catch2/third_party/clara.hpp
Phil Nash da5964af78 Updated version of Clara (should fix Windows compile issues)
- embedded using new embed script
2017-06-20 18:03:47 +01:00

1212 lines
40 KiB
C++

// v1.0
// See https://github.com/philsquared/Clara
#ifndef CLARA_HPP_INCLUDED
#define CLARA_HPP_INCLUDED
#ifndef CLARA_CONFIG_CONSOLE_WIDTH
#define CLARA_CONFIG_CONSOLE_WIDTH 80
#endif
// ----------- #included from clara_textflow.hpp -----------
// TextFlowCpp
//
// A single-header library for wrapping and laying out basic text, by Phil Nash
//
// This work is licensed under the BSD 2-Clause license.
// See the accompanying LICENSE file, or the one at https://opensource.org/licenses/BSD-2-Clause
//
// This project is hosted at https://github.com/philsquared/textflowcpp
#ifndef CLARA_TEXTFLOW_HPP_INCLUDED
#define CLARA_TEXTFLOW_HPP_INCLUDED
#include <cassert>
#include <ostream>
#include <sstream>
#include <vector>
#ifndef CLARA_TEXTFLOW_CONFIG_CONSOLE_WIDTH
#define CLARA_TEXTFLOW_CONFIG_CONSOLE_WIDTH
#endif
namespace clara { namespace TextFlow
{
inline auto isWhitespace( char c ) -> bool {
static std::string chars = " \t\n\r";
return chars.find( c ) != std::string::npos;
}
inline auto isBreakableBefore( char c ) -> bool {
static std::string chars = "[({<|";
return chars.find( c ) != std::string::npos;
}
inline auto isBreakableAfter( char c ) -> bool {
static std::string chars = "])}>.,:;*+-=&/\\";
return chars.find( c ) != std::string::npos;
}
class Columns;
class Column {
std::vector<std::string> m_strings;
size_t m_width = TEXTFLOW_CONFIG_CONSOLE_WIDTH;
size_t m_indent = 0;
size_t m_initialIndent = std::string::npos;
public:
class iterator {
friend Column;
Column const& m_column;
size_t m_stringIndex = 0;
size_t m_pos = 0;
size_t m_len = 0;
bool m_suffix = false;
iterator( Column const& column, size_t stringIndex )
: m_column( column ),
m_stringIndex( stringIndex )
{}
auto line() const -> std::string const& { return m_column.m_strings[m_stringIndex]; }
auto isBoundary( size_t at ) const -> bool {
assert( at > 0 );
assert( at <= line().size() );
return at == line().size() ||
( isWhitespace( line()[at] ) && !isWhitespace( line()[at-1] ) ) ||
isBreakableBefore( line()[at] ) ||
isBreakableAfter( line()[at-1] );
}
void calcLength() {
assert( m_stringIndex < m_column.m_strings.size() );
m_suffix = false;
auto width = m_column.m_width-indent();
if( line().size() < m_pos + width ) {
m_len = line().size() - m_pos;
}
else {
size_t len = width;
while (len > 0 && !isBoundary(m_pos + len))
--len;
while (len > 0 && isWhitespace( line()[m_pos + len - 1] ))
--len;
if (len > 0) {
m_len = len;
} else {
m_suffix = true;
m_len = width - 1;
}
}
}
auto indent() const -> size_t {
auto initial = m_pos == 0 && m_stringIndex == 0 ? m_column.m_initialIndent : std::string::npos;
return initial == std::string::npos ? m_column.m_indent : initial;
}
auto addIndentAndSuffix(std::string const &plain) const -> std::string {
return std::string( indent(), ' ' ) + (m_suffix ? plain + "-" : plain);
}
public:
explicit iterator( Column const& column ) : m_column( column ) {
assert( m_column.m_width > m_column.m_indent );
assert( m_column.m_initialIndent == std::string::npos || m_column.m_width > m_column.m_initialIndent );
calcLength();
if( m_len == 0 )
m_stringIndex++; // Empty string
}
auto operator *() const -> std::string {
assert( m_stringIndex < m_column.m_strings.size() );
assert( m_pos < line().size() );
if( m_pos + m_column.m_width < line().size() )
return addIndentAndSuffix(line().substr(m_pos, m_len));
else
return addIndentAndSuffix(line().substr(m_pos));
}
auto operator ++() -> iterator& {
m_pos += m_len;
while( m_pos < line().size() && isWhitespace( line()[m_pos] ) )
++m_pos;
if( m_pos == line().size() ) {
m_pos = 0;
++m_stringIndex;
}
if( m_stringIndex < m_column.m_strings.size() )
calcLength();
return *this;
}
auto operator ++(int) -> iterator {
iterator prev( *this );
operator++();
return prev;
}
auto operator ==( iterator const& other ) const -> bool {
return
m_pos == other.m_pos &&
m_stringIndex == other.m_stringIndex &&
&m_column == &other.m_column;
}
auto operator !=( iterator const& other ) const -> bool {
return !operator==( other );
}
};
using const_iterator = iterator;
explicit Column( std::string const& text ) { m_strings.push_back( text ); }
auto width( size_t newWidth ) -> Column& {
assert( newWidth > 0 );
m_width = newWidth;
return *this;
}
auto indent( size_t newIndent ) -> Column& {
m_indent = newIndent;
return *this;
}
auto initialIndent( size_t newIndent ) -> Column& {
m_initialIndent = newIndent;
return *this;
}
auto width() const -> size_t { return m_width; }
auto begin() const -> iterator { return iterator( *this ); }
auto end() const -> iterator { return { *this, m_strings.size() }; }
inline friend std::ostream& operator << ( std::ostream& os, Column const& col ) {
bool first = true;
for( auto line : col ) {
if( first )
first = false;
else
os << "\n";
os << line;
}
return os;
}
auto operator + ( Column const& other ) -> Columns;
auto toString() const -> std::string {
std::ostringstream oss;
oss << *this;
return oss.str();
}
};
class Spacer : public Column {
public:
explicit Spacer( size_t spaceWidth ) : Column( "" ) {
width( spaceWidth );
}
};
class Columns {
std::vector<Column> m_columns;
public:
class iterator {
friend Columns;
struct EndTag {};
std::vector<Column> const& m_columns;
std::vector<Column::iterator> m_iterators;
size_t m_activeIterators;
iterator( Columns const& columns, EndTag )
: m_columns( columns.m_columns ),
m_activeIterators( 0 )
{
m_iterators.reserve( m_columns.size() );
for( auto const& col : m_columns )
m_iterators.push_back( col.end() );
}
public:
explicit iterator( Columns const& columns )
: m_columns( columns.m_columns ),
m_activeIterators( m_columns.size() )
{
m_iterators.reserve( m_columns.size() );
for( auto const& col : m_columns )
m_iterators.push_back( col.begin() );
}
auto operator ==( iterator const& other ) const -> bool {
return m_iterators == other.m_iterators;
}
auto operator !=( iterator const& other ) const -> bool {
return m_iterators != other.m_iterators;
}
auto operator *() const -> std::string {
std::string row, padding;
for( size_t i = 0; i < m_columns.size(); ++i ) {
auto width = m_columns[i].width();
if( m_iterators[i] != m_columns[i].end() ) {
std::string col = *m_iterators[i];
row += padding + col;
if( col.size() < width )
padding = std::string( width - col.size(), ' ' );
else
padding = "";
}
else {
padding += std::string( width, ' ' );
}
}
return row;
}
auto operator ++() -> iterator& {
for( size_t i = 0; i < m_columns.size(); ++i ) {
if (m_iterators[i] != m_columns[i].end())
++m_iterators[i];
}
return *this;
}
auto operator ++(int) -> iterator {
iterator prev( *this );
operator++();
return prev;
}
};
using const_iterator = iterator;
auto begin() const -> iterator { return iterator( *this ); }
auto end() const -> iterator { return { *this, iterator::EndTag() }; }
auto operator += ( Column const& col ) -> Columns& {
m_columns.push_back( col );
return *this;
}
auto operator + ( Column const& col ) -> Columns {
Columns combined = *this;
combined += col;
return combined;
}
inline friend std::ostream& operator << ( std::ostream& os, Columns const& cols ) {
bool first = true;
for( auto line : cols ) {
if( first )
first = false;
else
os << "\n";
os << line;
}
return os;
}
auto toString() const -> std::string {
std::ostringstream oss;
oss << *this;
return oss.str();
}
};
inline auto Column::operator + ( Column const& other ) -> Columns {
Columns cols;
cols += *this;
cols += other;
return cols;
}
}} // namespace clara::TextFlow
#endif // CLARA_TEXTFLOW_HPP_INCLUDED
// ----------- end of #include from clara_textflow.hpp -----------
// ........... back in clara.hpp
#include <memory>
#include <set>
#include <algorithm>
namespace clara {
namespace detail {
// Traits for extracting arg and return type of lambdas (for single argument lambdas)
template<typename L>
struct UnaryLambdaTraits : UnaryLambdaTraits<decltype(&L::operator())> {};
template<typename ClassT, typename ReturnT, typename... Args>
struct UnaryLambdaTraits<ReturnT(ClassT::*)(Args...) const> {
static const bool isValid = false;
};
template<typename ClassT, typename ReturnT, typename ArgT>
struct UnaryLambdaTraits<ReturnT(ClassT::*)(ArgT) const> {
static const bool isValid = true;
using ArgType = typename std::remove_const<typename std::remove_reference<ArgT>::type>::type;;
using ReturnType = ReturnT;
};
class TokenStream;
// Transport for raw args (copied from main args, or supplied via init list for testing)
class Args {
friend TokenStream;
std::string m_exeName;
std::vector<std::string> m_args;
public:
Args(int argc, char *argv[]) {
m_exeName = argv[0];
for (int i = 1; i < argc; ++i)
m_args.push_back(argv[i]);
}
Args(std::initializer_list<std::string> args)
: m_exeName( *args.begin() ),
m_args( args.begin()+1, args.end() )
{}
auto exeName() const -> std::string {
return m_exeName;
}
};
// Wraps a token coming from a token stream. These may not directly correspond to strings as a single string
// may encode an option + its argument if the : or = form is used
enum class TokenType {
Option, Argument
};
struct Token {
TokenType type;
std::string token;
};
// Abstracts iterators into args as a stream of tokens, with option arguments uniformly handled
class TokenStream {
using Iterator = std::vector<std::string>::const_iterator;
Iterator it;
Iterator itEnd;
std::vector<Token> m_tokenBuffer;
void loadBuffer() {
m_tokenBuffer.resize(0);
// Skip any empty strings
while (it != itEnd && it->empty())
++it;
if (it != itEnd) {
auto const &next = *it;
if (next[0] == '-' || next[0] == '/') {
auto delimiterPos = next.find_first_of(" :=");
if (delimiterPos != std::string::npos) {
m_tokenBuffer.push_back({TokenType::Option, next.substr(0, delimiterPos)});
m_tokenBuffer.push_back({TokenType::Argument, next.substr(delimiterPos + 1)});
} else {
if (next[1] != '-' && next.size() > 2) {
std::string opt = "- ";
for (size_t i = 1; i < next.size(); ++i) {
opt[1] = next[i];
m_tokenBuffer.push_back({TokenType::Option, opt});
}
} else {
m_tokenBuffer.push_back({TokenType::Option, next});
}
}
} else {
m_tokenBuffer.push_back({TokenType::Argument, next});
}
}
}
public:
explicit TokenStream(Args const &args) : TokenStream(args.m_args.begin(), args.m_args.end()) {}
TokenStream(Iterator it, Iterator itEnd) : it(it), itEnd(itEnd) {
loadBuffer();
}
explicit operator bool() const {
return !m_tokenBuffer.empty() || it != itEnd;
}
auto count() const -> size_t { return m_tokenBuffer.size() + (itEnd - it); }
auto operator*() const -> Token {
assert(!m_tokenBuffer.empty());
return m_tokenBuffer.front();
}
auto operator->() const -> Token const * {
assert(!m_tokenBuffer.empty());
return &m_tokenBuffer.front();
}
auto operator++() -> TokenStream & {
if (m_tokenBuffer.size() >= 2) {
m_tokenBuffer.erase(m_tokenBuffer.begin());
} else {
if (it != itEnd)
++it;
loadBuffer();
}
return *this;
}
};
class ResultBase {
public:
enum Type {
Ok, LogicError, RuntimeError
};
protected:
ResultBase(Type type) : m_type(type) {}
virtual void enforceOk() const = 0;
Type m_type;
};
template<typename T>
class ResultValueBase : public ResultBase {
public:
auto value() const -> T const & {
enforceOk();
return m_value;
}
protected:
ResultValueBase(Type type) : ResultBase(type) {}
ResultValueBase(ResultValueBase const &other) : ResultBase(other) {
if (m_type == ResultBase::Ok)
new(&m_value) T(other.m_value);
}
ResultValueBase(Type, T const &value) : ResultBase(Ok) {
new(&m_value) T(value);
}
auto operator=(ResultValueBase const &other) -> ResultValueBase & {
if (m_type == ResultBase::Ok)
m_value.~T();
ResultBase::operator=(other);
if (m_type == ResultBase::Ok)
new(&m_value) T(other.m_value);
return *this;
}
~ResultValueBase() {
if (m_type == Ok)
m_value.~T();
}
union {
T m_value;
};
};
template<>
class ResultValueBase<void> : public ResultBase {
protected:
using ResultBase::ResultBase;
};
template<typename T = void>
class BasicResult : public ResultValueBase<T> {
public:
template<typename U>
explicit BasicResult(BasicResult<U> const &other)
: ResultValueBase<T>(other.type()),
m_errorMessage(other.errorMessage()) {
assert(type() != ResultBase::Ok);
}
static auto ok() -> BasicResult { return {ResultBase::Ok}; }
template<typename U>
static auto ok(U const &value) -> BasicResult { return {ResultBase::Ok, value}; }
static auto logicError(std::string const &message) -> BasicResult { return {ResultBase::LogicError, message}; }
static auto runtimeError(std::string const &message) -> BasicResult {
return {ResultBase::RuntimeError, message};
}
explicit operator bool() const { return m_type == ResultBase::Ok; }
auto type() const -> ResultBase::Type { return m_type; }
auto errorMessage() const -> std::string { return m_errorMessage; }
protected:
virtual void enforceOk() const {
// !TBD: If no exceptions, std::terminate here or something
switch (m_type) {
case ResultBase::LogicError:
throw std::logic_error(m_errorMessage);
case ResultBase::RuntimeError:
throw std::runtime_error(m_errorMessage);
case ResultBase::Ok:
break;
}
}
std::string m_errorMessage; // Only populated if resultType is an error
BasicResult(ResultBase::Type type, std::string const &message)
: ResultValueBase<T>(type),
m_errorMessage(message) {
assert(m_type != ResultBase::Ok);
}
using ResultValueBase<T>::ResultValueBase;
using ResultBase::m_type;
};
enum class ParseResultType {
Matched, NoMatch, ShortCircuitAll, ShortCircuitSame
};
class ParseState {
public:
ParseState(ParseResultType type, TokenStream const &remainingTokens)
: m_type(type),
m_remainingTokens(remainingTokens) {}
auto type() const -> ParseResultType { return m_type; }
auto remainingTokens() const -> TokenStream { return m_remainingTokens; }
private:
ParseResultType m_type;
TokenStream m_remainingTokens;
};
using Result = BasicResult<void>;
using ParserResult = BasicResult<ParseResultType>;
using InternalParseResult = BasicResult<ParseState>;
struct HelpColumns {
std::string left;
std::string right;
};
template<typename T>
inline auto convertInto(std::string const &source, T& target) -> ParserResult {
std::stringstream ss;
ss << source;
ss >> target;
if (ss.fail())
return ParserResult::runtimeError("Unable to convert '" + source + "' to destination type");
else
return ParserResult::ok(ParseResultType::Matched);
}
inline auto convertInto(std::string const &source, std::string& target) -> ParserResult {
target = source;
return ParserResult::ok(ParseResultType::Matched);
}
inline auto convertInto(std::string const &source, bool &target) -> ParserResult {
std::string srcLC = source;
std::transform(srcLC.begin(), srcLC.end(), srcLC.begin(), [](char c) { return static_cast<char>( ::tolower(c) ); } );
if (srcLC == "y" || srcLC == "1" || srcLC == "true" || srcLC == "yes" || srcLC == "on")
target = true;
else if (srcLC == "n" || srcLC == "0" || srcLC == "false" || srcLC == "no" || srcLC == "off")
target = false;
else
return ParserResult::runtimeError("Expected a boolean value but did not recognise: '" + source + "'");
return ParserResult::ok(ParseResultType::Matched);
}
struct BoundRefBase {
BoundRefBase() = default;
BoundRefBase(BoundRefBase const &) = delete;
BoundRefBase(BoundRefBase &&) = delete;
BoundRefBase &operator=(BoundRefBase const &) = delete;
BoundRefBase &operator=(BoundRefBase &&) = delete;
virtual ~BoundRefBase() = default;
virtual auto isFlag() const -> bool = 0;
virtual auto isContainer() const -> bool { return false; }
virtual auto setValue(std::string const &arg) -> ParserResult = 0;
virtual auto setFlag(bool flag) -> ParserResult = 0;
};
struct BoundValueRefBase : BoundRefBase {
auto isFlag() const -> bool override { return false; }
auto setFlag(bool) -> ParserResult override {
return ParserResult::logicError("Flags can only be set on boolean fields");
}
};
struct BoundFlagRefBase : BoundRefBase {
auto isFlag() const -> bool override { return true; }
auto setValue(std::string const &arg) -> ParserResult override {
bool flag;
auto result = convertInto(arg, flag);
if (result)
setFlag(flag);
return result;
}
};
template<typename T>
struct BoundRef : BoundValueRefBase {
T &m_ref;
explicit BoundRef(T &ref) : m_ref(ref) {}
auto setValue(std::string const &arg) -> ParserResult override {
return convertInto(arg, m_ref);
}
};
template<typename T>
struct BoundRef<std::vector<T>> : BoundValueRefBase {
std::vector<T> &m_ref;
explicit BoundRef(std::vector<T> &ref) : m_ref(ref) {}
auto isContainer() const -> bool override { return true; }
auto setValue(std::string const &arg) -> ParserResult override {
T temp;
auto result = convertInto(arg, temp);
if (result)
m_ref.push_back(temp);
return result;
}
};
struct BoundFlagRef : BoundFlagRefBase {
bool &m_ref;
explicit BoundFlagRef(bool &ref) : m_ref(ref) {}
auto setFlag(bool flag) -> ParserResult override {
m_ref = flag;
return ParserResult::ok(ParseResultType::Matched);
}
};
template<typename ReturnType>
struct LambdaInvoker {
static_assert(std::is_same<ReturnType, ParserResult>::value, "Lambda must return void or clara::ParserResult");
template<typename L, typename ArgType>
static auto invoke(L const &lambda, ArgType const &arg) -> ParserResult {
return lambda(arg);
}
};
template<>
struct LambdaInvoker<void> {
template<typename L, typename ArgType>
static auto invoke(L const &lambda, ArgType const &arg) -> ParserResult {
lambda(arg);
return ParserResult::ok(ParseResultType::Matched);
}
};
template<typename ArgType, typename L>
inline auto invokeLambda(L const &lambda, std::string const &arg) -> ParserResult {
ArgType temp;
auto result = convertInto(arg, temp);
return !result
? result
: LambdaInvoker<typename UnaryLambdaTraits<L>::ReturnType>::invoke(lambda, temp);
};
template<typename L>
struct BoundLambda : BoundValueRefBase {
L m_lambda;
static_assert( UnaryLambdaTraits<L>::isValid, "Supplied lambda must take exactly one argument" );
explicit BoundLambda(L const &lambda) : m_lambda(lambda) {}
auto setValue(std::string const &arg) -> ParserResult override {
return invokeLambda<typename UnaryLambdaTraits<L>::ArgType>(m_lambda, arg);
}
};
template<typename L>
struct BoundFlagLambda : BoundFlagRefBase {
L m_lambda;
static_assert( UnaryLambdaTraits<L>::isValid, "Supplied lambda must take exactly one argument" );
static_assert( std::is_same<typename UnaryLambdaTraits<L>::ArgType, bool>::value, "flags must be boolean" );
explicit BoundFlagLambda(L const &lambda) : m_lambda(lambda) {}
auto setFlag(bool flag) -> ParserResult override {
return LambdaInvoker<typename UnaryLambdaTraits<L>::ReturnType>::invoke(m_lambda, flag);
}
};
enum class Optionality {
Optional, Required
};
struct Parser;
class ParserBase {
public:
virtual auto validate() const -> Result { return Result::ok(); }
virtual auto parse( std::string const& exeName, TokenStream const &tokens) const -> InternalParseResult = 0;
virtual auto cardinality() const -> size_t { return 1; }
auto parse(Args const &args) const -> InternalParseResult {
return parse( args.exeName(), TokenStream(args));
}
};
template<typename DerivedT>
class ComposableParserImpl : public ParserBase {
public:
template<typename T>
auto operator+(T const &other) const -> Parser;
};
// Common code and state for Args and Opts
template<typename DerivedT>
class ParserRefImpl : public ComposableParserImpl<DerivedT> {
protected:
Optionality m_optionality = Optionality::Optional;
std::shared_ptr<BoundRefBase> m_ref;
std::string m_hint;
std::string m_description;
explicit ParserRefImpl(std::shared_ptr<BoundRefBase> const &ref) : m_ref(ref) {}
public:
template<typename T>
ParserRefImpl(T &ref, std::string const &hint) : m_ref(std::make_shared<BoundRef<T>>(ref)), m_hint(hint) {}
template<typename LambdaT>
ParserRefImpl(LambdaT const &ref, std::string const &hint) : m_ref(std::make_shared<BoundLambda<LambdaT>>(ref)),
m_hint(hint) {}
auto operator()(std::string const &description) -> DerivedT & {
m_description = description;
return static_cast<DerivedT &>( *this );
}
auto optional() -> DerivedT & {
m_optionality = Optionality::Optional;
return static_cast<DerivedT &>( *this );
};
auto required() -> DerivedT & {
m_optionality = Optionality::Required;
return static_cast<DerivedT &>( *this );
};
auto isOptional() const -> bool {
return m_optionality == Optionality::Optional;
}
auto cardinality() const -> size_t override {
if (m_ref->isContainer())
return 0;
else
return 1;
}
auto hint() const -> std::string { return m_hint; }
};
class ExeName : public ComposableParserImpl<ExeName> {
std::shared_ptr<std::string> m_name;
std::shared_ptr<BoundRefBase> m_ref;
template<typename LambdaT>
static auto makeRef(LambdaT const &lambda) -> std::shared_ptr<BoundRefBase> {
return std::make_shared<BoundLambda<LambdaT>>(lambda);
}
public:
ExeName() : m_name(std::make_shared<std::string>("<executable>")) {}
explicit ExeName(std::string &ref) : ExeName() {
m_ref = std::make_shared<BoundRef<std::string>>( ref );
}
template<typename LambdaT>
explicit ExeName( LambdaT const& lambda ) : ExeName() {
m_ref = std::make_shared<BoundLambda<LambdaT>>( lambda );
}
// The exe name is not parsed out of the normal tokens, but is handled specially
auto parse( std::string const&, TokenStream const &tokens ) const -> InternalParseResult override {
return InternalParseResult::ok(ParseState(ParseResultType::NoMatch, tokens));
}
auto name() const -> std::string { return *m_name; }
auto set( std::string const& newName ) -> ParserResult {
auto lastSlash = newName.find_last_of( "\\/" );
auto filename = (lastSlash == std::string::npos)
? newName
: newName.substr( lastSlash+1 );
*m_name = filename;
if( m_ref )
return m_ref->setValue( filename );
else
return ParserResult::ok( ParseResultType::Matched );
}
};
class Arg : public ParserRefImpl<Arg> {
public:
using ParserRefImpl::ParserRefImpl;
auto parse(std::string const &, TokenStream const &tokens) const -> InternalParseResult override {
auto validationResult = validate();
if (!validationResult)
return InternalParseResult(validationResult);
auto remainingTokens = tokens;
auto const &token = *remainingTokens;
if (token.type != TokenType::Argument)
return InternalParseResult::ok(ParseState(ParseResultType::NoMatch, remainingTokens));
auto result = m_ref->setValue(remainingTokens->token);
if (!result)
return InternalParseResult(result);
else
return InternalParseResult::ok(ParseState(ParseResultType::Matched, ++remainingTokens));
}
};
inline auto normaliseOpt(std::string const &optName) -> std::string {
if (optName[0] == '/')
return "-" + optName.substr(1);
else
return optName;
}
class Opt : public ParserRefImpl<Opt> {
protected:
std::vector<std::string> m_optNames;
public:
using ParserRefImpl::ParserRefImpl;
template<typename LambdaT>
explicit Opt( LambdaT const &ref ) : ParserRefImpl(std::make_shared<BoundFlagLambda<LambdaT>>(ref)) {}
explicit Opt( bool &ref ) : ParserRefImpl(std::make_shared<BoundFlagRef>(ref)) {}
auto operator[](std::string const &optName) -> Opt & {
m_optNames.push_back(optName);
return *this;
}
auto getHelpColumns() const -> std::vector<HelpColumns> {
std::ostringstream oss;
bool first = true;
for (auto const &opt : m_optNames) {
if (first)
first = false;
else
oss << ", ";
oss << opt;
}
if (!m_hint.empty())
oss << " <" << m_hint << ">";
return {{oss.str(), m_description}};
}
auto isMatch(std::string const &optToken) const -> bool {
#ifdef CLARA_PLATFORM_WINDOWS
auto normalisedToken = normaliseOpt( optToken );
#else
auto const &normalisedToken = optToken;
#endif
for (auto const &name : m_optNames) {
if (normaliseOpt(name) == normalisedToken)
return true;
}
return false;
}
using ParserBase::parse;
auto parse( std::string const&, TokenStream const &tokens ) const -> InternalParseResult override {
auto validationResult = validate();
if (!validationResult)
return InternalParseResult(validationResult);
auto remainingTokens = tokens;
if (remainingTokens && remainingTokens->type == TokenType::Option) {
auto const &token = *remainingTokens;
if (isMatch(token.token)) {
if (m_ref->isFlag()) {
auto result = m_ref->setFlag(true);
if (!result)
return InternalParseResult(result);
if (result.value() == ParseResultType::ShortCircuitAll)
return InternalParseResult::ok(ParseState(result.value(), remainingTokens));
} else {
++remainingTokens;
if (!remainingTokens)
return InternalParseResult::runtimeError("Expected argument following " + token.token);
auto const &argToken = *remainingTokens;
if (argToken.type != TokenType::Argument)
return InternalParseResult::runtimeError("Expected argument following " + token.token);
auto result = m_ref->setValue(argToken.token);
if (!result)
return InternalParseResult(result);
if (result.value() == ParseResultType::ShortCircuitAll)
return InternalParseResult::ok(ParseState(result.value(), remainingTokens));
}
return InternalParseResult::ok(ParseState(ParseResultType::Matched, ++remainingTokens));
}
}
return InternalParseResult::ok(ParseState(ParseResultType::NoMatch, remainingTokens));
}
auto validate() const -> Result override {
if (m_optNames.empty())
return Result::logicError("No options supplied to Opt");
for (auto const &name : m_optNames) {
if (name.empty())
return Result::logicError("Option name cannot be empty");
if (name[0] != '-' && name[0] != '/')
return Result::logicError("Option name must begin with '-' or '/'");
}
return ParserRefImpl::validate();
}
};
struct Help : Opt {
Help( bool &showHelpFlag )
: Opt([&]( bool flag ) {
showHelpFlag = flag;
return ParserResult::ok(ParseResultType::ShortCircuitAll);
})
{
static_cast<Opt &>(*this)
("display usage information")
["-?"]["-h"]["--help"]
.optional();
}
};
struct Parser : ParserBase {
mutable ExeName m_exeName;
std::vector<Opt> m_options;
std::vector<Arg> m_args;
auto operator+=(ExeName const &exeName) -> Parser & {
m_exeName = exeName;
return *this;
}
auto operator+=(Arg const &arg) -> Parser & {
m_args.push_back(arg);
return *this;
}
auto operator+=(Opt const &opt) -> Parser & {
m_options.push_back(opt);
return *this;
}
auto operator+=(Parser const &other) -> Parser & {
m_options.insert(m_options.end(), other.m_options.begin(), other.m_options.end());
m_args.insert(m_args.end(), other.m_args.begin(), other.m_args.end());
return *this;
}
template<typename T>
auto operator+(T const &other) const -> Parser {
return Parser(*this) += other;
}
auto getHelpColumns() const -> std::vector<HelpColumns> {
std::vector<HelpColumns> cols;
for (auto const &o : m_options) {
auto childCols = o.getHelpColumns();
cols.insert(cols.end(), childCols.begin(), childCols.end());
}
return cols;
}
void writeToStream(std::ostream &os) const {
if (!m_exeName.name().empty()) {
os << "usage:\n" << " " << m_exeName.name() << " ";
bool required = true, first = true;
for (auto const &arg : m_args) {
if (first)
first = false;
else
os << " ";
if (arg.isOptional() && required) {
os << "[";
required = false;
}
os << "<" << arg.hint() << ">";
if (arg.cardinality() == 0)
os << " ... ";
}
if (!required)
os << "]";
if (!m_options.empty())
os << " options";
os << "\n\nwhere options are:" << std::endl;
}
auto rows = getHelpColumns();
size_t consoleWidth = CLARA_CONFIG_CONSOLE_WIDTH;
size_t optWidth = 0;
for (auto const &cols : rows)
optWidth = std::max(optWidth, cols.left.size() + 2);
for (auto const &cols : rows) {
auto row =
TextFlow::Column(cols.left).width(optWidth).indent(2) +
TextFlow::Spacer(4) +
TextFlow::Column(cols.right).width(consoleWidth - 7 - optWidth);
os << row << std::endl;
}
}
friend auto operator<<(std::ostream &os, Parser const &parser) -> std::ostream & {
parser.writeToStream(os);
return os;
}
auto validate() const -> Result override {
for (auto const &opt : m_options) {
auto result = opt.validate();
if (!result)
return result;
}
for (auto const &arg : m_args) {
auto result = arg.validate();
if (!result)
return result;
}
return Result::ok();
}
using ParserBase::parse;
auto parse( std::string const& exeName, TokenStream const &tokens) const -> InternalParseResult override {
std::vector<ParserBase const *> allParsers;
allParsers.reserve(m_args.size() + m_options.size());
std::set<ParserBase const *> requiredParsers;
for (auto const &opt : m_options) {
allParsers.push_back(&opt);
if (!opt.isOptional())
requiredParsers.insert(&opt);
}
size_t optionalArgs = 0;
for (auto const &arg : m_args) {
allParsers.push_back(&arg);
if (!arg.isOptional()) {
if (optionalArgs > 0)
return InternalParseResult::logicError(
"Required arguments must preceed any optional arguments");
else
++optionalArgs;
requiredParsers.insert(&arg);
}
}
m_exeName.set( exeName );
auto result = InternalParseResult::ok(ParseState(ParseResultType::NoMatch, tokens));
while (result.value().remainingTokens()) {
auto remainingTokenCount = result.value().remainingTokens().count();
for (auto parser : allParsers) {
result = parser->parse( exeName, result.value().remainingTokens() );
if (!result || result.value().type() != ParseResultType::NoMatch) {
if (parser->cardinality() == 1)
allParsers.erase(std::remove(allParsers.begin(), allParsers.end(), parser),
allParsers.end());
requiredParsers.erase(parser);
break;
}
}
if (!result || remainingTokenCount == result.value().remainingTokens().count())
return result;
}
// !TBD Check missing required options
return result;
}
};
template<typename DerivedT>
template<typename T>
auto ComposableParserImpl<DerivedT>::operator+(T const &other) const -> Parser {
return Parser() + static_cast<DerivedT const &>( *this ) + other;
}
} // namespace detail
// A Combined parser
using detail::Parser;
// A parser for options
using detail::Opt;
// A parser for arguments
using detail::Arg;
// Wrapper for argc, argv from main()
using detail::Args;
// Specifies the name of the executable
using detail::ExeName;
// Convenience wrapper for option parser that specifies the help option
using detail::Help;
// enum of result types from a parse
using detail::ParseResultType;
// Result type for parser operation
using detail::ParserResult;
} // namespace clara
#endif // CLARA_HPP_INCLUDED