uncrustified code

This commit is contained in:
zzzzrrr 2010-01-21 09:00:09 -05:00
parent 9202d205df
commit 732e0791e8
14 changed files with 1454 additions and 1406 deletions

View File

@ -1,4 +1,4 @@
/*
/*
* Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/
*
@ -30,35 +30,35 @@
*/
#include "shapes.h"
Triangle::Triangle(Point& a, Point& b, Point& c) {
Triangle::Triangle(Point& a, Point& b, Point& c)
{
points_[0] = &a; points_[1] = &b; points_[2] = &c;
neighbors_[0] = NULL; neighbors_[1] = NULL; neighbors_[2] = NULL;
constrained_edge[0] = constrained_edge[1] = constrained_edge[2] = false;
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
interior_ = false;
}
// Update neighbor pointers
void Triangle::MarkNeighbor(Point* p1, Point* p2, Triangle* t) {
if((p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2]))
void Triangle::MarkNeighbor(Point* p1, Point* p2, Triangle* t)
{
if ((p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2]))
neighbors_[0] = t;
else if((p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0]))
else if ((p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0]))
neighbors_[1] = t;
else if((p1 == points_[0] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[0]))
else if ((p1 == points_[0] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[0]))
neighbors_[2] = t;
else
else
assert(0);
}
// Exhaustive search to update neighbor pointers
void Triangle::MarkNeighbor(Triangle& t) {
// Exhaustive search to update neighbor pointers
void Triangle::MarkNeighbor(Triangle& t)
{
if (t.Contains(points_[1], points_[2])) {
neighbors_[0] = &t;
t.MarkNeighbor(points_[1], points_[2], this);
} else if(t.Contains(points_[0], points_[2])) {
} else if (t.Contains(points_[0], points_[2])) {
neighbors_[1] = &t;
t.MarkNeighbor(points_[0], points_[2], this);
} else if (t.Contains(points_[0], points_[1])) {
@ -67,39 +67,41 @@ void Triangle::MarkNeighbor(Triangle& t) {
}
}
void Triangle::ClearNeighbors() {
void Triangle::ClearNeighbors()
{
neighbors_[0] = NULL;
neighbors_[1] = NULL;
neighbors_[2] = NULL;
}
void Triangle::ClearDelunayEdges() {
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
void Triangle::ClearDelunayEdges()
{
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
}
Point* Triangle::OppositePoint(Triangle& t, Point& p) {
Point *cw = t.PointCW(p);
double x = cw->x;
double y = cw->y;
x = p.x;
y = p.y;
Point* ham = PointCW(*cw);
Point* Triangle::OppositePoint(Triangle& t, Point& p)
{
Point *cw = t.PointCW(p);
double x = cw->x;
double y = cw->y;
x = p.x;
y = p.y;
Point* ham = PointCW(*cw);
return PointCW(*cw);
}
// Legalized triangle by rotating clockwise around point(0)
void Triangle::Legalize(Point& point) {
void Triangle::Legalize(Point& point)
{
points_[1] = points_[0];
points_[0] = points_[2];
points_[2] = &point;
}
// Legalize triagnle by rotating clockwise around oPoint
void Triangle::Legalize(Point& opoint, Point& npoint) {
if(&opoint == points_[0]) {
void Triangle::Legalize(Point& opoint, Point& npoint)
{
if (&opoint == points_[0]) {
points_[1] = points_[0];
points_[0] = points_[2];
points_[2] = &npoint;
@ -111,211 +113,214 @@ void Triangle::Legalize(Point& opoint, Point& npoint) {
points_[0] = points_[2];
points_[2] = points_[1];
points_[1] = &npoint;
} else {
} else {
assert(0);
}
}
int Triangle::Index(const Point* p) {
if(p == points_[0]) {
return 0;
} else if(p == points_[1]) {
return 1;
} else if(p == points_[2]) {
return 2;
}
assert(0);
int Triangle::Index(const Point* p)
{
if (p == points_[0]) {
return 0;
} else if (p == points_[1]) {
return 1;
} else if (p == points_[2]) {
return 2;
}
assert(0);
}
int Triangle::EdgeIndex(const Point* p1, const Point* p2) {
if(points_[0] == p1) {
if(points_[1] == p2){
return 2;
} else if(points_[2] == p2){
return 1;
}
} else if(points_[1] == p1) {
if(points_[2] == p2) {
return 0;
} else if(points_[0] == p2) {
return 2;
}
} else if(points_[2] == p1) {
if(points_[0] == p2 ) {
return 1;
} else if(points_[1] == p2) {
return 0;
}
}
return -1;
int Triangle::EdgeIndex(const Point* p1, const Point* p2)
{
if (points_[0] == p1) {
if (points_[1] == p2) {
return 2;
} else if (points_[2] == p2) {
return 1;
}
} else if (points_[1] == p1) {
if (points_[2] == p2) {
return 0;
} else if (points_[0] == p2) {
return 2;
}
} else if (points_[2] == p1) {
if (points_[0] == p2) {
return 1;
} else if (points_[1] == p2) {
return 0;
}
}
return -1;
}
void Triangle::MarkConstrainedEdge(const int index) {
constrained_edge[index] = true;
void Triangle::MarkConstrainedEdge(const int index)
{
constrained_edge[index] = true;
}
void Triangle::MarkConstrainedEdge(Edge& edge) {
MarkConstrainedEdge(edge.p, edge.q);
void Triangle::MarkConstrainedEdge(Edge& edge)
{
MarkConstrainedEdge(edge.p, edge.q);
}
// Mark edge as constrained
void Triangle::MarkConstrainedEdge(Point* p, Point* q) {
if((q == points_[0] && p == points_[1] ) || (q == points_[1] && p == points_[0])) {
constrained_edge[2] = true;
} else if((q == points_[0] && p == points_[2] ) || (q == points_[2] && p == points_[0])) {
constrained_edge[1] = true;
} else if((q == points_[1] && p == points_[2] ) || (q == points_[2] && p == points_[1])) {
constrained_edge[0] = true;
}
}
// The point counter-clockwise to given point
Point* Triangle::PointCW(Point& point) {
if(&point == points_[0]) {
return points_[2];
} else if(&point == points_[1]) {
return points_[0];
} else if(&point == points_[2]) {
return points_[1];
}
assert(0);
void Triangle::MarkConstrainedEdge(Point* p, Point* q)
{
if ((q == points_[0] && p == points_[1]) || (q == points_[1] && p == points_[0])) {
constrained_edge[2] = true;
} else if ((q == points_[0] && p == points_[2]) || (q == points_[2] && p == points_[0])) {
constrained_edge[1] = true;
} else if ((q == points_[1] && p == points_[2]) || (q == points_[2] && p == points_[1])) {
constrained_edge[0] = true;
}
}
// The point counter-clockwise to given point
Point* Triangle::PointCCW(Point& point) {
Point* Triangle::PointCW(Point& point)
{
if (&point == points_[0]) {
return points_[2];
} else if (&point == points_[1]) {
return points_[0];
} else if (&point == points_[2]) {
return points_[1];
}
assert(0);
}
if(&point == points_[0]) {
return points_[1];
} else if(&point == points_[1]) {
return points_[2];
} else if(&point == points_[2]) {
return points_[0];
}
assert(0);
// The point counter-clockwise to given point
Point* Triangle::PointCCW(Point& point)
{
if (&point == points_[0]) {
return points_[1];
} else if (&point == points_[1]) {
return points_[2];
} else if (&point == points_[2]) {
return points_[0];
}
assert(0);
}
// The neighbor clockwise to given point
Triangle* Triangle::NeighborCW(Point& point) {
if(&point == points_[0]) {
return neighbors_[1];
} else if(&point == points_[1]) {
return neighbors_[2];
}
return neighbors_[0];
Triangle* Triangle::NeighborCW(Point& point)
{
if (&point == points_[0]) {
return neighbors_[1];
} else if (&point == points_[1]) {
return neighbors_[2];
}
return neighbors_[0];
}
// The neighbor counter-clockwise to given point
Triangle* Triangle::NeighborCCW(Point& point) {
if(&point == points_[0]) {
return neighbors_[2];
} else if(&point == points_[1]) {
return neighbors_[0];
}
return neighbors_[1];
}
bool Triangle::GetConstrainedEdgeCCW(Point& p) {
if(&p == points_[0]) {
return constrained_edge[2];
} else if(&p == points_[1]) {
return constrained_edge[0];
}
return constrained_edge[1];
Triangle* Triangle::NeighborCCW(Point& point)
{
if (&point == points_[0]) {
return neighbors_[2];
} else if (&point == points_[1]) {
return neighbors_[0];
}
return neighbors_[1];
}
bool Triangle::GetConstrainedEdgeCW(Point& p) {
bool Triangle::GetConstrainedEdgeCCW(Point& p)
{
if (&p == points_[0]) {
return constrained_edge[2];
} else if (&p == points_[1]) {
return constrained_edge[0];
}
return constrained_edge[1];
}
if(&p == points_[0]) {
bool Triangle::GetConstrainedEdgeCW(Point& p)
{
if (&p == points_[0]) {
return constrained_edge[1];
} else if(&p == points_[1]) {
} else if (&p == points_[1]) {
return constrained_edge[2];
}
return constrained_edge[0];
}
void Triangle::SetConstrainedEdgeCCW(Point& p, bool ce) {
if(&p == points_[0]) {
constrained_edge[2] = ce;
} else if(&p == points_[1]) {
constrained_edge[0] = ce;
} else {
constrained_edge[1] = ce;
}
void Triangle::SetConstrainedEdgeCCW(Point& p, bool ce)
{
if (&p == points_[0]) {
constrained_edge[2] = ce;
} else if (&p == points_[1]) {
constrained_edge[0] = ce;
} else {
constrained_edge[1] = ce;
}
}
void Triangle::SetConstrainedEdgeCW(Point& p, bool ce) {
if(&p == points_[0]) {
constrained_edge[1] = ce;
} else if(&p == points_[1]) {
constrained_edge[2] = ce;
} else {
constrained_edge[0] = ce;
}
}
bool Triangle::GetDelunayEdgeCCW(Point& p) {
if(&p == points_[0]){
return delaunay_edge[2];
} else if(&p == points_[1]) {
return delaunay_edge[0];
}
return delaunay_edge[1];
void Triangle::SetConstrainedEdgeCW(Point& p, bool ce)
{
if (&p == points_[0]) {
constrained_edge[1] = ce;
} else if (&p == points_[1]) {
constrained_edge[2] = ce;
} else {
constrained_edge[0] = ce;
}
}
bool Triangle::GetDelunayEdgeCW(Point& p) {
if(&p == points_[0]) {
return delaunay_edge[1];
} else if(&p == points_[1]) {
return delaunay_edge[2];
}
return delaunay_edge[0];
bool Triangle::GetDelunayEdgeCCW(Point& p)
{
if (&p == points_[0]) {
return delaunay_edge[2];
} else if (&p == points_[1]) {
return delaunay_edge[0];
}
return delaunay_edge[1];
}
void Triangle::SetDelunayEdgeCCW(Point& p, bool e) {
if(&p == points_[0]) {
delaunay_edge[2] = e;
} else if(&p == points_[1]) {
delaunay_edge[0] = e;
} else {
delaunay_edge[1] = e;
}
bool Triangle::GetDelunayEdgeCW(Point& p)
{
if (&p == points_[0]) {
return delaunay_edge[1];
} else if (&p == points_[1]) {
return delaunay_edge[2];
}
return delaunay_edge[0];
}
void Triangle::SetDelunayEdgeCW(Point& p, bool e) {
void Triangle::SetDelunayEdgeCCW(Point& p, bool e)
{
if (&p == points_[0]) {
delaunay_edge[2] = e;
} else if (&p == points_[1]) {
delaunay_edge[0] = e;
} else {
delaunay_edge[1] = e;
}
}
if(&p == points_[0]) {
delaunay_edge[1] = e;
} else if(&p == points_[1]) {
delaunay_edge[2] = e;
} else {
delaunay_edge[0] = e;
}
void Triangle::SetDelunayEdgeCW(Point& p, bool e)
{
if (&p == points_[0]) {
delaunay_edge[1] = e;
} else if (&p == points_[1]) {
delaunay_edge[2] = e;
} else {
delaunay_edge[0] = e;
}
}
// The neighbor across to given point
Triangle& Triangle::NeighborAcross(Point& opoint) {
if(&opoint == points_[0]) {
return *neighbors_[0];
} else if(&opoint == points_[1]) {
return *neighbors_[1];
}
return *neighbors_[2];
Triangle& Triangle::NeighborAcross(Point& opoint)
{
if (&opoint == points_[0]) {
return *neighbors_[0];
} else if (&opoint == points_[1]) {
return *neighbors_[1];
}
return *neighbors_[2];
}
void Triangle::DebugPrint() {
void Triangle::DebugPrint()
{
using namespace std;
cout << points_[0]->x << "," << points_[0]->y << " ";
cout << points_[1]->x << "," << points_[1]->y << " ";

View File

@ -1,4 +1,4 @@
/*
/*
* Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/
*
@ -42,241 +42,271 @@
struct Node;
struct Edge;
struct Point {
struct Point {
double x, y;
/// Default constructor does nothing (for performance).
Point() { x = 0.0; y = 0.0; }
Point()
{
x = 0.0; y = 0.0;
}
/// The edges this point constitutes an upper ending point
std::vector<Edge*> edge_list;
/// Construct using coordinates.
Point(double x, double y) : x(x), y(y) {}
Point(double x, double y) : x(x), y(y)
{
}
/// Set this point to all zeros.
void set_zero() { x = 0.0f; y = 0.0f; }
/// Set this point to all zeros.
void set_zero()
{
x = 0.0f; y = 0.0f;
}
/// Set this point to some specified coordinates.
void set(double x_, double y_) { x = x_; y = y_; }
/// Set this point to some specified coordinates.
void set(double x_, double y_)
{
x = x_; y = y_;
}
/// Negate this point.
Point operator -() const { Point v; v.set(-x, -y); return v; }
/// Add a point to this point.
void operator += (const Point& v) {
x += v.x; y += v.y;
}
/// Subtract a point from this point.
void operator -= (const Point& v) {
x -= v.x; y -= v.y;
}
/// Negate this point.
Point operator -() const
{
Point v; v.set(-x, -y); return v;
}
/// Add a point to this point.
void operator +=(const Point& v)
{
x += v.x; y += v.y;
}
/// Subtract a point from this point.
void operator -=(const Point& v)
{
x -= v.x; y -= v.y;
}
/// Multiply this point by a scalar.
void operator *=(double a)
{
x *= a; y *= a;
}
/// Multiply this point by a scalar.
void operator *= (double a) {
x *= a; y *= a;
}
/// Get the length of this point (the norm).
double Length() const {
double Length() const
{
return sqrt(x * x + y * y);
}
/// Convert this point into a unit point. Returns the Length.
double Normalize() {
double Normalize()
{
double len = Length();
x /= len;
y /= len;
return len;
}
void DebugPrint() {
void DebugPrint()
{
printf("%f,%f ", x, y);
}
};
// Represents a simple polygon's edge
struct Edge {
Point* p, *q;
/// Constructor
Edge(Point& p1, Point& p2) : p(&p1), q(&p2) {
if(p1.y > p2.y) {
Edge(Point& p1, Point& p2) : p(&p1), q(&p2)
{
if (p1.y > p2.y) {
q = &p1;
p = &p2;
} else if(p1.y == p2.y) {
if(p1.x > p2.x) {
} else if (p1.y == p2.y) {
if (p1.x > p2.x) {
q = &p1;
p = &p2;
} else if(p1.x == p2.x) {
} else if (p1.x == p2.x) {
// Repeat points
assert(false);
}
}
q->edge_list.push_back(this);
}
};
// Triangle-based data structures are know to have better performance than quad-edge structures
// See: J. Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
// "Triangulations in CGAL"
class Triangle {
public:
/// Constructor
Triangle(Point& a, Point& b, Point& c);
/// Constructor
Triangle(Point& a, Point& b, Point& c);
/// Flags to determine if an edge is a Constrained edge
bool constrained_edge[3];
/// Flags to determine if an edge is a Delauney edge
bool delaunay_edge[3];
Point* GetPoint(const int& index);
Point* PointCW(Point& point);
Point* PointCCW(Point& point);
Point* OppositePoint(Triangle& t, Point& p);
Triangle* GetNeighbor(const int& index);
void MarkNeighbor(Point* p1, Point* p2, Triangle* t);
void MarkNeighbor(Triangle& t);
void MarkConstrainedEdge(const int index);
void MarkConstrainedEdge(Edge& edge);
void MarkConstrainedEdge(Point* p, Point* q);
/// Flags to determine if an edge is a Constrained edge
bool constrained_edge[3];
/// Flags to determine if an edge is a Delauney edge
bool delaunay_edge[3];
int Index(const Point* p);
int EdgeIndex(const Point* p1, const Point* p2);
Point* GetPoint(const int& index);
Point* PointCW(Point& point);
Point* PointCCW(Point& point);
Point* OppositePoint(Triangle& t, Point& p);
Triangle* NeighborCW(Point& point);
Triangle* NeighborCCW(Point& point);
bool GetConstrainedEdgeCCW(Point& p);
bool GetConstrainedEdgeCW(Point& p);
void SetConstrainedEdgeCCW(Point& p, bool ce);
void SetConstrainedEdgeCW(Point& p, bool ce);
bool GetDelunayEdgeCCW(Point& p);
bool GetDelunayEdgeCW(Point& p);
void SetDelunayEdgeCCW(Point& p, bool e);
void SetDelunayEdgeCW(Point& p, bool e);
bool Contains(Point* p);
bool Contains(const Edge& e);
bool Contains(Point* p, Point* q);
void Legalize(Point& point);
void Legalize(Point& opoint, Point& npoint);
void ClearNeighbors();
void ClearDelunayEdges();
inline bool IsInterior();
inline void IsInterior(bool b);
Triangle& NeighborAcross(Point& opoint);
Triangle* GetNeighbor(const int& index);
void MarkNeighbor(Point* p1, Point* p2, Triangle* t);
void MarkNeighbor(Triangle& t);
void MarkConstrainedEdge(const int index);
void MarkConstrainedEdge(Edge& edge);
void MarkConstrainedEdge(Point* p, Point* q);
int Index(const Point* p);
int EdgeIndex(const Point* p1, const Point* p2);
Triangle* NeighborCW(Point& point);
Triangle* NeighborCCW(Point& point);
bool GetConstrainedEdgeCCW(Point& p);
bool GetConstrainedEdgeCW(Point& p);
void SetConstrainedEdgeCCW(Point& p, bool ce);
void SetConstrainedEdgeCW(Point& p, bool ce);
bool GetDelunayEdgeCCW(Point& p);
bool GetDelunayEdgeCW(Point& p);
void SetDelunayEdgeCCW(Point& p, bool e);
void SetDelunayEdgeCW(Point& p, bool e);
bool Contains(Point* p);
bool Contains(const Edge& e);
bool Contains(Point* p, Point* q);
void Legalize(Point& point);
void Legalize(Point& opoint, Point& npoint);
void ClearNeighbors();
void ClearDelunayEdges();
inline bool IsInterior();
inline void IsInterior(bool b);
Triangle& NeighborAcross(Point& opoint);
void DebugPrint();
void DebugPrint();
private:
/// Triangle points
Point* points_[3];
/// Neighbor list
Triangle* neighbors_[3];
/// Has this triangle been marked as an interior triangle?
bool interior_;
/// Triangle points
Point* points_[3];
/// Neighbor list
Triangle* neighbors_[3];
/// Has this triangle been marked as an interior triangle?
bool interior_;
};
inline bool cmp (const Point* a, const Point* b) {
inline bool cmp(const Point* a, const Point* b)
{
if (a->y < b->y) {
return true;
} else if (a->y == b->y) {
// Make sure q is point with greater x value
if(a->x < b->x) {
// Make sure q is point with greater x value
if (a->x < b->x) {
return true;
}
}
}
return false;
}
/// Add two points_ component-wise.
inline Point operator + (const Point& a, const Point& b) {
return Point(a.x + b.x, a.y + b.y);
inline Point operator +(const Point& a, const Point& b)
{
return Point(a.x + b.x, a.y + b.y);
}
/// Subtract two points_ component-wise.
inline Point operator - (const Point& a, const Point& b) {
return Point(a.x - b.x, a.y - b.y);
inline Point operator -(const Point& a, const Point& b)
{
return Point(a.x - b.x, a.y - b.y);
}
/// Multiply point by scalar
inline Point operator * (double s, const Point& a) {
return Point(s * a.x, s * a.y);
inline Point operator *(double s, const Point& a)
{
return Point(s * a.x, s * a.y);
}
inline bool operator == (const Point& a, const Point& b) {
return a.x == b.x && a.y == b.y;
inline bool operator ==(const Point& a, const Point& b)
{
return a.x == b.x && a.y == b.y;
}
inline bool operator != (const Point& a, const Point& b) {
return a.x != b.x && a.y != b.y;
inline bool operator !=(const Point& a, const Point& b)
{
return a.x != b.x && a.y != b.y;
}
/// Peform the dot product on two vectors.
inline double Dot(const Point& a, const Point& b) {
return a.x * b.x + a.y * b.y;
inline double Dot(const Point& a, const Point& b)
{
return a.x * b.x + a.y * b.y;
}
/// Perform the cross product on two vectors. In 2D this produces a scalar.
inline double Cross(const Point& a, const Point& b) {
return a.x * b.y - a.y * b.x;
inline double Cross(const Point& a, const Point& b)
{
return a.x * b.y - a.y * b.x;
}
/// Perform the cross product on a point and a scalar. In 2D this produces
/// a point.
inline Point Cross(const Point& a, double s) {
return Point(s * a.y, -s * a.x);
inline Point Cross(const Point& a, double s)
{
return Point(s * a.y, -s * a.x);
}
/// Perform the cross product on a scalar and a point. In 2D this produces
/// a point.
inline Point Cross(const double s, const Point& a) {
return Point(-s * a.y, s * a.x);
inline Point Cross(const double s, const Point& a)
{
return Point(-s * a.y, s * a.x);
}
inline Point* Triangle::GetPoint(const int& index) {
inline Point* Triangle::GetPoint(const int& index)
{
return points_[index];
}
inline Triangle* Triangle::GetNeighbor(const int& index) {
inline Triangle* Triangle::GetNeighbor(const int& index)
{
return neighbors_[index];
}
inline bool Triangle::Contains(Point* p) {
inline bool Triangle::Contains(Point* p)
{
return p == points_[0] || p == points_[1] || p == points_[2];
}
inline bool Triangle::Contains(const Edge& e) {
inline bool Triangle::Contains(const Edge& e)
{
return Contains(e.p) && Contains(e.q);
}
inline bool Triangle::Contains(Point* p, Point* q) {
inline bool Triangle::Contains(Point* p, Point* q)
{
return Contains(p) && Contains(q);
}
inline bool Triangle::IsInterior() {
inline bool Triangle::IsInterior()
{
return interior_;
}
inline void Triangle::IsInterior(bool b) {
interior_ = b;
inline void Triangle::IsInterior(bool b)
{
interior_ = b;
}
#endif

View File

@ -1,4 +1,4 @@
/*
/*
* Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/
*
@ -35,9 +35,12 @@
#include <math.h>
template<typename T, int size>
int array_length(T(&)[size]){return size;}
int array_length(T(&)[size])
{
return size;
}
const double PI_3div4 = 3*M_PI/4;
const double PI_3div4 = 3 * M_PI / 4;
const double EPSILON = 1e-12;
enum Orientation { CW, CCW, COLLINEAR };
@ -50,28 +53,27 @@ enum Orientation { CW, CCW, COLLINEAR };
* <pre>
* A[P1,P2,P3] = (x1*y2 - y1*x2) + (x2*y3 - y2*x3) + (x3*y1 - y3*x1)
* = (x1-x3)*(y2-y3) - (y1-y3)*(x2-x3)
* </pre>
* </pre>
*/
Orientation Orient2d(Point& pa, Point& pb, Point& pc ) {
Orientation Orient2d(Point& pa, Point& pb, Point& pc)
{
double detleft = (pa.x - pc.x) * (pb.y - pc.y);
double detright = (pa.y - pc.y) * (pb.x - pc.x);
double val = detleft - detright;
if( val > -EPSILON && val < EPSILON ) {
return COLLINEAR;
} else if( val > 0 ) {
if (val > -EPSILON && val < EPSILON) {
return COLLINEAR;
} else if (val > 0) {
return CCW;
}
return CW;
}
bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd) {
bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd)
{
double pdx = pd.x;
double pdy = pd.y;
double adx = pa.x - pdx;
double ady = pa.y - pdy;
double ady = pa.y - pdy;
double bdx = pb.x - pdx;
double bdy = pb.y - pdy;
@ -79,7 +81,7 @@ bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd) {
double bdxady = bdx * ady;
double oabd = adxbdy - bdxady;
if(oabd <= EPSILON) {
if (oabd <= EPSILON) {
return false;
}
@ -90,12 +92,11 @@ bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd) {
double adxcdy = adx * cdy;
double ocad = cdxady - adxcdy;
if(ocad <= EPSILON) {
if (ocad <= EPSILON) {
return false;
}
}
return true;
}
#endif

View File

@ -1,4 +1,4 @@
/*
/*
* Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/
*
@ -30,75 +30,78 @@
*/
#include "advancing_front.h"
AdvancingFront::AdvancingFront() {
AdvancingFront::AdvancingFront()
{
head_ = tail_ = search_node_ = NULL;
}
Node* AdvancingFront::Locate(const double& x) {
Node* node = search_node_;
Node* AdvancingFront::Locate(const double& x)
{
Node* node = search_node_;
if(x < node->value) {
if (x < node->value) {
//printf("<: - %f,%f - %p\n", x, node->value, node->next);
while((node = node->prev) != NULL) {
if(x >= node->value) {
while ((node = node->prev) != NULL) {
if (x >= node->value) {
search_node_ = node;
return node;
}
}
} else {
}
}
} else {
//printf("%p - %p\n", node, node->next);
//printf(">: %f - %f\n", x, node->value);
while((node = node->next) != NULL) {
if(x < node->value) {
while ((node = node->next) != NULL) {
if (x < node->value) {
search_node_ = node->prev;
return node->prev;
}
}
}
return NULL;
}
}
}
return NULL;
}
Node* AdvancingFront::FindSearchNode(const double& x) {
// TODO: implement BST index
return search_node_;
Node* AdvancingFront::FindSearchNode(const double& x)
{
// TODO: implement BST index
return search_node_;
}
Node* AdvancingFront::LocatePoint(Point* point) {
const double px = point->x;
Node* node = FindSearchNode(px);
const double nx = node->point->x;
if(px == nx) {
if(point != node->point) {
// We might have two nodes with same x value for a short time
if(point == node->prev->point) {
node = node->prev;
} else if(point == node->next->point) {
node = node->next;
} else {
assert(0);
}
}
} else if(px < nx) {
while((node = node->prev) != NULL) {
if(point == node->point) {
break;
}
}
} else {
while((node = node->next) != NULL) {
if(point == node->point)
break;
}
}
if(node) search_node_ = node;
return node;
Node* AdvancingFront::LocatePoint(Point* point)
{
const double px = point->x;
Node* node = FindSearchNode(px);
const double nx = node->point->x;
if (px == nx) {
if (point != node->point) {
// We might have two nodes with same x value for a short time
if (point == node->prev->point) {
node = node->prev;
} else if (point == node->next->point) {
node = node->next;
} else {
assert(0);
}
}
} else if (px < nx) {
while ((node = node->prev) != NULL) {
if (point == node->point) {
break;
}
}
} else {
while ((node = node->next) != NULL) {
if (point == node->point)
break;
}
}
if (node) search_node_ = node;
return node;
}
AdvancingFront::~AdvancingFront() {
delete head_;
delete search_node_;
AdvancingFront::~AdvancingFront()
{
delete head_;
delete search_node_;
delete tail_;
}

View File

@ -1,4 +1,4 @@
/*
/*
* Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/
*
@ -34,66 +34,84 @@ struct Node;
// Advancing front node
struct Node {
Point* point;
Triangle* triangle;
Node* next;
Node* prev;
double value;
Node(Point& p) : point(&p), triangle(NULL), value(p.x), next(NULL), prev(NULL) {}
Node(Point& p, Triangle& t) : point(&p), triangle(&t), value(p.x),
next(NULL), prev(NULL) {}
/*
~Node() {
printf("going... ");
printf("bye node");
printf(" ... gone!\n");
double value;
Node(Point& p) : point(&p), triangle(NULL), value(p.x), next(NULL), prev(NULL)
{
}
*/
Node(Point& p, Triangle& t) : point(&p), triangle(&t), value(p.x),
next(NULL), prev(NULL)
{
}
/*
~Node() {
printf("going... ");
printf("bye node");
printf(" ... gone!\n");
}
*/
};
// Advancing front
class AdvancingFront {
public:
AdvancingFront();
// Destructor
~AdvancingFront();
Node* head();
void set_head(Node* node);
Node* tail();
void set_tail(Node* node);
Node* search();
void set_search(Node* node);
/// Locate insertion point along advancing front
Node* Locate(const double& x);
Node* LocatePoint(Point* point);
AdvancingFront();
// Destructor
~AdvancingFront();
Node* head();
void set_head(Node* node);
Node* tail();
void set_tail(Node* node);
Node* search();
void set_search(Node* node);
/// Locate insertion point along advancing front
Node* Locate(const double& x);
Node* LocatePoint(Point* point);
private:
Node* head_, *tail_, *search_node_;
Node* FindSearchNode(const double& x);
Node* head_, *tail_, *search_node_;
Node* FindSearchNode(const double& x);
};
inline Node* AdvancingFront::head() { return head_; }
inline void AdvancingFront::set_head(Node* node) { head_ = node; }
inline Node* AdvancingFront::head()
{
return head_;
}
inline void AdvancingFront::set_head(Node* node)
{
head_ = node;
}
inline Node* AdvancingFront::tail() { return tail_; }
inline void AdvancingFront::set_tail(Node* node) { tail_ = node; }
inline Node* AdvancingFront::tail()
{
return tail_;
}
inline void AdvancingFront::set_tail(Node* node)
{
tail_ = node;
}
inline Node* AdvancingFront::search() { return search_node_; }
inline Node* AdvancingFront::search()
{
return search_node_;
}
inline void AdvancingFront::set_search(Node* node) { search_node_ = node; }
inline void AdvancingFront::set_search(Node* node)
{
search_node_ = node;
}

View File

@ -1,4 +1,4 @@
/*
/*
* Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/
*
@ -30,29 +30,34 @@
*/
#include "cdt.h"
CDT::CDT(Point** polyline, const int& point_count) {
sweep_context_ = new SweepContext(polyline, point_count);
sweep_ = new Sweep;
CDT::CDT(Point** polyline, const int& point_count)
{
sweep_context_ = new SweepContext(polyline, point_count);
sweep_ = new Sweep;
}
void CDT::AddHole(const Point poly_line[], const int point_count) {
void CDT::AddHole(const Point poly_line[], const int point_count)
{
}
void CDT::Triangulate() {
sweep_->Triangulate(*sweep_context_);
void CDT::Triangulate()
{
sweep_->Triangulate(*sweep_context_);
}
std::vector<Triangle*> CDT::GetTriangles() {
std::vector<Triangle*> CDT::GetTriangles()
{
return sweep_context_->GetTriangles();
}
std::list<Triangle*> CDT::GetMap() {
std::list<Triangle*> CDT::GetMap()
{
return sweep_context_->GetMap();
}
CDT::~CDT() {
delete sweep_context_;
delete sweep_;
CDT::~CDT()
{
delete sweep_context_;
delete sweep_;
}

View File

@ -1,4 +1,4 @@
/*
/*
* Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/
*
@ -33,28 +33,26 @@
#include "sweep_context.h"
#include "sweep.h"
class CDT
class CDT
{
public:
/// Constructor
CDT(Point** poly_line, const int& point_count);
/// Add a hole
void AddHole(const Point poly_line[], const int point_count);
/// Triangulate points
void Triangulate();
/// Get Delaunay triangles
std::vector<Triangle*> GetTriangles();
/// Get triangle map
std::list<Triangle*> CDT::GetMap();
/// Constructor
CDT(Point** poly_line, const int& point_count);
/// Add a hole
void AddHole(const Point poly_line[], const int point_count);
/// Triangulate points
void Triangulate();
/// Get Delaunay triangles
std::vector<Triangle*> GetTriangles();
/// Get triangle map
std::list<Triangle*> CDT::GetMap();
private:
SweepContext* sweep_context_;
Sweep* sweep_;
/// Destructor
~CDT();
SweepContext* sweep_context_;
Sweep* sweep_;
/// Destructor
~CDT();
};

View File

@ -1,4 +1,4 @@
/*
/*
* Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/
*
@ -34,16 +34,16 @@
// Excludes exterior triangles outside constrained edges
// Depth first search
void Mesh::clean(Triangle& triangle)
void Mesh::clean(Triangle& triangle)
{
/*
if(triangle != NULL && !triangle.interior)
{
triangle.interior = true;
triangles += triangle;
for(i <- 0 until 3)
if(!triangle.edges(i))
clean(triangle.neighbors(i));
}
*/
/*
if(triangle != NULL && !triangle.interior)
{
triangle.interior = true;
triangles += triangle;
for(i <- 0 until 3)
if(!triangle.edges(i))
clean(triangle.neighbors(i));
}
*/
}

View File

@ -1,4 +1,4 @@
/*
/*
* Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/
*
@ -33,18 +33,16 @@ using namespace std;
class Triangle;
class Mesh
class Mesh
{
public:
/// Triangles that constitute the mesh
vector<Triangle> map;
// Debug triangles
//val debug = new ArrayBuffer[Triangle]
//val triangles = new ArrayBuffer[Triangle]
void clean(Triangle& triangle);
/// Triangles that constitute the mesh
vector<Triangle> map;
// Debug triangles
//val debug = new ArrayBuffer[Triangle]
//val triangles = new ArrayBuffer[Triangle]
void clean(Triangle& triangle);
};

File diff suppressed because it is too large Load Diff

View File

@ -1,4 +1,4 @@
/*
/*
* Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/
*
@ -33,8 +33,8 @@
* Sweep-line, Constrained Delauney Triangulation (CDT) See: Domiter, V. and
* Zalik, B.(2008)'Sweep-line algorithm for constrained Delaunay triangulation',
* International Journal of Geographical Information Science
*
* "FlipScan" Constrained Edge Algorithm invented by Thomas Åhlén, thahlen@gmail.com
*
* "FlipScan" Constrained Edge Algorithm invented by Thomas Åhlén, thahlen@gmail.com
*/
class SweepContext;
@ -44,71 +44,69 @@ struct Edge;
class Triangle;
class Sweep {
public:
void Triangulate(SweepContext& tcx);
void Triangulate(SweepContext& tcx);
private:
void SweepPoints(SweepContext& tcx);
Node& PointEvent(SweepContext& tcx, Point& point);
void EdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point);
Node& NewFrontTriangle(SweepContext& tcx, Point& point, Node& node);
void Fill(SweepContext& tcx, Node& node);
bool Legalize(SweepContext& tcx, Triangle& t);
bool Incircle(Point& pa, Point& pb, Point& pc, Point& pd);
void SweepPoints(SweepContext& tcx);
void RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op);
void FillAdvancingFront(SweepContext& tcx, Node& n);
double HoleAngle(Node& node);
double BasinAngle(Node& node);
void FillBasin(SweepContext& tcx, Node& node);
void FillBasinReq(SweepContext& tcx, Node& node);
bool IsShallow(SweepContext& tcx, Node& node);
bool IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq);
void FillEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
Node& PointEvent(SweepContext& tcx, Point& point);
void FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void EdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point);
void FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
Node& NewFrontTriangle(SweepContext& tcx, Point& point, Node& node);
void FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void Fill(SweepContext& tcx, Node& node);
void FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
bool Legalize(SweepContext& tcx, Triangle& t);
void FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& t, Point& p);
Triangle& NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op);
Point& NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op );
void FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle, Triangle& t, Point& p);
bool Incircle(Point& pa, Point& pb, Point& pc, Point& pd);
void FinalizationPolygon(SweepContext& tcx);
void RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op);
void FillAdvancingFront(SweepContext& tcx, Node& n);
double HoleAngle(Node& node);
double BasinAngle(Node& node);
void FillBasin(SweepContext& tcx, Node& node);
void FillBasinReq(SweepContext& tcx, Node& node);
bool IsShallow(SweepContext& tcx, Node& node);
bool IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq);
void FillEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& t, Point& p);
Triangle& NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op);
Point& NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op);
void FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle, Triangle& t, Point& p);
void FinalizationPolygon(SweepContext& tcx);
};

View File

@ -4,157 +4,162 @@
#include <GL/glfw.h>
#include "advancing_front.h"
SweepContext::SweepContext(Point** polyline, const int& point_count) {
SweepContext::SweepContext(Point** polyline, const int& point_count)
{
basin = Basin();
edge_event = EdgeEvent();
points_ = polyline;
point_count_ = point_count;
InitEdges(points_, point_count_);
InitTriangulation();
}
std::vector<Triangle*> SweepContext::GetTriangles() {
std::vector<Triangle*> SweepContext::GetTriangles()
{
return triangles_;
}
std::list<Triangle*> SweepContext::GetMap() {
std::list<Triangle*> SweepContext::GetMap()
{
return map_;
}
void SweepContext::InitTriangulation() {
void SweepContext::InitTriangulation()
{
double xmax(points_[0]->x), xmin(points_[0]->x);
double ymax(points_[0]->y), ymin(points_[0]->y);
// Calculate bounds.
for(int i = 0; i < point_count_; i++) {
// Calculate bounds.
for (int i = 0; i < point_count_; i++) {
Point p = *points_[i];
if(p.x > xmax)
xmax = p.x;
if(p.x < xmin)
xmin = p.x;
if(p.y > ymax)
ymax = p.y;
if(p.y < ymin)
ymin = p.y;
if (p.x > xmax)
xmax = p.x;
if (p.x < xmin)
xmin = p.x;
if (p.y > ymax)
ymax = p.y;
if (p.y < ymin)
ymin = p.y;
}
double dx = kAlpha * ( xmax - xmin );
double dy = kAlpha * ( ymax - ymin );
double dx = kAlpha * (xmax - xmin);
double dy = kAlpha * (ymax - ymin);
head_ = new Point(xmax + dx, ymin - dy);
tail_ = new Point(xmin - dx, ymin - dy);
// Sort points along y-axis
double init_time = glfwGetTime();
std::sort(points_, points_ + point_count_, cmp);
double dt = glfwGetTime() - init_time;
printf("Sort time (secs) = %f\n", dt);
/*
printf("*************************\n");
for(int i = 0; i < point_count_; i++) {
for (int i = 0; i < point_count_; i++) {
printf("%f,%f ", points_[i]->x, points_[i]->y);
printf("%p\n", points_[i]);
}
printf("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
for(int i = 0; i < edge_list.size(); i++) {
edge_list[i]->p->DebugPrint(); edge_list[i]->q->DebugPrint();
printf("%p, %p\n", edge_list[i]->p, edge_list[i]->q);
}
*/
/*
printf("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
for(int i = 0; i < edge_list.size(); i++) {
edge_list[i]->p->DebugPrint(); edge_list[i]->q->DebugPrint();
printf("%p, %p\n", edge_list[i]->p, edge_list[i]->q);
}
*/
}
void SweepContext::InitEdges(Point** polyline, const int& point_count) {
for(int i = 0; i < point_count; i++) {
void SweepContext::InitEdges(Point** polyline, const int& point_count)
{
for (int i = 0; i < point_count; i++) {
int j = i < point_count - 1 ? i + 1 : 0;
edge_list.push_back(new Edge(*polyline[i], *polyline[j]));
}
/*
for(int i = 0; i < edge_list.size(); i++) {
edge_list[i]->p->DebugPrint(); edge_list[i]->q->DebugPrint();
printf("%p, %p\n", edge_list[i]->p, edge_list[i]->q);
}
*/
}
Point* SweepContext::GetPoint(const int& index) {
return points_[index];
for(int i = 0; i < edge_list.size(); i++) {
edge_list[i]->p->DebugPrint(); edge_list[i]->q->DebugPrint();
printf("%p, %p\n", edge_list[i]->p, edge_list[i]->q);
}
*/
}
void SweepContext::AddToMap(Triangle* triangle ) {
Point* SweepContext::GetPoint(const int& index)
{
return points_[index];
}
void SweepContext::AddToMap(Triangle* triangle)
{
map_.push_back(triangle);
}
Node& SweepContext::LocateNode(Point& point) {
// TODO implement search tree
return *front_->Locate(point.x);
Node& SweepContext::LocateNode(Point& point)
{
// TODO implement search tree
return *front_->Locate(point.x);
}
void SweepContext::CreateAdvancingFront() {
// Initial triangle
Triangle* triangle = new Triangle(*points_[0], *tail_, *head_);
void SweepContext::CreateAdvancingFront()
{
// Initial triangle
Triangle* triangle = new Triangle(*points_[0], *tail_, *head_);
map_.push_back(triangle);
front_ = new AdvancingFront;
front_->set_head(new Node(*triangle->GetPoint(1)));
front_->head()->triangle = triangle;
Node* middle = new Node(*triangle->GetPoint(0));
middle->triangle = triangle;
front_->set_tail(new Node(*triangle->GetPoint(2)));
front_->set_search(middle);
// TODO: More intuitive if head is middles next and not previous?
// so swap head and tail
front_->head()->next = middle;
middle->next = front_->tail();
middle->prev = front_->head();
front_->tail()->prev = middle;
map_.push_back(triangle);
front_ = new AdvancingFront;
front_->set_head(new Node(*triangle->GetPoint(1)));
front_->head()->triangle = triangle;
Node* middle = new Node(*triangle->GetPoint(0));
middle->triangle = triangle;
front_->set_tail(new Node(*triangle->GetPoint(2)));
front_->set_search(middle);
// TODO: More intuitive if head is middles next and not previous?
// so swap head and tail
front_->head()->next = middle;
middle->next = front_->tail();
middle->prev = front_->head();
front_->tail()->prev = middle;
}
void SweepContext::RemoveNode(Node* node) {
delete node;
void SweepContext::RemoveNode(Node* node)
{
delete node;
}
void SweepContext::MapTriangleToNodes(Triangle& t) {
for(int i=0; i<3; i++) {
if(t.GetNeighbor(i) == NULL) {
void SweepContext::MapTriangleToNodes(Triangle& t)
{
for (int i = 0; i < 3; i++) {
if (t.GetNeighbor(i) == NULL) {
Node* n = front_->LocatePoint(t.PointCW(*t.GetPoint(i)));
if(n)
if (n)
n->triangle = &t;
}
}
}
void SweepContext::RemoveFromMap(Triangle* triangle) {
map_.remove(triangle);
}
void SweepContext::MeshClean(Triangle& triangle ) {
if(&triangle != NULL && !triangle.IsInterior()) {
triangle.IsInterior(true);
triangles_.push_back(&triangle);
for(int i = 0; i < 3; i++) {
if(!triangle.constrained_edge[i])
MeshClean(*triangle.GetNeighbor(i));
}
}
}
SweepContext::~SweepContext() {
void SweepContext::RemoveFromMap(Triangle* triangle)
{
map_.remove(triangle);
}
void SweepContext::MeshClean(Triangle& triangle)
{
if (&triangle != NULL && !triangle.IsInterior()) {
triangle.IsInterior(true);
triangles_.push_back(&triangle);
for (int i = 0; i < 3; i++) {
if (!triangle.constrained_edge[i])
MeshClean(*triangle.GetNeighbor(i));
}
}
}
SweepContext::~SweepContext()
{
delete head_;
delete tail_;
delete front_;

View File

@ -31,7 +31,7 @@
#include <list>
#include <vector>
// Inital triangle factor, seed triangle will extend 30% of
// Inital triangle factor, seed triangle will extend 30% of
// PointSet width to both left and right.
const double kAlpha = 0.3;
@ -41,124 +41,141 @@ struct Node;
struct Edge;
class AdvancingFront;
class SweepContext {
class SweepContext {
public:
// Constructor
SweepContext(Point** polyline, const int& point_count);
// Destructor
~SweepContext();
//void MeshClean(Triangle& triangle);
// Get Advancing Front
//AdvancingFront front();
void set_head(Point* p1);
Point* head();
// Constructor
SweepContext(Point** polyline, const int& point_count);
// Destructor
~SweepContext();
void set_tail(Point* p1 );
Point* tail();
int point_count();
Node& LocateNode(Point& point);
void RemoveNode(Node* node);
void CreateAdvancingFront();
// Try to map a node to all sides of this triangle that don't have a neighbor
void MapTriangleToNodes(Triangle& t);
void AddToMap(Triangle* triangle);
Point* GetPoint(const int& index);
Point* GetPoints();
void RemoveFromMap(Triangle* triangle);
AdvancingFront* front();
void MeshClean(Triangle& triangle);
std::vector<Triangle*> GetTriangles();
std::list<Triangle*> GetMap();
std::vector<Edge*> edge_list;
struct Basin {
Node* left_node;
Node* bottom_node;
Node* right_node;
double width;
bool left_highest;
Basin() : left_node(NULL), bottom_node(NULL), right_node(NULL),
width(0.0), left_highest(false) {}
void Clear() {
left_node = NULL;
bottom_node = NULL;
right_node = NULL;
width = 0.0;
left_highest = false;
}
};
struct EdgeEvent {
Edge* constrained_edge;
bool right;
EdgeEvent() : constrained_edge(NULL), right(false) {}
};
Basin basin;
EdgeEvent edge_event;
private:
//void MeshClean(Triangle& triangle);
// Get Advancing Front
//AdvancingFront front();
std::vector<Triangle*> triangles_;
std::list<Triangle*> map_;
Point** points_;
int point_count_;
// Advancing front
AdvancingFront* front_;
// head point used with advancing front
Point* head_;
// tail point used with advancing front
Point* tail_;
//EdgeEvent edgeEvent = new EdgeEvent();
void InitTriangulation();
void InitEdges(Point** polyline, const int& point_count);
//void MeshCleanReq(Triangle& triangle )
/*
class EdgeEvent {
Edge* constrainedEdge;
bool right;
};
*/
void set_head(Point* p1);
Point* head();
void set_tail(Point* p1);
Point* tail();
int point_count();
Node& LocateNode(Point& point);
void RemoveNode(Node* node);
void CreateAdvancingFront();
// Try to map a node to all sides of this triangle that don't have a neighbor
void MapTriangleToNodes(Triangle& t);
void AddToMap(Triangle* triangle);
Point* GetPoint(const int& index);
Point* GetPoints();
void RemoveFromMap(Triangle* triangle);
AdvancingFront* front();
void MeshClean(Triangle& triangle);
std::vector<Triangle*> GetTriangles();
std::list<Triangle*> GetMap();
std::vector<Edge*> edge_list;
struct Basin {
Node* left_node;
Node* bottom_node;
Node* right_node;
double width;
bool left_highest;
Basin() : left_node(NULL), bottom_node(NULL), right_node(NULL),
width(0.0), left_highest(false)
{
}
void Clear()
{
left_node = NULL;
bottom_node = NULL;
right_node = NULL;
width = 0.0;
left_highest = false;
}
};
inline AdvancingFront* SweepContext::front() { return front_; }
struct EdgeEvent {
Edge* constrained_edge;
bool right;
inline int SweepContext::point_count() { return point_count_; }
EdgeEvent() : constrained_edge(NULL), right(false)
{
}
};
inline void SweepContext::set_head(Point* p1) { head_ = p1; }
Basin basin;
EdgeEvent edge_event;
inline Point* SweepContext::head() { return head_; }
private:
inline void SweepContext::set_tail(Point* p1) { tail_ = p1; }
std::vector<Triangle*> triangles_;
std::list<Triangle*> map_;
inline Point* SweepContext::tail() { return tail_; }
Point** points_;
int point_count_;
// Advancing front
AdvancingFront* front_;
// head point used with advancing front
Point* head_;
// tail point used with advancing front
Point* tail_;
//EdgeEvent edgeEvent = new EdgeEvent();
void InitTriangulation();
void InitEdges(Point** polyline, const int& point_count);
//void MeshCleanReq(Triangle& triangle )
/*
class EdgeEvent {
Edge* constrainedEdge;
bool right;
};
*/
};
inline AdvancingFront* SweepContext::front()
{
return front_;
}
inline int SweepContext::point_count()
{
return point_count_;
}
inline void SweepContext::set_head(Point* p1)
{
head_ = p1;
}
inline Point* SweepContext::head()
{
return head_;
}
inline void SweepContext::set_tail(Point* p1)
{
tail_ = p1;
}
inline Point* SweepContext::tail()
{
return tail_;
}

View File

@ -1,4 +1,4 @@
/*
/*
* Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/
*
@ -58,50 +58,51 @@ vector<Triangle*> triangles;
/// Triangle map
list<Triangle*> map;
double StringToDouble(const std::string& s) {
double StringToDouble(const std::string& s)
{
std::istringstream i(s);
double x;
if (!(i >> x))
return 0;
return 0;
return x;
}
bool draw_map = true;
int main(int argc, char* argv[]) {
int main(int argc, char* argv[])
{
if (argc != 3) {
cout << "Usage: p2t filename zoom" << endl;
return 1;
}
/*
// initialize random seed:
srand ( time(NULL) );
int a = 0;
int b = 2000;
for(int i = 0; i < num_points; i++) {
double x = rand() % (b - a - 1) + a + 1;
double y = rand() % (b - a - 1) + a + 1;
polyline[i] = Point(x, y);
}
*/
/*
// initialize random seed:
srand ( time(NULL) );
int a = 0;
int b = 2000;
for(int i = 0; i < num_points; i++) {
double x = rand() % (b - a - 1) + a + 1;
double y = rand() % (b - a - 1) + a + 1;
polyline[i] = Point(x, y);
}
*/
string line;
ifstream myfile (argv[1]);
ifstream myfile(argv[1]);
vector<Point*> points;
if (myfile.is_open()) {
while (!myfile.eof()) {
getline (myfile,line);
if(line.size() == 0) {
getline(myfile, line);
if (line.size() == 0) {
break;
}
istringstream iss(line);
vector<string> tokens;
copy(istream_iterator<string>(iss), istream_iterator<string>(),
copy(istream_iterator<string>(iss), istream_iterator<string>(),
back_inserter<vector<string> >(tokens));
double x = StringToDouble(tokens[0]);
double y = StringToDouble(tokens[1]);
@ -111,187 +112,179 @@ int main(int argc, char* argv[]) {
} else {
cout << "File not opened" << endl;
}
int num_points = points.size();
cout << "Number of points = " << num_points << endl;
Point** polyline = new Point *[num_points];
for(int i = 0; i < num_points; i++) {
Point** polyline = new Point *[num_points];
for (int i = 0; i < num_points; i++) {
polyline[i] = points[i];
}
Init();
// Perform triangulation
double init_time = glfwGetTime();
CDT * cdt = new CDT(polyline, num_points);
cdt->Triangulate();
double dt = glfwGetTime() - init_time;
cout << "Elapsed time (secs) = " << dt << endl;
triangles = cdt->GetTriangles();
map = cdt->GetMap();
MainLoop(atof(argv[2]));
delete [] polyline;
ShutDown(0);
return 0;
}
void Init()
{
const int window_width = 800,
window_height = 600;
if (glfwInit() != GL_TRUE)
ShutDown(1);
// 800 x 600, 16 bit color, no depth, alpha or stencil buffers, windowed
if (glfwOpenWindow(window_width, window_height, 5, 6, 5, 0, 0, 0, GLFW_WINDOW) != GL_TRUE)
ShutDown(1);
ShutDown(1);
glfwSetWindowTitle("Poly2Tri - C++");
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glClearColor(0.0, 0.0, 0.0, 0.0);
glHint (GL_LINE_SMOOTH_HINT, GL_NICEST);
glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
}
void ShutDown(int return_code)
{
glfwTerminate();
exit(return_code);
}
void MainLoop(const double zoom)
{
// the time of the previous frame
double old_time = glfwGetTime();
// this just loops as long as the program runs
bool running = true;
while(running)
{
while (running) {
// calculate time elapsed, and the amount by which stuff rotates
double current_time = glfwGetTime(),
delta_rotate = (current_time - old_time) * rotations_per_tick * 360;
delta_rotate = (current_time - old_time) * rotations_per_tick * 360;
old_time = current_time;
// escape to quit, arrow keys to rotate view
// Check if ESC key was pressed or window was closed
running = !glfwGetKey( GLFW_KEY_ESC ) && glfwGetWindowParam( GLFW_OPENED );
running = !glfwGetKey(GLFW_KEY_ESC) && glfwGetWindowParam(GLFW_OPENED);
if (glfwGetKey(GLFW_KEY_LEFT) == GLFW_PRESS)
rotate_y += delta_rotate;
if (glfwGetKey(GLFW_KEY_RIGHT) == GLFW_PRESS)
rotate_y -= delta_rotate;
// z axis always rotates
rotate_z += delta_rotate;
// Draw the scene
if(draw_map) {
if (draw_map) {
DrawMap(zoom);
} else {
Draw(zoom);
}
// swap back and front buffers
glfwSwapBuffers();
}
}
void ResetZoom(double zoom, double cx, double cy, double width, double height) {
void ResetZoom(double zoom, double cx, double cy, double width, double height)
{
double left = -width / zoom;
double right = width / zoom;
double bottom = -height / zoom;
double top = height / zoom;
double left = -width / zoom;
double right = width / zoom;
double bottom = -height / zoom;
double top = height / zoom;
// Reset viewport
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// Reset ortho view
glOrtho(left, right, bottom, top, 1, -1);
glTranslatef(-cx, -cy, 0);
glMatrixMode(GL_MODELVIEW);
glDisable(GL_DEPTH_TEST);
glLoadIdentity();
// Clear the screen
glClear(GL_COLOR_BUFFER_BIT);
// Reset viewport
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// Reset ortho view
glOrtho(left, right, bottom, top, 1, -1);
glTranslatef(-cx, -cy, 0);
glMatrixMode(GL_MODELVIEW);
glDisable(GL_DEPTH_TEST);
glLoadIdentity();
// Clear the screen
glClear(GL_COLOR_BUFFER_BIT);
}
void Draw(const double zoom) {
void Draw(const double zoom)
{
// reset zoom
Point center = Point(0, 0);
ResetZoom(zoom, center.x, center.y, 800, 600);
for (int i = 0; i < triangles.size(); i++) {
Triangle& t = *triangles[i];
Point& a = *t.GetPoint(0);
Point& b = *t.GetPoint(1);
Point& c = *t.GetPoint(2);
// Red
glColor3f(1, 0, 0);
glBegin(GL_LINE_LOOP);
glVertex2f(a.x, a.y);
glVertex2f(b.x, b.y);
glVertex2f(c.x, c.y);
glEnd();
glBegin(GL_LINE_LOOP);
glVertex2f(a.x, a.y);
glVertex2f(b.x, b.y);
glVertex2f(c.x, c.y);
glEnd();
}
}
void DrawMap(const double zoom) {
void DrawMap(const double zoom)
{
// reset zoom
Point center = Point(0, 0);
ResetZoom(zoom, center.x, center.y, 800, 600);
list<Triangle*>::iterator it;
list<Triangle*>::iterator it;
for (it = map.begin(); it != map.end(); it++) {
Triangle& t = **it;
Point& a = *t.GetPoint(0);
Point& b = *t.GetPoint(1);
Point& c = *t.GetPoint(2);
ConstrainedColor(t.constrained_edge[2]);
glBegin(GL_LINES);
glVertex2f(a.x, a.y);
glVertex2f(b.x, b.y);
ConstrainedColor(t.constrained_edge[2]);
glBegin(GL_LINES);
glVertex2f(a.x, a.y);
glVertex2f(b.x, b.y);
glEnd( );
ConstrainedColor(t.constrained_edge[0]);
ConstrainedColor(t.constrained_edge[0]);
glBegin(GL_LINES);
glVertex2f(b.x, b.y);
glVertex2f(c.x, c.y);
glVertex2f(b.x, b.y);
glVertex2f(c.x, c.y);
glEnd( );
ConstrainedColor(t.constrained_edge[1]);
ConstrainedColor(t.constrained_edge[1]);
glBegin(GL_LINES);
glVertex2f(c.x, c.y);
glVertex2f(a.x, a.y);
glVertex2f(c.x, c.y);
glVertex2f(a.x, a.y);
glEnd( );
}
}
void ConstrainedColor(bool constrain) {
if(constrain) {
void ConstrainedColor(bool constrain)
{
if (constrain) {
// Green
glColor3f(0, 1, 0);
} else {