mirror of
https://github.com/catchorg/Catch2.git
synced 2024-12-25 04:23:30 +01:00
e640c3837a
This keeps it out of the main include path when benchmarking is enabled, somewhat reducing the compilation-time penalty. Also moved some other functions into the .cpp file, especially helpers that could be given internal linkage, and concretized some iterator-templated code that only ever used `std::vector<double>::iterator`.
159 lines
6.3 KiB
C++
159 lines
6.3 KiB
C++
/*
|
|
* Created by Joachim on 16/04/2019.
|
|
* Adapted from donated nonius code.
|
|
*
|
|
* Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
* file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
|
|
// Statistical analysis tools
|
|
|
|
#ifndef TWOBLUECUBES_CATCH_DETAIL_ANALYSIS_HPP_INCLUDED
|
|
#define TWOBLUECUBES_CATCH_DETAIL_ANALYSIS_HPP_INCLUDED
|
|
|
|
#include "../catch_clock.hpp"
|
|
#include "../catch_estimate.hpp"
|
|
#include "../catch_outlier_classification.hpp"
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <vector>
|
|
#include <numeric>
|
|
#include <tuple>
|
|
#include <cmath>
|
|
#include <utility>
|
|
#include <cstddef>
|
|
|
|
namespace Catch {
|
|
namespace Benchmark {
|
|
namespace Detail {
|
|
using sample = std::vector<double>;
|
|
|
|
double weighted_average_quantile(int k, int q, std::vector<double>::iterator first, std::vector<double>::iterator last);
|
|
|
|
template <typename Iterator>
|
|
OutlierClassification classify_outliers(Iterator first, Iterator last) {
|
|
std::vector<double> copy(first, last);
|
|
|
|
auto q1 = weighted_average_quantile(1, 4, copy.begin(), copy.end());
|
|
auto q3 = weighted_average_quantile(3, 4, copy.begin(), copy.end());
|
|
auto iqr = q3 - q1;
|
|
auto los = q1 - (iqr * 3.);
|
|
auto lom = q1 - (iqr * 1.5);
|
|
auto him = q3 + (iqr * 1.5);
|
|
auto his = q3 + (iqr * 3.);
|
|
|
|
OutlierClassification o;
|
|
for (; first != last; ++first) {
|
|
auto&& t = *first;
|
|
if (t < los) ++o.low_severe;
|
|
else if (t < lom) ++o.low_mild;
|
|
else if (t > his) ++o.high_severe;
|
|
else if (t > him) ++o.high_mild;
|
|
++o.samples_seen;
|
|
}
|
|
return o;
|
|
}
|
|
|
|
template <typename Iterator>
|
|
double mean(Iterator first, Iterator last) {
|
|
auto count = last - first;
|
|
double sum = std::accumulate(first, last, 0.);
|
|
return sum / count;
|
|
}
|
|
|
|
template <typename URng, typename Iterator, typename Estimator>
|
|
sample resample(URng& rng, int resamples, Iterator first, Iterator last, Estimator& estimator) {
|
|
auto n = last - first;
|
|
std::uniform_int_distribution<decltype(n)> dist(0, n - 1);
|
|
|
|
sample out;
|
|
out.reserve(resamples);
|
|
std::generate_n(std::back_inserter(out), resamples, [n, first, &estimator, &dist, &rng] {
|
|
std::vector<double> resampled;
|
|
resampled.reserve(n);
|
|
std::generate_n(std::back_inserter(resampled), n, [first, &dist, &rng] { return first[dist(rng)]; });
|
|
return estimator(resampled.begin(), resampled.end());
|
|
});
|
|
std::sort(out.begin(), out.end());
|
|
return out;
|
|
}
|
|
|
|
template <typename Estimator, typename Iterator>
|
|
sample jackknife(Estimator&& estimator, Iterator first, Iterator last) {
|
|
auto n = last - first;
|
|
auto second = std::next(first);
|
|
sample results;
|
|
results.reserve(n);
|
|
|
|
for (auto it = first; it != last; ++it) {
|
|
std::iter_swap(it, first);
|
|
results.push_back(estimator(second, last));
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
inline double normal_cdf(double x) {
|
|
return std::erfc(-x / std::sqrt(2.0)) / 2.0;
|
|
}
|
|
|
|
double erfc_inv(double x);
|
|
|
|
double normal_quantile(double p);
|
|
|
|
template <typename Iterator, typename Estimator>
|
|
Estimate<double> bootstrap(double confidence_level, Iterator first, Iterator last, sample const& resample, Estimator&& estimator) {
|
|
auto n_samples = last - first;
|
|
|
|
double point = estimator(first, last);
|
|
// Degenerate case with a single sample
|
|
if (n_samples == 1) return { point, point, point, confidence_level };
|
|
|
|
sample jack = jackknife(estimator, first, last);
|
|
double jack_mean = mean(jack.begin(), jack.end());
|
|
double sum_squares, sum_cubes;
|
|
std::tie(sum_squares, sum_cubes) = std::accumulate(jack.begin(), jack.end(), std::make_pair(0., 0.), [jack_mean](std::pair<double, double> sqcb, double x) -> std::pair<double, double> {
|
|
auto d = jack_mean - x;
|
|
auto d2 = d * d;
|
|
auto d3 = d2 * d;
|
|
return { sqcb.first + d2, sqcb.second + d3 };
|
|
});
|
|
|
|
double accel = sum_cubes / (6 * std::pow(sum_squares, 1.5));
|
|
int n = static_cast<int>(resample.size());
|
|
double prob_n = std::count_if(resample.begin(), resample.end(), [point](double x) { return x < point; }) / (double)n;
|
|
// degenerate case with uniform samples
|
|
if (prob_n == 0) return { point, point, point, confidence_level };
|
|
|
|
double bias = normal_quantile(prob_n);
|
|
double z1 = normal_quantile((1. - confidence_level) / 2.);
|
|
|
|
auto cumn = [n](double x) -> int {
|
|
return std::lround(normal_cdf(x) * n); };
|
|
auto a = [bias, accel](double b) { return bias + b / (1. - accel * b); };
|
|
double b1 = bias + z1;
|
|
double b2 = bias - z1;
|
|
double a1 = a(b1);
|
|
double a2 = a(b2);
|
|
auto lo = std::max(cumn(a1), 0);
|
|
auto hi = std::min(cumn(a2), n - 1);
|
|
|
|
return { point, resample[lo], resample[hi], confidence_level };
|
|
}
|
|
|
|
double outlier_variance(Estimate<double> mean, Estimate<double> stddev, int n);
|
|
|
|
struct bootstrap_analysis {
|
|
Estimate<double> mean;
|
|
Estimate<double> standard_deviation;
|
|
double outlier_variance;
|
|
};
|
|
|
|
bootstrap_analysis analyse_samples(double confidence_level, int n_resamples, std::vector<double>::iterator first, std::vector<double>::iterator last);
|
|
} // namespace Detail
|
|
} // namespace Benchmark
|
|
} // namespace Catch
|
|
|
|
#endif // TWOBLUECUBES_CATCH_DETAIL_ANALYSIS_HPP_INCLUDED
|