mirror of
https://github.com/catchorg/Catch2.git
synced 2024-11-05 13:49:55 +01:00
b79a83e4aa
This means that code such as ```cpp TEST_CASE() { SECTION("first") { SUCCEED(); } auto _ = GENERATE(1, 2); SECTION("second") { SUCCEED(); } } ``` will run and report 3 assertions, 1 from section "first" and 2 from section "second". This also applies for greater and potentially more confusing nesting, but fundamentally it is up to the user to avoid overly complex and confusing nestings, just as with `SECTION`s. The old behaviour of `GENERATE` as first thing in a `TEST_CASE`, `GENERATE` not followed by a `SECTION`, etc etc should be unchanged. Closes #1938
274 lines
9.0 KiB
C++
274 lines
9.0 KiB
C++
#include "catch.hpp"
|
|
|
|
#include <cstring>
|
|
|
|
|
|
// Generators and sections can be nested freely
|
|
TEST_CASE("Generators -- simple", "[generators]") {
|
|
auto i = GENERATE(1, 2, 3);
|
|
SECTION("one") {
|
|
auto j = GENERATE(values({ -3, -2, -1 }));
|
|
REQUIRE(j < i);
|
|
}
|
|
|
|
SECTION("two") {
|
|
// You can also explicitly set type for generators via Catch::Generators::as
|
|
auto str = GENERATE(as<std::string>{}, "a", "bb", "ccc");
|
|
REQUIRE(4u * i > str.size());
|
|
}
|
|
}
|
|
|
|
// You can create a cartesian-product of generators by creating multiple ones
|
|
TEST_CASE("3x3x3 ints", "[generators]") {
|
|
auto x = GENERATE(1, 2, 3);
|
|
auto y = GENERATE(4, 5, 6);
|
|
auto z = GENERATE(7, 8, 9);
|
|
// These assertions will be run 27 times (3x3x3)
|
|
CHECK(x < y);
|
|
CHECK(y < z);
|
|
REQUIRE(x < z);
|
|
}
|
|
|
|
// You can also create data tuples
|
|
TEST_CASE("tables", "[generators]") {
|
|
// Note that this will not compile with libstdc++ older than libstdc++6
|
|
// See https://stackoverflow.com/questions/12436586/tuple-vector-and-initializer-list
|
|
// for possible workarounds
|
|
// auto data = GENERATE(table<char const*, int>({
|
|
// {"first", 5},
|
|
// {"second", 6},
|
|
// {"third", 5},
|
|
// {"etc...", 6}
|
|
// }));
|
|
|
|
// Workaround for the libstdc++ bug mentioned above
|
|
using tuple_type = std::tuple<char const*, int>;
|
|
auto data = GENERATE(table<char const*, int>({
|
|
tuple_type{"first", 5},
|
|
tuple_type{"second", 6},
|
|
tuple_type{"third", 5},
|
|
tuple_type{"etc...", 6}
|
|
}));
|
|
|
|
REQUIRE(strlen(std::get<0>(data)) == static_cast<size_t>(std::get<1>(data)));
|
|
}
|
|
|
|
|
|
#ifdef __cpp_structured_bindings
|
|
|
|
// Structured bindings make the table utility much nicer to use
|
|
TEST_CASE( "strlen2", "[approvals][generators]" ) {
|
|
auto [test_input, expected] = GENERATE( table<std::string, size_t>({
|
|
{"one", 3},
|
|
{"two", 3},
|
|
{"three", 5},
|
|
{"four", 4}
|
|
}));
|
|
|
|
REQUIRE( test_input.size() == expected );
|
|
}
|
|
#endif
|
|
|
|
|
|
// An alternate way of doing data tables without structured bindings
|
|
struct Data { std::string str; size_t len; };
|
|
|
|
TEST_CASE( "strlen3", "[generators]" ) {
|
|
auto data = GENERATE( values<Data>({
|
|
{"one", 3},
|
|
{"two", 3},
|
|
{"three", 5},
|
|
{"four", 4}
|
|
}));
|
|
|
|
REQUIRE( data.str.size() == data.len );
|
|
}
|
|
|
|
|
|
|
|
#ifdef __cpp_structured_bindings
|
|
|
|
// Based on example from https://docs.cucumber.io/gherkin/reference/#scenario-outline
|
|
// (thanks to https://github.com/catchorg/Catch2/issues/850#issuecomment-399504851)
|
|
|
|
// Note that GIVEN, WHEN, and THEN now forward onto DYNAMIC_SECTION instead of SECTION.
|
|
// DYNAMIC_SECTION takes its name as a stringstream-style expression, so can be formatted using
|
|
// variables in scope - such as the generated variables here. This reads quite nicely in the
|
|
// test name output (the full scenario description).
|
|
|
|
static auto eatCucumbers( int start, int eat ) -> int { return start-eat; }
|
|
|
|
SCENARIO("Eating cucumbers", "[generators][approvals]") {
|
|
|
|
auto [start, eat, left] = GENERATE( table<int,int,int> ({
|
|
{ 12, 5, 7 },
|
|
{ 20, 5, 15 }
|
|
}));
|
|
|
|
GIVEN( "there are " << start << " cucumbers" )
|
|
WHEN( "I eat " << eat << " cucumbers" )
|
|
THEN( "I should have " << left << " cucumbers" ) {
|
|
REQUIRE( eatCucumbers( start, eat ) == left );
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// There are also some generic generator manipulators
|
|
TEST_CASE("Generators -- adapters", "[generators][generic]") {
|
|
// TODO: This won't work yet, introduce GENERATE_VAR?
|
|
//auto numbers = Catch::Generators::values({ 1, 2, 3, 4, 5, 6 });
|
|
SECTION("Filtering by predicate") {
|
|
SECTION("Basic usage") {
|
|
// This filters out all odd (false) numbers, giving [2, 4, 6]
|
|
auto i = GENERATE(filter([] (int val) { return val % 2 == 0; }, values({ 1, 2, 3, 4, 5, 6 })));
|
|
REQUIRE(i % 2 == 0);
|
|
}
|
|
SECTION("Throws if there are no matching values") {
|
|
using namespace Catch::Generators;
|
|
REQUIRE_THROWS_AS(filter([] (int) {return false; }, value(1)), Catch::GeneratorException);
|
|
}
|
|
}
|
|
SECTION("Shortening a range") {
|
|
// This takes the first 3 elements from the values, giving back [1, 2, 3]
|
|
auto i = GENERATE(take(3, values({ 1, 2, 3, 4, 5, 6 })));
|
|
REQUIRE(i < 4);
|
|
}
|
|
SECTION("Transforming elements") {
|
|
SECTION("Same type") {
|
|
// This doubles values [1, 2, 3] into [2, 4, 6]
|
|
auto i = GENERATE(map([] (int val) { return val * 2; }, values({ 1, 2, 3 })));
|
|
REQUIRE(i % 2 == 0);
|
|
}
|
|
SECTION("Different type") {
|
|
// This takes a generator that returns ints and maps them into strings
|
|
auto i = GENERATE(map<std::string>([] (int val) { return std::to_string(val); }, values({ 1, 2, 3 })));
|
|
REQUIRE(i.size() == 1);
|
|
}
|
|
SECTION("Different deduced type") {
|
|
// This takes a generator that returns ints and maps them into strings
|
|
auto i = GENERATE(map([] (int val) { return std::to_string(val); }, values({ 1, 2, 3 })));
|
|
REQUIRE(i.size() == 1);
|
|
}
|
|
}
|
|
SECTION("Repeating a generator") {
|
|
// This will return values [1, 2, 3, 1, 2, 3]
|
|
auto j = GENERATE(repeat(2, values({ 1, 2, 3 })));
|
|
REQUIRE(j > 0);
|
|
}
|
|
SECTION("Chunking a generator into sized pieces") {
|
|
SECTION("Number of elements in source is divisible by chunk size") {
|
|
auto chunk2 = GENERATE(chunk(2, values({ 1, 1, 2, 2, 3, 3 })));
|
|
REQUIRE(chunk2.size() == 2);
|
|
REQUIRE(chunk2.front() == chunk2.back());
|
|
}
|
|
SECTION("Number of elements in source is not divisible by chunk size") {
|
|
auto chunk2 = GENERATE(chunk(2, values({ 1, 1, 2, 2, 3 })));
|
|
REQUIRE(chunk2.size() == 2);
|
|
REQUIRE(chunk2.front() == chunk2.back());
|
|
REQUIRE(chunk2.front() < 3);
|
|
}
|
|
SECTION("Chunk size of zero") {
|
|
auto chunk2 = GENERATE(take(3, chunk(0, value(1))));
|
|
REQUIRE(chunk2.size() == 0);
|
|
}
|
|
SECTION("Throws on too small generators") {
|
|
using namespace Catch::Generators;
|
|
REQUIRE_THROWS_AS(chunk(2, value(1)), Catch::GeneratorException);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Note that because of the non-reproducibility of distributions,
|
|
// anything involving the random generators cannot be part of approvals
|
|
TEST_CASE("Random generator", "[generators][approvals]") {
|
|
SECTION("Infer int from integral arguments") {
|
|
auto val = GENERATE(take(4, random(0, 1)));
|
|
STATIC_REQUIRE(std::is_same<decltype(val), int>::value);
|
|
REQUIRE(0 <= val);
|
|
REQUIRE(val <= 1);
|
|
}
|
|
SECTION("Infer double from double arguments") {
|
|
auto val = GENERATE(take(4, random(0., 1.)));
|
|
STATIC_REQUIRE(std::is_same<decltype(val), double>::value);
|
|
REQUIRE(0. <= val);
|
|
REQUIRE(val < 1);
|
|
}
|
|
}
|
|
|
|
|
|
TEST_CASE("Nested generators and captured variables", "[generators]") {
|
|
// Workaround for old libstdc++
|
|
using record = std::tuple<int, int>;
|
|
// Set up 3 ranges to generate numbers from
|
|
auto extent = GENERATE(table<int, int>({
|
|
record{3, 7},
|
|
record{-5, -3},
|
|
record{90, 100}
|
|
}));
|
|
|
|
auto from = std::get<0>(extent);
|
|
auto to = std::get<1>(extent);
|
|
|
|
auto values = GENERATE_COPY(range(from, to));
|
|
REQUIRE(values > -6);
|
|
}
|
|
|
|
namespace {
|
|
size_t call_count = 0;
|
|
size_t test_count = 0;
|
|
std::vector<int> make_data() {
|
|
return { 1, 3, 5, 7, 9, 11 };
|
|
}
|
|
std::vector<int> make_data_counted() {
|
|
++call_count;
|
|
return make_data();
|
|
}
|
|
}
|
|
|
|
#if defined(__clang__)
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wexit-time-destructors"
|
|
#endif
|
|
|
|
TEST_CASE("Copy and then generate a range", "[generators]") {
|
|
SECTION("from var and iterators") {
|
|
static auto data = make_data();
|
|
|
|
// It is important to notice that a generator is only initialized
|
|
// **once** per run. What this means is that modifying data will not
|
|
// modify the underlying generator.
|
|
auto elem = GENERATE_REF(from_range(data.begin(), data.end()));
|
|
REQUIRE(elem % 2 == 1);
|
|
}
|
|
SECTION("From a temporary container") {
|
|
auto elem = GENERATE(from_range(make_data_counted()));
|
|
++test_count;
|
|
REQUIRE(elem % 2 == 1);
|
|
}
|
|
SECTION("Final validation") {
|
|
REQUIRE(call_count == 1);
|
|
REQUIRE(make_data().size() == test_count);
|
|
}
|
|
}
|
|
|
|
TEST_CASE("#1913 - GENERATE inside a for loop should not keep recreating the generator", "[regression][generators]") {
|
|
static int counter = 0;
|
|
for (int i = 0; i < 3; ++i) {
|
|
int _ = GENERATE(1, 2);
|
|
(void)_;
|
|
++counter;
|
|
}
|
|
// There should be at most 6 (3 * 2) counter increments
|
|
REQUIRE(counter < 7);
|
|
}
|
|
|
|
TEST_CASE("#1913 - GENERATEs can share a line", "[regression][generators]") {
|
|
int i = GENERATE(1, 2); int j = GENERATE(3, 4);
|
|
REQUIRE(i != j);
|
|
}
|
|
|
|
|
|
#if defined(__clang__)
|
|
#pragma clang diagnostic pop
|
|
#endif
|