catch2/tests/SelfTest/UsageTests/Class.tests.cpp
Keith Stockdale f7cd0ba051
TEST_CASE_PERSISTENT_FIXTURE: A new fixture macro for allowing persistent fixtures throughout a TEST_CASE (#2885)
This PR introduces a new `TEST_CASE` macro called `TEST_CASE_PERSISTENT_FIXTURE`. `TEST_CASE_PERSISTENT_FIXTURE` offers the same functionality as `TEST_CASE_METHOD` except for one difference. The object on which the test method is invoked is only created once for all invocations of the test case. The object is created just after the `testCaseStarting` event is broadcast and the object is destroyed just before the `testCaseEnding` event is broadcast.

The main motivation for this new functionality is to allow `TEST_CASE`s to do expensive setup and teardown once per `TEST_CASE`, without having to resort to abusing event listeners or static function variables with manual initialization.


Implements #1602

---------

Co-authored-by: Martin Hořeňovský <martin.horenovsky@gmail.com>
2024-08-05 17:01:41 +02:00

160 lines
5.1 KiB
C++

// Copyright Catch2 Authors
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE.txt or copy at
// https://www.boost.org/LICENSE_1_0.txt)
// SPDX-License-Identifier: BSL-1.0
#if defined( __GNUC__ ) || defined( __clang__ )
# pragma GCC diagnostic ignored "-Wfloat-equal"
#endif
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_template_test_macros.hpp>
#include <array>
namespace {
class TestClass {
std::string s;
public:
TestClass(): s( "hello" ) {}
void succeedingCase() { REQUIRE( s == "hello" ); }
void failingCase() { REQUIRE( s == "world" ); }
};
struct Fixture {
Fixture(): m_a( 1 ) {}
int m_a;
};
struct Persistent_Fixture {
mutable int m_a = 0;
};
template <typename T> struct Template_Fixture {
Template_Fixture(): m_a( 1 ) {}
T m_a;
};
template <typename T> struct Template_Fixture_2 {
Template_Fixture_2() = default;
T m_a;
};
template <typename T> struct Template_Foo {
size_t size() { return 0; }
};
template <typename T, size_t V> struct Template_Foo_2 {
size_t size() { return V; }
};
template <int V> struct Nttp_Fixture { int value = V; };
} // end unnamed namespace
METHOD_AS_TEST_CASE( TestClass::succeedingCase, "A METHOD_AS_TEST_CASE based test run that succeeds", "[class]" )
METHOD_AS_TEST_CASE( TestClass::failingCase, "A METHOD_AS_TEST_CASE based test run that fails", "[.][class][failing]" )
TEST_CASE_METHOD( Fixture, "A TEST_CASE_METHOD based test run that succeeds", "[class]" )
{
REQUIRE( m_a == 1 );
}
TEST_CASE_PERSISTENT_FIXTURE( Persistent_Fixture, "A TEST_CASE_PERSISTENT_FIXTURE based test run that succeeds", "[class]" )
{
SECTION( "First partial run" ) {
REQUIRE( m_a++ == 0 );
}
SECTION( "Second partial run" ) {
REQUIRE( m_a == 1 );
}
}
TEMPLATE_TEST_CASE_METHOD(Template_Fixture, "A TEMPLATE_TEST_CASE_METHOD based test run that succeeds", "[class][template]", int, float, double) {
REQUIRE( Template_Fixture<TestType>::m_a == 1 );
}
TEMPLATE_TEST_CASE_METHOD_SIG(Nttp_Fixture, "A TEMPLATE_TEST_CASE_METHOD_SIG based test run that succeeds", "[class][template][nttp]",((int V), V), 1, 3, 6) {
REQUIRE(Nttp_Fixture<V>::value > 0);
}
TEMPLATE_PRODUCT_TEST_CASE_METHOD(Template_Fixture_2, "A TEMPLATE_PRODUCT_TEST_CASE_METHOD based test run that succeeds","[class][template][product]",(std::vector,Template_Foo),(int,float))
{
REQUIRE( Template_Fixture_2<TestType>::m_a.size() == 0 );
}
TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(Template_Fixture_2, "A TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG based test run that succeeds", "[class][template][product][nttp]", ((typename T, size_t S), T, S),(std::array, Template_Foo_2), ((int,2), (float,6)))
{
REQUIRE(Template_Fixture_2<TestType>{}.m_a.size() >= 2);
}
using MyTypes = std::tuple<int, char, double>;
TEMPLATE_LIST_TEST_CASE_METHOD(Template_Fixture, "Template test case method with test types specified inside std::tuple", "[class][template][list]", MyTypes)
{
REQUIRE( Template_Fixture<TestType>::m_a == 1 );
}
// We should be able to write our tests within a different namespace
namespace Inner
{
TEST_CASE_METHOD( Fixture, "A TEST_CASE_METHOD based test run that fails", "[.][class][failing]" )
{
REQUIRE( m_a == 2 );
}
TEST_CASE_PERSISTENT_FIXTURE( Persistent_Fixture, "A TEST_CASE_PERSISTENT_FIXTURE based test run that fails", "[.][class][failing]" )
{
SECTION( "First partial run" ) {
REQUIRE( m_a++ == 0 );
}
SECTION( "Second partial run" ) {
REQUIRE( m_a == 0 );
}
}
TEMPLATE_TEST_CASE_METHOD(Template_Fixture,"A TEMPLATE_TEST_CASE_METHOD based test run that fails", "[.][class][template][failing]", int, float, double)
{
REQUIRE( Template_Fixture<TestType>::m_a == 2 );
}
TEMPLATE_TEST_CASE_METHOD_SIG(Nttp_Fixture, "A TEMPLATE_TEST_CASE_METHOD_SIG based test run that fails", "[.][class][template][nttp][failing]", ((int V), V), 1, 3, 6) {
REQUIRE(Nttp_Fixture<V>::value == 0);
}
TEMPLATE_PRODUCT_TEST_CASE_METHOD(Template_Fixture_2, "A TEMPLATE_PRODUCT_TEST_CASE_METHOD based test run that fails","[.][class][template][product][failing]",(std::vector,Template_Foo),(int,float))
{
REQUIRE( Template_Fixture_2<TestType>::m_a.size() == 1 );
}
TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(Template_Fixture_2, "A TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG based test run that fails", "[.][class][template][product][nttp][failing]", ((typename T, size_t S), T, S), (std::array, Template_Foo_2), ((int, 2), (float, 6)))
{
REQUIRE(Template_Fixture_2<TestType>{}.m_a.size() < 2);
}
} // namespace
// We want a class in nested namespace so we can test JUnit's classname normalization.
namespace {
namespace A {
namespace B {
class TestClass {};
}
}
} // namespace
TEST_CASE_METHOD( A::B::TestClass,
"A TEST_CASE_METHOD testing junit classname normalization",
"[class][approvals]" ) {
SUCCEED();
}