catch2/projects/SelfTest/UsageTests/Matchers.tests.cpp
Alecto Irene Perez dba29b60d6
Fixed #2272: Compilation failure with C++20 (#2297)
* Suppressed warning for comma-in-indexing-operator in tests that check
  that specific behaviour.
* Made deprecated (and removed) allocator usings conditional on the tests
  being compiled with old version of MSVC that still requires them.

Fixes #2272
2021-10-04 21:11:03 +02:00

679 lines
26 KiB
C++

/*
* Created by Phil on 21/02/2017.
* Copyright 2017 Two Blue Cubes Ltd. All rights reserved.
*
* Distributed under the Boost Software License, Version 1.0. (See accompanying
* file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include "catch.hpp"
#include <sstream>
#include <algorithm>
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wweak-vtables"
#pragma clang diagnostic ignored "-Wpadded"
#endif
namespace { namespace MatchersTests {
#ifndef CATCH_CONFIG_DISABLE_MATCHERS
#ifndef MATCHERS_TEST_HELPERS_INCLUDED // Don't compile this more than once per TU
#define MATCHERS_TEST_HELPERS_INCLUDED
inline const char *testStringForMatching() {
return "this string contains 'abc' as a substring";
}
inline const char *testStringForMatching2() {
return "some completely different text that contains one common word";
}
inline bool alwaysTrue(int) { return true; }
inline bool alwaysFalse(int) { return false; }
#ifdef _MSC_VER
#pragma warning(disable:4702) // Unreachable code -- MSVC 19 (VS 2015) sees right through the indirection
#endif
#include <exception>
struct SpecialException : std::exception {
SpecialException(int i_) : i(i_) {}
char const* what() const noexcept override {
return "SpecialException::what";
}
int i;
};
struct DerivedException : std::exception {
char const* what() const noexcept override {
return "DerivedException::what";
}
};
void doesNotThrow() {}
[[noreturn]]
void throwsSpecialException(int i) {
throw SpecialException{i};
}
[[noreturn]]
void throwsAsInt(int i) {
throw i;
}
[[noreturn]]
void throwsDerivedException() {
throw DerivedException{};
}
class ExceptionMatcher : public Catch::MatcherBase<SpecialException> {
int m_expected;
public:
ExceptionMatcher(int i) : m_expected(i) {}
bool match(SpecialException const &se) const override {
return se.i == m_expected;
}
std::string describe() const override {
std::ostringstream ss;
ss << "special exception has value of " << m_expected;
return ss.str();
}
};
#endif
using namespace Catch::Matchers;
#ifdef __DJGPP__
float nextafter(float from, float to)
{
return ::nextafterf(from, to);
}
double nextafter(double from, double to)
{
return ::nextafter(from, to);
}
#else
using std::nextafter;
#endif
TEST_CASE("String matchers", "[matchers]") {
REQUIRE_THAT(testStringForMatching(), Contains("string"));
REQUIRE_THAT(testStringForMatching(), Contains("string", Catch::CaseSensitive::No));
CHECK_THAT(testStringForMatching(), Contains("abc"));
CHECK_THAT(testStringForMatching(), Contains("aBC", Catch::CaseSensitive::No));
CHECK_THAT(testStringForMatching(), StartsWith("this"));
CHECK_THAT(testStringForMatching(), StartsWith("THIS", Catch::CaseSensitive::No));
CHECK_THAT(testStringForMatching(), EndsWith("substring"));
CHECK_THAT(testStringForMatching(), EndsWith(" SuBsTrInG", Catch::CaseSensitive::No));
}
TEST_CASE("Contains string matcher", "[.][failing][matchers]") {
CHECK_THAT(testStringForMatching(), Contains("not there", Catch::CaseSensitive::No));
CHECK_THAT(testStringForMatching(), Contains("STRING"));
}
TEST_CASE("StartsWith string matcher", "[.][failing][matchers]") {
CHECK_THAT(testStringForMatching(), StartsWith("This String"));
CHECK_THAT(testStringForMatching(), StartsWith("string", Catch::CaseSensitive::No));
}
TEST_CASE("EndsWith string matcher", "[.][failing][matchers]") {
CHECK_THAT(testStringForMatching(), EndsWith("Substring"));
CHECK_THAT(testStringForMatching(), EndsWith("this", Catch::CaseSensitive::No));
}
TEST_CASE("Equals string matcher", "[.][failing][matchers]") {
CHECK_THAT(testStringForMatching(), Equals("this string contains 'ABC' as a substring"));
CHECK_THAT(testStringForMatching(), Equals("something else", Catch::CaseSensitive::No));
}
TEST_CASE("Equals", "[matchers]") {
CHECK_THAT(testStringForMatching(), Equals("this string contains 'abc' as a substring"));
CHECK_THAT(testStringForMatching(),
Equals("this string contains 'ABC' as a substring", Catch::CaseSensitive::No));
}
// <regex> does not work in libstdc++ 4.8, so we have to enable these tests only when they
// are expected to pass and cannot have them in baselines
TEST_CASE("Regex string matcher -- libstdc++-4.8 workaround", "[matchers][approvals]") {
// This is fiiiine
// Taken from an answer at
// https://stackoverflow.com/questions/12530406/is-gcc-4-8-or-earlier-buggy-about-regular-expressions
#if (!defined(__GNUC__)) || \
(__cplusplus >= 201103L && \
(!defined(__GLIBCXX__) || (__cplusplus >= 201402L) || \
(defined(_GLIBCXX_REGEX_DFS_QUANTIFIERS_LIMIT) || \
defined(_GLIBCXX_REGEX_STATE_LIMIT) || \
(defined(_GLIBCXX_RELEASE) && \
_GLIBCXX_RELEASE > 4))))
// DJGPP meets the above condition but <regex> does not work properly anyway
#ifndef __DJGPP__
REQUIRE_THAT(testStringForMatching(), Matches("this string contains 'abc' as a substring"));
REQUIRE_THAT(testStringForMatching(),
Matches("this string CONTAINS 'abc' as a substring", Catch::CaseSensitive::No));
REQUIRE_THAT(testStringForMatching(), Matches("^this string contains 'abc' as a substring$"));
REQUIRE_THAT(testStringForMatching(), Matches("^.* 'abc' .*$"));
REQUIRE_THAT(testStringForMatching(), Matches("^.* 'ABC' .*$", Catch::CaseSensitive::No));
#endif
#endif
REQUIRE_THAT(testStringForMatching2(), !Matches("this string contains 'abc' as a substring"));
}
TEST_CASE("Regex string matcher", "[matchers][.failing]") {
CHECK_THAT(testStringForMatching(), Matches("this STRING contains 'abc' as a substring"));
CHECK_THAT(testStringForMatching(), Matches("contains 'abc' as a substring"));
CHECK_THAT(testStringForMatching(), Matches("this string contains 'abc' as a"));
}
TEST_CASE("Matchers can be (AllOf) composed with the && operator", "[matchers][operators][operator&&]") {
CHECK_THAT(testStringForMatching(),
Contains("string") &&
Contains("abc") &&
Contains("substring") &&
Contains("contains"));
}
TEST_CASE("Matchers can be (AnyOf) composed with the || operator", "[matchers][operators][operator||]") {
CHECK_THAT(testStringForMatching(), Contains("string") || Contains("different") || Contains("random"));
CHECK_THAT(testStringForMatching2(), Contains("string") || Contains("different") || Contains("random"));
}
TEST_CASE("Matchers can be composed with both && and ||", "[matchers][operators][operator||][operator&&]") {
CHECK_THAT(testStringForMatching(), (Contains("string") || Contains("different")) && Contains("substring"));
}
TEST_CASE("Matchers can be composed with both && and || - failing",
"[matchers][operators][operator||][operator&&][.failing]") {
CHECK_THAT(testStringForMatching(), (Contains("string") || Contains("different")) && Contains("random"));
}
TEST_CASE("Matchers can be negated (Not) with the ! operator", "[matchers][operators][not]") {
CHECK_THAT(testStringForMatching(), !Contains("different"));
}
TEST_CASE("Matchers can be negated (Not) with the ! operator - failing",
"[matchers][operators][not][.failing]") {
CHECK_THAT(testStringForMatching(), !Contains("substring"));
}
template<typename T>
struct CustomAllocator : private std::allocator<T>
{
using size_type = size_t;
using difference_type = ptrdiff_t;
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using value_type = T;
template<typename U>
struct rebind
{ using other = CustomAllocator<U>; };
using propagate_on_container_move_assignment = std::true_type;
using is_always_equal = std::true_type;
CustomAllocator() = default;
CustomAllocator(const CustomAllocator& other)
: std::allocator<T>(other) { }
template<typename U>
CustomAllocator(const CustomAllocator<U>&) { }
~CustomAllocator() = default;
#if defined(_MSC_VER) && _MSVC_LANG < 201703L
using std::allocator<T>::address;
using std::allocator<T>::construct;
using std::allocator<T>::max_size;
using std::allocator<T>::destroy;
#endif
using std::allocator<T>::allocate;
using std::allocator<T>::deallocate;
};
TEST_CASE("Vector matchers", "[matchers][vector]") {
std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
std::vector<int> v2;
v2.push_back(1);
v2.push_back(2);
std::vector<double> v3;
v3.push_back(1);
v3.push_back(2);
v3.push_back(3);
std::vector<double> v4;
v4.push_back(1 + 1e-8);
v4.push_back(2 + 1e-8);
v4.push_back(3 + 1e-8);
std::vector<int, CustomAllocator<int>> v5;
v5.push_back(1);
v5.push_back(2);
v5.push_back(3);
std::vector<int, CustomAllocator<int>> v6;
v6.push_back(1);
v6.push_back(2);
std::vector<int> empty;
SECTION("Contains (element)") {
CHECK_THAT(v, VectorContains(1));
CHECK_THAT(v, VectorContains(2));
CHECK_THAT(v5, (VectorContains<int, CustomAllocator<int>>(2)));
}
SECTION("Contains (vector)") {
CHECK_THAT(v, Contains(v2));
CHECK_THAT(v, Contains<int>({ 1, 2 }));
CHECK_THAT(v5, (Contains<int, std::allocator<int>, CustomAllocator<int>>(v2)));
v2.push_back(3); // now exactly matches
CHECK_THAT(v, Contains(v2));
CHECK_THAT(v, Contains(empty));
CHECK_THAT(empty, Contains(empty));
CHECK_THAT(v5, (Contains<int, std::allocator<int>, CustomAllocator<int>>(v2)));
CHECK_THAT(v5, Contains(v6));
}
SECTION("Contains (element), composed") {
CHECK_THAT(v, VectorContains(1) && VectorContains(2));
}
SECTION("Equals") {
// Same vector
CHECK_THAT(v, Equals(v));
CHECK_THAT(empty, Equals(empty));
// Different vector with same elements
CHECK_THAT(v, Equals<int>({ 1, 2, 3 }));
v2.push_back(3);
CHECK_THAT(v, Equals(v2));
CHECK_THAT(v5, (Equals<int, std::allocator<int>, CustomAllocator<int>>(v2)));
v6.push_back(3);
CHECK_THAT(v5, Equals(v6));
}
SECTION("UnorderedEquals") {
CHECK_THAT(v, UnorderedEquals(v));
CHECK_THAT(v, UnorderedEquals<int>({ 3, 2, 1 }));
CHECK_THAT(empty, UnorderedEquals(empty));
auto permuted = v;
std::next_permutation(begin(permuted), end(permuted));
REQUIRE_THAT(permuted, UnorderedEquals(v));
std::reverse(begin(permuted), end(permuted));
REQUIRE_THAT(permuted, UnorderedEquals(v));
CHECK_THAT(v5, (UnorderedEquals<int, std::allocator<int>, CustomAllocator<int>>(permuted)));
auto v5_permuted = v5;
std::next_permutation(begin(v5_permuted), end(v5_permuted));
CHECK_THAT(v5_permuted, UnorderedEquals(v5));
}
}
TEST_CASE("Vector matchers that fail", "[matchers][vector][.][failing]") {
std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
std::vector<int> v2;
v2.push_back(1);
v2.push_back(2);
std::vector<double> v3;
v3.push_back(1);
v3.push_back(2);
v3.push_back(3);
std::vector<double> v4;
v4.push_back(1.1);
v4.push_back(2.1);
v4.push_back(3.1);
std::vector<int> empty;
SECTION("Contains (element)") {
CHECK_THAT(v, VectorContains(-1));
CHECK_THAT(empty, VectorContains(1));
}
SECTION("Contains (vector)") {
CHECK_THAT(empty, Contains(v));
v2.push_back(4);
CHECK_THAT(v, Contains(v2));
}
SECTION("Equals") {
CHECK_THAT(v, Equals(v2));
CHECK_THAT(v2, Equals(v));
CHECK_THAT(empty, Equals(v));
CHECK_THAT(v, Equals(empty));
}
SECTION("UnorderedEquals") {
CHECK_THAT(v, UnorderedEquals(empty));
CHECK_THAT(empty, UnorderedEquals(v));
auto permuted = v;
std::next_permutation(begin(permuted), end(permuted));
permuted.pop_back();
CHECK_THAT(permuted, UnorderedEquals(v));
std::reverse(begin(permuted), end(permuted));
CHECK_THAT(permuted, UnorderedEquals(v));
}
}
TEST_CASE("Exception matchers that succeed", "[matchers][exceptions][!throws]") {
CHECK_THROWS_MATCHES(throwsSpecialException(1), SpecialException, ExceptionMatcher{1});
REQUIRE_THROWS_MATCHES(throwsSpecialException(2), SpecialException, ExceptionMatcher{2});
}
TEST_CASE("Exception matchers that fail", "[matchers][exceptions][!throws][.failing]") {
SECTION("No exception") {
CHECK_THROWS_MATCHES(doesNotThrow(), SpecialException, ExceptionMatcher{1});
REQUIRE_THROWS_MATCHES(doesNotThrow(), SpecialException, ExceptionMatcher{1});
}
SECTION("Type mismatch") {
CHECK_THROWS_MATCHES(throwsAsInt(1), SpecialException, ExceptionMatcher{1});
REQUIRE_THROWS_MATCHES(throwsAsInt(1), SpecialException, ExceptionMatcher{1});
}
SECTION("Contents are wrong") {
CHECK_THROWS_MATCHES(throwsSpecialException(3), SpecialException, ExceptionMatcher{1});
REQUIRE_THROWS_MATCHES(throwsSpecialException(4), SpecialException, ExceptionMatcher{1});
}
}
TEST_CASE("Floating point matchers: float", "[matchers][floating-point]") {
SECTION("Relative") {
REQUIRE_THAT(10.f, WithinRel(11.1f, 0.1f));
REQUIRE_THAT(10.f, !WithinRel(11.2f, 0.1f));
REQUIRE_THAT( 1.f, !WithinRel(0.f, 0.99f));
REQUIRE_THAT(-0.f, WithinRel(0.f));
SECTION("Some subnormal values") {
auto v1 = std::numeric_limits<float>::min();
auto v2 = v1;
for (int i = 0; i < 5; ++i) {
v2 = std::nextafter(v1, 0.f);
}
REQUIRE_THAT(v1, WithinRel(v2));
}
}
SECTION("Margin") {
REQUIRE_THAT(1.f, WithinAbs(1.f, 0));
REQUIRE_THAT(0.f, WithinAbs(1.f, 1));
REQUIRE_THAT(0.f, !WithinAbs(1.f, 0.99f));
REQUIRE_THAT(0.f, !WithinAbs(1.f, 0.99f));
REQUIRE_THAT(0.f, WithinAbs(-0.f, 0));
REQUIRE_THAT(11.f, !WithinAbs(10.f, 0.5f));
REQUIRE_THAT(10.f, !WithinAbs(11.f, 0.5f));
REQUIRE_THAT(-10.f, WithinAbs(-10.f, 0.5f));
REQUIRE_THAT(-10.f, WithinAbs(-9.6f, 0.5f));
}
SECTION("ULPs") {
REQUIRE_THAT(1.f, WithinULP(1.f, 0));
REQUIRE_THAT(nextafter(1.f, 2.f), WithinULP(1.f, 1));
REQUIRE_THAT(0.f, WithinULP(nextafter(0.f, 1.f), 1));
REQUIRE_THAT(1.f, WithinULP(nextafter(1.f, 0.f), 1));
REQUIRE_THAT(1.f, !WithinULP(nextafter(1.f, 2.f), 0));
REQUIRE_THAT(1.f, WithinULP(1.f, 0));
REQUIRE_THAT(-0.f, WithinULP(0.f, 0));
}
SECTION("Composed") {
REQUIRE_THAT(1.f, WithinAbs(1.f, 0.5) || WithinULP(1.f, 1));
REQUIRE_THAT(1.f, WithinAbs(2.f, 0.5) || WithinULP(1.f, 0));
REQUIRE_THAT(0.0001f, WithinAbs(0.f, 0.001f) || WithinRel(0.f, 0.1f));
}
SECTION("Constructor validation") {
REQUIRE_NOTHROW(WithinAbs(1.f, 0.f));
REQUIRE_THROWS_AS(WithinAbs(1.f, -1.f), std::domain_error);
REQUIRE_NOTHROW(WithinULP(1.f, 0));
REQUIRE_THROWS_AS(WithinULP(1.f, static_cast<uint64_t>(-1)), std::domain_error);
REQUIRE_NOTHROW(WithinRel(1.f, 0.f));
REQUIRE_THROWS_AS(WithinRel(1.f, -0.2f), std::domain_error);
REQUIRE_THROWS_AS(WithinRel(1.f, 1.f), std::domain_error);
}
}
TEST_CASE("Floating point matchers: double", "[matchers][floating-point]") {
SECTION("Relative") {
REQUIRE_THAT(10., WithinRel(11.1, 0.1));
REQUIRE_THAT(10., !WithinRel(11.2, 0.1));
REQUIRE_THAT(1., !WithinRel(0., 0.99));
REQUIRE_THAT(-0., WithinRel(0.));
SECTION("Some subnormal values") {
auto v1 = std::numeric_limits<double>::min();
auto v2 = v1;
for (int i = 0; i < 5; ++i) {
v2 = std::nextafter(v1, 0);
}
REQUIRE_THAT(v1, WithinRel(v2));
}
}
SECTION("Margin") {
REQUIRE_THAT(1., WithinAbs(1., 0));
REQUIRE_THAT(0., WithinAbs(1., 1));
REQUIRE_THAT(0., !WithinAbs(1., 0.99));
REQUIRE_THAT(0., !WithinAbs(1., 0.99));
REQUIRE_THAT(11., !WithinAbs(10., 0.5));
REQUIRE_THAT(10., !WithinAbs(11., 0.5));
REQUIRE_THAT(-10., WithinAbs(-10., 0.5));
REQUIRE_THAT(-10., WithinAbs(-9.6, 0.5));
}
SECTION("ULPs") {
REQUIRE_THAT(1., WithinULP(1., 0));
REQUIRE_THAT(nextafter(1., 2.), WithinULP(1., 1));
REQUIRE_THAT(0., WithinULP(nextafter(0., 1.), 1));
REQUIRE_THAT(1., WithinULP(nextafter(1., 0.), 1));
REQUIRE_THAT(1., !WithinULP(nextafter(1., 2.), 0));
REQUIRE_THAT(1., WithinULP(1., 0));
REQUIRE_THAT(-0., WithinULP(0., 0));
}
SECTION("Composed") {
REQUIRE_THAT(1., WithinAbs(1., 0.5) || WithinULP(2., 1));
REQUIRE_THAT(1., WithinAbs(2., 0.5) || WithinULP(1., 0));
REQUIRE_THAT(0.0001, WithinAbs(0., 0.001) || WithinRel(0., 0.1));
}
SECTION("Constructor validation") {
REQUIRE_NOTHROW(WithinAbs(1., 0.));
REQUIRE_THROWS_AS(WithinAbs(1., -1.), std::domain_error);
REQUIRE_NOTHROW(WithinULP(1., 0));
REQUIRE_NOTHROW(WithinRel(1., 0.));
REQUIRE_THROWS_AS(WithinRel(1., -0.2), std::domain_error);
REQUIRE_THROWS_AS(WithinRel(1., 1.), std::domain_error);
}
}
TEST_CASE("Floating point matchers that are problematic in approvals", "[approvals][matchers][floating-point]") {
REQUIRE_THAT(NAN, !WithinAbs(NAN, 0));
REQUIRE_THAT(NAN, !(WithinAbs(NAN, 100) || WithinULP(NAN, 123)));
REQUIRE_THAT(NAN, !WithinULP(NAN, 123));
REQUIRE_THAT(INFINITY, WithinRel(INFINITY));
REQUIRE_THAT(-INFINITY, !WithinRel(INFINITY));
REQUIRE_THAT(1., !WithinRel(INFINITY));
REQUIRE_THAT(INFINITY, !WithinRel(1.));
REQUIRE_THAT(NAN, !WithinRel(NAN));
REQUIRE_THAT(1., !WithinRel(NAN));
REQUIRE_THAT(NAN, !WithinRel(1.));
}
TEST_CASE("Arbitrary predicate matcher", "[matchers][generic]") {
SECTION("Function pointer") {
REQUIRE_THAT(1, Predicate<int>(alwaysTrue, "always true"));
REQUIRE_THAT(1, !Predicate<int>(alwaysFalse, "always false"));
}
SECTION("Lambdas + different type") {
REQUIRE_THAT("Hello olleH",
Predicate<std::string>(
[] (std::string const& str) -> bool { return str.front() == str.back(); },
"First and last character should be equal")
);
REQUIRE_THAT("This wouldn't pass",
!Predicate<std::string>(
[] (std::string const& str) -> bool { return str.front() == str.back(); }
)
);
}
}
TEST_CASE("Regression test #1", "[matchers][vector]") {
// At some point, UnorderedEqualsMatcher skipped
// mismatched prefixed before doing the comparison itself
std::vector<char> actual = { 'a', 'b' };
std::vector<char> expected = { 'c', 'b' };
CHECK_THAT(actual, !UnorderedEquals(expected));
}
TEST_CASE("Predicate matcher can accept const char*", "[matchers][compilation]") {
REQUIRE_THAT("foo", Predicate<const char*>([] (const char* const&) { return true; }));
}
TEST_CASE("Vector Approx matcher", "[matchers][approx][vector]") {
using Catch::Matchers::Approx;
SECTION("Empty vector is roughly equal to an empty vector") {
std::vector<double> empty;
REQUIRE_THAT(empty, Approx(empty));
}
SECTION("Vectors with elements") {
std::vector<double> v1({1., 2., 3.});
SECTION("A vector is approx equal to itself") {
REQUIRE_THAT(v1, Approx(v1));
REQUIRE_THAT(v1, Approx<double>({ 1., 2., 3. }));
}
std::vector<double> v2({1.5, 2.5, 3.5});
SECTION("Different length") {
auto temp(v1);
temp.push_back(4);
REQUIRE_THAT(v1, !Approx(temp));
}
SECTION("Same length, different elements") {
REQUIRE_THAT(v1, !Approx(v2));
REQUIRE_THAT(v1, Approx(v2).margin(0.5));
REQUIRE_THAT(v1, Approx(v2).epsilon(0.5));
REQUIRE_THAT(v1, Approx(v2).epsilon(0.1).scale(500));
}
}
}
TEST_CASE("Vector Approx matcher -- failing", "[matchers][approx][vector][.failing]") {
using Catch::Matchers::Approx;
SECTION("Empty and non empty vectors are not approx equal") {
std::vector<double> empty, t1({1, 2});
CHECK_THAT(empty, Approx(t1));
}
SECTION("Just different vectors") {
std::vector<double> v1({2., 4., 6.}), v2({1., 3., 5.});
CHECK_THAT(v1, Approx(v2));
}
}
TEST_CASE("Exceptions matchers", "[matchers][exceptions][!throws]") {
REQUIRE_THROWS_MATCHES(throwsDerivedException(), DerivedException, Message("DerivedException::what"));
REQUIRE_THROWS_MATCHES(throwsDerivedException(), DerivedException, !Message("derivedexception::what"));
REQUIRE_THROWS_MATCHES(throwsSpecialException(2), SpecialException, !Message("DerivedException::what"));
REQUIRE_THROWS_MATCHES(throwsSpecialException(2), SpecialException, Message("SpecialException::what"));
}
TEST_CASE("Composed matchers are distinct", "[matchers][composed]") {
auto m1 = Contains("string");
auto m2 = Contains("random");
auto composed1 = m1 || m2;
auto m3 = Contains("different");
auto composed2 = composed1 || m3;
REQUIRE_THAT(testStringForMatching2(), !composed1);
REQUIRE_THAT(testStringForMatching2(), composed2);
}
struct CheckedTestingMatcher : Catch::MatcherBase<int> {
mutable bool matchCalled = false;
bool matchSucceeds = false;
bool match(int const&) const override {
matchCalled = true;
return matchSucceeds;
}
std::string describe() const override {
return "CheckedTestingMatcher set to " + (matchSucceeds ? std::string("succeed") : std::string("fail"));
}
};
TEST_CASE("Composed matchers shortcircuit", "[matchers][composed]") {
// Check that if first returns false, second is not touched
CheckedTestingMatcher first, second;
SECTION("&&") {
first.matchSucceeds = false;
// This assertion doesn't actually test anything, we just
// want the composed matcher's `match` being called.
CHECK_THAT(1, !(first && second));
// These two assertions are the important ones
REQUIRE(first.matchCalled);
REQUIRE(!second.matchCalled);
}
// Check that if first returns true, second is not touched
SECTION("||") {
first.matchSucceeds = true;
// This assertion doesn't actually test anything, we just
// want the composed matcher's `match` being called.
CHECK_THAT(1, first || second);
// These two assertions are the important ones
REQUIRE(first.matchCalled);
REQUIRE(!second.matchCalled);
}
}
} } // namespace MatchersTests
#endif // CATCH_CONFIG_DISABLE_MATCHERS
#ifdef __clang__
#pragma clang diagnostic pop
#endif