mirror of
https://github.com/jhasse/poly2tri.git
synced 2024-11-19 20:06:11 +01:00
150 lines
5.8 KiB
Cython
150 lines
5.8 KiB
Cython
|
##
|
||
|
## Ported from PolyDeomp by Mark Bayazit
|
||
|
## http://mnbayazit.com/406/credit
|
||
|
##
|
||
|
from sys import float_info
|
||
|
|
||
|
def makeCCW(list poly):
|
||
|
cdef int br = 0
|
||
|
# find bottom right point
|
||
|
for i from 1 <= i < len(poly):
|
||
|
if poly[i][1] < poly[br][1] or (poly[i][1] == poly[br][1] and poly[i][0] > poly[br][0]):
|
||
|
br = i
|
||
|
# reverse poly if clockwise
|
||
|
if not left(at(poly, br - 1), at(poly, br), at(poly, br + 1)):
|
||
|
poly.reverse()
|
||
|
|
||
|
cpdef list decompose_poly(list poly, list polys):
|
||
|
|
||
|
cdef list upperInt = [], lowerInt = [], p = [], closestVert = []
|
||
|
cdef float upperDist, lowerDist, d, closestDist
|
||
|
cdef int upper_index, lower_index, closest_index
|
||
|
cdef list lower_poly = [], upper_poly = []
|
||
|
|
||
|
for i from 0 <= i < len(poly):
|
||
|
if is_reflex(poly, i):
|
||
|
upperDist = lowerDist = float_info.max
|
||
|
for j from 0 <= j < len(poly):
|
||
|
if left(at(poly, i - 1), at(poly, i), at(poly, j)) and rightOn(at(poly, i - 1), at(poly, i), at(poly, j - 1)):
|
||
|
# if line intersects with an edge
|
||
|
# find the point of intersection
|
||
|
p = intersection(at(poly, i - 1), at(poly, i), at(poly, j), at(poly, j - 1))
|
||
|
if right(at(poly, i + 1), at(poly, i), p):
|
||
|
# make sure it's inside the poly
|
||
|
d = sqdist(poly[i], p)
|
||
|
if d < lowerDist:
|
||
|
# keep only the closest intersection
|
||
|
lowerDist = d
|
||
|
lowerInt = p
|
||
|
lower_index = j
|
||
|
if left(at(poly, i + 1), at(poly, i), at(poly, j + 1)) and rightOn(at(poly, i + 1), at(poly, i), at(poly, j)):
|
||
|
p = intersection(at(poly, i + 1), at(poly, i), at(poly, j), at(poly, j + 1))
|
||
|
if left(at(poly, i - 1), at(poly, i), p):
|
||
|
d = sqdist(poly[i], p)
|
||
|
if d < upperDist:
|
||
|
upperDist = d
|
||
|
upperInt = p
|
||
|
upper_index = j
|
||
|
|
||
|
# if there are no vertices to connect to, choose a point in the middle
|
||
|
if lower_index == (upper_index + 1) % len(poly):
|
||
|
p[0] = (lowerInt[0] + upperInt[0]) / 2
|
||
|
p[1] = (lowerInt[1] + upperInt[1]) / 2
|
||
|
|
||
|
if i < upper_index:
|
||
|
lower_poly.extend(poly[i:upper_index+1])
|
||
|
lower_poly.append(p)
|
||
|
upper_poly.append(p)
|
||
|
if lower_index != 0:
|
||
|
upper_poly.extend(poly[lower_index:])
|
||
|
upper_poly.extend(poly[:i+1])
|
||
|
else:
|
||
|
if i != 0:
|
||
|
lower_poly.extend(poly[i:])
|
||
|
lower_poly.extend(poly[:upper_index+1])
|
||
|
lower_poly.append(p)
|
||
|
upper_poly.append(p)
|
||
|
upper_poly.extend(poly[lower_index:i+1])
|
||
|
else:
|
||
|
|
||
|
# connect to the closest point within the triangle
|
||
|
|
||
|
if lower_index > upper_index:
|
||
|
upper_index += len(poly)
|
||
|
|
||
|
closestDist = float_info.max
|
||
|
for j from lower_index <= j <= upper_index:
|
||
|
if leftOn(at(poly, i - 1), at(poly, i), at(poly, j)) and rightOn(at(poly, i + 1), at(poly, i), at(poly, j)):
|
||
|
d = sqdist(at(poly, i), at(poly, j))
|
||
|
if d < closestDist:
|
||
|
closestDist = d
|
||
|
closestVert = at(poly, j)
|
||
|
closest_index = j % len(poly)
|
||
|
|
||
|
if i < closest_index:
|
||
|
lower_poly.extend(poly[i:closest_index+1])
|
||
|
if closest_index != 0:
|
||
|
upper_poly.extend(poly[closest_index:])
|
||
|
upper_poly.extend(poly[:i+1])
|
||
|
else:
|
||
|
if i != 0:
|
||
|
lower_poly.extend(poly[i:])
|
||
|
lower_poly.extend(poly[:closest_index+1])
|
||
|
upper_poly.extend(poly[closest_index:i+1])
|
||
|
|
||
|
# solve smallest poly first
|
||
|
if len(lower_poly) < len(upper_poly):
|
||
|
decompose_poly(lower_poly, polys)
|
||
|
decompose_poly(upper_poly, polys)
|
||
|
else:
|
||
|
decompose_poly(upper_poly, polys)
|
||
|
decompose_poly(lower_poly, polys)
|
||
|
|
||
|
return
|
||
|
|
||
|
polys.append(poly)
|
||
|
|
||
|
cdef list intersection(list p1, list p2, list q1, list q2):
|
||
|
cdef list i = []
|
||
|
cdef float a1, b1, c1, a2, b2, c2, det
|
||
|
a1 = p2[1] - p1[1]
|
||
|
b1 = p1[0] - p2[0]
|
||
|
c1 = a1 * p1[0] + b1 * p1[1]
|
||
|
a2 = q2[1] - q1[1]
|
||
|
b2 = q1[0] - q2[0]
|
||
|
c2 = a2 * q1[0] + b2 * q1[1]
|
||
|
det = a1 * b2 - a2 * b1
|
||
|
if not eq(det, 0):
|
||
|
# lines are not parallel
|
||
|
i.append((b2 * c1 - b1 * c2) / det)
|
||
|
i.append((a1 * c2 - a2 * c1) / det)
|
||
|
return i
|
||
|
|
||
|
cdef bool eq(float a, float b):
|
||
|
return abs(a - b) <= 1e-8
|
||
|
|
||
|
cdef list at(list v, int i):
|
||
|
return v[i%len(v)]
|
||
|
|
||
|
cdef float area(list a, list b, list c):
|
||
|
return (((b[0] - a[0])*(c[1] - a[1]))-((c[0] - a[0])*(b[1] - a[1])))
|
||
|
|
||
|
cdef bool left(list a, list b, list c):
|
||
|
return area(a, b, c) > 0
|
||
|
|
||
|
cdef bool leftOn(list a, list b, list c):
|
||
|
return area(a, b, c) >= 0
|
||
|
|
||
|
cdef bool right(list a, list b, list c):
|
||
|
return area(a, b, c) < 0
|
||
|
|
||
|
cdef bool rightOn(list a, list b, list c):
|
||
|
return area(a, b, c) <= 0
|
||
|
|
||
|
cdef float sqdist(list a, list b):
|
||
|
cdef float dx = b[0] - a[0]
|
||
|
cdef float dy = b[1] - a[1]
|
||
|
return dx * dx + dy * dy
|
||
|
|
||
|
cdef bool is_reflex(list poly, int i):
|
||
|
return right(at(poly, i - 1), at(poly, i), at(poly, i + 1))
|