().m_streams[m_index].get() ) {} ReusableStringStream::~ReusableStringStream() { static_cast( m_oss )->str(""); m_oss->clear(); Singleton::getMutable().release( m_index ); } std::string ReusableStringStream::str() const { return static_cast( m_oss )->str(); } void ReusableStringStream::str( std::string const& str ) { static_cast( m_oss )->str( str ); } } #include #include namespace Catch { namespace Generators { namespace { struct GeneratorTracker final : TestCaseTracking::TrackerBase, IGeneratorTracker { GeneratorBasePtr m_generator; GeneratorTracker( TestCaseTracking::NameAndLocation&& nameAndLocation, TrackerContext& ctx, ITracker* parent ): TrackerBase( CATCH_MOVE( nameAndLocation ), ctx, parent ) {} static GeneratorTracker* acquire( TrackerContext& ctx, TestCaseTracking::NameAndLocationRef const& nameAndLocation ) { GeneratorTracker* tracker; ITracker& currentTracker = ctx.currentTracker(); // Under specific circumstances, the generator we want // to acquire is also the current tracker. If this is // the case, we have to avoid looking through current // tracker's children, and instead return the current // tracker. // A case where this check is important is e.g. // for (int i = 0; i < 5; ++i) { // int n = GENERATE(1, 2); // } // // without it, the code above creates 5 nested generators. if ( currentTracker.nameAndLocation() == nameAndLocation ) { auto thisTracker = currentTracker.parent()->findChild( nameAndLocation ); assert( thisTracker ); assert( thisTracker->isGeneratorTracker() ); tracker = static_cast( thisTracker ); } else if ( ITracker* childTracker = currentTracker.findChild( nameAndLocation ) ) { assert( childTracker ); assert( childTracker->isGeneratorTracker() ); tracker = static_cast( childTracker ); } else { return nullptr; } if ( !tracker->isComplete() ) { tracker->open(); } return tracker; } // TrackerBase interface bool isGeneratorTracker() const override { return true; } auto hasGenerator() const -> bool override { return !!m_generator; } void close() override { TrackerBase::close(); // If a generator has a child (it is followed by a section) // and none of its children have started, then we must wait // until later to start consuming its values. // This catches cases where `GENERATE` is placed between two // `SECTION`s. // **The check for m_children.empty cannot be removed**. // doing so would break `GENERATE` _not_ followed by // `SECTION`s. const bool should_wait_for_child = [&]() { // No children -> nobody to wait for if ( m_children.empty() ) { return false; } // If at least one child started executing, don't wait if ( std::find_if( m_children.begin(), m_children.end(), []( TestCaseTracking::ITrackerPtr const& tracker ) { return tracker->hasStarted(); } ) != m_children.end() ) { return false; } // No children have started. We need to check if they // _can_ start, and thus we should wait for them, or // they cannot start (due to filters), and we shouldn't // wait for them ITracker* parent = m_parent; // This is safe: there is always at least one section // tracker in a test case tracking tree while ( !parent->isSectionTracker() ) { parent = parent->parent(); } assert( parent && "Missing root (test case) level section" ); auto const& parentSection = static_cast( *parent ); auto const& filters = parentSection.getFilters(); // No filters -> no restrictions on running sections if ( filters.empty() ) { return true; } for ( auto const& child : m_children ) { if ( child->isSectionTracker() && std::find( filters.begin(), filters.end(), static_cast( *child ) .trimmedName() ) != filters.end() ) { return true; } } return false; }(); // This check is a bit tricky, because m_generator->next() // has a side-effect, where it consumes generator's current // value, but we do not want to invoke the side-effect if // this generator is still waiting for any child to start. assert( m_generator && "Tracker without generator" ); if ( should_wait_for_child || ( m_runState == CompletedSuccessfully && m_generator->countedNext() ) ) { m_children.clear(); m_runState = Executing; } } // IGeneratorTracker interface auto getGenerator() const -> GeneratorBasePtr const& override { return m_generator; } void setGenerator( GeneratorBasePtr&& generator ) override { m_generator = CATCH_MOVE( generator ); } }; } // namespace } RunContext::RunContext(IConfig const* _config, IEventListenerPtr&& reporter) : m_runInfo(_config->name()), m_config(_config), m_reporter(CATCH_MOVE(reporter)), m_lastAssertionInfo{ StringRef(), SourceLineInfo("",0), StringRef(), ResultDisposition::Normal }, m_outputRedirect( makeOutputRedirect( m_reporter->getPreferences().shouldRedirectStdOut ) ), m_includeSuccessfulResults( m_config->includeSuccessfulResults() || m_reporter->getPreferences().shouldReportAllAssertions ) { getCurrentMutableContext().setResultCapture( this ); m_reporter->testRunStarting(m_runInfo); } RunContext::~RunContext() { m_reporter->testRunEnded(TestRunStats(m_runInfo, m_totals, aborting())); } Totals RunContext::runTest(TestCaseHandle const& testCase) { const Totals prevTotals = m_totals; auto const& testInfo = testCase.getTestCaseInfo(); m_reporter->testCaseStarting(testInfo); testCase.prepareTestCase(); m_activeTestCase = &testCase; ITracker& rootTracker = m_trackerContext.startRun(); assert(rootTracker.isSectionTracker()); static_cast(rootTracker).addInitialFilters(m_config->getSectionsToRun()); // We intentionally only seed the internal RNG once per test case, // before it is first invoked. The reason for that is a complex // interplay of generator/section implementation details and the // Random*Generator types. // // The issue boils down to us needing to seed the Random*Generators // with different seed each, so that they return different sequences // of random numbers. We do this by giving them a number from the // shared RNG instance as their seed. // // However, this runs into an issue if the reseeding happens each // time the test case is entered (as opposed to first time only), // because multiple generators could get the same seed, e.g. in // ```cpp // TEST_CASE() { // auto i = GENERATE(take(10, random(0, 100)); // SECTION("A") { // auto j = GENERATE(take(10, random(0, 100)); // } // SECTION("B") { // auto k = GENERATE(take(10, random(0, 100)); // } // } // ``` // `i` and `j` would properly return values from different sequences, // but `i` and `k` would return the same sequence, because their seed // would be the same. // (The reason their seeds would be the same is that the generator // for k would be initialized when the test case is entered the second // time, after the shared RNG instance was reset to the same value // it had when the generator for i was initialized.) seedRng( *m_config ); uint64_t testRuns = 0; std::string redirectedCout; std::string redirectedCerr; do { m_trackerContext.startCycle(); m_testCaseTracker = &SectionTracker::acquire(m_trackerContext, TestCaseTracking::NameAndLocationRef(testInfo.name, testInfo.lineInfo)); m_reporter->testCasePartialStarting(testInfo, testRuns); const auto beforeRunTotals = m_totals; runCurrentTest(); std::string oneRunCout = m_outputRedirect->getStdout(); std::string oneRunCerr = m_outputRedirect->getStderr(); m_outputRedirect->clearBuffers(); redirectedCout += oneRunCout; redirectedCerr += oneRunCerr; const auto singleRunTotals = m_totals.delta(beforeRunTotals); auto statsForOneRun = TestCaseStats(testInfo, singleRunTotals, CATCH_MOVE(oneRunCout), CATCH_MOVE(oneRunCerr), aborting()); m_reporter->testCasePartialEnded(statsForOneRun, testRuns); ++testRuns; } while (!m_testCaseTracker->isSuccessfullyCompleted() && !aborting()); Totals deltaTotals = m_totals.delta(prevTotals); if (testInfo.expectedToFail() && deltaTotals.testCases.passed > 0) { deltaTotals.assertions.failed++; deltaTotals.testCases.passed--; deltaTotals.testCases.failed++; } m_totals.testCases += deltaTotals.testCases; testCase.tearDownTestCase(); m_reporter->testCaseEnded(TestCaseStats(testInfo, deltaTotals, CATCH_MOVE(redirectedCout), CATCH_MOVE(redirectedCerr), aborting())); m_activeTestCase = nullptr; m_testCaseTracker = nullptr; return deltaTotals; } void RunContext::assertionEnded(AssertionResult&& result) { if (result.getResultType() == ResultWas::Ok) { m_totals.assertions.passed++; m_lastAssertionPassed = true; } else if (result.getResultType() == ResultWas::ExplicitSkip) { m_totals.assertions.skipped++; m_lastAssertionPassed = true; } else if (!result.succeeded()) { m_lastAssertionPassed = false; if (result.isOk()) { } else if( m_activeTestCase->getTestCaseInfo().okToFail() ) m_totals.assertions.failedButOk++; else m_totals.assertions.failed++; } else { m_lastAssertionPassed = true; } { auto _ = scopedDeactivate( *m_outputRedirect ); m_reporter->assertionEnded( AssertionStats( result, m_messages, m_totals ) ); } if ( result.getResultType() != ResultWas::Warning ) { m_messageScopes.clear(); } // Reset working state. assertion info will be reset after // populateReaction is run if it is needed m_lastResult = CATCH_MOVE( result ); } void RunContext::resetAssertionInfo() { m_lastAssertionInfo.macroName = StringRef(); m_lastAssertionInfo.capturedExpression = "{Unknown expression after the reported line}"_sr; m_lastAssertionInfo.resultDisposition = ResultDisposition::Normal; } void RunContext::notifyAssertionStarted( AssertionInfo const& info ) { auto _ = scopedDeactivate( *m_outputRedirect ); m_reporter->assertionStarting( info ); } bool RunContext::sectionStarted( StringRef sectionName, SourceLineInfo const& sectionLineInfo, Counts& assertions ) { ITracker& sectionTracker = SectionTracker::acquire( m_trackerContext, TestCaseTracking::NameAndLocationRef( sectionName, sectionLineInfo ) ); if (!sectionTracker.isOpen()) return false; m_activeSections.push_back(§ionTracker); SectionInfo sectionInfo( sectionLineInfo, static_cast(sectionName) ); m_lastAssertionInfo.lineInfo = sectionInfo.lineInfo; { auto _ = scopedDeactivate( *m_outputRedirect ); m_reporter->sectionStarting( sectionInfo ); } assertions = m_totals.assertions; return true; } IGeneratorTracker* RunContext::acquireGeneratorTracker( StringRef generatorName, SourceLineInfo const& lineInfo ) { using namespace Generators; GeneratorTracker* tracker = GeneratorTracker::acquire( m_trackerContext, TestCaseTracking::NameAndLocationRef( generatorName, lineInfo ) ); m_lastAssertionInfo.lineInfo = lineInfo; return tracker; } IGeneratorTracker* RunContext::createGeneratorTracker( StringRef generatorName, SourceLineInfo lineInfo, Generators::GeneratorBasePtr&& generator ) { auto nameAndLoc = TestCaseTracking::NameAndLocation( static_cast( generatorName ), lineInfo ); auto& currentTracker = m_trackerContext.currentTracker(); assert( currentTracker.nameAndLocation() != nameAndLoc && "Trying to create tracker for a genreator that already has one" ); auto newTracker = Catch::Detail::make_unique( CATCH_MOVE(nameAndLoc), m_trackerContext, ¤tTracker ); auto ret = newTracker.get(); currentTracker.addChild( CATCH_MOVE( newTracker ) ); ret->setGenerator( CATCH_MOVE( generator ) ); ret->open(); return ret; } bool RunContext::testForMissingAssertions(Counts& assertions) { if (assertions.total() != 0) return false; if (!m_config->warnAboutMissingAssertions()) return false; if (m_trackerContext.currentTracker().hasChildren()) return false; m_totals.assertions.failed++; assertions.failed++; return true; } void RunContext::sectionEnded(SectionEndInfo&& endInfo) { Counts assertions = m_totals.assertions - endInfo.prevAssertions; bool missingAssertions = testForMissingAssertions(assertions); if (!m_activeSections.empty()) { m_activeSections.back()->close(); m_activeSections.pop_back(); } { auto _ = scopedDeactivate( *m_outputRedirect ); m_reporter->sectionEnded( SectionStats( CATCH_MOVE( endInfo.sectionInfo ), assertions, endInfo.durationInSeconds, missingAssertions ) ); } m_messages.clear(); m_messageScopes.clear(); } void RunContext::sectionEndedEarly(SectionEndInfo&& endInfo) { if ( m_unfinishedSections.empty() ) { m_activeSections.back()->fail(); } else { m_activeSections.back()->close(); } m_activeSections.pop_back(); m_unfinishedSections.push_back(CATCH_MOVE(endInfo)); } void RunContext::benchmarkPreparing( StringRef name ) { auto _ = scopedDeactivate( *m_outputRedirect ); m_reporter->benchmarkPreparing( name ); } void RunContext::benchmarkStarting( BenchmarkInfo const& info ) { auto _ = scopedDeactivate( *m_outputRedirect ); m_reporter->benchmarkStarting( info ); } void RunContext::benchmarkEnded( BenchmarkStats<> const& stats ) { auto _ = scopedDeactivate( *m_outputRedirect ); m_reporter->benchmarkEnded( stats ); } void RunContext::benchmarkFailed( StringRef error ) { auto _ = scopedDeactivate( *m_outputRedirect ); m_reporter->benchmarkFailed( error ); } void RunContext::pushScopedMessage(MessageInfo const & message) { m_messages.push_back(message); } void RunContext::popScopedMessage(MessageInfo const & message) { m_messages.erase(std::remove(m_messages.begin(), m_messages.end(), message), m_messages.end()); } void RunContext::emplaceUnscopedMessage( MessageBuilder&& builder ) { m_messageScopes.emplace_back( CATCH_MOVE(builder) ); } std::string RunContext::getCurrentTestName() const { return m_activeTestCase ? m_activeTestCase->getTestCaseInfo().name : std::string(); } const AssertionResult * RunContext::getLastResult() const { return &(*m_lastResult); } void RunContext::exceptionEarlyReported() { m_shouldReportUnexpected = false; } void RunContext::handleFatalErrorCondition( StringRef message ) { // TODO: scoped deactivate here? Just give up and do best effort? // the deactivation can break things further, OTOH so can the // capture auto _ = scopedDeactivate( *m_outputRedirect ); // First notify reporter that bad things happened m_reporter->fatalErrorEncountered( message ); // Don't rebuild the result -- the stringification itself can cause more fatal errors // Instead, fake a result data. AssertionResultData tempResult( ResultWas::FatalErrorCondition, { false } ); tempResult.message = static_cast(message); AssertionResult result(m_lastAssertionInfo, CATCH_MOVE(tempResult)); assertionEnded(CATCH_MOVE(result) ); resetAssertionInfo(); // Best effort cleanup for sections that have not been destructed yet // Since this is a fatal error, we have not had and won't have the opportunity to destruct them properly while (!m_activeSections.empty()) { auto nl = m_activeSections.back()->nameAndLocation(); SectionEndInfo endInfo{ SectionInfo(CATCH_MOVE(nl.location), CATCH_MOVE(nl.name)), {}, 0.0 }; sectionEndedEarly(CATCH_MOVE(endInfo)); } handleUnfinishedSections(); // Recreate section for test case (as we will lose the one that was in scope) auto const& testCaseInfo = m_activeTestCase->getTestCaseInfo(); SectionInfo testCaseSection(testCaseInfo.lineInfo, testCaseInfo.name); Counts assertions; assertions.failed = 1; SectionStats testCaseSectionStats(CATCH_MOVE(testCaseSection), assertions, 0, false); m_reporter->sectionEnded( testCaseSectionStats ); auto const& testInfo = m_activeTestCase->getTestCaseInfo(); Totals deltaTotals; deltaTotals.testCases.failed = 1; deltaTotals.assertions.failed = 1; m_reporter->testCaseEnded(TestCaseStats(testInfo, deltaTotals, std::string(), std::string(), false)); m_totals.testCases.failed++; m_reporter->testRunEnded(TestRunStats(m_runInfo, m_totals, false)); } bool RunContext::lastAssertionPassed() { return m_lastAssertionPassed; } void RunContext::assertionPassed() { m_lastAssertionPassed = true; ++m_totals.assertions.passed; resetAssertionInfo(); m_messageScopes.clear(); } bool RunContext::aborting() const { return m_totals.assertions.failed >= static_cast(m_config->abortAfter()); } void RunContext::runCurrentTest() { auto const& testCaseInfo = m_activeTestCase->getTestCaseInfo(); SectionInfo testCaseSection(testCaseInfo.lineInfo, testCaseInfo.name); m_reporter->sectionStarting(testCaseSection); Counts prevAssertions = m_totals.assertions; double duration = 0; m_shouldReportUnexpected = true; m_lastAssertionInfo = { "TEST_CASE"_sr, testCaseInfo.lineInfo, StringRef(), ResultDisposition::Normal }; Timer timer; CATCH_TRY { { auto _ = scopedActivate( *m_outputRedirect ); timer.start(); invokeActiveTestCase(); } duration = timer.getElapsedSeconds(); } CATCH_CATCH_ANON (TestFailureException&) { // This just means the test was aborted due to failure } CATCH_CATCH_ANON (TestSkipException&) { // This just means the test was explicitly skipped } CATCH_CATCH_ALL { // Under CATCH_CONFIG_FAST_COMPILE, unexpected exceptions under REQUIRE assertions // are reported without translation at the point of origin. if( m_shouldReportUnexpected ) { AssertionReaction dummyReaction; handleUnexpectedInflightException( m_lastAssertionInfo, translateActiveException(), dummyReaction ); } } Counts assertions = m_totals.assertions - prevAssertions; bool missingAssertions = testForMissingAssertions(assertions); m_testCaseTracker->close(); handleUnfinishedSections(); m_messages.clear(); m_messageScopes.clear(); SectionStats testCaseSectionStats(CATCH_MOVE(testCaseSection), assertions, duration, missingAssertions); m_reporter->sectionEnded(testCaseSectionStats); } void RunContext::invokeActiveTestCase() { // We need to engage a handler for signals/structured exceptions // before running the tests themselves, or the binary can crash // without failed test being reported. FatalConditionHandlerGuard _(&m_fatalConditionhandler); // We keep having issue where some compilers warn about an unused // variable, even though the type has non-trivial constructor and // destructor. This is annoying and ugly, but it makes them stfu. (void)_; m_activeTestCase->invoke(); } void RunContext::handleUnfinishedSections() { // If sections ended prematurely due to an exception we stored their // infos here so we can tear them down outside the unwind process. for ( auto it = m_unfinishedSections.rbegin(), itEnd = m_unfinishedSections.rend(); it != itEnd; ++it ) { sectionEnded( CATCH_MOVE( *it ) ); } m_unfinishedSections.clear(); } void RunContext::handleExpr( AssertionInfo const& info, ITransientExpression const& expr, AssertionReaction& reaction ) { bool negated = isFalseTest( info.resultDisposition ); bool result = expr.getResult() != negated; if( result ) { if (!m_includeSuccessfulResults) { assertionPassed(); } else { reportExpr(info, ResultWas::Ok, &expr, negated); } } else { reportExpr(info, ResultWas::ExpressionFailed, &expr, negated ); populateReaction( reaction ); } resetAssertionInfo(); } void RunContext::reportExpr( AssertionInfo const &info, ResultWas::OfType resultType, ITransientExpression const *expr, bool negated ) { m_lastAssertionInfo = info; AssertionResultData data( resultType, LazyExpression( negated ) ); AssertionResult assertionResult{ info, CATCH_MOVE( data ) }; assertionResult.m_resultData.lazyExpression.m_transientExpression = expr; assertionEnded( CATCH_MOVE(assertionResult) ); } void RunContext::handleMessage( AssertionInfo const& info, ResultWas::OfType resultType, std::string&& message, AssertionReaction& reaction ) { m_lastAssertionInfo = info; AssertionResultData data( resultType, LazyExpression( false ) ); data.message = CATCH_MOVE( message ); AssertionResult assertionResult{ m_lastAssertionInfo, CATCH_MOVE( data ) }; const auto isOk = assertionResult.isOk(); assertionEnded( CATCH_MOVE(assertionResult) ); if ( !isOk ) { populateReaction( reaction ); } else if ( resultType == ResultWas::ExplicitSkip ) { // TODO: Need to handle this explicitly, as ExplicitSkip is // considered "OK" reaction.shouldSkip = true; } resetAssertionInfo(); } void RunContext::handleUnexpectedExceptionNotThrown( AssertionInfo const& info, AssertionReaction& reaction ) { handleNonExpr(info, Catch::ResultWas::DidntThrowException, reaction); } void RunContext::handleUnexpectedInflightException( AssertionInfo const& info, std::string&& message, AssertionReaction& reaction ) { m_lastAssertionInfo = info; AssertionResultData data( ResultWas::ThrewException, LazyExpression( false ) ); data.message = CATCH_MOVE(message); AssertionResult assertionResult{ info, CATCH_MOVE(data) }; assertionEnded( CATCH_MOVE(assertionResult) ); populateReaction( reaction ); resetAssertionInfo(); } void RunContext::populateReaction( AssertionReaction& reaction ) { reaction.shouldDebugBreak = m_config->shouldDebugBreak(); reaction.shouldThrow = aborting() || (m_lastAssertionInfo.resultDisposition & ResultDisposition::Normal); } void RunContext::handleIncomplete( AssertionInfo const& info ) { using namespace std::string_literals; m_lastAssertionInfo = info; AssertionResultData data( ResultWas::ThrewException, LazyExpression( false ) ); data.message = "Exception translation was disabled by CATCH_CONFIG_FAST_COMPILE"s; AssertionResult assertionResult{ info, CATCH_MOVE( data ) }; assertionEnded( CATCH_MOVE(assertionResult) ); resetAssertionInfo(); } void RunContext::handleNonExpr( AssertionInfo const &info, ResultWas::OfType resultType, AssertionReaction &reaction ) { m_lastAssertionInfo = info; AssertionResultData data( resultType, LazyExpression( false ) ); AssertionResult assertionResult{ info, CATCH_MOVE( data ) }; const auto isOk = assertionResult.isOk(); assertionEnded( CATCH_MOVE(assertionResult) ); if ( !isOk ) { populateReaction( reaction ); } resetAssertionInfo(); } IResultCapture& getResultCapture() { if (auto* capture = getCurrentContext().getResultCapture()) return *capture; else CATCH_INTERNAL_ERROR("No result capture instance"); } void seedRng(IConfig const& config) { sharedRng().seed(config.rngSeed()); } unsigned int rngSeed() { return getCurrentContext().getConfig()->rngSeed(); } } namespace Catch { Section::Section( SectionInfo&& info ): m_info( CATCH_MOVE( info ) ), m_sectionIncluded( getResultCapture().sectionStarted( m_info.name, m_info.lineInfo, m_assertions ) ) { // Non-"included" sections will not use the timing information // anyway, so don't bother with the potential syscall. if (m_sectionIncluded) { m_timer.start(); } } Section::Section( SourceLineInfo const& _lineInfo, StringRef _name, const char* const ): m_info( { "invalid", static_cast( -1 ) }, std::string{} ), m_sectionIncluded( getResultCapture().sectionStarted( _name, _lineInfo, m_assertions ) ) { // We delay initialization the SectionInfo member until we know // this section needs it, so we avoid allocating std::string for name. // We also delay timer start to avoid the potential syscall unless we // will actually use the result. if ( m_sectionIncluded ) { m_info.name = static_cast( _name ); m_info.lineInfo = _lineInfo; m_timer.start(); } } Section::~Section() { if( m_sectionIncluded ) { SectionEndInfo endInfo{ CATCH_MOVE(m_info), m_assertions, m_timer.getElapsedSeconds() }; if ( uncaught_exceptions() ) { getResultCapture().sectionEndedEarly( CATCH_MOVE(endInfo) ); } else { getResultCapture().sectionEnded( CATCH_MOVE( endInfo ) ); } } } // This indicates whether the section should be executed or not Section::operator bool() const { return m_sectionIncluded; } } // end namespace Catch #include namespace Catch { namespace { static auto getSingletons() -> std::vector*& { static std::vector* g_singletons = nullptr; if( !g_singletons ) g_singletons = new std::vector(); return g_singletons; } } ISingleton::~ISingleton() = default; void addSingleton(ISingleton* singleton ) { getSingletons()->push_back( singleton ); } void cleanupSingletons() { auto& singletons = getSingletons(); for( auto singleton : *singletons ) delete singleton; delete singletons; singletons = nullptr; } } // namespace Catch #include #include namespace Catch { bool SourceLineInfo::operator == ( SourceLineInfo const& other ) const noexcept { return line == other.line && (file == other.file || std::strcmp(file, other.file) == 0); } bool SourceLineInfo::operator < ( SourceLineInfo const& other ) const noexcept { // We can assume that the same file will usually have the same pointer. // Thus, if the pointers are the same, there is no point in calling the strcmp return line < other.line || ( line == other.line && file != other.file && (std::strcmp(file, other.file) < 0)); } std::ostream& operator << ( std::ostream& os, SourceLineInfo const& info ) { #ifndef __GNUG__ os << info.file << '(' << info.line << ')'; #else os << info.file << ':' << info.line; #endif return os; } } // end namespace Catch namespace Catch { #if !defined(CATCH_CONFIG_DISABLE_EXCEPTIONS) void StartupExceptionRegistry::add( std::exception_ptr const& exception ) noexcept { CATCH_TRY { m_exceptions.push_back(exception); } CATCH_CATCH_ALL { // If we run out of memory during start-up there's really not a lot more we can do about it std::terminate(); } } std::vector const& StartupExceptionRegistry::getExceptions() const noexcept { return m_exceptions; } #endif } // end namespace Catch #include namespace Catch { // If you #define this you must implement these functions #if !defined( CATCH_CONFIG_NOSTDOUT ) std::ostream& cout() { return std::cout; } std::ostream& cerr() { return std::cerr; } std::ostream& clog() { return std::clog; } #endif } // namespace Catch #include #include #include #include namespace Catch { bool startsWith( std::string const& s, std::string const& prefix ) { return s.size() >= prefix.size() && std::equal(prefix.begin(), prefix.end(), s.begin()); } bool startsWith( StringRef s, char prefix ) { return !s.empty() && s[0] == prefix; } bool endsWith( std::string const& s, std::string const& suffix ) { return s.size() >= suffix.size() && std::equal(suffix.rbegin(), suffix.rend(), s.rbegin()); } bool endsWith( std::string const& s, char suffix ) { return !s.empty() && s[s.size()-1] == suffix; } bool contains( std::string const& s, std::string const& infix ) { return s.find( infix ) != std::string::npos; } void toLowerInPlace( std::string& s ) { for ( char& c : s ) { c = toLower( c ); } } std::string toLower( std::string const& s ) { std::string lc = s; toLowerInPlace( lc ); return lc; } char toLower(char c) { return static_cast(std::tolower(static_cast(c))); } std::string trim( std::string const& str ) { static char const* whitespaceChars = "\n\r\t "; std::string::size_type start = str.find_first_not_of( whitespaceChars ); std::string::size_type end = str.find_last_not_of( whitespaceChars ); return start != std::string::npos ? str.substr( start, 1+end-start ) : std::string(); } StringRef trim(StringRef ref) { const auto is_ws = [](char c) { return c == ' ' || c == '\t' || c == '\n' || c == '\r'; }; size_t real_begin = 0; while (real_begin < ref.size() && is_ws(ref[real_begin])) { ++real_begin; } size_t real_end = ref.size(); while (real_end > real_begin && is_ws(ref[real_end - 1])) { --real_end; } return ref.substr(real_begin, real_end - real_begin); } bool replaceInPlace( std::string& str, std::string const& replaceThis, std::string const& withThis ) { std::size_t i = str.find( replaceThis ); if (i == std::string::npos) { return false; } std::size_t copyBegin = 0; std::string origStr = CATCH_MOVE(str); str.clear(); // There is at least one replacement, so reserve with the best guess // we can make without actually counting the number of occurences. str.reserve(origStr.size() - replaceThis.size() + withThis.size()); do { str.append(origStr, copyBegin, i-copyBegin ); str += withThis; copyBegin = i + replaceThis.size(); if( copyBegin < origStr.size() ) i = origStr.find( replaceThis, copyBegin ); else i = std::string::npos; } while( i != std::string::npos ); if ( copyBegin < origStr.size() ) { str.append(origStr, copyBegin, origStr.size() ); } return true; } std::vector splitStringRef( StringRef str, char delimiter ) { std::vector subStrings; std::size_t start = 0; for(std::size_t pos = 0; pos < str.size(); ++pos ) { if( str[pos] == delimiter ) { if( pos - start > 1 ) subStrings.push_back( str.substr( start, pos-start ) ); start = pos+1; } } if( start < str.size() ) subStrings.push_back( str.substr( start, str.size()-start ) ); return subStrings; } std::ostream& operator << ( std::ostream& os, pluralise const& pluraliser ) { os << pluraliser.m_count << ' ' << pluraliser.m_label; if( pluraliser.m_count != 1 ) os << 's'; return os; } } #include #include #include #include namespace Catch { StringRef::StringRef( char const* rawChars ) noexcept : StringRef( rawChars, std::strlen(rawChars) ) {} bool StringRef::operator<(StringRef rhs) const noexcept { if (m_size < rhs.m_size) { return strncmp(m_start, rhs.m_start, m_size) <= 0; } return strncmp(m_start, rhs.m_start, rhs.m_size) < 0; } int StringRef::compare( StringRef rhs ) const { auto cmpResult = strncmp( m_start, rhs.m_start, std::min( m_size, rhs.m_size ) ); // This means that strncmp found a difference before the strings // ended, and we can return it directly if ( cmpResult != 0 ) { return cmpResult; } // If strings are equal up to length, then their comparison results on // their size if ( m_size < rhs.m_size ) { return -1; } else if ( m_size > rhs.m_size ) { return 1; } else { return 0; } } auto operator << ( std::ostream& os, StringRef str ) -> std::ostream& { return os.write(str.data(), static_cast(str.size())); } std::string operator+(StringRef lhs, StringRef rhs) { std::string ret; ret.reserve(lhs.size() + rhs.size()); ret += lhs; ret += rhs; return ret; } auto operator+=( std::string& lhs, StringRef rhs ) -> std::string& { lhs.append(rhs.data(), rhs.size()); return lhs; } } // namespace Catch namespace Catch { TagAliasRegistry::~TagAliasRegistry() = default; TagAlias const* TagAliasRegistry::find( std::string const& alias ) const { auto it = m_registry.find( alias ); if( it != m_registry.end() ) return &(it->second); else return nullptr; } std::string TagAliasRegistry::expandAliases( std::string const& unexpandedTestSpec ) const { std::string expandedTestSpec = unexpandedTestSpec; for( auto const& registryKvp : m_registry ) { std::size_t pos = expandedTestSpec.find( registryKvp.first ); if( pos != std::string::npos ) { expandedTestSpec = expandedTestSpec.substr( 0, pos ) + registryKvp.second.tag + expandedTestSpec.substr( pos + registryKvp.first.size() ); } } return expandedTestSpec; } void TagAliasRegistry::add( std::string const& alias, std::string const& tag, SourceLineInfo const& lineInfo ) { CATCH_ENFORCE( startsWith(alias, "[@") && endsWith(alias, ']'), "error: tag alias, '" << alias << "' is not of the form [@alias name].\n" << lineInfo ); CATCH_ENFORCE( m_registry.insert(std::make_pair(alias, TagAlias(tag, lineInfo))).second, "error: tag alias, '" << alias << "' already registered.\n" << "\tFirst seen at: " << find(alias)->lineInfo << "\n" << "\tRedefined at: " << lineInfo ); } ITagAliasRegistry::~ITagAliasRegistry() = default; ITagAliasRegistry const& ITagAliasRegistry::get() { return getRegistryHub().getTagAliasRegistry(); } } // end namespace Catch namespace Catch { TestCaseInfoHasher::TestCaseInfoHasher( hash_t seed ): m_seed( seed ) {} uint32_t TestCaseInfoHasher::operator()( TestCaseInfo const& t ) const { // FNV-1a hash algorithm that is designed for uniqueness: const hash_t prime = 1099511628211u; hash_t hash = 14695981039346656037u; for ( const char c : t.name ) { hash ^= c; hash *= prime; } for ( const char c : t.className ) { hash ^= c; hash *= prime; } for ( const Tag& tag : t.tags ) { for ( const char c : tag.original ) { hash ^= c; hash *= prime; } } hash ^= m_seed; hash *= prime; const uint32_t low{ static_cast( hash ) }; const uint32_t high{ static_cast( hash >> 32 ) }; return low * high; } } // namespace Catch #include #include namespace Catch { namespace { static void enforceNoDuplicateTestCases( std::vector const& tests ) { auto testInfoCmp = []( TestCaseInfo const* lhs, TestCaseInfo const* rhs ) { return *lhs < *rhs; }; std::set seenTests( testInfoCmp ); for ( auto const& test : tests ) { const auto infoPtr = &test.getTestCaseInfo(); const auto prev = seenTests.insert( infoPtr ); CATCH_ENFORCE( prev.second, "error: test case \"" << infoPtr->name << "\", with tags \"" << infoPtr->tagsAsString() << "\" already defined.\n" << "\tFirst seen at " << ( *prev.first )->lineInfo << "\n" << "\tRedefined at " << infoPtr->lineInfo ); } } static bool matchTest( TestCaseHandle const& testCase, TestSpec const& testSpec, IConfig const& config ) { return testSpec.matches( testCase.getTestCaseInfo() ) && isThrowSafe( testCase, config ); } } // end unnamed namespace std::vector sortTests( IConfig const& config, std::vector const& unsortedTestCases ) { switch (config.runOrder()) { case TestRunOrder::Declared: return unsortedTestCases; case TestRunOrder::LexicographicallySorted: { std::vector sorted = unsortedTestCases; std::sort( sorted.begin(), sorted.end(), []( TestCaseHandle const& lhs, TestCaseHandle const& rhs ) { return lhs.getTestCaseInfo() < rhs.getTestCaseInfo(); } ); return sorted; } case TestRunOrder::Randomized: { using TestWithHash = std::pair; TestCaseInfoHasher h{ config.rngSeed() }; std::vector indexed_tests; indexed_tests.reserve(unsortedTestCases.size()); for (auto const& handle : unsortedTestCases) { indexed_tests.emplace_back(h(handle.getTestCaseInfo()), handle); } std::sort( indexed_tests.begin(), indexed_tests.end(), []( TestWithHash const& lhs, TestWithHash const& rhs ) { if ( lhs.first == rhs.first ) { return lhs.second.getTestCaseInfo() < rhs.second.getTestCaseInfo(); } return lhs.first < rhs.first; } ); std::vector randomized; randomized.reserve(indexed_tests.size()); for (auto const& indexed : indexed_tests) { randomized.push_back(indexed.second); } return randomized; } } CATCH_INTERNAL_ERROR("Unknown test order value!"); } bool isThrowSafe( TestCaseHandle const& testCase, IConfig const& config ) { return !testCase.getTestCaseInfo().throws() || config.allowThrows(); } std::vector filterTests( std::vector const& testCases, TestSpec const& testSpec, IConfig const& config ) { std::vector filtered; filtered.reserve( testCases.size() ); for (auto const& testCase : testCases) { if ((!testSpec.hasFilters() && !testCase.getTestCaseInfo().isHidden()) || (testSpec.hasFilters() && matchTest(testCase, testSpec, config))) { filtered.push_back(testCase); } } return createShard(filtered, config.shardCount(), config.shardIndex()); } std::vector const& getAllTestCasesSorted( IConfig const& config ) { return getRegistryHub().getTestCaseRegistry().getAllTestsSorted( config ); } TestRegistry::~TestRegistry() = default; void TestRegistry::registerTest(Detail::unique_ptr testInfo, Detail::unique_ptr testInvoker) { m_handles.emplace_back(testInfo.get(), testInvoker.get()); m_viewed_test_infos.push_back(testInfo.get()); m_owned_test_infos.push_back(CATCH_MOVE(testInfo)); m_invokers.push_back(CATCH_MOVE(testInvoker)); } std::vector const& TestRegistry::getAllInfos() const { return m_viewed_test_infos; } std::vector const& TestRegistry::getAllTests() const { return m_handles; } std::vector const& TestRegistry::getAllTestsSorted( IConfig const& config ) const { if( m_sortedFunctions.empty() ) enforceNoDuplicateTestCases( m_handles ); if( m_currentSortOrder != config.runOrder() || m_sortedFunctions.empty() ) { m_sortedFunctions = sortTests( config, m_handles ); m_currentSortOrder = config.runOrder(); } return m_sortedFunctions; } } // end namespace Catch #include #include #if defined(__clang__) # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wexit-time-destructors" #endif namespace Catch { namespace TestCaseTracking { NameAndLocation::NameAndLocation( std::string&& _name, SourceLineInfo const& _location ) : name( CATCH_MOVE(_name) ), location( _location ) {} ITracker::~ITracker() = default; void ITracker::markAsNeedingAnotherRun() { m_runState = NeedsAnotherRun; } void ITracker::addChild( ITrackerPtr&& child ) { m_children.push_back( CATCH_MOVE(child) ); } ITracker* ITracker::findChild( NameAndLocationRef const& nameAndLocation ) { auto it = std::find_if( m_children.begin(), m_children.end(), [&nameAndLocation]( ITrackerPtr const& tracker ) { auto const& tnameAndLoc = tracker->nameAndLocation(); if ( tnameAndLoc.location.line != nameAndLocation.location.line ) { return false; } return tnameAndLoc == nameAndLocation; } ); return ( it != m_children.end() ) ? it->get() : nullptr; } bool ITracker::isSectionTracker() const { return false; } bool ITracker::isGeneratorTracker() const { return false; } bool ITracker::isOpen() const { return m_runState != NotStarted && !isComplete(); } bool ITracker::hasStarted() const { return m_runState != NotStarted; } void ITracker::openChild() { if (m_runState != ExecutingChildren) { m_runState = ExecutingChildren; if (m_parent) { m_parent->openChild(); } } } ITracker& TrackerContext::startRun() { using namespace std::string_literals; m_rootTracker = Catch::Detail::make_unique( NameAndLocation( "{root}"s, CATCH_INTERNAL_LINEINFO ), *this, nullptr ); m_currentTracker = nullptr; m_runState = Executing; return *m_rootTracker; } void TrackerContext::completeCycle() { m_runState = CompletedCycle; } bool TrackerContext::completedCycle() const { return m_runState == CompletedCycle; } void TrackerContext::setCurrentTracker( ITracker* tracker ) { m_currentTracker = tracker; } TrackerBase::TrackerBase( NameAndLocation&& nameAndLocation, TrackerContext& ctx, ITracker* parent ): ITracker(CATCH_MOVE(nameAndLocation), parent), m_ctx( ctx ) {} bool TrackerBase::isComplete() const { return m_runState == CompletedSuccessfully || m_runState == Failed; } void TrackerBase::open() { m_runState = Executing; moveToThis(); if( m_parent ) m_parent->openChild(); } void TrackerBase::close() { // Close any still open children (e.g. generators) while( &m_ctx.currentTracker() != this ) m_ctx.currentTracker().close(); switch( m_runState ) { case NeedsAnotherRun: break; case Executing: m_runState = CompletedSuccessfully; break; case ExecutingChildren: if( std::all_of(m_children.begin(), m_children.end(), [](ITrackerPtr const& t){ return t->isComplete(); }) ) m_runState = CompletedSuccessfully; break; case NotStarted: case CompletedSuccessfully: case Failed: CATCH_INTERNAL_ERROR( "Illogical state: " << m_runState ); default: CATCH_INTERNAL_ERROR( "Unknown state: " << m_runState ); } moveToParent(); m_ctx.completeCycle(); } void TrackerBase::fail() { m_runState = Failed; if( m_parent ) m_parent->markAsNeedingAnotherRun(); moveToParent(); m_ctx.completeCycle(); } void TrackerBase::moveToParent() { assert( m_parent ); m_ctx.setCurrentTracker( m_parent ); } void TrackerBase::moveToThis() { m_ctx.setCurrentTracker( this ); } SectionTracker::SectionTracker( NameAndLocation&& nameAndLocation, TrackerContext& ctx, ITracker* parent ) : TrackerBase( CATCH_MOVE(nameAndLocation), ctx, parent ), m_trimmed_name(trim(StringRef(ITracker::nameAndLocation().name))) { if( parent ) { while ( !parent->isSectionTracker() ) { parent = parent->parent(); } SectionTracker& parentSection = static_cast( *parent ); addNextFilters( parentSection.m_filters ); } } bool SectionTracker::isComplete() const { bool complete = true; if (m_filters.empty() || m_filters[0].empty() || std::find(m_filters.begin(), m_filters.end(), m_trimmed_name) != m_filters.end()) { complete = TrackerBase::isComplete(); } return complete; } bool SectionTracker::isSectionTracker() const { return true; } SectionTracker& SectionTracker::acquire( TrackerContext& ctx, NameAndLocationRef const& nameAndLocation ) { SectionTracker* tracker; ITracker& currentTracker = ctx.currentTracker(); if ( ITracker* childTracker = currentTracker.findChild( nameAndLocation ) ) { assert( childTracker ); assert( childTracker->isSectionTracker() ); tracker = static_cast( childTracker ); } else { auto newTracker = Catch::Detail::make_unique( NameAndLocation{ static_cast(nameAndLocation.name), nameAndLocation.location }, ctx, ¤tTracker ); tracker = newTracker.get(); currentTracker.addChild( CATCH_MOVE( newTracker ) ); } if ( !ctx.completedCycle() ) { tracker->tryOpen(); } return *tracker; } void SectionTracker::tryOpen() { if( !isComplete() ) open(); } void SectionTracker::addInitialFilters( std::vector const& filters ) { if( !filters.empty() ) { m_filters.reserve( m_filters.size() + filters.size() + 2 ); m_filters.emplace_back(StringRef{}); // Root - should never be consulted m_filters.emplace_back(StringRef{}); // Test Case - not a section filter m_filters.insert( m_filters.end(), filters.begin(), filters.end() ); } } void SectionTracker::addNextFilters( std::vector const& filters ) { if( filters.size() > 1 ) m_filters.insert( m_filters.end(), filters.begin()+1, filters.end() ); } StringRef SectionTracker::trimmedName() const { return m_trimmed_name; } } // namespace TestCaseTracking } // namespace Catch #if defined(__clang__) # pragma clang diagnostic pop #endif namespace Catch { void throw_test_failure_exception() { #if !defined( CATCH_CONFIG_DISABLE_EXCEPTIONS ) throw TestFailureException{}; #else CATCH_ERROR( "Test failure requires aborting test!" ); #endif } void throw_test_skip_exception() { #if !defined( CATCH_CONFIG_DISABLE_EXCEPTIONS ) throw Catch::TestSkipException(); #else CATCH_ERROR( "Explicitly skipping tests during runtime requires exceptions" ); #endif } } // namespace Catch #include #include namespace Catch { void ITestInvoker::prepareTestCase() {} void ITestInvoker::tearDownTestCase() {} ITestInvoker::~ITestInvoker() = default; namespace { static StringRef extractClassName( StringRef classOrMethodName ) { if ( !startsWith( classOrMethodName, '&' ) ) { return classOrMethodName; } // Remove the leading '&' to avoid having to special case it later const auto methodName = classOrMethodName.substr( 1, classOrMethodName.size() ); auto reverseStart = std::make_reverse_iterator( methodName.end() ); auto reverseEnd = std::make_reverse_iterator( methodName.begin() ); // We make a simplifying assumption that ":" is only present // in the input as part of "::" from C++ typenames (this is // relatively safe assumption because the input is generated // as stringification of type through preprocessor). auto lastColons = std::find( reverseStart, reverseEnd, ':' ) + 1; auto secondLastColons = std::find( lastColons + 1, reverseEnd, ':' ); auto const startIdx = reverseEnd - secondLastColons; auto const classNameSize = secondLastColons - lastColons - 1; return methodName.substr( static_cast( startIdx ), static_cast( classNameSize ) ); } class TestInvokerAsFunction final : public ITestInvoker { using TestType = void ( * )(); TestType m_testAsFunction; public: constexpr TestInvokerAsFunction( TestType testAsFunction ) noexcept: m_testAsFunction( testAsFunction ) {} void invoke() const override { m_testAsFunction(); } }; } // namespace Detail::unique_ptr makeTestInvoker( void(*testAsFunction)() ) { return Detail::make_unique( testAsFunction ); } AutoReg::AutoReg( Detail::unique_ptr invoker, SourceLineInfo const& lineInfo, StringRef classOrMethod, NameAndTags const& nameAndTags ) noexcept { CATCH_TRY { getMutableRegistryHub() .registerTest( makeTestCaseInfo( extractClassName( classOrMethod ), nameAndTags, lineInfo), CATCH_MOVE(invoker) ); } CATCH_CATCH_ALL { // Do not throw when constructing global objects, instead register the exception to be processed later getMutableRegistryHub().registerStartupException(); } } } namespace Catch { TestSpecParser::TestSpecParser( ITagAliasRegistry const& tagAliases ) : m_tagAliases( &tagAliases ) {} TestSpecParser& TestSpecParser::parse( std::string const& arg ) { m_mode = None; m_exclusion = false; m_arg = m_tagAliases->expandAliases( arg ); m_escapeChars.clear(); m_substring.reserve(m_arg.size()); m_patternName.reserve(m_arg.size()); m_realPatternPos = 0; for( m_pos = 0; m_pos < m_arg.size(); ++m_pos ) //if visitChar fails if( !visitChar( m_arg[m_pos] ) ){ m_testSpec.m_invalidSpecs.push_back(arg); break; } endMode(); return *this; } TestSpec TestSpecParser::testSpec() { addFilter(); return CATCH_MOVE(m_testSpec); } bool TestSpecParser::visitChar( char c ) { if( (m_mode != EscapedName) && (c == '\\') ) { escape(); addCharToPattern(c); return true; }else if((m_mode != EscapedName) && (c == ',') ) { return separate(); } switch( m_mode ) { case None: if( processNoneChar( c ) ) return true; break; case Name: processNameChar( c ); break; case EscapedName: endMode(); addCharToPattern(c); return true; default: case Tag: case QuotedName: if( processOtherChar( c ) ) return true; break; } m_substring += c; if( !isControlChar( c ) ) { m_patternName += c; m_realPatternPos++; } return true; } // Two of the processing methods return true to signal the caller to return // without adding the given character to the current pattern strings bool TestSpecParser::processNoneChar( char c ) { switch( c ) { case ' ': return true; case '~': m_exclusion = true; return false; case '[': startNewMode( Tag ); return false; case '"': startNewMode( QuotedName ); return false; default: startNewMode( Name ); return false; } } void TestSpecParser::processNameChar( char c ) { if( c == '[' ) { if( m_substring == "exclude:" ) m_exclusion = true; else endMode(); startNewMode( Tag ); } } bool TestSpecParser::processOtherChar( char c ) { if( !isControlChar( c ) ) return false; m_substring += c; endMode(); return true; } void TestSpecParser::startNewMode( Mode mode ) { m_mode = mode; } void TestSpecParser::endMode() { switch( m_mode ) { case Name: case QuotedName: return addNamePattern(); case Tag: return addTagPattern(); case EscapedName: revertBackToLastMode(); return; case None: default: return startNewMode( None ); } } void TestSpecParser::escape() { saveLastMode(); m_mode = EscapedName; m_escapeChars.push_back(m_realPatternPos); } bool TestSpecParser::isControlChar( char c ) const { switch( m_mode ) { default: return false; case None: return c == '~'; case Name: return c == '['; case EscapedName: return true; case QuotedName: return c == '"'; case Tag: return c == '[' || c == ']'; } } void TestSpecParser::addFilter() { if( !m_currentFilter.m_required.empty() || !m_currentFilter.m_forbidden.empty() ) { m_testSpec.m_filters.push_back( CATCH_MOVE(m_currentFilter) ); m_currentFilter = TestSpec::Filter(); } } void TestSpecParser::saveLastMode() { lastMode = m_mode; } void TestSpecParser::revertBackToLastMode() { m_mode = lastMode; } bool TestSpecParser::separate() { if( (m_mode==QuotedName) || (m_mode==Tag) ){ //invalid argument, signal failure to previous scope. m_mode = None; m_pos = m_arg.size(); m_substring.clear(); m_patternName.clear(); m_realPatternPos = 0; return false; } endMode(); addFilter(); return true; //success } std::string TestSpecParser::preprocessPattern() { std::string token = m_patternName; for (std::size_t i = 0; i < m_escapeChars.size(); ++i) token = token.substr(0, m_escapeChars[i] - i) + token.substr(m_escapeChars[i] - i + 1); m_escapeChars.clear(); if (startsWith(token, "exclude:")) { m_exclusion = true; token = token.substr(8); } m_patternName.clear(); m_realPatternPos = 0; return token; } void TestSpecParser::addNamePattern() { auto token = preprocessPattern(); if (!token.empty()) { if (m_exclusion) { m_currentFilter.m_forbidden.emplace_back(Detail::make_unique(token, m_substring)); } else { m_currentFilter.m_required.emplace_back(Detail::make_unique(token, m_substring)); } } m_substring.clear(); m_exclusion = false; m_mode = None; } void TestSpecParser::addTagPattern() { auto token = preprocessPattern(); if (!token.empty()) { // If the tag pattern is the "hide and tag" shorthand (e.g. [.foo]) // we have to create a separate hide tag and shorten the real one if (token.size() > 1 && token[0] == '.') { token.erase(token.begin()); if (m_exclusion) { m_currentFilter.m_forbidden.emplace_back(Detail::make_unique(".", m_substring)); } else { m_currentFilter.m_required.emplace_back(Detail::make_unique(".", m_substring)); } } if (m_exclusion) { m_currentFilter.m_forbidden.emplace_back(Detail::make_unique(token, m_substring)); } else { m_currentFilter.m_required.emplace_back(Detail::make_unique(token, m_substring)); } } m_substring.clear(); m_exclusion = false; m_mode = None; } } // namespace Catch #include #include #include namespace { bool isWhitespace( char c ) { return c == ' ' || c == '\t' || c == '\n' || c == '\r'; } bool isBreakableBefore( char c ) { static const char chars[] = "[({<|"; return std::memchr( chars, c, sizeof( chars ) - 1 ) != nullptr; } bool isBreakableAfter( char c ) { static const char chars[] = "])}>.,:;*+-=&/\\"; return std::memchr( chars, c, sizeof( chars ) - 1 ) != nullptr; } } // namespace namespace Catch { namespace TextFlow { void AnsiSkippingString::preprocessString() { for ( auto it = m_string.begin(); it != m_string.end(); ) { // try to read through an ansi sequence while ( it != m_string.end() && *it == '\033' && it + 1 != m_string.end() && *( it + 1 ) == '[' ) { auto cursor = it + 2; while ( cursor != m_string.end() && ( isdigit( *cursor ) || *cursor == ';' ) ) { ++cursor; } if ( cursor == m_string.end() || *cursor != 'm' ) { break; } // 'm' -> 0xff *cursor = AnsiSkippingString::sentinel; // if we've read an ansi sequence, set the iterator and // return to the top of the loop it = cursor + 1; } if ( it != m_string.end() ) { ++m_size; ++it; } } } AnsiSkippingString::AnsiSkippingString( std::string const& text ): m_string( text ) { preprocessString(); } AnsiSkippingString::AnsiSkippingString( std::string&& text ): m_string( CATCH_MOVE( text ) ) { preprocessString(); } AnsiSkippingString::const_iterator AnsiSkippingString::begin() const { return const_iterator( m_string ); } AnsiSkippingString::const_iterator AnsiSkippingString::end() const { return const_iterator( m_string, const_iterator::EndTag{} ); } std::string AnsiSkippingString::substring( const_iterator begin, const_iterator end ) const { // There's one caveat here to an otherwise simple substring: when // making a begin iterator we might have skipped ansi sequences at // the start. If `begin` here is a begin iterator, skipped over // initial ansi sequences, we'll use the true beginning of the // string. Lastly: We need to transform any chars we replaced with // 0xff back to 'm' auto str = std::string( begin == this->begin() ? m_string.begin() : begin.m_it, end.m_it ); std::transform( str.begin(), str.end(), str.begin(), []( char c ) { return c == AnsiSkippingString::sentinel ? 'm' : c; } ); return str; } void AnsiSkippingString::const_iterator::tryParseAnsiEscapes() { // check if we've landed on an ansi sequence, and if so read through // it while ( m_it != m_string->end() && *m_it == '\033' && m_it + 1 != m_string->end() && *( m_it + 1 ) == '[' ) { auto cursor = m_it + 2; while ( cursor != m_string->end() && ( isdigit( *cursor ) || *cursor == ';' ) ) { ++cursor; } if ( cursor == m_string->end() || *cursor != AnsiSkippingString::sentinel ) { break; } // if we've read an ansi sequence, set the iterator and // return to the top of the loop m_it = cursor + 1; } } void AnsiSkippingString::const_iterator::advance() { assert( m_it != m_string->end() ); m_it++; tryParseAnsiEscapes(); } void AnsiSkippingString::const_iterator::unadvance() { assert( m_it != m_string->begin() ); m_it--; // if *m_it is 0xff, scan back to the \033 and then m_it-- once more // (and repeat check) while ( *m_it == AnsiSkippingString::sentinel ) { while ( *m_it != '\033' ) { assert( m_it != m_string->begin() ); m_it--; } // if this happens, we must have been a begin iterator that had // skipped over ansi sequences at the start of a string assert( m_it != m_string->begin() ); assert( *m_it == '\033' ); m_it--; } } static bool isBoundary( AnsiSkippingString const& line, AnsiSkippingString::const_iterator it ) { return it == line.end() || ( isWhitespace( *it ) && !isWhitespace( *it.oneBefore() ) ) || isBreakableBefore( *it ) || isBreakableAfter( *it.oneBefore() ); } void Column::const_iterator::calcLength() { m_addHyphen = false; m_parsedTo = m_lineStart; AnsiSkippingString const& current_line = m_column.m_string; if ( m_parsedTo == current_line.end() ) { m_lineEnd = m_parsedTo; return; } assert( m_lineStart != current_line.end() ); if ( *m_lineStart == '\n' ) { ++m_parsedTo; } const auto maxLineLength = m_column.m_width - indentSize(); std::size_t lineLength = 0; while ( m_parsedTo != current_line.end() && lineLength < maxLineLength && *m_parsedTo != '\n' ) { ++m_parsedTo; ++lineLength; } // If we encountered a newline before the column is filled, // then we linebreak at the newline and consider this line // finished. if ( lineLength < maxLineLength ) { m_lineEnd = m_parsedTo; } else { // Look for a natural linebreak boundary in the column // (We look from the end, so that the first found boundary is // the right one) m_lineEnd = m_parsedTo; while ( lineLength > 0 && !isBoundary( current_line, m_lineEnd ) ) { --lineLength; --m_lineEnd; } while ( lineLength > 0 && isWhitespace( *m_lineEnd.oneBefore() ) ) { --lineLength; --m_lineEnd; } // If we found one, then that is where we linebreak, otherwise // we have to split text with a hyphen if ( lineLength == 0 ) { m_addHyphen = true; m_lineEnd = m_parsedTo.oneBefore(); } } } size_t Column::const_iterator::indentSize() const { auto initial = m_lineStart == m_column.m_string.begin() ? m_column.m_initialIndent : std::string::npos; return initial == std::string::npos ? m_column.m_indent : initial; } std::string Column::const_iterator::addIndentAndSuffix( AnsiSkippingString::const_iterator start, AnsiSkippingString::const_iterator end ) const { std::string ret; const auto desired_indent = indentSize(); // ret.reserve( desired_indent + (end - start) + m_addHyphen ); ret.append( desired_indent, ' ' ); // ret.append( start, end ); ret += m_column.m_string.substring( start, end ); if ( m_addHyphen ) { ret.push_back( '-' ); } return ret; } Column::const_iterator::const_iterator( Column const& column ): m_column( column ), m_lineStart( column.m_string.begin() ), m_lineEnd( column.m_string.begin() ), m_parsedTo( column.m_string.begin() ) { assert( m_column.m_width > m_column.m_indent ); assert( m_column.m_initialIndent == std::string::npos || m_column.m_width > m_column.m_initialIndent ); calcLength(); if ( m_lineStart == m_lineEnd ) { m_lineStart = m_column.m_string.end(); } } std::string Column::const_iterator::operator*() const { assert( m_lineStart <= m_parsedTo ); return addIndentAndSuffix( m_lineStart, m_lineEnd ); } Column::const_iterator& Column::const_iterator::operator++() { m_lineStart = m_lineEnd; AnsiSkippingString const& current_line = m_column.m_string; if ( m_lineStart != current_line.end() && *m_lineStart == '\n' ) { m_lineStart++; } else { while ( m_lineStart != current_line.end() && isWhitespace( *m_lineStart ) ) { ++m_lineStart; } } if ( m_lineStart != current_line.end() ) { calcLength(); } return *this; } Column::const_iterator Column::const_iterator::operator++( int ) { const_iterator prev( *this ); operator++(); return prev; } std::ostream& operator<<( std::ostream& os, Column const& col ) { bool first = true; for ( auto line : col ) { if ( first ) { first = false; } else { os << '\n'; } os << line; } return os; } Column Spacer( size_t spaceWidth ) { Column ret{ "" }; ret.width( spaceWidth ); return ret; } Columns::iterator::iterator( Columns const& columns, EndTag ): m_columns( columns.m_columns ), m_activeIterators( 0 ) { m_iterators.reserve( m_columns.size() ); for ( auto const& col : m_columns ) { m_iterators.push_back( col.end() ); } } Columns::iterator::iterator( Columns const& columns ): m_columns( columns.m_columns ), m_activeIterators( m_columns.size() ) { m_iterators.reserve( m_columns.size() ); for ( auto const& col : m_columns ) { m_iterators.push_back( col.begin() ); } } std::string Columns::iterator::operator*() const { std::string row, padding; for ( size_t i = 0; i < m_columns.size(); ++i ) { const auto width = m_columns[i].width(); if ( m_iterators[i] != m_columns[i].end() ) { std::string col = *m_iterators[i]; row += padding; row += col; padding.clear(); if ( col.size() < width ) { padding.append( width - col.size(), ' ' ); } } else { padding.append( width, ' ' ); } } return row; } Columns::iterator& Columns::iterator::operator++() { for ( size_t i = 0; i < m_columns.size(); ++i ) { if ( m_iterators[i] != m_columns[i].end() ) { ++m_iterators[i]; } } return *this; } Columns::iterator Columns::iterator::operator++( int ) { iterator prev( *this ); operator++(); return prev; } std::ostream& operator<<( std::ostream& os, Columns const& cols ) { bool first = true; for ( auto line : cols ) { if ( first ) { first = false; } else { os << '\n'; } os << line; } return os; } Columns operator+( Column const& lhs, Column const& rhs ) { Columns cols; cols += lhs; cols += rhs; return cols; } Columns operator+( Column&& lhs, Column&& rhs ) { Columns cols; cols += CATCH_MOVE( lhs ); cols += CATCH_MOVE( rhs ); return cols; } Columns& operator+=( Columns& lhs, Column const& rhs ) { lhs.m_columns.push_back( rhs ); return lhs; } Columns& operator+=( Columns& lhs, Column&& rhs ) { lhs.m_columns.push_back( CATCH_MOVE( rhs ) ); return lhs; } Columns operator+( Columns const& lhs, Column const& rhs ) { auto combined( lhs ); combined += rhs; return combined; } Columns operator+( Columns&& lhs, Column&& rhs ) { lhs += CATCH_MOVE( rhs ); return CATCH_MOVE( lhs ); } } // namespace TextFlow } // namespace Catch #include namespace Catch { bool uncaught_exceptions() { #if defined(CATCH_CONFIG_DISABLE_EXCEPTIONS) return false; #elif defined(CATCH_CONFIG_CPP17_UNCAUGHT_EXCEPTIONS) return std::uncaught_exceptions() > 0; #else return std::uncaught_exception(); #endif } } // end namespace Catch namespace Catch { WildcardPattern::WildcardPattern( std::string const& pattern, CaseSensitive caseSensitivity ) : m_caseSensitivity( caseSensitivity ), m_pattern( normaliseString( pattern ) ) { if( startsWith( m_pattern, '*' ) ) { m_pattern = m_pattern.substr( 1 ); m_wildcard = WildcardAtStart; } if( endsWith( m_pattern, '*' ) ) { m_pattern = m_pattern.substr( 0, m_pattern.size()-1 ); m_wildcard = static_cast( m_wildcard | WildcardAtEnd ); } } bool WildcardPattern::matches( std::string const& str ) const { switch( m_wildcard ) { case NoWildcard: return m_pattern == normaliseString( str ); case WildcardAtStart: return endsWith( normaliseString( str ), m_pattern ); case WildcardAtEnd: return startsWith( normaliseString( str ), m_pattern ); case WildcardAtBothEnds: return contains( normaliseString( str ), m_pattern ); default: CATCH_INTERNAL_ERROR( "Unknown enum" ); } } std::string WildcardPattern::normaliseString( std::string const& str ) const { return trim( m_caseSensitivity == CaseSensitive::No ? toLower( str ) : str ); } } // Note: swapping these two includes around causes MSVC to error out // while in /permissive- mode. No, I don't know why. // Tested on VS 2019, 18.{3, 4}.x #include #include #include namespace Catch { namespace { size_t trailingBytes(unsigned char c) { if ((c & 0xE0) == 0xC0) { return 2; } if ((c & 0xF0) == 0xE0) { return 3; } if ((c & 0xF8) == 0xF0) { return 4; } CATCH_INTERNAL_ERROR("Invalid multibyte utf-8 start byte encountered"); } uint32_t headerValue(unsigned char c) { if ((c & 0xE0) == 0xC0) { return c & 0x1F; } if ((c & 0xF0) == 0xE0) { return c & 0x0F; } if ((c & 0xF8) == 0xF0) { return c & 0x07; } CATCH_INTERNAL_ERROR("Invalid multibyte utf-8 start byte encountered"); } void hexEscapeChar(std::ostream& os, unsigned char c) { std::ios_base::fmtflags f(os.flags()); os << "\\x" << std::uppercase << std::hex << std::setfill('0') << std::setw(2) << static_cast(c); os.flags(f); } constexpr bool shouldNewline(XmlFormatting fmt) { return !!(static_cast>(fmt & XmlFormatting::Newline)); } constexpr bool shouldIndent(XmlFormatting fmt) { return !!(static_cast>(fmt & XmlFormatting::Indent)); } } // anonymous namespace void XmlEncode::encodeTo( std::ostream& os ) const { // Apostrophe escaping not necessary if we always use " to write attributes // (see: http://www.w3.org/TR/xml/#syntax) for( std::size_t idx = 0; idx < m_str.size(); ++ idx ) { unsigned char c = static_cast(m_str[idx]); switch (c) { case '<': os << "<"; break; case '&': os << "&"; break; case '>': // See: http://www.w3.org/TR/xml/#syntax if (idx > 2 && m_str[idx - 1] == ']' && m_str[idx - 2] == ']') os << ">"; else os << c; break; case '\"': if (m_forWhat == ForAttributes) os << """; else os << c; break; default: // Check for control characters and invalid utf-8 // Escape control characters in standard ascii // see http://stackoverflow.com/questions/404107/why-are-control-characters-illegal-in-xml-1-0 if (c < 0x09 || (c > 0x0D && c < 0x20) || c == 0x7F) { hexEscapeChar(os, c); break; } // Plain ASCII: Write it to stream if (c < 0x7F) { os << c; break; } // UTF-8 territory // Check if the encoding is valid and if it is not, hex escape bytes. // Important: We do not check the exact decoded values for validity, only the encoding format // First check that this bytes is a valid lead byte: // This means that it is not encoded as 1111 1XXX // Or as 10XX XXXX if (c < 0xC0 || c >= 0xF8) { hexEscapeChar(os, c); break; } auto encBytes = trailingBytes(c); // Are there enough bytes left to avoid accessing out-of-bounds memory? if (idx + encBytes - 1 >= m_str.size()) { hexEscapeChar(os, c); break; } // The header is valid, check data // The next encBytes bytes must together be a valid utf-8 // This means: bitpattern 10XX XXXX and the extracted value is sane (ish) bool valid = true; uint32_t value = headerValue(c); for (std::size_t n = 1; n < encBytes; ++n) { unsigned char nc = static_cast(m_str[idx + n]); valid &= ((nc & 0xC0) == 0x80); value = (value << 6) | (nc & 0x3F); } if ( // Wrong bit pattern of following bytes (!valid) || // Overlong encodings (value < 0x80) || (0x80 <= value && value < 0x800 && encBytes > 2) || (0x800 < value && value < 0x10000 && encBytes > 3) || // Encoded value out of range (value >= 0x110000) ) { hexEscapeChar(os, c); break; } // If we got here, this is in fact a valid(ish) utf-8 sequence for (std::size_t n = 0; n < encBytes; ++n) { os << m_str[idx + n]; } idx += encBytes - 1; break; } } } std::ostream& operator << ( std::ostream& os, XmlEncode const& xmlEncode ) { xmlEncode.encodeTo( os ); return os; } XmlWriter::ScopedElement::ScopedElement( XmlWriter* writer, XmlFormatting fmt ) : m_writer( writer ), m_fmt(fmt) {} XmlWriter::ScopedElement::ScopedElement( ScopedElement&& other ) noexcept : m_writer( other.m_writer ), m_fmt(other.m_fmt) { other.m_writer = nullptr; other.m_fmt = XmlFormatting::None; } XmlWriter::ScopedElement& XmlWriter::ScopedElement::operator=( ScopedElement&& other ) noexcept { if ( m_writer ) { m_writer->endElement(); } m_writer = other.m_writer; other.m_writer = nullptr; m_fmt = other.m_fmt; other.m_fmt = XmlFormatting::None; return *this; } XmlWriter::ScopedElement::~ScopedElement() { if (m_writer) { m_writer->endElement(m_fmt); } } XmlWriter::ScopedElement& XmlWriter::ScopedElement::writeText( StringRef text, XmlFormatting fmt ) { m_writer->writeText( text, fmt ); return *this; } XmlWriter::ScopedElement& XmlWriter::ScopedElement::writeAttribute( StringRef name, StringRef attribute ) { m_writer->writeAttribute( name, attribute ); return *this; } XmlWriter::XmlWriter( std::ostream& os ) : m_os( os ) { writeDeclaration(); } XmlWriter::~XmlWriter() { while (!m_tags.empty()) { endElement(); } newlineIfNecessary(); } XmlWriter& XmlWriter::startElement( std::string const& name, XmlFormatting fmt ) { ensureTagClosed(); newlineIfNecessary(); if (shouldIndent(fmt)) { m_os << m_indent; m_indent += " "; } m_os << '<' << name; m_tags.push_back( name ); m_tagIsOpen = true; applyFormatting(fmt); return *this; } XmlWriter::ScopedElement XmlWriter::scopedElement( std::string const& name, XmlFormatting fmt ) { ScopedElement scoped( this, fmt ); startElement( name, fmt ); return scoped; } XmlWriter& XmlWriter::endElement(XmlFormatting fmt) { m_indent = m_indent.substr(0, m_indent.size() - 2); if( m_tagIsOpen ) { m_os << "/>"; m_tagIsOpen = false; } else { newlineIfNecessary(); if (shouldIndent(fmt)) { m_os << m_indent; } m_os << "'; } m_os << std::flush; applyFormatting(fmt); m_tags.pop_back(); return *this; } XmlWriter& XmlWriter::writeAttribute( StringRef name, StringRef attribute ) { if( !name.empty() && !attribute.empty() ) m_os << ' ' << name << "=\"" << XmlEncode( attribute, XmlEncode::ForAttributes ) << '"'; return *this; } XmlWriter& XmlWriter::writeAttribute( StringRef name, bool attribute ) { writeAttribute(name, (attribute ? "true"_sr : "false"_sr)); return *this; } XmlWriter& XmlWriter::writeAttribute( StringRef name, char const* attribute ) { writeAttribute( name, StringRef( attribute ) ); return *this; } XmlWriter& XmlWriter::writeText( StringRef text, XmlFormatting fmt ) { CATCH_ENFORCE(!m_tags.empty(), "Cannot write text as top level element"); if( !text.empty() ){ bool tagWasOpen = m_tagIsOpen; ensureTagClosed(); if (tagWasOpen && shouldIndent(fmt)) { m_os << m_indent; } m_os << XmlEncode( text, XmlEncode::ForTextNodes ); applyFormatting(fmt); } return *this; } XmlWriter& XmlWriter::writeComment( StringRef text, XmlFormatting fmt ) { ensureTagClosed(); if (shouldIndent(fmt)) { m_os << m_indent; } m_os << ""; applyFormatting(fmt); return *this; } void XmlWriter::writeStylesheetRef( StringRef url ) { m_os << R"()" << '\n'; } void XmlWriter::ensureTagClosed() { if( m_tagIsOpen ) { m_os << '>' << std::flush; newlineIfNecessary(); m_tagIsOpen = false; } } void XmlWriter::applyFormatting(XmlFormatting fmt) { m_needsNewline = shouldNewline(fmt); } void XmlWriter::writeDeclaration() { m_os << R"()" << '\n'; } void XmlWriter::newlineIfNecessary() { if( m_needsNewline ) { m_os << '\n' << std::flush; m_needsNewline = false; } } } namespace Catch { namespace Matchers { std::string MatcherUntypedBase::toString() const { if (m_cachedToString.empty()) { m_cachedToString = describe(); } return m_cachedToString; } MatcherUntypedBase::~MatcherUntypedBase() = default; } // namespace Matchers } // namespace Catch namespace Catch { namespace Matchers { std::string IsEmptyMatcher::describe() const { return "is empty"; } std::string HasSizeMatcher::describe() const { ReusableStringStream sstr; sstr << "has size == " << m_target_size; return sstr.str(); } IsEmptyMatcher IsEmpty() { return {}; } HasSizeMatcher SizeIs(std::size_t sz) { return HasSizeMatcher{ sz }; } } // end namespace Matchers } // end namespace Catch namespace Catch { namespace Matchers { bool ExceptionMessageMatcher::match(std::exception const& ex) const { return ex.what() == m_message; } std::string ExceptionMessageMatcher::describe() const { return "exception message matches \"" + m_message + '"'; } ExceptionMessageMatcher Message(std::string const& message) { return ExceptionMessageMatcher(message); } } // namespace Matchers } // namespace Catch #include #include #include #include #include #include #include namespace Catch { namespace { template bool almostEqualUlps(FP lhs, FP rhs, uint64_t maxUlpDiff) { // Comparison with NaN should always be false. // This way we can rule it out before getting into the ugly details if (Catch::isnan(lhs) || Catch::isnan(rhs)) { return false; } // This should also handle positive and negative zeros, infinities const auto ulpDist = ulpDistance(lhs, rhs); return ulpDist <= maxUlpDiff; } template FP step(FP start, FP direction, uint64_t steps) { for (uint64_t i = 0; i < steps; ++i) { start = Catch::nextafter(start, direction); } return start; } // Performs equivalent check of std::fabs(lhs - rhs) <= margin // But without the subtraction to allow for INFINITY in comparison bool marginComparison(double lhs, double rhs, double margin) { return (lhs + margin >= rhs) && (rhs + margin >= lhs); } template void write(std::ostream& out, FloatingPoint num) { out << std::scientific << std::setprecision(std::numeric_limits::max_digits10 - 1) << num; } } // end anonymous namespace namespace Matchers { namespace Detail { enum class FloatingPointKind : uint8_t { Float, Double }; } // end namespace Detail WithinAbsMatcher::WithinAbsMatcher(double target, double margin) :m_target{ target }, m_margin{ margin } { CATCH_ENFORCE(margin >= 0, "Invalid margin: " << margin << '.' << " Margin has to be non-negative."); } // Performs equivalent check of std::fabs(lhs - rhs) <= margin // But without the subtraction to allow for INFINITY in comparison bool WithinAbsMatcher::match(double const& matchee) const { return (matchee + m_margin >= m_target) && (m_target + m_margin >= matchee); } std::string WithinAbsMatcher::describe() const { return "is within " + ::Catch::Detail::stringify(m_margin) + " of " + ::Catch::Detail::stringify(m_target); } WithinUlpsMatcher::WithinUlpsMatcher(double target, uint64_t ulps, Detail::FloatingPointKind baseType) :m_target{ target }, m_ulps{ ulps }, m_type{ baseType } { CATCH_ENFORCE(m_type == Detail::FloatingPointKind::Double || m_ulps < (std::numeric_limits::max)(), "Provided ULP is impossibly large for a float comparison."); CATCH_ENFORCE( std::numeric_limits::is_iec559, "WithinUlp matcher only supports platforms with " "IEEE-754 compatible floating point representation" ); } #if defined(__clang__) #pragma clang diagnostic push // Clang <3.5 reports on the default branch in the switch below #pragma clang diagnostic ignored "-Wunreachable-code" #endif bool WithinUlpsMatcher::match(double const& matchee) const { switch (m_type) { case Detail::FloatingPointKind::Float: return almostEqualUlps(static_cast(matchee), static_cast(m_target), m_ulps); case Detail::FloatingPointKind::Double: return almostEqualUlps(matchee, m_target, m_ulps); default: CATCH_INTERNAL_ERROR( "Unknown Detail::FloatingPointKind value" ); } } #if defined(__clang__) #pragma clang diagnostic pop #endif std::string WithinUlpsMatcher::describe() const { std::stringstream ret; ret << "is within " << m_ulps << " ULPs of "; if (m_type == Detail::FloatingPointKind::Float) { write(ret, static_cast(m_target)); ret << 'f'; } else { write(ret, m_target); } ret << " (["; if (m_type == Detail::FloatingPointKind::Double) { write( ret, step( m_target, -std::numeric_limits::infinity(), m_ulps ) ); ret << ", "; write( ret, step( m_target, std::numeric_limits::infinity(), m_ulps ) ); } else { // We have to cast INFINITY to float because of MinGW, see #1782 write( ret, step( static_cast( m_target ), -std::numeric_limits::infinity(), m_ulps ) ); ret << ", "; write( ret, step( static_cast( m_target ), std::numeric_limits::infinity(), m_ulps ) ); } ret << "])"; return ret.str(); } WithinRelMatcher::WithinRelMatcher(double target, double epsilon): m_target(target), m_epsilon(epsilon){ CATCH_ENFORCE(m_epsilon >= 0., "Relative comparison with epsilon < 0 does not make sense."); CATCH_ENFORCE(m_epsilon < 1., "Relative comparison with epsilon >= 1 does not make sense."); } bool WithinRelMatcher::match(double const& matchee) const { const auto relMargin = m_epsilon * (std::max)(std::fabs(matchee), std::fabs(m_target)); return marginComparison(matchee, m_target, std::isinf(relMargin)? 0 : relMargin); } std::string WithinRelMatcher::describe() const { Catch::ReusableStringStream sstr; sstr << "and " << ::Catch::Detail::stringify(m_target) << " are within " << m_epsilon * 100. << "% of each other"; return sstr.str(); } WithinUlpsMatcher WithinULP(double target, uint64_t maxUlpDiff) { return WithinUlpsMatcher(target, maxUlpDiff, Detail::FloatingPointKind::Double); } WithinUlpsMatcher WithinULP(float target, uint64_t maxUlpDiff) { return WithinUlpsMatcher(target, maxUlpDiff, Detail::FloatingPointKind::Float); } WithinAbsMatcher WithinAbs(double target, double margin) { return WithinAbsMatcher(target, margin); } WithinRelMatcher WithinRel(double target, double eps) { return WithinRelMatcher(target, eps); } WithinRelMatcher WithinRel(double target) { return WithinRelMatcher(target, std::numeric_limits::epsilon() * 100); } WithinRelMatcher WithinRel(float target, float eps) { return WithinRelMatcher(target, eps); } WithinRelMatcher WithinRel(float target) { return WithinRelMatcher(target, std::numeric_limits::epsilon() * 100); } bool IsNaNMatcher::match( double const& matchee ) const { return std::isnan( matchee ); } std::string IsNaNMatcher::describe() const { using namespace std::string_literals; return "is NaN"s; } IsNaNMatcher IsNaN() { return IsNaNMatcher(); } } // namespace Matchers } // namespace Catch std::string Catch::Matchers::Detail::finalizeDescription(const std::string& desc) { if (desc.empty()) { return "matches undescribed predicate"; } else { return "matches predicate: \"" + desc + '"'; } } namespace Catch { namespace Matchers { std::string AllTrueMatcher::describe() const { return "contains only true"; } AllTrueMatcher AllTrue() { return AllTrueMatcher{}; } std::string NoneTrueMatcher::describe() const { return "contains no true"; } NoneTrueMatcher NoneTrue() { return NoneTrueMatcher{}; } std::string AnyTrueMatcher::describe() const { return "contains at least one true"; } AnyTrueMatcher AnyTrue() { return AnyTrueMatcher{}; } } // namespace Matchers } // namespace Catch #include namespace Catch { namespace Matchers { CasedString::CasedString( std::string const& str, CaseSensitive caseSensitivity ) : m_caseSensitivity( caseSensitivity ), m_str( adjustString( str ) ) {} std::string CasedString::adjustString( std::string const& str ) const { return m_caseSensitivity == CaseSensitive::No ? toLower( str ) : str; } StringRef CasedString::caseSensitivitySuffix() const { return m_caseSensitivity == CaseSensitive::Yes ? StringRef() : " (case insensitive)"_sr; } StringMatcherBase::StringMatcherBase( StringRef operation, CasedString const& comparator ) : m_comparator( comparator ), m_operation( operation ) { } std::string StringMatcherBase::describe() const { std::string description; description.reserve(5 + m_operation.size() + m_comparator.m_str.size() + m_comparator.caseSensitivitySuffix().size()); description += m_operation; description += ": \""; description += m_comparator.m_str; description += '"'; description += m_comparator.caseSensitivitySuffix(); return description; } StringEqualsMatcher::StringEqualsMatcher( CasedString const& comparator ) : StringMatcherBase( "equals"_sr, comparator ) {} bool StringEqualsMatcher::match( std::string const& source ) const { return m_comparator.adjustString( source ) == m_comparator.m_str; } StringContainsMatcher::StringContainsMatcher( CasedString const& comparator ) : StringMatcherBase( "contains"_sr, comparator ) {} bool StringContainsMatcher::match( std::string const& source ) const { return contains( m_comparator.adjustString( source ), m_comparator.m_str ); } StartsWithMatcher::StartsWithMatcher( CasedString const& comparator ) : StringMatcherBase( "starts with"_sr, comparator ) {} bool StartsWithMatcher::match( std::string const& source ) const { return startsWith( m_comparator.adjustString( source ), m_comparator.m_str ); } EndsWithMatcher::EndsWithMatcher( CasedString const& comparator ) : StringMatcherBase( "ends with"_sr, comparator ) {} bool EndsWithMatcher::match( std::string const& source ) const { return endsWith( m_comparator.adjustString( source ), m_comparator.m_str ); } RegexMatcher::RegexMatcher(std::string regex, CaseSensitive caseSensitivity): m_regex(CATCH_MOVE(regex)), m_caseSensitivity(caseSensitivity) {} bool RegexMatcher::match(std::string const& matchee) const { auto flags = std::regex::ECMAScript; // ECMAScript is the default syntax option anyway if (m_caseSensitivity == CaseSensitive::No) { flags |= std::regex::icase; } auto reg = std::regex(m_regex, flags); return std::regex_match(matchee, reg); } std::string RegexMatcher::describe() const { return "matches " + ::Catch::Detail::stringify(m_regex) + ((m_caseSensitivity == CaseSensitive::Yes)? " case sensitively" : " case insensitively"); } StringEqualsMatcher Equals( std::string const& str, CaseSensitive caseSensitivity ) { return StringEqualsMatcher( CasedString( str, caseSensitivity) ); } StringContainsMatcher ContainsSubstring( std::string const& str, CaseSensitive caseSensitivity ) { return StringContainsMatcher( CasedString( str, caseSensitivity) ); } EndsWithMatcher EndsWith( std::string const& str, CaseSensitive caseSensitivity ) { return EndsWithMatcher( CasedString( str, caseSensitivity) ); } StartsWithMatcher StartsWith( std::string const& str, CaseSensitive caseSensitivity ) { return StartsWithMatcher( CasedString( str, caseSensitivity) ); } RegexMatcher Matches(std::string const& regex, CaseSensitive caseSensitivity) { return RegexMatcher(regex, caseSensitivity); } } // namespace Matchers } // namespace Catch namespace Catch { namespace Matchers { MatcherGenericBase::~MatcherGenericBase() = default; namespace Detail { std::string describe_multi_matcher(StringRef combine, std::string const* descriptions_begin, std::string const* descriptions_end) { std::string description; std::size_t combined_size = 4; for ( auto desc = descriptions_begin; desc != descriptions_end; ++desc ) { combined_size += desc->size(); } combined_size += static_cast(descriptions_end - descriptions_begin - 1) * combine.size(); description.reserve(combined_size); description += "( "; bool first = true; for( auto desc = descriptions_begin; desc != descriptions_end; ++desc ) { if( first ) first = false; else description += combine; description += *desc; } description += " )"; return description; } } // namespace Detail } // namespace Matchers } // namespace Catch namespace Catch { // This is the general overload that takes a any string matcher // There is another overload, in catch_assertionhandler.h/.cpp, that only takes a string and infers // the Equals matcher (so the header does not mention matchers) void handleExceptionMatchExpr( AssertionHandler& handler, StringMatcher const& matcher ) { std::string exceptionMessage = Catch::translateActiveException(); MatchExpr expr( CATCH_MOVE(exceptionMessage), matcher ); handler.handleExpr( expr ); } } // namespace Catch #include namespace Catch { AutomakeReporter::~AutomakeReporter() = default; void AutomakeReporter::testCaseEnded(TestCaseStats const& _testCaseStats) { // Possible values to emit are PASS, XFAIL, SKIP, FAIL, XPASS and ERROR. m_stream << ":test-result: "; if ( _testCaseStats.totals.testCases.skipped > 0 ) { m_stream << "SKIP"; } else if (_testCaseStats.totals.assertions.allPassed()) { m_stream << "PASS"; } else if (_testCaseStats.totals.assertions.allOk()) { m_stream << "XFAIL"; } else { m_stream << "FAIL"; } m_stream << ' ' << _testCaseStats.testInfo->name << '\n'; StreamingReporterBase::testCaseEnded(_testCaseStats); } void AutomakeReporter::skipTest(TestCaseInfo const& testInfo) { m_stream << ":test-result: SKIP " << testInfo.name << '\n'; } } // end namespace Catch namespace Catch { ReporterBase::ReporterBase( ReporterConfig&& config ): IEventListener( config.fullConfig() ), m_wrapped_stream( CATCH_MOVE(config).takeStream() ), m_stream( m_wrapped_stream->stream() ), m_colour( makeColourImpl( config.colourMode(), m_wrapped_stream.get() ) ), m_customOptions( config.customOptions() ) {} ReporterBase::~ReporterBase() = default; void ReporterBase::listReporters( std::vector const& descriptions ) { defaultListReporters(m_stream, descriptions, m_config->verbosity()); } void ReporterBase::listListeners( std::vector const& descriptions ) { defaultListListeners( m_stream, descriptions ); } void ReporterBase::listTests(std::vector const& tests) { defaultListTests(m_stream, m_colour.get(), tests, m_config->hasTestFilters(), m_config->verbosity()); } void ReporterBase::listTags(std::vector const& tags) { defaultListTags( m_stream, tags, m_config->hasTestFilters() ); } } // namespace Catch #include namespace Catch { namespace { // Colour::LightGrey static constexpr Colour::Code compactDimColour = Colour::FileName; #ifdef CATCH_PLATFORM_MAC static constexpr Catch::StringRef compactFailedString = "FAILED"_sr; static constexpr Catch::StringRef compactPassedString = "PASSED"_sr; #else static constexpr Catch::StringRef compactFailedString = "failed"_sr; static constexpr Catch::StringRef compactPassedString = "passed"_sr; #endif // Implementation of CompactReporter formatting class AssertionPrinter { public: AssertionPrinter& operator= (AssertionPrinter const&) = delete; AssertionPrinter(AssertionPrinter const&) = delete; AssertionPrinter(std::ostream& _stream, AssertionStats const& _stats, bool _printInfoMessages, ColourImpl* colourImpl_) : stream(_stream) , result(_stats.assertionResult) , messages(_stats.infoMessages) , itMessage(_stats.infoMessages.begin()) , printInfoMessages(_printInfoMessages) , colourImpl(colourImpl_) {} void print() { printSourceInfo(); itMessage = messages.begin(); switch (result.getResultType()) { case ResultWas::Ok: printResultType(Colour::ResultSuccess, compactPassedString); printOriginalExpression(); printReconstructedExpression(); if (!result.hasExpression()) printRemainingMessages(Colour::None); else printRemainingMessages(); break; case ResultWas::ExpressionFailed: if (result.isOk()) printResultType(Colour::ResultSuccess, compactFailedString + " - but was ok"_sr); else printResultType(Colour::Error, compactFailedString); printOriginalExpression(); printReconstructedExpression(); printRemainingMessages(); break; case ResultWas::ThrewException: printResultType(Colour::Error, compactFailedString); printIssue("unexpected exception with message:"); printMessage(); printExpressionWas(); printRemainingMessages(); break; case ResultWas::FatalErrorCondition: printResultType(Colour::Error, compactFailedString); printIssue("fatal error condition with message:"); printMessage(); printExpressionWas(); printRemainingMessages(); break; case ResultWas::DidntThrowException: printResultType(Colour::Error, compactFailedString); printIssue("expected exception, got none"); printExpressionWas(); printRemainingMessages(); break; case ResultWas::Info: printResultType(Colour::None, "info"_sr); printMessage(); printRemainingMessages(); break; case ResultWas::Warning: printResultType(Colour::None, "warning"_sr); printMessage(); printRemainingMessages(); break; case ResultWas::ExplicitFailure: printResultType(Colour::Error, compactFailedString); printIssue("explicitly"); printRemainingMessages(Colour::None); break; case ResultWas::ExplicitSkip: printResultType(Colour::Skip, "skipped"_sr); printMessage(); printRemainingMessages(); break; // These cases are here to prevent compiler warnings case ResultWas::Unknown: case ResultWas::FailureBit: case ResultWas::Exception: printResultType(Colour::Error, "** internal error **"); break; } } private: void printSourceInfo() const { stream << colourImpl->guardColour( Colour::FileName ) << result.getSourceInfo() << ':'; } void printResultType(Colour::Code colour, StringRef passOrFail) const { if (!passOrFail.empty()) { stream << colourImpl->guardColour(colour) << ' ' << passOrFail; stream << ':'; } } void printIssue(char const* issue) const { stream << ' ' << issue; } void printExpressionWas() { if (result.hasExpression()) { stream << ';'; { stream << colourImpl->guardColour(compactDimColour) << " expression was:"; } printOriginalExpression(); } } void printOriginalExpression() const { if (result.hasExpression()) { stream << ' ' << result.getExpression(); } } void printReconstructedExpression() const { if (result.hasExpandedExpression()) { stream << colourImpl->guardColour(compactDimColour) << " for: "; stream << result.getExpandedExpression(); } } void printMessage() { if (itMessage != messages.end()) { stream << " '" << itMessage->message << '\''; ++itMessage; } } void printRemainingMessages(Colour::Code colour = compactDimColour) { if (itMessage == messages.end()) return; const auto itEnd = messages.cend(); const auto N = static_cast(itEnd - itMessage); stream << colourImpl->guardColour( colour ) << " with " << pluralise( N, "message"_sr ) << ':'; while (itMessage != itEnd) { // If this assertion is a warning ignore any INFO messages if (printInfoMessages || itMessage->type != ResultWas::Info) { printMessage(); if (itMessage != itEnd) { stream << colourImpl->guardColour(compactDimColour) << " and"; } continue; } ++itMessage; } } private: std::ostream& stream; AssertionResult const& result; std::vector const& messages; std::vector::const_iterator itMessage; bool printInfoMessages; ColourImpl* colourImpl; }; } // anon namespace std::string CompactReporter::getDescription() { return "Reports test results on a single line, suitable for IDEs"; } void CompactReporter::noMatchingTestCases( StringRef unmatchedSpec ) { m_stream << "No test cases matched '" << unmatchedSpec << "'\n"; } void CompactReporter::testRunStarting( TestRunInfo const& ) { if ( m_config->testSpec().hasFilters() ) { m_stream << m_colour->guardColour( Colour::BrightYellow ) << "Filters: " << m_config->testSpec() << '\n'; } m_stream << "RNG seed: " << getSeed() << '\n'; } void CompactReporter::assertionEnded( AssertionStats const& _assertionStats ) { AssertionResult const& result = _assertionStats.assertionResult; bool printInfoMessages = true; // Drop out if result was successful and we're not printing those if( !m_config->includeSuccessfulResults() && result.isOk() ) { if( result.getResultType() != ResultWas::Warning && result.getResultType() != ResultWas::ExplicitSkip ) return; printInfoMessages = false; } AssertionPrinter printer( m_stream, _assertionStats, printInfoMessages, m_colour.get() ); printer.print(); m_stream << '\n' << std::flush; } void CompactReporter::sectionEnded(SectionStats const& _sectionStats) { double dur = _sectionStats.durationInSeconds; if ( shouldShowDuration( *m_config, dur ) ) { m_stream << getFormattedDuration( dur ) << " s: " << _sectionStats.sectionInfo.name << '\n' << std::flush; } } void CompactReporter::testRunEnded( TestRunStats const& _testRunStats ) { printTestRunTotals( m_stream, *m_colour, _testRunStats.totals ); m_stream << "\n\n" << std::flush; StreamingReporterBase::testRunEnded( _testRunStats ); } CompactReporter::~CompactReporter() = default; } // end namespace Catch #include #if defined(_MSC_VER) #pragma warning(push) #pragma warning(disable:4061) // Not all labels are EXPLICITLY handled in switch // Note that 4062 (not all labels are handled and default is missing) is enabled #endif #if defined(__clang__) # pragma clang diagnostic push // For simplicity, benchmarking-only helpers are always enabled # pragma clang diagnostic ignored "-Wunused-function" #endif namespace Catch { namespace { // Formatter impl for ConsoleReporter class ConsoleAssertionPrinter { public: ConsoleAssertionPrinter& operator= (ConsoleAssertionPrinter const&) = delete; ConsoleAssertionPrinter(ConsoleAssertionPrinter const&) = delete; ConsoleAssertionPrinter(std::ostream& _stream, AssertionStats const& _stats, ColourImpl* colourImpl_, bool _printInfoMessages) : stream(_stream), stats(_stats), result(_stats.assertionResult), colour(Colour::None), messages(_stats.infoMessages), colourImpl(colourImpl_), printInfoMessages(_printInfoMessages) { switch (result.getResultType()) { case ResultWas::Ok: colour = Colour::Success; passOrFail = "PASSED"_sr; //if( result.hasMessage() ) if (messages.size() == 1) messageLabel = "with message"_sr; if (messages.size() > 1) messageLabel = "with messages"_sr; break; case ResultWas::ExpressionFailed: if (result.isOk()) { colour = Colour::Success; passOrFail = "FAILED - but was ok"_sr; } else { colour = Colour::Error; passOrFail = "FAILED"_sr; } if (messages.size() == 1) messageLabel = "with message"_sr; if (messages.size() > 1) messageLabel = "with messages"_sr; break; case ResultWas::ThrewException: colour = Colour::Error; passOrFail = "FAILED"_sr; // todo switch switch (messages.size()) { case 0: messageLabel = "due to unexpected exception with "_sr; break; case 1: messageLabel = "due to unexpected exception with message"_sr; break; default: messageLabel = "due to unexpected exception with messages"_sr; break; } break; case ResultWas::FatalErrorCondition: colour = Colour::Error; passOrFail = "FAILED"_sr; messageLabel = "due to a fatal error condition"_sr; break; case ResultWas::DidntThrowException: colour = Colour::Error; passOrFail = "FAILED"_sr; messageLabel = "because no exception was thrown where one was expected"_sr; break; case ResultWas::Info: messageLabel = "info"_sr; break; case ResultWas::Warning: messageLabel = "warning"_sr; break; case ResultWas::ExplicitFailure: passOrFail = "FAILED"_sr; colour = Colour::Error; if (messages.size() == 1) messageLabel = "explicitly with message"_sr; if (messages.size() > 1) messageLabel = "explicitly with messages"_sr; break; case ResultWas::ExplicitSkip: colour = Colour::Skip; passOrFail = "SKIPPED"_sr; if (messages.size() == 1) messageLabel = "explicitly with message"_sr; if (messages.size() > 1) messageLabel = "explicitly with messages"_sr; break; // These cases are here to prevent compiler warnings case ResultWas::Unknown: case ResultWas::FailureBit: case ResultWas::Exception: passOrFail = "** internal error **"_sr; colour = Colour::Error; break; } } void print() const { printSourceInfo(); if (stats.totals.assertions.total() > 0) { printResultType(); printOriginalExpression(); printReconstructedExpression(); } else { stream << '\n'; } printMessage(); } private: void printResultType() const { if (!passOrFail.empty()) { stream << colourImpl->guardColour(colour) << passOrFail << ":\n"; } } void printOriginalExpression() const { if (result.hasExpression()) { stream << colourImpl->guardColour( Colour::OriginalExpression ) << " " << result.getExpressionInMacro() << '\n'; } } void printReconstructedExpression() const { if (result.hasExpandedExpression()) { stream << "with expansion:\n"; stream << colourImpl->guardColour( Colour::ReconstructedExpression ) << TextFlow::Column( result.getExpandedExpression() ) .indent( 2 ) << '\n'; } } void printMessage() const { if (!messageLabel.empty()) stream << messageLabel << ':' << '\n'; for (auto const& msg : messages) { // If this assertion is a warning ignore any INFO messages if (printInfoMessages || msg.type != ResultWas::Info) stream << TextFlow::Column(msg.message).indent(2) << '\n'; } } void printSourceInfo() const { stream << colourImpl->guardColour( Colour::FileName ) << result.getSourceInfo() << ": "; } std::ostream& stream; AssertionStats const& stats; AssertionResult const& result; Colour::Code colour; StringRef passOrFail; StringRef messageLabel; std::vector const& messages; ColourImpl* colourImpl; bool printInfoMessages; }; std::size_t makeRatio( std::uint64_t number, std::uint64_t total ) { const auto ratio = total > 0 ? CATCH_CONFIG_CONSOLE_WIDTH * number / total : 0; return (ratio == 0 && number > 0) ? 1 : static_cast(ratio); } std::size_t& findMax( std::size_t& i, std::size_t& j, std::size_t& k, std::size_t& l ) { if (i > j && i > k && i > l) return i; else if (j > k && j > l) return j; else if (k > l) return k; else return l; } struct ColumnBreak {}; struct RowBreak {}; struct OutputFlush {}; class Duration { enum class Unit : uint8_t { Auto, Nanoseconds, Microseconds, Milliseconds, Seconds, Minutes }; static const uint64_t s_nanosecondsInAMicrosecond = 1000; static const uint64_t s_nanosecondsInAMillisecond = 1000 * s_nanosecondsInAMicrosecond; static const uint64_t s_nanosecondsInASecond = 1000 * s_nanosecondsInAMillisecond; static const uint64_t s_nanosecondsInAMinute = 60 * s_nanosecondsInASecond; double m_inNanoseconds; Unit m_units; public: explicit Duration(double inNanoseconds, Unit units = Unit::Auto) : m_inNanoseconds(inNanoseconds), m_units(units) { if (m_units == Unit::Auto) { if (m_inNanoseconds < s_nanosecondsInAMicrosecond) m_units = Unit::Nanoseconds; else if (m_inNanoseconds < s_nanosecondsInAMillisecond) m_units = Unit::Microseconds; else if (m_inNanoseconds < s_nanosecondsInASecond) m_units = Unit::Milliseconds; else if (m_inNanoseconds < s_nanosecondsInAMinute) m_units = Unit::Seconds; else m_units = Unit::Minutes; } } auto value() const -> double { switch (m_units) { case Unit::Microseconds: return m_inNanoseconds / static_cast(s_nanosecondsInAMicrosecond); case Unit::Milliseconds: return m_inNanoseconds / static_cast(s_nanosecondsInAMillisecond); case Unit::Seconds: return m_inNanoseconds / static_cast(s_nanosecondsInASecond); case Unit::Minutes: return m_inNanoseconds / static_cast(s_nanosecondsInAMinute); default: return m_inNanoseconds; } } StringRef unitsAsString() const { switch (m_units) { case Unit::Nanoseconds: return "ns"_sr; case Unit::Microseconds: return "us"_sr; case Unit::Milliseconds: return "ms"_sr; case Unit::Seconds: return "s"_sr; case Unit::Minutes: return "m"_sr; default: return "** internal error **"_sr; } } friend auto operator << (std::ostream& os, Duration const& duration) -> std::ostream& { return os << duration.value() << ' ' << duration.unitsAsString(); } }; } // end anon namespace enum class Justification : uint8_t { Left, Right }; struct ColumnInfo { std::string name; std::size_t width; Justification justification; }; class TablePrinter { std::ostream& m_os; std::vector m_columnInfos; ReusableStringStream m_oss; int m_currentColumn = -1; bool m_isOpen = false; public: TablePrinter( std::ostream& os, std::vector columnInfos ) : m_os( os ), m_columnInfos( CATCH_MOVE( columnInfos ) ) {} auto columnInfos() const -> std::vector const& { return m_columnInfos; } void open() { if (!m_isOpen) { m_isOpen = true; *this << RowBreak(); TextFlow::Columns headerCols; for (auto const& info : m_columnInfos) { assert(info.width > 2); headerCols += TextFlow::Column(info.name).width(info.width - 2); headerCols += TextFlow::Spacer( 2 ); } m_os << headerCols << '\n'; m_os << lineOfChars('-') << '\n'; } } void close() { if (m_isOpen) { *this << RowBreak(); m_os << '\n' << std::flush; m_isOpen = false; } } template friend TablePrinter& operator<< (TablePrinter& tp, T const& value) { tp.m_oss << value; return tp; } friend TablePrinter& operator<< (TablePrinter& tp, ColumnBreak) { auto colStr = tp.m_oss.str(); const auto strSize = colStr.size(); tp.m_oss.str(""); tp.open(); if (tp.m_currentColumn == static_cast(tp.m_columnInfos.size() - 1)) { tp.m_currentColumn = -1; tp.m_os << '\n'; } tp.m_currentColumn++; auto colInfo = tp.m_columnInfos[tp.m_currentColumn]; auto padding = (strSize + 1 < colInfo.width) ? std::string(colInfo.width - (strSize + 1), ' ') : std::string(); if (colInfo.justification == Justification::Left) tp.m_os << colStr << padding << ' '; else tp.m_os << padding << colStr << ' '; return tp; } friend TablePrinter& operator<< (TablePrinter& tp, RowBreak) { if (tp.m_currentColumn > 0) { tp.m_os << '\n'; tp.m_currentColumn = -1; } return tp; } friend TablePrinter& operator<<(TablePrinter& tp, OutputFlush) { tp.m_os << std::flush; return tp; } }; ConsoleReporter::ConsoleReporter(ReporterConfig&& config): StreamingReporterBase( CATCH_MOVE( config ) ), m_tablePrinter(Detail::make_unique(m_stream, [&config]() -> std::vector { if (config.fullConfig()->benchmarkNoAnalysis()) { return{ { "benchmark name", CATCH_CONFIG_CONSOLE_WIDTH - 43, Justification::Left }, { " samples", 14, Justification::Right }, { " iterations", 14, Justification::Right }, { " mean", 14, Justification::Right } }; } else { return{ { "benchmark name", CATCH_CONFIG_CONSOLE_WIDTH - 43, Justification::Left }, { "samples mean std dev", 14, Justification::Right }, { "iterations low mean low std dev", 14, Justification::Right }, { "est run time high mean high std dev", 14, Justification::Right } }; } }())) {} ConsoleReporter::~ConsoleReporter() = default; std::string ConsoleReporter::getDescription() { return "Reports test results as plain lines of text"; } void ConsoleReporter::noMatchingTestCases( StringRef unmatchedSpec ) { m_stream << "No test cases matched '" << unmatchedSpec << "'\n"; } void ConsoleReporter::reportInvalidTestSpec( StringRef arg ) { m_stream << "Invalid Filter: " << arg << '\n'; } void ConsoleReporter::assertionStarting(AssertionInfo const&) {} void ConsoleReporter::assertionEnded(AssertionStats const& _assertionStats) { AssertionResult const& result = _assertionStats.assertionResult; bool includeResults = m_config->includeSuccessfulResults() || !result.isOk(); // Drop out if result was successful but we're not printing them. // TODO: Make configurable whether skips should be printed if (!includeResults && result.getResultType() != ResultWas::Warning && result.getResultType() != ResultWas::ExplicitSkip) return; lazyPrint(); ConsoleAssertionPrinter printer(m_stream, _assertionStats, m_colour.get(), includeResults); printer.print(); m_stream << '\n' << std::flush; } void ConsoleReporter::sectionStarting(SectionInfo const& _sectionInfo) { m_tablePrinter->close(); m_headerPrinted = false; StreamingReporterBase::sectionStarting(_sectionInfo); } void ConsoleReporter::sectionEnded(SectionStats const& _sectionStats) { m_tablePrinter->close(); if (_sectionStats.missingAssertions) { lazyPrint(); auto guard = m_colour->guardColour( Colour::ResultError ).engage( m_stream ); if (m_sectionStack.size() > 1) m_stream << "\nNo assertions in section"; else m_stream << "\nNo assertions in test case"; m_stream << " '" << _sectionStats.sectionInfo.name << "'\n\n" << std::flush; } double dur = _sectionStats.durationInSeconds; if (shouldShowDuration(*m_config, dur)) { m_stream << getFormattedDuration(dur) << " s: " << _sectionStats.sectionInfo.name << '\n' << std::flush; } if (m_headerPrinted) { m_headerPrinted = false; } StreamingReporterBase::sectionEnded(_sectionStats); } void ConsoleReporter::benchmarkPreparing( StringRef name ) { lazyPrintWithoutClosingBenchmarkTable(); auto nameCol = TextFlow::Column( static_cast( name ) ) .width( m_tablePrinter->columnInfos()[0].width - 2 ); bool firstLine = true; for (auto line : nameCol) { if (!firstLine) (*m_tablePrinter) << ColumnBreak() << ColumnBreak() << ColumnBreak(); else firstLine = false; (*m_tablePrinter) << line << ColumnBreak(); } } void ConsoleReporter::benchmarkStarting(BenchmarkInfo const& info) { (*m_tablePrinter) << info.samples << ColumnBreak() << info.iterations << ColumnBreak(); if ( !m_config->benchmarkNoAnalysis() ) { ( *m_tablePrinter ) << Duration( info.estimatedDuration ) << ColumnBreak(); } ( *m_tablePrinter ) << OutputFlush{}; } void ConsoleReporter::benchmarkEnded(BenchmarkStats<> const& stats) { if (m_config->benchmarkNoAnalysis()) { (*m_tablePrinter) << Duration(stats.mean.point.count()) << ColumnBreak(); } else { (*m_tablePrinter) << ColumnBreak() << Duration(stats.mean.point.count()) << ColumnBreak() << Duration(stats.mean.lower_bound.count()) << ColumnBreak() << Duration(stats.mean.upper_bound.count()) << ColumnBreak() << ColumnBreak() << Duration(stats.standardDeviation.point.count()) << ColumnBreak() << Duration(stats.standardDeviation.lower_bound.count()) << ColumnBreak() << Duration(stats.standardDeviation.upper_bound.count()) << ColumnBreak() << ColumnBreak() << ColumnBreak() << ColumnBreak() << ColumnBreak(); } } void ConsoleReporter::benchmarkFailed( StringRef error ) { auto guard = m_colour->guardColour( Colour::Red ).engage( m_stream ); (*m_tablePrinter) << "Benchmark failed (" << error << ')' << ColumnBreak() << RowBreak(); } void ConsoleReporter::testCaseEnded(TestCaseStats const& _testCaseStats) { m_tablePrinter->close(); StreamingReporterBase::testCaseEnded(_testCaseStats); m_headerPrinted = false; } void ConsoleReporter::testRunEnded(TestRunStats const& _testRunStats) { printTotalsDivider(_testRunStats.totals); printTestRunTotals( m_stream, *m_colour, _testRunStats.totals ); m_stream << '\n' << std::flush; StreamingReporterBase::testRunEnded(_testRunStats); } void ConsoleReporter::testRunStarting(TestRunInfo const& _testRunInfo) { StreamingReporterBase::testRunStarting(_testRunInfo); if ( m_config->testSpec().hasFilters() ) { m_stream << m_colour->guardColour( Colour::BrightYellow ) << "Filters: " << m_config->testSpec() << '\n'; } m_stream << "Randomness seeded to: " << getSeed() << '\n'; } void ConsoleReporter::lazyPrint() { m_tablePrinter->close(); lazyPrintWithoutClosingBenchmarkTable(); } void ConsoleReporter::lazyPrintWithoutClosingBenchmarkTable() { if ( !m_testRunInfoPrinted ) { lazyPrintRunInfo(); } if (!m_headerPrinted) { printTestCaseAndSectionHeader(); m_headerPrinted = true; } } void ConsoleReporter::lazyPrintRunInfo() { m_stream << '\n' << lineOfChars( '~' ) << '\n' << m_colour->guardColour( Colour::SecondaryText ) << currentTestRunInfo.name << " is a Catch2 v" << libraryVersion() << " host application.\n" << "Run with -? for options\n\n"; m_testRunInfoPrinted = true; } void ConsoleReporter::printTestCaseAndSectionHeader() { assert(!m_sectionStack.empty()); printOpenHeader(currentTestCaseInfo->name); if (m_sectionStack.size() > 1) { auto guard = m_colour->guardColour( Colour::Headers ).engage( m_stream ); auto it = m_sectionStack.begin() + 1, // Skip first section (test case) itEnd = m_sectionStack.end(); for (; it != itEnd; ++it) printHeaderString(it->name, 2); } SourceLineInfo lineInfo = m_sectionStack.back().lineInfo; m_stream << lineOfChars( '-' ) << '\n' << m_colour->guardColour( Colour::FileName ) << lineInfo << '\n' << lineOfChars( '.' ) << "\n\n" << std::flush; } void ConsoleReporter::printClosedHeader(std::string const& _name) { printOpenHeader(_name); m_stream << lineOfChars('.') << '\n'; } void ConsoleReporter::printOpenHeader(std::string const& _name) { m_stream << lineOfChars('-') << '\n'; { auto guard = m_colour->guardColour( Colour::Headers ).engage( m_stream ); printHeaderString(_name); } } void ConsoleReporter::printHeaderString(std::string const& _string, std::size_t indent) { // We want to get a bit fancy with line breaking here, so that subsequent // lines start after ":" if one is present, e.g. // ``` // blablabla: Fancy // linebreaking // ``` // but we also want to avoid problems with overly long indentation causing // the text to take up too many lines, e.g. // ``` // blablabla: F // a // n // c // y // . // . // . // ``` // So we limit the prefix indentation check to first quarter of the possible // width std::size_t idx = _string.find( ": " ); if ( idx != std::string::npos && idx < CATCH_CONFIG_CONSOLE_WIDTH / 4 ) { idx += 2; } else { idx = 0; } m_stream << TextFlow::Column( _string ) .indent( indent + idx ) .initialIndent( indent ) << '\n'; } void ConsoleReporter::printTotalsDivider(Totals const& totals) { if (totals.testCases.total() > 0) { std::size_t failedRatio = makeRatio(totals.testCases.failed, totals.testCases.total()); std::size_t failedButOkRatio = makeRatio(totals.testCases.failedButOk, totals.testCases.total()); std::size_t passedRatio = makeRatio(totals.testCases.passed, totals.testCases.total()); std::size_t skippedRatio = makeRatio(totals.testCases.skipped, totals.testCases.total()); while (failedRatio + failedButOkRatio + passedRatio + skippedRatio < CATCH_CONFIG_CONSOLE_WIDTH - 1) findMax(failedRatio, failedButOkRatio, passedRatio, skippedRatio)++; while (failedRatio + failedButOkRatio + passedRatio > CATCH_CONFIG_CONSOLE_WIDTH - 1) findMax(failedRatio, failedButOkRatio, passedRatio, skippedRatio)--; m_stream << m_colour->guardColour( Colour::Error ) << std::string( failedRatio, '=' ) << m_colour->guardColour( Colour::ResultExpectedFailure ) << std::string( failedButOkRatio, '=' ); if ( totals.testCases.allPassed() ) { m_stream << m_colour->guardColour( Colour::ResultSuccess ) << std::string( passedRatio, '=' ); } else { m_stream << m_colour->guardColour( Colour::Success ) << std::string( passedRatio, '=' ); } m_stream << m_colour->guardColour( Colour::Skip ) << std::string( skippedRatio, '=' ); } else { m_stream << m_colour->guardColour( Colour::Warning ) << std::string( CATCH_CONFIG_CONSOLE_WIDTH - 1, '=' ); } m_stream << '\n'; } } // end namespace Catch #if defined(_MSC_VER) #pragma warning(pop) #endif #if defined(__clang__) # pragma clang diagnostic pop #endif #include #include namespace Catch { namespace { struct BySectionInfo { BySectionInfo( SectionInfo const& other ): m_other( other ) {} BySectionInfo( BySectionInfo const& other ) = default; bool operator()( Detail::unique_ptr const& node ) const { return ( ( node->stats.sectionInfo.name == m_other.name ) && ( node->stats.sectionInfo.lineInfo == m_other.lineInfo ) ); } void operator=( BySectionInfo const& ) = delete; private: SectionInfo const& m_other; }; } // namespace namespace Detail { AssertionOrBenchmarkResult::AssertionOrBenchmarkResult( AssertionStats const& assertion ): m_assertion( assertion ) {} AssertionOrBenchmarkResult::AssertionOrBenchmarkResult( BenchmarkStats<> const& benchmark ): m_benchmark( benchmark ) {} bool AssertionOrBenchmarkResult::isAssertion() const { return m_assertion.some(); } bool AssertionOrBenchmarkResult::isBenchmark() const { return m_benchmark.some(); } AssertionStats const& AssertionOrBenchmarkResult::asAssertion() const { assert(m_assertion.some()); return *m_assertion; } BenchmarkStats<> const& AssertionOrBenchmarkResult::asBenchmark() const { assert(m_benchmark.some()); return *m_benchmark; } } CumulativeReporterBase::~CumulativeReporterBase() = default; void CumulativeReporterBase::benchmarkEnded(BenchmarkStats<> const& benchmarkStats) { m_sectionStack.back()->assertionsAndBenchmarks.emplace_back(benchmarkStats); } void CumulativeReporterBase::sectionStarting( SectionInfo const& sectionInfo ) { // We need a copy, because SectionStats expect to take ownership SectionStats incompleteStats( SectionInfo(sectionInfo), Counts(), 0, false ); SectionNode* node; if ( m_sectionStack.empty() ) { if ( !m_rootSection ) { m_rootSection = Detail::make_unique( incompleteStats ); } node = m_rootSection.get(); } else { SectionNode& parentNode = *m_sectionStack.back(); auto it = std::find_if( parentNode.childSections.begin(), parentNode.childSections.end(), BySectionInfo( sectionInfo ) ); if ( it == parentNode.childSections.end() ) { auto newNode = Detail::make_unique( incompleteStats ); node = newNode.get(); parentNode.childSections.push_back( CATCH_MOVE( newNode ) ); } else { node = it->get(); } } m_deepestSection = node; m_sectionStack.push_back( node ); } void CumulativeReporterBase::assertionEnded( AssertionStats const& assertionStats ) { assert( !m_sectionStack.empty() ); // AssertionResult holds a pointer to a temporary DecomposedExpression, // which getExpandedExpression() calls to build the expression string. // Our section stack copy of the assertionResult will likely outlive the // temporary, so it must be expanded or discarded now to avoid calling // a destroyed object later. if ( m_shouldStoreFailedAssertions && !assertionStats.assertionResult.isOk() ) { static_cast( assertionStats.assertionResult.getExpandedExpression() ); } if ( m_shouldStoreSuccesfulAssertions && assertionStats.assertionResult.isOk() ) { static_cast( assertionStats.assertionResult.getExpandedExpression() ); } SectionNode& sectionNode = *m_sectionStack.back(); sectionNode.assertionsAndBenchmarks.emplace_back( assertionStats ); } void CumulativeReporterBase::sectionEnded( SectionStats const& sectionStats ) { assert( !m_sectionStack.empty() ); SectionNode& node = *m_sectionStack.back(); node.stats = sectionStats; m_sectionStack.pop_back(); } void CumulativeReporterBase::testCaseEnded( TestCaseStats const& testCaseStats ) { auto node = Detail::make_unique( testCaseStats ); assert( m_sectionStack.size() == 0 ); node->children.push_back( CATCH_MOVE(m_rootSection) ); m_testCases.push_back( CATCH_MOVE(node) ); assert( m_deepestSection ); m_deepestSection->stdOut = testCaseStats.stdOut; m_deepestSection->stdErr = testCaseStats.stdErr; } void CumulativeReporterBase::testRunEnded( TestRunStats const& testRunStats ) { assert(!m_testRun && "CumulativeReporterBase assumes there can only be one test run"); m_testRun = Detail::make_unique( testRunStats ); m_testRun->children.swap( m_testCases ); testRunEndedCumulative(); } bool CumulativeReporterBase::SectionNode::hasAnyAssertions() const { return std::any_of( assertionsAndBenchmarks.begin(), assertionsAndBenchmarks.end(), []( Detail::AssertionOrBenchmarkResult const& res ) { return res.isAssertion(); } ); } } // end namespace Catch namespace Catch { void EventListenerBase::fatalErrorEncountered( StringRef ) {} void EventListenerBase::benchmarkPreparing( StringRef ) {} void EventListenerBase::benchmarkStarting( BenchmarkInfo const& ) {} void EventListenerBase::benchmarkEnded( BenchmarkStats<> const& ) {} void EventListenerBase::benchmarkFailed( StringRef ) {} void EventListenerBase::assertionStarting( AssertionInfo const& ) {} void EventListenerBase::assertionEnded( AssertionStats const& ) {} void EventListenerBase::listReporters( std::vector const& ) {} void EventListenerBase::listListeners( std::vector const& ) {} void EventListenerBase::listTests( std::vector const& ) {} void EventListenerBase::listTags( std::vector const& ) {} void EventListenerBase::noMatchingTestCases( StringRef ) {} void EventListenerBase::reportInvalidTestSpec( StringRef ) {} void EventListenerBase::testRunStarting( TestRunInfo const& ) {} void EventListenerBase::testCaseStarting( TestCaseInfo const& ) {} void EventListenerBase::testCasePartialStarting(TestCaseInfo const&, uint64_t) {} void EventListenerBase::sectionStarting( SectionInfo const& ) {} void EventListenerBase::sectionEnded( SectionStats const& ) {} void EventListenerBase::testCasePartialEnded(TestCaseStats const&, uint64_t) {} void EventListenerBase::testCaseEnded( TestCaseStats const& ) {} void EventListenerBase::testRunEnded( TestRunStats const& ) {} void EventListenerBase::skipTest( TestCaseInfo const& ) {} } // namespace Catch #include #include #include #include #include namespace Catch { namespace { void listTestNamesOnly(std::ostream& out, std::vector const& tests) { for (auto const& test : tests) { auto const& testCaseInfo = test.getTestCaseInfo(); if (startsWith(testCaseInfo.name, '#')) { out << '"' << testCaseInfo.name << '"'; } else { out << testCaseInfo.name; } out << '\n'; } out << std::flush; } } // end unnamed namespace // Because formatting using c++ streams is stateful, drop down to C is // required Alternatively we could use stringstream, but its performance // is... not good. std::string getFormattedDuration( double duration ) { // Max exponent + 1 is required to represent the whole part // + 1 for decimal point // + 3 for the 3 decimal places // + 1 for null terminator const std::size_t maxDoubleSize = DBL_MAX_10_EXP + 1 + 1 + 3 + 1; char buffer[maxDoubleSize]; // Save previous errno, to prevent sprintf from overwriting it ErrnoGuard guard; #ifdef _MSC_VER size_t printedLength = static_cast( sprintf_s( buffer, "%.3f", duration ) ); #else size_t printedLength = static_cast( std::snprintf( buffer, maxDoubleSize, "%.3f", duration ) ); #endif return std::string( buffer, printedLength ); } bool shouldShowDuration( IConfig const& config, double duration ) { if ( config.showDurations() == ShowDurations::Always ) { return true; } if ( config.showDurations() == ShowDurations::Never ) { return false; } const double min = config.minDuration(); return min >= 0 && duration >= min; } std::string serializeFilters( std::vector const& filters ) { // We add a ' ' separator between each filter size_t serialized_size = filters.size() - 1; for (auto const& filter : filters) { serialized_size += filter.size(); } std::string serialized; serialized.reserve(serialized_size); bool first = true; for (auto const& filter : filters) { if (!first) { serialized.push_back(' '); } first = false; serialized.append(filter); } return serialized; } std::ostream& operator<<( std::ostream& out, lineOfChars value ) { for ( size_t idx = 0; idx < CATCH_CONFIG_CONSOLE_WIDTH - 1; ++idx ) { out.put( value.c ); } return out; } void defaultListReporters( std::ostream& out, std::vector const& descriptions, Verbosity verbosity ) { out << "Available reporters:\n"; const auto maxNameLen = std::max_element( descriptions.begin(), descriptions.end(), []( ReporterDescription const& lhs, ReporterDescription const& rhs ) { return lhs.name.size() < rhs.name.size(); } ) ->name.size(); for ( auto const& desc : descriptions ) { if ( verbosity == Verbosity::Quiet ) { out << TextFlow::Column( desc.name ) .indent( 2 ) .width( 5 + maxNameLen ) << '\n'; } else { out << TextFlow::Column( desc.name + ':' ) .indent( 2 ) .width( 5 + maxNameLen ) + TextFlow::Column( desc.description ) .initialIndent( 0 ) .indent( 2 ) .width( CATCH_CONFIG_CONSOLE_WIDTH - maxNameLen - 8 ) << '\n'; } } out << '\n' << std::flush; } void defaultListListeners( std::ostream& out, std::vector const& descriptions ) { out << "Registered listeners:\n"; if(descriptions.empty()) { return; } const auto maxNameLen = std::max_element( descriptions.begin(), descriptions.end(), []( ListenerDescription const& lhs, ListenerDescription const& rhs ) { return lhs.name.size() < rhs.name.size(); } ) ->name.size(); for ( auto const& desc : descriptions ) { out << TextFlow::Column( static_cast( desc.name ) + ':' ) .indent( 2 ) .width( maxNameLen + 5 ) + TextFlow::Column( desc.description ) .initialIndent( 0 ) .indent( 2 ) .width( CATCH_CONFIG_CONSOLE_WIDTH - maxNameLen - 8 ) << '\n'; } out << '\n' << std::flush; } void defaultListTags( std::ostream& out, std::vector const& tags, bool isFiltered ) { if ( isFiltered ) { out << "Tags for matching test cases:\n"; } else { out << "All available tags:\n"; } for ( auto const& tagCount : tags ) { ReusableStringStream rss; rss << " " << std::setw( 2 ) << tagCount.count << " "; auto str = rss.str(); auto wrapper = TextFlow::Column( tagCount.all() ) .initialIndent( 0 ) .indent( str.size() ) .width( CATCH_CONFIG_CONSOLE_WIDTH - 10 ); out << str << wrapper << '\n'; } out << pluralise(tags.size(), "tag"_sr) << "\n\n" << std::flush; } void defaultListTests(std::ostream& out, ColourImpl* streamColour, std::vector const& tests, bool isFiltered, Verbosity verbosity) { // We special case this to provide the equivalent of old // `--list-test-names-only`, which could then be used by the // `--input-file` option. if (verbosity == Verbosity::Quiet) { listTestNamesOnly(out, tests); return; } if (isFiltered) { out << "Matching test cases:\n"; } else { out << "All available test cases:\n"; } for (auto const& test : tests) { auto const& testCaseInfo = test.getTestCaseInfo(); Colour::Code colour = testCaseInfo.isHidden() ? Colour::SecondaryText : Colour::None; auto colourGuard = streamColour->guardColour( colour ).engage( out ); out << TextFlow::Column(testCaseInfo.name).indent(2) << '\n'; if (verbosity >= Verbosity::High) { out << TextFlow::Column(Catch::Detail::stringify(testCaseInfo.lineInfo)).indent(4) << '\n'; } if (!testCaseInfo.tags.empty() && verbosity > Verbosity::Quiet) { out << TextFlow::Column(testCaseInfo.tagsAsString()).indent(6) << '\n'; } } if (isFiltered) { out << pluralise(tests.size(), "matching test case"_sr); } else { out << pluralise(tests.size(), "test case"_sr); } out << "\n\n" << std::flush; } namespace { class SummaryColumn { public: SummaryColumn( std::string suffix, Colour::Code colour ): m_suffix( CATCH_MOVE( suffix ) ), m_colour( colour ) {} SummaryColumn&& addRow( std::uint64_t count ) && { std::string row = std::to_string(count); auto const new_width = std::max( m_width, row.size() ); if ( new_width > m_width ) { for ( auto& oldRow : m_rows ) { oldRow.insert( 0, new_width - m_width, ' ' ); } } else { row.insert( 0, m_width - row.size(), ' ' ); } m_width = new_width; m_rows.push_back( row ); return std::move( *this ); } std::string const& getSuffix() const { return m_suffix; } Colour::Code getColour() const { return m_colour; } std::string const& getRow( std::size_t index ) const { return m_rows[index]; } private: std::string m_suffix; Colour::Code m_colour; std::size_t m_width = 0; std::vector m_rows; }; void printSummaryRow( std::ostream& stream, ColourImpl& colour, StringRef label, std::vector const& cols, std::size_t row ) { for ( auto const& col : cols ) { auto const& value = col.getRow( row ); auto const& suffix = col.getSuffix(); if ( suffix.empty() ) { stream << label << ": "; if ( value != "0" ) { stream << value; } else { stream << colour.guardColour( Colour::Warning ) << "- none -"; } } else if ( value != "0" ) { stream << colour.guardColour( Colour::LightGrey ) << " | " << colour.guardColour( col.getColour() ) << value << ' ' << suffix; } } stream << '\n'; } } // namespace void printTestRunTotals( std::ostream& stream, ColourImpl& streamColour, Totals const& totals ) { if ( totals.testCases.total() == 0 ) { stream << streamColour.guardColour( Colour::Warning ) << "No tests ran\n"; return; } if ( totals.assertions.total() > 0 && totals.testCases.allPassed() ) { stream << streamColour.guardColour( Colour::ResultSuccess ) << "All tests passed"; stream << " (" << pluralise( totals.assertions.passed, "assertion"_sr ) << " in " << pluralise( totals.testCases.passed, "test case"_sr ) << ')' << '\n'; return; } std::vector columns; // Don't include "skipped assertions" in total count const auto totalAssertionCount = totals.assertions.total() - totals.assertions.skipped; columns.push_back( SummaryColumn( "", Colour::None ) .addRow( totals.testCases.total() ) .addRow( totalAssertionCount ) ); columns.push_back( SummaryColumn( "passed", Colour::Success ) .addRow( totals.testCases.passed ) .addRow( totals.assertions.passed ) ); columns.push_back( SummaryColumn( "failed", Colour::ResultError ) .addRow( totals.testCases.failed ) .addRow( totals.assertions.failed ) ); columns.push_back( SummaryColumn( "skipped", Colour::Skip ) .addRow( totals.testCases.skipped ) // Don't print "skipped assertions" .addRow( 0 ) ); columns.push_back( SummaryColumn( "failed as expected", Colour::ResultExpectedFailure ) .addRow( totals.testCases.failedButOk ) .addRow( totals.assertions.failedButOk ) ); printSummaryRow( stream, streamColour, "test cases"_sr, columns, 0 ); printSummaryRow( stream, streamColour, "assertions"_sr, columns, 1 ); } } // namespace Catch // namespace Catch { namespace { void writeSourceInfo( JsonObjectWriter& writer, SourceLineInfo const& sourceInfo ) { auto source_location_writer = writer.write( "source-location"_sr ).writeObject(); source_location_writer.write( "filename"_sr ) .write( sourceInfo.file ); source_location_writer.write( "line"_sr ).write( sourceInfo.line ); } void writeTags( JsonArrayWriter writer, std::vector const& tags ) { for ( auto const& tag : tags ) { writer.write( tag.original ); } } void writeProperties( JsonArrayWriter writer, TestCaseInfo const& info ) { if ( info.isHidden() ) { writer.write( "is-hidden"_sr ); } if ( info.okToFail() ) { writer.write( "ok-to-fail"_sr ); } if ( info.expectedToFail() ) { writer.write( "expected-to-fail"_sr ); } if ( info.throws() ) { writer.write( "throws"_sr ); } } } // namespace JsonReporter::JsonReporter( ReporterConfig&& config ): StreamingReporterBase{ CATCH_MOVE( config ) } { m_preferences.shouldRedirectStdOut = true; // TBD: Do we want to report all assertions? XML reporter does // not, but for machine-parseable reporters I think the answer // should be yes. m_preferences.shouldReportAllAssertions = true; m_objectWriters.emplace( m_stream ); m_writers.emplace( Writer::Object ); auto& writer = m_objectWriters.top(); writer.write( "version"_sr ).write( 1 ); { auto metadata_writer = writer.write( "metadata"_sr ).writeObject(); metadata_writer.write( "name"_sr ).write( m_config->name() ); metadata_writer.write( "rng-seed"_sr ).write( m_config->rngSeed() ); metadata_writer.write( "catch2-version"_sr ) .write( libraryVersion() ); if ( m_config->testSpec().hasFilters() ) { metadata_writer.write( "filters"_sr ) .write( m_config->testSpec() ); } } } JsonReporter::~JsonReporter() { endListing(); // TODO: Ensure this closes the top level object, add asserts assert( m_writers.size() == 1 && "Only the top level object should be open" ); assert( m_writers.top() == Writer::Object ); endObject(); m_stream << '\n' << std::flush; assert( m_writers.empty() ); } JsonArrayWriter& JsonReporter::startArray() { m_arrayWriters.emplace( m_arrayWriters.top().writeArray() ); m_writers.emplace( Writer::Array ); return m_arrayWriters.top(); } JsonArrayWriter& JsonReporter::startArray( StringRef key ) { m_arrayWriters.emplace( m_objectWriters.top().write( key ).writeArray() ); m_writers.emplace( Writer::Array ); return m_arrayWriters.top(); } JsonObjectWriter& JsonReporter::startObject() { m_objectWriters.emplace( m_arrayWriters.top().writeObject() ); m_writers.emplace( Writer::Object ); return m_objectWriters.top(); } JsonObjectWriter& JsonReporter::startObject( StringRef key ) { m_objectWriters.emplace( m_objectWriters.top().write( key ).writeObject() ); m_writers.emplace( Writer::Object ); return m_objectWriters.top(); } void JsonReporter::endObject() { assert( isInside( Writer::Object ) ); m_objectWriters.pop(); m_writers.pop(); } void JsonReporter::endArray() { assert( isInside( Writer::Array ) ); m_arrayWriters.pop(); m_writers.pop(); } bool JsonReporter::isInside( Writer writer ) { return !m_writers.empty() && m_writers.top() == writer; } void JsonReporter::startListing() { if ( !m_startedListing ) { startObject( "listings"_sr ); } m_startedListing = true; } void JsonReporter::endListing() { if ( m_startedListing ) { endObject(); } m_startedListing = false; } std::string JsonReporter::getDescription() { return "Outputs listings as JSON. Test listing is Work-in-Progress!"; } void JsonReporter::testRunStarting( TestRunInfo const& runInfo ) { StreamingReporterBase::testRunStarting( runInfo ); endListing(); assert( isInside( Writer::Object ) ); startObject( "test-run"_sr ); startArray( "test-cases"_sr ); } static void writeCounts( JsonObjectWriter&& writer, Counts const& counts ) { writer.write( "passed"_sr ).write( counts.passed ); writer.write( "failed"_sr ).write( counts.failed ); writer.write( "fail-but-ok"_sr ).write( counts.failedButOk ); writer.write( "skipped"_sr ).write( counts.skipped ); } void JsonReporter::testRunEnded(TestRunStats const& runStats) { assert( isInside( Writer::Array ) ); // End "test-cases" endArray(); { auto totals = m_objectWriters.top().write( "totals"_sr ).writeObject(); writeCounts( totals.write( "assertions"_sr ).writeObject(), runStats.totals.assertions ); writeCounts( totals.write( "test-cases"_sr ).writeObject(), runStats.totals.testCases ); } // End the "test-run" object endObject(); } void JsonReporter::testCaseStarting( TestCaseInfo const& tcInfo ) { StreamingReporterBase::testCaseStarting( tcInfo ); assert( isInside( Writer::Array ) && "We should be in the 'test-cases' array" ); startObject(); // "test-info" prelude { auto testInfo = m_objectWriters.top().write( "test-info"_sr ).writeObject(); // TODO: handle testName vs className!! testInfo.write( "name"_sr ).write( tcInfo.name ); writeSourceInfo(testInfo, tcInfo.lineInfo); writeTags( testInfo.write( "tags"_sr ).writeArray(), tcInfo.tags ); writeProperties( testInfo.write( "properties"_sr ).writeArray(), tcInfo ); } // Start the array for individual test runs (testCasePartial pairs) startArray( "runs"_sr ); } void JsonReporter::testCaseEnded( TestCaseStats const& tcStats ) { StreamingReporterBase::testCaseEnded( tcStats ); // We need to close the 'runs' array before finishing the test case assert( isInside( Writer::Array ) ); endArray(); { auto totals = m_objectWriters.top().write( "totals"_sr ).writeObject(); writeCounts( totals.write( "assertions"_sr ).writeObject(), tcStats.totals.assertions ); // We do not write the test case totals, because there will always be just one test case here. // TODO: overall "result" -> success, skip, fail here? Or in partial result? } // We do not write out stderr/stdout, because we instead wrote those out in partial runs // TODO: aborting? // And we also close this test case's object assert( isInside( Writer::Object ) ); endObject(); } void JsonReporter::testCasePartialStarting( TestCaseInfo const& /*tcInfo*/, uint64_t index ) { startObject(); m_objectWriters.top().write( "run-idx"_sr ).write( index ); startArray( "path"_sr ); // TODO: we want to delay most of the printing to the 'root' section // TODO: childSection key name? } void JsonReporter::testCasePartialEnded( TestCaseStats const& tcStats, uint64_t /*index*/ ) { // Fixme: the top level section handles this. //// path object endArray(); if ( !tcStats.stdOut.empty() ) { m_objectWriters.top() .write( "captured-stdout"_sr ) .write( tcStats.stdOut ); } if ( !tcStats.stdErr.empty() ) { m_objectWriters.top() .write( "captured-stderr"_sr ) .write( tcStats.stdErr ); } { auto totals = m_objectWriters.top().write( "totals"_sr ).writeObject(); writeCounts( totals.write( "assertions"_sr ).writeObject(), tcStats.totals.assertions ); // We do not write the test case totals, because there will // always be just one test case here. // TODO: overall "result" -> success, skip, fail here? Or in // partial result? } // TODO: aborting? // run object endObject(); } void JsonReporter::sectionStarting( SectionInfo const& sectionInfo ) { assert( isInside( Writer::Array ) && "Section should always start inside an object" ); // We want to nest top level sections, even though it shares name // and source loc with the TEST_CASE auto& sectionObject = startObject(); sectionObject.write( "kind"_sr ).write( "section"_sr ); sectionObject.write( "name"_sr ).write( sectionInfo.name ); writeSourceInfo( m_objectWriters.top(), sectionInfo.lineInfo ); // TBD: Do we want to create this event lazily? It would become // rather complex, but we could do it, and it would look // better for empty sections. OTOH, empty sections should // be rare. startArray( "path"_sr ); } void JsonReporter::sectionEnded( SectionStats const& /*sectionStats */) { // End the subpath array endArray(); // TODO: metadata // TODO: what info do we have here? // End the section object endObject(); } void JsonReporter::assertionStarting( AssertionInfo const& /*assertionInfo*/ ) {} void JsonReporter::assertionEnded( AssertionStats const& assertionStats ) { // TODO: There is lot of different things to handle here, but // we can fill it in later, after we show that the basic // outline and streaming reporter impl works well enough. //if ( !m_config->includeSuccessfulResults() // && assertionStats.assertionResult.isOk() ) { // return; //} assert( isInside( Writer::Array ) ); auto assertionObject = m_arrayWriters.top().writeObject(); assertionObject.write( "kind"_sr ).write( "assertion"_sr ); writeSourceInfo( assertionObject, assertionStats.assertionResult.getSourceInfo() ); assertionObject.write( "status"_sr ) .write( assertionStats.assertionResult.isOk() ); // TODO: handling of result. // TODO: messages // TODO: totals? } void JsonReporter::benchmarkPreparing( StringRef name ) { (void)name; } void JsonReporter::benchmarkStarting( BenchmarkInfo const& ) {} void JsonReporter::benchmarkEnded( BenchmarkStats<> const& ) {} void JsonReporter::benchmarkFailed( StringRef error ) { (void)error; } void JsonReporter::listReporters( std::vector const& descriptions ) { startListing(); auto writer = m_objectWriters.top().write( "reporters"_sr ).writeArray(); for ( auto const& desc : descriptions ) { auto desc_writer = writer.writeObject(); desc_writer.write( "name"_sr ).write( desc.name ); desc_writer.write( "description"_sr ).write( desc.description ); } } void JsonReporter::listListeners( std::vector const& descriptions ) { startListing(); auto writer = m_objectWriters.top().write( "listeners"_sr ).writeArray(); for ( auto const& desc : descriptions ) { auto desc_writer = writer.writeObject(); desc_writer.write( "name"_sr ).write( desc.name ); desc_writer.write( "description"_sr ).write( desc.description ); } } void JsonReporter::listTests( std::vector const& tests ) { startListing(); auto writer = m_objectWriters.top().write( "tests"_sr ).writeArray(); for ( auto const& test : tests ) { auto desc_writer = writer.writeObject(); auto const& info = test.getTestCaseInfo(); desc_writer.write( "name"_sr ).write( info.name ); desc_writer.write( "class-name"_sr ).write( info.className ); { auto tag_writer = desc_writer.write( "tags"_sr ).writeArray(); for ( auto const& tag : info.tags ) { tag_writer.write( tag.original ); } } writeSourceInfo( desc_writer, info.lineInfo ); } } void JsonReporter::listTags( std::vector const& tags ) { startListing(); auto writer = m_objectWriters.top().write( "tags"_sr ).writeArray(); for ( auto const& tag : tags ) { auto tag_writer = writer.writeObject(); { auto aliases_writer = tag_writer.write( "aliases"_sr ).writeArray(); for ( auto alias : tag.spellings ) { aliases_writer.write( alias ); } } tag_writer.write( "count"_sr ).write( tag.count ); } } } // namespace Catch #include #include #include #include namespace Catch { namespace { std::string getCurrentTimestamp() { time_t rawtime; std::time(&rawtime); std::tm timeInfo = {}; #if defined (_MSC_VER) || defined (__MINGW32__) gmtime_s(&timeInfo, &rawtime); #elif defined (CATCH_PLATFORM_PLAYSTATION) gmtime_s(&rawtime, &timeInfo); #elif defined (__IAR_SYSTEMS_ICC__) timeInfo = *std::gmtime(&rawtime); #else gmtime_r(&rawtime, &timeInfo); #endif auto const timeStampSize = sizeof("2017-01-16T17:06:45Z"); char timeStamp[timeStampSize]; const char * const fmt = "%Y-%m-%dT%H:%M:%SZ"; std::strftime(timeStamp, timeStampSize, fmt, &timeInfo); return std::string(timeStamp, timeStampSize - 1); } std::string fileNameTag(std::vector const& tags) { auto it = std::find_if(begin(tags), end(tags), [] (Tag const& tag) { return tag.original.size() > 0 && tag.original[0] == '#'; }); if (it != tags.end()) { return static_cast( it->original.substr(1, it->original.size() - 1) ); } return std::string(); } // Formats the duration in seconds to 3 decimal places. // This is done because some genius defined Maven Surefire schema // in a way that only accepts 3 decimal places, and tools like // Jenkins use that schema for validation JUnit reporter output. std::string formatDuration( double seconds ) { ReusableStringStream rss; rss << std::fixed << std::setprecision( 3 ) << seconds; return rss.str(); } static void normalizeNamespaceMarkers(std::string& str) { std::size_t pos = str.find( "::" ); while ( pos != std::string::npos ) { str.replace( pos, 2, "." ); pos += 1; pos = str.find( "::", pos ); } } } // anonymous namespace JunitReporter::JunitReporter( ReporterConfig&& _config ) : CumulativeReporterBase( CATCH_MOVE(_config) ), xml( m_stream ) { m_preferences.shouldRedirectStdOut = true; m_preferences.shouldReportAllAssertions = false; m_shouldStoreSuccesfulAssertions = false; } std::string JunitReporter::getDescription() { return "Reports test results in an XML format that looks like Ant's junitreport target"; } void JunitReporter::testRunStarting( TestRunInfo const& runInfo ) { CumulativeReporterBase::testRunStarting( runInfo ); xml.startElement( "testsuites" ); suiteTimer.start(); stdOutForSuite.clear(); stdErrForSuite.clear(); unexpectedExceptions = 0; } void JunitReporter::testCaseStarting( TestCaseInfo const& testCaseInfo ) { m_okToFail = testCaseInfo.okToFail(); } void JunitReporter::assertionEnded( AssertionStats const& assertionStats ) { if( assertionStats.assertionResult.getResultType() == ResultWas::ThrewException && !m_okToFail ) unexpectedExceptions++; CumulativeReporterBase::assertionEnded( assertionStats ); } void JunitReporter::testCaseEnded( TestCaseStats const& testCaseStats ) { stdOutForSuite += testCaseStats.stdOut; stdErrForSuite += testCaseStats.stdErr; CumulativeReporterBase::testCaseEnded( testCaseStats ); } void JunitReporter::testRunEndedCumulative() { const auto suiteTime = suiteTimer.getElapsedSeconds(); writeRun( *m_testRun, suiteTime ); xml.endElement(); } void JunitReporter::writeRun( TestRunNode const& testRunNode, double suiteTime ) { XmlWriter::ScopedElement e = xml.scopedElement( "testsuite" ); TestRunStats const& stats = testRunNode.value; xml.writeAttribute( "name"_sr, stats.runInfo.name ); xml.writeAttribute( "errors"_sr, unexpectedExceptions ); xml.writeAttribute( "failures"_sr, stats.totals.assertions.failed-unexpectedExceptions ); xml.writeAttribute( "skipped"_sr, stats.totals.assertions.skipped ); xml.writeAttribute( "tests"_sr, stats.totals.assertions.total() ); xml.writeAttribute( "hostname"_sr, "tbd"_sr ); // !TBD if( m_config->showDurations() == ShowDurations::Never ) xml.writeAttribute( "time"_sr, ""_sr ); else xml.writeAttribute( "time"_sr, formatDuration( suiteTime ) ); xml.writeAttribute( "timestamp"_sr, getCurrentTimestamp() ); // Write properties { auto properties = xml.scopedElement("properties"); xml.scopedElement("property") .writeAttribute("name"_sr, "random-seed"_sr) .writeAttribute("value"_sr, m_config->rngSeed()); if (m_config->testSpec().hasFilters()) { xml.scopedElement("property") .writeAttribute("name"_sr, "filters"_sr) .writeAttribute("value"_sr, m_config->testSpec()); } } // Write test cases for( auto const& child : testRunNode.children ) writeTestCase( *child ); xml.scopedElement( "system-out" ).writeText( trim( stdOutForSuite ), XmlFormatting::Newline ); xml.scopedElement( "system-err" ).writeText( trim( stdErrForSuite ), XmlFormatting::Newline ); } void JunitReporter::writeTestCase( TestCaseNode const& testCaseNode ) { TestCaseStats const& stats = testCaseNode.value; // All test cases have exactly one section - which represents the // test case itself. That section may have 0-n nested sections assert( testCaseNode.children.size() == 1 ); SectionNode const& rootSection = *testCaseNode.children.front(); std::string className = static_cast( stats.testInfo->className ); if( className.empty() ) { className = fileNameTag(stats.testInfo->tags); if ( className.empty() ) { className = "global"; } } if ( !m_config->name().empty() ) className = static_cast(m_config->name()) + '.' + className; normalizeNamespaceMarkers(className); writeSection( className, "", rootSection, stats.testInfo->okToFail() ); } void JunitReporter::writeSection( std::string const& className, std::string const& rootName, SectionNode const& sectionNode, bool testOkToFail) { std::string name = trim( sectionNode.stats.sectionInfo.name ); if( !rootName.empty() ) name = rootName + '/' + name; if ( sectionNode.stats.assertions.total() > 0 || !sectionNode.stdOut.empty() || !sectionNode.stdErr.empty() ) { XmlWriter::ScopedElement e = xml.scopedElement( "testcase" ); if( className.empty() ) { xml.writeAttribute( "classname"_sr, name ); xml.writeAttribute( "name"_sr, "root"_sr ); } else { xml.writeAttribute( "classname"_sr, className ); xml.writeAttribute( "name"_sr, name ); } xml.writeAttribute( "time"_sr, formatDuration( sectionNode.stats.durationInSeconds ) ); // This is not ideal, but it should be enough to mimic gtest's // junit output. // Ideally the JUnit reporter would also handle `skipTest` // events and write those out appropriately. xml.writeAttribute( "status"_sr, "run"_sr ); if (sectionNode.stats.assertions.failedButOk) { xml.scopedElement("skipped") .writeAttribute("message", "TEST_CASE tagged with !mayfail"); } writeAssertions( sectionNode ); if( !sectionNode.stdOut.empty() ) xml.scopedElement( "system-out" ).writeText( trim( sectionNode.stdOut ), XmlFormatting::Newline ); if( !sectionNode.stdErr.empty() ) xml.scopedElement( "system-err" ).writeText( trim( sectionNode.stdErr ), XmlFormatting::Newline ); } for( auto const& childNode : sectionNode.childSections ) if( className.empty() ) writeSection( name, "", *childNode, testOkToFail ); else writeSection( className, name, *childNode, testOkToFail ); } void JunitReporter::writeAssertions( SectionNode const& sectionNode ) { for (auto const& assertionOrBenchmark : sectionNode.assertionsAndBenchmarks) { if (assertionOrBenchmark.isAssertion()) { writeAssertion(assertionOrBenchmark.asAssertion()); } } } void JunitReporter::writeAssertion( AssertionStats const& stats ) { AssertionResult const& result = stats.assertionResult; if ( !result.isOk() || result.getResultType() == ResultWas::ExplicitSkip ) { std::string elementName; switch( result.getResultType() ) { case ResultWas::ThrewException: case ResultWas::FatalErrorCondition: elementName = "error"; break; case ResultWas::ExplicitFailure: case ResultWas::ExpressionFailed: case ResultWas::DidntThrowException: elementName = "failure"; break; case ResultWas::ExplicitSkip: elementName = "skipped"; break; // We should never see these here: case ResultWas::Info: case ResultWas::Warning: case ResultWas::Ok: case ResultWas::Unknown: case ResultWas::FailureBit: case ResultWas::Exception: elementName = "internalError"; break; } XmlWriter::ScopedElement e = xml.scopedElement( elementName ); xml.writeAttribute( "message"_sr, result.getExpression() ); xml.writeAttribute( "type"_sr, result.getTestMacroName() ); ReusableStringStream rss; if ( result.getResultType() == ResultWas::ExplicitSkip ) { rss << "SKIPPED\n"; } else { rss << "FAILED" << ":\n"; if (result.hasExpression()) { rss << " "; rss << result.getExpressionInMacro(); rss << '\n'; } if (result.hasExpandedExpression()) { rss << "with expansion:\n"; rss << TextFlow::Column(result.getExpandedExpression()).indent(2) << '\n'; } } if( result.hasMessage() ) rss << result.getMessage() << '\n'; for( auto const& msg : stats.infoMessages ) if( msg.type == ResultWas::Info ) rss << msg.message << '\n'; rss << "at " << result.getSourceInfo(); xml.writeText( rss.str(), XmlFormatting::Newline ); } } } // end namespace Catch #include namespace Catch { void MultiReporter::updatePreferences(IEventListener const& reporterish) { m_preferences.shouldRedirectStdOut |= reporterish.getPreferences().shouldRedirectStdOut; m_preferences.shouldReportAllAssertions |= reporterish.getPreferences().shouldReportAllAssertions; } void MultiReporter::addListener( IEventListenerPtr&& listener ) { updatePreferences(*listener); m_reporterLikes.insert(m_reporterLikes.begin() + m_insertedListeners, CATCH_MOVE(listener) ); ++m_insertedListeners; } void MultiReporter::addReporter( IEventListenerPtr&& reporter ) { updatePreferences(*reporter); // We will need to output the captured stdout if there are reporters // that do not want it captured. // We do not consider listeners, because it is generally assumed that // listeners are output-transparent, even though they can ask for stdout // capture to do something with it. m_haveNoncapturingReporters |= !reporter->getPreferences().shouldRedirectStdOut; // Reporters can always be placed to the back without breaking the // reporting order m_reporterLikes.push_back( CATCH_MOVE( reporter ) ); } void MultiReporter::noMatchingTestCases( StringRef unmatchedSpec ) { for ( auto& reporterish : m_reporterLikes ) { reporterish->noMatchingTestCases( unmatchedSpec ); } } void MultiReporter::fatalErrorEncountered( StringRef error ) { for ( auto& reporterish : m_reporterLikes ) { reporterish->fatalErrorEncountered( error ); } } void MultiReporter::reportInvalidTestSpec( StringRef arg ) { for ( auto& reporterish : m_reporterLikes ) { reporterish->reportInvalidTestSpec( arg ); } } void MultiReporter::benchmarkPreparing( StringRef name ) { for (auto& reporterish : m_reporterLikes) { reporterish->benchmarkPreparing(name); } } void MultiReporter::benchmarkStarting( BenchmarkInfo const& benchmarkInfo ) { for ( auto& reporterish : m_reporterLikes ) { reporterish->benchmarkStarting( benchmarkInfo ); } } void MultiReporter::benchmarkEnded( BenchmarkStats<> const& benchmarkStats ) { for ( auto& reporterish : m_reporterLikes ) { reporterish->benchmarkEnded( benchmarkStats ); } } void MultiReporter::benchmarkFailed( StringRef error ) { for (auto& reporterish : m_reporterLikes) { reporterish->benchmarkFailed(error); } } void MultiReporter::testRunStarting( TestRunInfo const& testRunInfo ) { for ( auto& reporterish : m_reporterLikes ) { reporterish->testRunStarting( testRunInfo ); } } void MultiReporter::testCaseStarting( TestCaseInfo const& testInfo ) { for ( auto& reporterish : m_reporterLikes ) { reporterish->testCaseStarting( testInfo ); } } void MultiReporter::testCasePartialStarting( TestCaseInfo const& testInfo, uint64_t partNumber ) { for ( auto& reporterish : m_reporterLikes ) { reporterish->testCasePartialStarting( testInfo, partNumber ); } } void MultiReporter::sectionStarting( SectionInfo const& sectionInfo ) { for ( auto& reporterish : m_reporterLikes ) { reporterish->sectionStarting( sectionInfo ); } } void MultiReporter::assertionStarting( AssertionInfo const& assertionInfo ) { for ( auto& reporterish : m_reporterLikes ) { reporterish->assertionStarting( assertionInfo ); } } void MultiReporter::assertionEnded( AssertionStats const& assertionStats ) { const bool reportByDefault = assertionStats.assertionResult.getResultType() != ResultWas::Ok || m_config->includeSuccessfulResults(); for ( auto & reporterish : m_reporterLikes ) { if ( reportByDefault || reporterish->getPreferences().shouldReportAllAssertions ) { reporterish->assertionEnded( assertionStats ); } } } void MultiReporter::sectionEnded( SectionStats const& sectionStats ) { for ( auto& reporterish : m_reporterLikes ) { reporterish->sectionEnded( sectionStats ); } } void MultiReporter::testCasePartialEnded( TestCaseStats const& testStats, uint64_t partNumber ) { if ( m_preferences.shouldRedirectStdOut && m_haveNoncapturingReporters ) { if ( !testStats.stdOut.empty() ) { Catch::cout() << testStats.stdOut << std::flush; } if ( !testStats.stdErr.empty() ) { Catch::cerr() << testStats.stdErr << std::flush; } } for ( auto& reporterish : m_reporterLikes ) { reporterish->testCasePartialEnded( testStats, partNumber ); } } void MultiReporter::testCaseEnded( TestCaseStats const& testCaseStats ) { for ( auto& reporterish : m_reporterLikes ) { reporterish->testCaseEnded( testCaseStats ); } } void MultiReporter::testRunEnded( TestRunStats const& testRunStats ) { for ( auto& reporterish : m_reporterLikes ) { reporterish->testRunEnded( testRunStats ); } } void MultiReporter::skipTest( TestCaseInfo const& testInfo ) { for ( auto& reporterish : m_reporterLikes ) { reporterish->skipTest( testInfo ); } } void MultiReporter::listReporters(std::vector const& descriptions) { for (auto& reporterish : m_reporterLikes) { reporterish->listReporters(descriptions); } } void MultiReporter::listListeners( std::vector const& descriptions ) { for ( auto& reporterish : m_reporterLikes ) { reporterish->listListeners( descriptions ); } } void MultiReporter::listTests(std::vector const& tests) { for (auto& reporterish : m_reporterLikes) { reporterish->listTests(tests); } } void MultiReporter::listTags(std::vector const& tags) { for (auto& reporterish : m_reporterLikes) { reporterish->listTags(tags); } } } // end namespace Catch namespace Catch { namespace Detail { void registerReporterImpl( std::string const& name, IReporterFactoryPtr reporterPtr ) { CATCH_TRY { getMutableRegistryHub().registerReporter( name, CATCH_MOVE( reporterPtr ) ); } CATCH_CATCH_ALL { // Do not throw when constructing global objects, instead // register the exception to be processed later getMutableRegistryHub().registerStartupException(); } } void registerListenerImpl( Detail::unique_ptr listenerFactory ) { getMutableRegistryHub().registerListener( CATCH_MOVE(listenerFactory) ); } } // namespace Detail } // namespace Catch #include namespace Catch { namespace { std::string createMetadataString(IConfig const& config) { ReusableStringStream sstr; if ( config.testSpec().hasFilters() ) { sstr << "filters='" << config.testSpec() << "' "; } sstr << "rng-seed=" << config.rngSeed(); return sstr.str(); } } void SonarQubeReporter::testRunStarting(TestRunInfo const& testRunInfo) { CumulativeReporterBase::testRunStarting(testRunInfo); xml.writeComment( createMetadataString( *m_config ) ); xml.startElement("testExecutions"); xml.writeAttribute("version"_sr, '1'); } void SonarQubeReporter::writeRun( TestRunNode const& runNode ) { std::map> testsPerFile; for ( auto const& child : runNode.children ) { testsPerFile[child->value.testInfo->lineInfo.file].push_back( child.get() ); } for ( auto const& kv : testsPerFile ) { writeTestFile( kv.first, kv.second ); } } void SonarQubeReporter::writeTestFile(StringRef filename, std::vector const& testCaseNodes) { XmlWriter::ScopedElement e = xml.scopedElement("file"); xml.writeAttribute("path"_sr, filename); for (auto const& child : testCaseNodes) writeTestCase(*child); } void SonarQubeReporter::writeTestCase(TestCaseNode const& testCaseNode) { // All test cases have exactly one section - which represents the // test case itself. That section may have 0-n nested sections assert(testCaseNode.children.size() == 1); SectionNode const& rootSection = *testCaseNode.children.front(); writeSection("", rootSection, testCaseNode.value.testInfo->okToFail()); } void SonarQubeReporter::writeSection(std::string const& rootName, SectionNode const& sectionNode, bool okToFail) { std::string name = trim(sectionNode.stats.sectionInfo.name); if (!rootName.empty()) name = rootName + '/' + name; if ( sectionNode.stats.assertions.total() > 0 || !sectionNode.stdOut.empty() || !sectionNode.stdErr.empty() ) { XmlWriter::ScopedElement e = xml.scopedElement("testCase"); xml.writeAttribute("name"_sr, name); xml.writeAttribute("duration"_sr, static_cast(sectionNode.stats.durationInSeconds * 1000)); writeAssertions(sectionNode, okToFail); } for (auto const& childNode : sectionNode.childSections) writeSection(name, *childNode, okToFail); } void SonarQubeReporter::writeAssertions(SectionNode const& sectionNode, bool okToFail) { for (auto const& assertionOrBenchmark : sectionNode.assertionsAndBenchmarks) { if (assertionOrBenchmark.isAssertion()) { writeAssertion(assertionOrBenchmark.asAssertion(), okToFail); } } } void SonarQubeReporter::writeAssertion(AssertionStats const& stats, bool okToFail) { AssertionResult const& result = stats.assertionResult; if ( !result.isOk() || result.getResultType() == ResultWas::ExplicitSkip ) { std::string elementName; if (okToFail) { elementName = "skipped"; } else { switch (result.getResultType()) { case ResultWas::ThrewException: case ResultWas::FatalErrorCondition: elementName = "error"; break; case ResultWas::ExplicitFailure: case ResultWas::ExpressionFailed: case ResultWas::DidntThrowException: elementName = "failure"; break; case ResultWas::ExplicitSkip: elementName = "skipped"; break; // We should never see these here: case ResultWas::Info: case ResultWas::Warning: case ResultWas::Ok: case ResultWas::Unknown: case ResultWas::FailureBit: case ResultWas::Exception: elementName = "internalError"; break; } } XmlWriter::ScopedElement e = xml.scopedElement(elementName); ReusableStringStream messageRss; messageRss << result.getTestMacroName() << '(' << result.getExpression() << ')'; xml.writeAttribute("message"_sr, messageRss.str()); ReusableStringStream textRss; if ( result.getResultType() == ResultWas::ExplicitSkip ) { textRss << "SKIPPED\n"; } else { textRss << "FAILED:\n"; if (result.hasExpression()) { textRss << '\t' << result.getExpressionInMacro() << '\n'; } if (result.hasExpandedExpression()) { textRss << "with expansion:\n\t" << result.getExpandedExpression() << '\n'; } } if (result.hasMessage()) textRss << result.getMessage() << '\n'; for (auto const& msg : stats.infoMessages) if (msg.type == ResultWas::Info) textRss << msg.message << '\n'; textRss << "at " << result.getSourceInfo(); xml.writeText(textRss.str(), XmlFormatting::Newline); } } } // end namespace Catch namespace Catch { StreamingReporterBase::~StreamingReporterBase() = default; void StreamingReporterBase::testRunStarting( TestRunInfo const& _testRunInfo ) { currentTestRunInfo = _testRunInfo; } void StreamingReporterBase::testRunEnded( TestRunStats const& ) { currentTestCaseInfo = nullptr; } } // end namespace Catch #include #include namespace Catch { namespace { // Yes, this has to be outside the class and namespaced by naming. // Making older compiler happy is hard. static constexpr StringRef tapFailedString = "not ok"_sr; static constexpr StringRef tapPassedString = "ok"_sr; static constexpr Colour::Code tapDimColour = Colour::FileName; class TapAssertionPrinter { public: TapAssertionPrinter& operator= (TapAssertionPrinter const&) = delete; TapAssertionPrinter(TapAssertionPrinter const&) = delete; TapAssertionPrinter(std::ostream& _stream, AssertionStats const& _stats, std::size_t _counter, ColourImpl* colour_) : stream(_stream) , result(_stats.assertionResult) , messages(_stats.infoMessages) , itMessage(_stats.infoMessages.begin()) , printInfoMessages(true) , counter(_counter) , colourImpl( colour_ ) {} void print() { itMessage = messages.begin(); switch (result.getResultType()) { case ResultWas::Ok: printResultType(tapPassedString); printOriginalExpression(); printReconstructedExpression(); if (!result.hasExpression()) printRemainingMessages(Colour::None); else printRemainingMessages(); break; case ResultWas::ExpressionFailed: if (result.isOk()) { printResultType(tapPassedString); } else { printResultType(tapFailedString); } printOriginalExpression(); printReconstructedExpression(); if (result.isOk()) { printIssue(" # TODO"); } printRemainingMessages(); break; case ResultWas::ThrewException: printResultType(tapFailedString); printIssue("unexpected exception with message:"_sr); printMessage(); printExpressionWas(); printRemainingMessages(); break; case ResultWas::FatalErrorCondition: printResultType(tapFailedString); printIssue("fatal error condition with message:"_sr); printMessage(); printExpressionWas(); printRemainingMessages(); break; case ResultWas::DidntThrowException: printResultType(tapFailedString); printIssue("expected exception, got none"_sr); printExpressionWas(); printRemainingMessages(); break; case ResultWas::Info: printResultType("info"_sr); printMessage(); printRemainingMessages(); break; case ResultWas::Warning: printResultType("warning"_sr); printMessage(); printRemainingMessages(); break; case ResultWas::ExplicitFailure: printResultType(tapFailedString); printIssue("explicitly"_sr); printRemainingMessages(Colour::None); break; case ResultWas::ExplicitSkip: printResultType(tapPassedString); printIssue(" # SKIP"_sr); printMessage(); printRemainingMessages(); break; // These cases are here to prevent compiler warnings case ResultWas::Unknown: case ResultWas::FailureBit: case ResultWas::Exception: printResultType("** internal error **"_sr); break; } } private: void printResultType(StringRef passOrFail) const { if (!passOrFail.empty()) { stream << passOrFail << ' ' << counter << " -"; } } void printIssue(StringRef issue) const { stream << ' ' << issue; } void printExpressionWas() { if (result.hasExpression()) { stream << ';'; stream << colourImpl->guardColour( tapDimColour ) << " expression was:"; printOriginalExpression(); } } void printOriginalExpression() const { if (result.hasExpression()) { stream << ' ' << result.getExpression(); } } void printReconstructedExpression() const { if (result.hasExpandedExpression()) { stream << colourImpl->guardColour( tapDimColour ) << " for: "; std::string expr = result.getExpandedExpression(); std::replace(expr.begin(), expr.end(), '\n', ' '); stream << expr; } } void printMessage() { if (itMessage != messages.end()) { stream << " '" << itMessage->message << '\''; ++itMessage; } } void printRemainingMessages(Colour::Code colour = tapDimColour) { if (itMessage == messages.end()) { return; } // using messages.end() directly (or auto) yields compilation error: std::vector::const_iterator itEnd = messages.end(); const std::size_t N = static_cast(itEnd - itMessage); stream << colourImpl->guardColour( colour ) << " with " << pluralise( N, "message"_sr ) << ':'; for (; itMessage != itEnd; ) { // If this assertion is a warning ignore any INFO messages if (printInfoMessages || itMessage->type != ResultWas::Info) { stream << " '" << itMessage->message << '\''; if (++itMessage != itEnd) { stream << colourImpl->guardColour(tapDimColour) << " and"; } } } } private: std::ostream& stream; AssertionResult const& result; std::vector const& messages; std::vector::const_iterator itMessage; bool printInfoMessages; std::size_t counter; ColourImpl* colourImpl; }; } // End anonymous namespace void TAPReporter::testRunStarting( TestRunInfo const& ) { if ( m_config->testSpec().hasFilters() ) { m_stream << "# filters: " << m_config->testSpec() << '\n'; } m_stream << "# rng-seed: " << m_config->rngSeed() << '\n'; } void TAPReporter::noMatchingTestCases( StringRef unmatchedSpec ) { m_stream << "# No test cases matched '" << unmatchedSpec << "'\n"; } void TAPReporter::assertionEnded(AssertionStats const& _assertionStats) { ++counter; m_stream << "# " << currentTestCaseInfo->name << '\n'; TapAssertionPrinter printer(m_stream, _assertionStats, counter, m_colour.get()); printer.print(); m_stream << '\n' << std::flush; } void TAPReporter::testRunEnded(TestRunStats const& _testRunStats) { m_stream << "1.." << _testRunStats.totals.assertions.total(); if (_testRunStats.totals.testCases.total() == 0) { m_stream << " # Skipped: No tests ran."; } m_stream << "\n\n" << std::flush; StreamingReporterBase::testRunEnded(_testRunStats); } } // end namespace Catch #include #include namespace Catch { namespace { // if string has a : in first line will set indent to follow it on // subsequent lines void printHeaderString(std::ostream& os, std::string const& _string, std::size_t indent = 0) { std::size_t i = _string.find(": "); if (i != std::string::npos) i += 2; else i = 0; os << TextFlow::Column(_string) .indent(indent + i) .initialIndent(indent) << '\n'; } std::string escape(StringRef str) { std::string escaped = static_cast(str); replaceInPlace(escaped, "|", "||"); replaceInPlace(escaped, "'", "|'"); replaceInPlace(escaped, "\n", "|n"); replaceInPlace(escaped, "\r", "|r"); replaceInPlace(escaped, "[", "|["); replaceInPlace(escaped, "]", "|]"); return escaped; } } // end anonymous namespace TeamCityReporter::~TeamCityReporter() = default; void TeamCityReporter::testRunStarting( TestRunInfo const& runInfo ) { m_stream << "##teamcity[testSuiteStarted name='" << escape( runInfo.name ) << "']\n"; } void TeamCityReporter::testRunEnded( TestRunStats const& runStats ) { m_stream << "##teamcity[testSuiteFinished name='" << escape( runStats.runInfo.name ) << "']\n"; } void TeamCityReporter::assertionEnded(AssertionStats const& assertionStats) { AssertionResult const& result = assertionStats.assertionResult; if ( !result.isOk() || result.getResultType() == ResultWas::ExplicitSkip ) { ReusableStringStream msg; if (!m_headerPrintedForThisSection) printSectionHeader(msg.get()); m_headerPrintedForThisSection = true; msg << result.getSourceInfo() << '\n'; switch (result.getResultType()) { case ResultWas::ExpressionFailed: msg << "expression failed"; break; case ResultWas::ThrewException: msg << "unexpected exception"; break; case ResultWas::FatalErrorCondition: msg << "fatal error condition"; break; case ResultWas::DidntThrowException: msg << "no exception was thrown where one was expected"; break; case ResultWas::ExplicitFailure: msg << "explicit failure"; break; case ResultWas::ExplicitSkip: msg << "explicit skip"; break; // We shouldn't get here because of the isOk() test case ResultWas::Ok: case ResultWas::Info: case ResultWas::Warning: CATCH_ERROR("Internal error in TeamCity reporter"); // These cases are here to prevent compiler warnings case ResultWas::Unknown: case ResultWas::FailureBit: case ResultWas::Exception: CATCH_ERROR("Not implemented"); } if (assertionStats.infoMessages.size() == 1) msg << " with message:"; if (assertionStats.infoMessages.size() > 1) msg << " with messages:"; for (auto const& messageInfo : assertionStats.infoMessages) msg << "\n \"" << messageInfo.message << '"'; if (result.hasExpression()) { msg << "\n " << result.getExpressionInMacro() << "\n" "with expansion:\n" " " << result.getExpandedExpression() << '\n'; } if ( result.getResultType() == ResultWas::ExplicitSkip ) { m_stream << "##teamcity[testIgnored"; } else if ( currentTestCaseInfo->okToFail() ) { msg << "- failure ignore as test marked as 'ok to fail'\n"; m_stream << "##teamcity[testIgnored"; } else { m_stream << "##teamcity[testFailed"; } m_stream << " name='" << escape( currentTestCaseInfo->name ) << '\'' << " message='" << escape( msg.str() ) << '\'' << "]\n"; } m_stream.flush(); } void TeamCityReporter::testCaseStarting(TestCaseInfo const& testInfo) { m_testTimer.start(); StreamingReporterBase::testCaseStarting(testInfo); m_stream << "##teamcity[testStarted name='" << escape(testInfo.name) << "']\n"; m_stream.flush(); } void TeamCityReporter::testCaseEnded(TestCaseStats const& testCaseStats) { StreamingReporterBase::testCaseEnded(testCaseStats); auto const& testCaseInfo = *testCaseStats.testInfo; if (!testCaseStats.stdOut.empty()) m_stream << "##teamcity[testStdOut name='" << escape(testCaseInfo.name) << "' out='" << escape(testCaseStats.stdOut) << "']\n"; if (!testCaseStats.stdErr.empty()) m_stream << "##teamcity[testStdErr name='" << escape(testCaseInfo.name) << "' out='" << escape(testCaseStats.stdErr) << "']\n"; m_stream << "##teamcity[testFinished name='" << escape(testCaseInfo.name) << "' duration='" << m_testTimer.getElapsedMilliseconds() << "']\n"; m_stream.flush(); } void TeamCityReporter::printSectionHeader(std::ostream& os) { assert(!m_sectionStack.empty()); if (m_sectionStack.size() > 1) { os << lineOfChars('-') << '\n'; std::vector::const_iterator it = m_sectionStack.begin() + 1, // Skip first section (test case) itEnd = m_sectionStack.end(); for (; it != itEnd; ++it) printHeaderString(os, it->name); os << lineOfChars('-') << '\n'; } SourceLineInfo lineInfo = m_sectionStack.front().lineInfo; os << lineInfo << '\n'; os << lineOfChars('.') << "\n\n"; } } // end namespace Catch #if defined(_MSC_VER) #pragma warning(push) #pragma warning(disable:4061) // Not all labels are EXPLICITLY handled in switch // Note that 4062 (not all labels are handled // and default is missing) is enabled #endif namespace Catch { XmlReporter::XmlReporter( ReporterConfig&& _config ) : StreamingReporterBase( CATCH_MOVE(_config) ), m_xml(m_stream) { m_preferences.shouldRedirectStdOut = true; m_preferences.shouldReportAllAssertions = true; } XmlReporter::~XmlReporter() = default; std::string XmlReporter::getDescription() { return "Reports test results as an XML document"; } std::string XmlReporter::getStylesheetRef() const { return std::string(); } void XmlReporter::writeSourceInfo( SourceLineInfo const& sourceInfo ) { m_xml .writeAttribute( "filename"_sr, sourceInfo.file ) .writeAttribute( "line"_sr, sourceInfo.line ); } void XmlReporter::testRunStarting( TestRunInfo const& testInfo ) { StreamingReporterBase::testRunStarting( testInfo ); std::string stylesheetRef = getStylesheetRef(); if( !stylesheetRef.empty() ) m_xml.writeStylesheetRef( stylesheetRef ); m_xml.startElement("Catch2TestRun") .writeAttribute("name"_sr, m_config->name()) .writeAttribute("rng-seed"_sr, m_config->rngSeed()) .writeAttribute("xml-format-version"_sr, 3) .writeAttribute("catch2-version"_sr, libraryVersion()); if ( m_config->testSpec().hasFilters() ) { m_xml.writeAttribute( "filters"_sr, m_config->testSpec() ); } } void XmlReporter::testCaseStarting( TestCaseInfo const& testInfo ) { StreamingReporterBase::testCaseStarting(testInfo); m_xml.startElement( "TestCase" ) .writeAttribute( "name"_sr, trim( StringRef(testInfo.name) ) ) .writeAttribute( "tags"_sr, testInfo.tagsAsString() ); writeSourceInfo( testInfo.lineInfo ); if ( m_config->showDurations() == ShowDurations::Always ) m_testCaseTimer.start(); m_xml.ensureTagClosed(); } void XmlReporter::sectionStarting( SectionInfo const& sectionInfo ) { StreamingReporterBase::sectionStarting( sectionInfo ); if( m_sectionDepth++ > 0 ) { m_xml.startElement( "Section" ) .writeAttribute( "name"_sr, trim( StringRef(sectionInfo.name) ) ); writeSourceInfo( sectionInfo.lineInfo ); m_xml.ensureTagClosed(); } } void XmlReporter::assertionStarting( AssertionInfo const& ) { } void XmlReporter::assertionEnded( AssertionStats const& assertionStats ) { AssertionResult const& result = assertionStats.assertionResult; bool includeResults = m_config->includeSuccessfulResults() || !result.isOk(); if( includeResults || result.getResultType() == ResultWas::Warning ) { // Print any info messages in tags. for( auto const& msg : assertionStats.infoMessages ) { if( msg.type == ResultWas::Info && includeResults ) { auto t = m_xml.scopedElement( "Info" ); writeSourceInfo( msg.lineInfo ); t.writeText( msg.message ); } else if ( msg.type == ResultWas::Warning ) { auto t = m_xml.scopedElement( "Warning" ); writeSourceInfo( msg.lineInfo ); t.writeText( msg.message ); } } } // Drop out if result was successful but we're not printing them. if ( !includeResults && result.getResultType() != ResultWas::Warning && result.getResultType() != ResultWas::ExplicitSkip ) { return; } // Print the expression if there is one. if( result.hasExpression() ) { m_xml.startElement( "Expression" ) .writeAttribute( "success"_sr, result.succeeded() ) .writeAttribute( "type"_sr, result.getTestMacroName() ); writeSourceInfo( result.getSourceInfo() ); m_xml.scopedElement( "Original" ) .writeText( result.getExpression() ); m_xml.scopedElement( "Expanded" ) .writeText( result.getExpandedExpression() ); } // And... Print a result applicable to each result type. switch( result.getResultType() ) { case ResultWas::ThrewException: m_xml.startElement( "Exception" ); writeSourceInfo( result.getSourceInfo() ); m_xml.writeText( result.getMessage() ); m_xml.endElement(); break; case ResultWas::FatalErrorCondition: m_xml.startElement( "FatalErrorCondition" ); writeSourceInfo( result.getSourceInfo() ); m_xml.writeText( result.getMessage() ); m_xml.endElement(); break; case ResultWas::Info: m_xml.scopedElement( "Info" ) .writeText( result.getMessage() ); break; case ResultWas::Warning: // Warning will already have been written break; case ResultWas::ExplicitFailure: m_xml.startElement( "Failure" ); writeSourceInfo( result.getSourceInfo() ); m_xml.writeText( result.getMessage() ); m_xml.endElement(); break; case ResultWas::ExplicitSkip: m_xml.startElement( "Skip" ); writeSourceInfo( result.getSourceInfo() ); m_xml.writeText( result.getMessage() ); m_xml.endElement(); break; default: break; } if( result.hasExpression() ) m_xml.endElement(); } void XmlReporter::sectionEnded( SectionStats const& sectionStats ) { StreamingReporterBase::sectionEnded( sectionStats ); if ( --m_sectionDepth > 0 ) { { XmlWriter::ScopedElement e = m_xml.scopedElement( "OverallResults" ); e.writeAttribute( "successes"_sr, sectionStats.assertions.passed ); e.writeAttribute( "failures"_sr, sectionStats.assertions.failed ); e.writeAttribute( "expectedFailures"_sr, sectionStats.assertions.failedButOk ); e.writeAttribute( "skipped"_sr, sectionStats.assertions.skipped > 0 ); if ( m_config->showDurations() == ShowDurations::Always ) e.writeAttribute( "durationInSeconds"_sr, sectionStats.durationInSeconds ); } // Ends assertion tag m_xml.endElement(); } } void XmlReporter::testCaseEnded( TestCaseStats const& testCaseStats ) { StreamingReporterBase::testCaseEnded( testCaseStats ); XmlWriter::ScopedElement e = m_xml.scopedElement( "OverallResult" ); e.writeAttribute( "success"_sr, testCaseStats.totals.assertions.allOk() ); e.writeAttribute( "skips"_sr, testCaseStats.totals.assertions.skipped ); if ( m_config->showDurations() == ShowDurations::Always ) e.writeAttribute( "durationInSeconds"_sr, m_testCaseTimer.getElapsedSeconds() ); if( !testCaseStats.stdOut.empty() ) m_xml.scopedElement( "StdOut" ).writeText( trim( StringRef(testCaseStats.stdOut) ), XmlFormatting::Newline ); if( !testCaseStats.stdErr.empty() ) m_xml.scopedElement( "StdErr" ).writeText( trim( StringRef(testCaseStats.stdErr) ), XmlFormatting::Newline ); m_xml.endElement(); } void XmlReporter::testRunEnded( TestRunStats const& testRunStats ) { StreamingReporterBase::testRunEnded( testRunStats ); m_xml.scopedElement( "OverallResults" ) .writeAttribute( "successes"_sr, testRunStats.totals.assertions.passed ) .writeAttribute( "failures"_sr, testRunStats.totals.assertions.failed ) .writeAttribute( "expectedFailures"_sr, testRunStats.totals.assertions.failedButOk ) .writeAttribute( "skips"_sr, testRunStats.totals.assertions.skipped ); m_xml.scopedElement( "OverallResultsCases") .writeAttribute( "successes"_sr, testRunStats.totals.testCases.passed ) .writeAttribute( "failures"_sr, testRunStats.totals.testCases.failed ) .writeAttribute( "expectedFailures"_sr, testRunStats.totals.testCases.failedButOk ) .writeAttribute( "skips"_sr, testRunStats.totals.testCases.skipped ); m_xml.endElement(); } void XmlReporter::benchmarkPreparing( StringRef name ) { m_xml.startElement("BenchmarkResults") .writeAttribute("name"_sr, name); } void XmlReporter::benchmarkStarting(BenchmarkInfo const &info) { m_xml.writeAttribute("samples"_sr, info.samples) .writeAttribute("resamples"_sr, info.resamples) .writeAttribute("iterations"_sr, info.iterations) .writeAttribute("clockResolution"_sr, info.clockResolution) .writeAttribute("estimatedDuration"_sr, info.estimatedDuration) .writeComment("All values in nano seconds"_sr); } void XmlReporter::benchmarkEnded(BenchmarkStats<> const& benchmarkStats) { m_xml.scopedElement("mean") .writeAttribute("value"_sr, benchmarkStats.mean.point.count()) .writeAttribute("lowerBound"_sr, benchmarkStats.mean.lower_bound.count()) .writeAttribute("upperBound"_sr, benchmarkStats.mean.upper_bound.count()) .writeAttribute("ci"_sr, benchmarkStats.mean.confidence_interval); m_xml.scopedElement("standardDeviation") .writeAttribute("value"_sr, benchmarkStats.standardDeviation.point.count()) .writeAttribute("lowerBound"_sr, benchmarkStats.standardDeviation.lower_bound.count()) .writeAttribute("upperBound"_sr, benchmarkStats.standardDeviation.upper_bound.count()) .writeAttribute("ci"_sr, benchmarkStats.standardDeviation.confidence_interval); m_xml.scopedElement("outliers") .writeAttribute("variance"_sr, benchmarkStats.outlierVariance) .writeAttribute("lowMild"_sr, benchmarkStats.outliers.low_mild) .writeAttribute("lowSevere"_sr, benchmarkStats.outliers.low_severe) .writeAttribute("highMild"_sr, benchmarkStats.outliers.high_mild) .writeAttribute("highSevere"_sr, benchmarkStats.outliers.high_severe); m_xml.endElement(); } void XmlReporter::benchmarkFailed(StringRef error) { m_xml.scopedElement("failed"). writeAttribute("message"_sr, error); m_xml.endElement(); } void XmlReporter::listReporters(std::vector const& descriptions) { auto outerTag = m_xml.scopedElement("AvailableReporters"); for (auto const& reporter : descriptions) { auto inner = m_xml.scopedElement("Reporter"); m_xml.startElement("Name", XmlFormatting::Indent) .writeText(reporter.name, XmlFormatting::None) .endElement(XmlFormatting::Newline); m_xml.startElement("Description", XmlFormatting::Indent) .writeText(reporter.description, XmlFormatting::None) .endElement(XmlFormatting::Newline); } } void XmlReporter::listListeners(std::vector const& descriptions) { auto outerTag = m_xml.scopedElement( "RegisteredListeners" ); for ( auto const& listener : descriptions ) { auto inner = m_xml.scopedElement( "Listener" ); m_xml.startElement( "Name", XmlFormatting::Indent ) .writeText( listener.name, XmlFormatting::None ) .endElement( XmlFormatting::Newline ); m_xml.startElement( "Description", XmlFormatting::Indent ) .writeText( listener.description, XmlFormatting::None ) .endElement( XmlFormatting::Newline ); } } void XmlReporter::listTests(std::vector const& tests) { auto outerTag = m_xml.scopedElement("MatchingTests"); for (auto const& test : tests) { auto innerTag = m_xml.scopedElement("TestCase"); auto const& testInfo = test.getTestCaseInfo(); m_xml.startElement("Name", XmlFormatting::Indent) .writeText(testInfo.name, XmlFormatting::None) .endElement(XmlFormatting::Newline); m_xml.startElement("ClassName", XmlFormatting::Indent) .writeText(testInfo.className, XmlFormatting::None) .endElement(XmlFormatting::Newline); m_xml.startElement("Tags", XmlFormatting::Indent) .writeText(testInfo.tagsAsString(), XmlFormatting::None) .endElement(XmlFormatting::Newline); auto sourceTag = m_xml.scopedElement("SourceInfo"); m_xml.startElement("File", XmlFormatting::Indent) .writeText(testInfo.lineInfo.file, XmlFormatting::None) .endElement(XmlFormatting::Newline); m_xml.startElement("Line", XmlFormatting::Indent) .writeText(std::to_string(testInfo.lineInfo.line), XmlFormatting::None) .endElement(XmlFormatting::Newline); } } void XmlReporter::listTags(std::vector const& tags) { auto outerTag = m_xml.scopedElement("TagsFromMatchingTests"); for (auto const& tag : tags) { auto innerTag = m_xml.scopedElement("Tag"); m_xml.startElement("Count", XmlFormatting::Indent) .writeText(std::to_string(tag.count), XmlFormatting::None) .endElement(XmlFormatting::Newline); auto aliasTag = m_xml.scopedElement("Aliases"); for (auto const& alias : tag.spellings) { m_xml.startElement("Alias", XmlFormatting::Indent) .writeText(alias, XmlFormatting::None) .endElement(XmlFormatting::Newline); } } } } // end namespace Catch #if defined(_MSC_VER) #pragma warning(pop) #endif