mirror of
https://github.com/jhasse/poly2tri.git
synced 2025-03-14 06:54:47 +01:00
278 lines
7.3 KiB
C
278 lines
7.3 KiB
C
![]() |
/*
|
||
|
* Poly2Tri Copyright (c) 2009-2010, Mason Green
|
||
|
* http://code.google.com/p/poly2tri/
|
||
|
*
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without modification,
|
||
|
* are permitted provided that the following conditions are met:
|
||
|
*
|
||
|
* * Redistributions of source code must retain the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer in the documentation
|
||
|
* and/or other materials provided with the distribution.
|
||
|
* * Neither the name of Poly2Tri nor the names of its contributors may be
|
||
|
* used to endorse or promote products derived from this software without specific
|
||
|
* prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
// Include guard
|
||
|
#ifndef SHAPES_H
|
||
|
#define SHAPES_H
|
||
|
|
||
|
#include <vector>
|
||
|
#include <cstddef>
|
||
|
#include <assert.h>
|
||
|
#include <cmath>
|
||
|
#include <stdio.h>
|
||
|
#include <iostream>
|
||
|
|
||
|
struct Node;
|
||
|
struct Edge;
|
||
|
|
||
|
struct Point {
|
||
|
|
||
|
double x, y;
|
||
|
|
||
|
/// Default constructor does nothing (for performance).
|
||
|
Point() {}
|
||
|
/// The edges this point constitutes an upper ending point
|
||
|
std::vector<Edge> edge_list;
|
||
|
|
||
|
/// Construct using coordinates.
|
||
|
Point(double x, double y) : x(x), y(y) {}
|
||
|
|
||
|
/// Set this point to all zeros.
|
||
|
void set_zero() { x = 0.0f; y = 0.0f; }
|
||
|
|
||
|
/// Set this point to some specified coordinates.
|
||
|
void set(double x_, double y_) { x = x_; y = y_; }
|
||
|
|
||
|
/// Negate this point.
|
||
|
Point operator -() const { Point v; v.set(-x, -y); return v; }
|
||
|
|
||
|
/// Add a point to this point.
|
||
|
void operator += (const Point& v) {
|
||
|
x += v.x; y += v.y;
|
||
|
}
|
||
|
|
||
|
/// Subtract a point from this point.
|
||
|
void operator -= (const Point& v) {
|
||
|
x -= v.x; y -= v.y;
|
||
|
}
|
||
|
|
||
|
/// Multiply this point by a scalar.
|
||
|
void operator *= (double a) {
|
||
|
x *= a; y *= a;
|
||
|
}
|
||
|
|
||
|
/// Get the length of this point (the norm).
|
||
|
double Length() const {
|
||
|
return sqrt(x * x + y * y);
|
||
|
}
|
||
|
|
||
|
/// Convert this point into a unit point. Returns the Length.
|
||
|
double Normalize() {
|
||
|
double len = Length();
|
||
|
x /= len;
|
||
|
y /= len;
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
// Represents a simple polygon's edge
|
||
|
struct Edge {
|
||
|
|
||
|
Point* p, *q;
|
||
|
|
||
|
/// Constructor
|
||
|
Edge(Point& p1, Point& p2) : p(&p1), q(&p2) {
|
||
|
|
||
|
if(p1.y > p2.y) {
|
||
|
q = &p1;
|
||
|
p = &p2;
|
||
|
} else if(p1.y == p2.y) {
|
||
|
if(p1.x > p2.x) {
|
||
|
q = &p1;
|
||
|
p = &p2;
|
||
|
} else if(p1.x == p2.x) {
|
||
|
assert(false);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
q->edge_list.push_back(*this);
|
||
|
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
// Triangle-based data structures are know to have better performance than quad-edge structures
|
||
|
// See: J. Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
|
||
|
// "Triangulations in CGAL"
|
||
|
class Triangle {
|
||
|
|
||
|
public:
|
||
|
|
||
|
/// Constructor
|
||
|
Triangle(Point& a, Point& b, Point& c);
|
||
|
// Destroctor
|
||
|
~Triangle();
|
||
|
|
||
|
/// Flags to determine if an edge is a Constrained edge
|
||
|
bool constrained_edge[3];
|
||
|
/// Flags to determine if an edge is a Delauney edge
|
||
|
bool delaunay_edge[3];
|
||
|
/// Has this triangle been marked as an interior triangle?
|
||
|
bool interior;
|
||
|
|
||
|
Point* GetPoint(const int& index);
|
||
|
Point* PointCW(Point& point);
|
||
|
Point* PointCCW(Point& point);
|
||
|
Point* OppositePoint(Triangle& t, Point& p);
|
||
|
|
||
|
Triangle* GetNeighbor(const int& index);
|
||
|
void MarkNeighbor(Point* p1, Point* p2, Triangle* t);
|
||
|
void MarkNeighbor(Triangle& t);
|
||
|
|
||
|
void MarkConstrainedEdge(const int index);
|
||
|
void MarkConstrainedEdge(Edge& edge);
|
||
|
void MarkConstrainedEdge(Point* p, Point* q);
|
||
|
|
||
|
int Index(const Point* p);
|
||
|
int EdgeIndex(const Point* p1, const Point* p2);
|
||
|
|
||
|
Triangle* NeighborCW(Point& point);
|
||
|
Triangle* NeighborCCW(Point& point);
|
||
|
bool GetConstrainedEdgeCCW(Point& p);
|
||
|
bool GetConstrainedEdgeCW(Point& p);
|
||
|
void SetConstrainedEdgeCCW(Point& p, bool ce);
|
||
|
void SetConstrainedEdgeCW(Point& p, bool ce);
|
||
|
bool GetDelunayEdgeCCW(Point& p);
|
||
|
bool GetDelunayEdgeCW(Point& p);
|
||
|
void SetDelunayEdgeCCW(Point& p, bool e);
|
||
|
void SetDelunayEdgeCW(Point& p, bool e);
|
||
|
|
||
|
bool Contains(Point* p);
|
||
|
bool Contains(const Edge& e);
|
||
|
bool Contains(Point* p, Point* q);
|
||
|
void Legalize(Point& point);
|
||
|
void Legalize(Point& opoint, Point& npoint);
|
||
|
void ClearNeighbors();
|
||
|
void ClearDelunayEdges();
|
||
|
|
||
|
Triangle& NeighborAcross(Point& opoint);
|
||
|
|
||
|
private:
|
||
|
|
||
|
/// Triangle points
|
||
|
Point* points_[3];
|
||
|
/// Neighbor list
|
||
|
Triangle* neighbors_[3];
|
||
|
|
||
|
};
|
||
|
|
||
|
inline bool operator < (const Point& a, const Point& b) {
|
||
|
if (a.y < b.y) {
|
||
|
return true;
|
||
|
} else if (a.y == b.y) {
|
||
|
// Make sure q is point with greater x value
|
||
|
if(a.x < b.x) {
|
||
|
return true;
|
||
|
} else if (a.x > b.x) {
|
||
|
return false;
|
||
|
} else {
|
||
|
// Repeat point
|
||
|
//std::cout << "Repeat points not alowed: ";
|
||
|
//std::cout << a.x << "," << a.y << " " << b.x << "," << b.y << std::endl;
|
||
|
//assert(false);
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/// Add two points_ component-wise.
|
||
|
inline Point operator + (const Point& a, const Point& b) {
|
||
|
return Point(a.x + b.x, a.y + b.y);
|
||
|
}
|
||
|
|
||
|
/// Subtract two points_ component-wise.
|
||
|
inline Point operator - (const Point& a, const Point& b) {
|
||
|
return Point(a.x - b.x, a.y - b.y);
|
||
|
}
|
||
|
|
||
|
/// Multiply point by scalar
|
||
|
inline Point operator * (double s, const Point& a) {
|
||
|
return Point(s * a.x, s * a.y);
|
||
|
}
|
||
|
|
||
|
inline bool operator == (const Point& a, const Point& b) {
|
||
|
return a.x == b.x && a.y == b.y;
|
||
|
}
|
||
|
|
||
|
inline bool operator != (const Point& a, const Point& b) {
|
||
|
return a.x != b.x && a.y != b.y;
|
||
|
}
|
||
|
|
||
|
inline bool operator != (const Node& a, const Node& b) {
|
||
|
return a != b;
|
||
|
}
|
||
|
|
||
|
/// Peform the dot product on two vectors.
|
||
|
inline double Dot(const Point& a, const Point& b) {
|
||
|
return a.x * b.x + a.y * b.y;
|
||
|
}
|
||
|
|
||
|
/// Perform the cross product on two vectors. In 2D this produces a scalar.
|
||
|
inline double Cross(const Point& a, const Point& b) {
|
||
|
return a.x * b.y - a.y * b.x;
|
||
|
}
|
||
|
|
||
|
/// Perform the cross product on a point and a scalar. In 2D this produces
|
||
|
/// a point.
|
||
|
inline Point Cross(const Point& a, double s) {
|
||
|
return Point(s * a.y, -s * a.x);
|
||
|
}
|
||
|
|
||
|
/// Perform the cross product on a scalar and a point. In 2D this produces
|
||
|
/// a point.
|
||
|
inline Point Cross(const double s, const Point& a) {
|
||
|
return Point(-s * a.y, s * a.x);
|
||
|
}
|
||
|
|
||
|
inline Point* Triangle::GetPoint(const int& index) {
|
||
|
return points_[index];
|
||
|
}
|
||
|
|
||
|
inline Triangle* Triangle::GetNeighbor(const int& index) {
|
||
|
return neighbors_[index];
|
||
|
}
|
||
|
|
||
|
inline bool Triangle::Contains(Point* p) {
|
||
|
return p == points_[0] || p == points_[1] || p == points_[2];
|
||
|
}
|
||
|
|
||
|
inline bool Triangle::Contains(const Edge& e) {
|
||
|
return Contains(e.p) && Contains(e.q);
|
||
|
}
|
||
|
|
||
|
inline bool Triangle::Contains(Point* p, Point* q) {
|
||
|
return Contains(p) && Contains(q);
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|