uncrustified code

This commit is contained in:
zzzzrrr 2010-01-21 09:00:09 -05:00
parent 9202d205df
commit 732e0791e8
14 changed files with 1454 additions and 1406 deletions

View File

@ -30,8 +30,8 @@
*/
#include "shapes.h"
Triangle::Triangle(Point& a, Point& b, Point& c) {
Triangle::Triangle(Point& a, Point& b, Point& c)
{
points_[0] = &a; points_[1] = &b; points_[2] = &c;
neighbors_[0] = NULL; neighbors_[1] = NULL; neighbors_[2] = NULL;
constrained_edge[0] = constrained_edge[1] = constrained_edge[2] = false;
@ -40,8 +40,8 @@ Triangle::Triangle(Point& a, Point& b, Point& c) {
}
// Update neighbor pointers
void Triangle::MarkNeighbor(Point* p1, Point* p2, Triangle* t) {
void Triangle::MarkNeighbor(Point* p1, Point* p2, Triangle* t)
{
if ((p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2]))
neighbors_[0] = t;
else if ((p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0]))
@ -53,8 +53,8 @@ void Triangle::MarkNeighbor(Point* p1, Point* p2, Triangle* t) {
}
// Exhaustive search to update neighbor pointers
void Triangle::MarkNeighbor(Triangle& t) {
void Triangle::MarkNeighbor(Triangle& t)
{
if (t.Contains(points_[1], points_[2])) {
neighbors_[0] = &t;
t.MarkNeighbor(points_[1], points_[2], this);
@ -67,18 +67,20 @@ void Triangle::MarkNeighbor(Triangle& t) {
}
}
void Triangle::ClearNeighbors() {
void Triangle::ClearNeighbors()
{
neighbors_[0] = NULL;
neighbors_[1] = NULL;
neighbors_[2] = NULL;
}
void Triangle::ClearDelunayEdges() {
void Triangle::ClearDelunayEdges()
{
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
}
Point* Triangle::OppositePoint(Triangle& t, Point& p) {
Point* Triangle::OppositePoint(Triangle& t, Point& p)
{
Point *cw = t.PointCW(p);
double x = cw->x;
double y = cw->y;
@ -89,16 +91,16 @@ Point* Triangle::OppositePoint(Triangle& t, Point& p) {
}
// Legalized triangle by rotating clockwise around point(0)
void Triangle::Legalize(Point& point) {
void Triangle::Legalize(Point& point)
{
points_[1] = points_[0];
points_[0] = points_[2];
points_[2] = &point;
}
// Legalize triagnle by rotating clockwise around oPoint
void Triangle::Legalize(Point& opoint, Point& npoint) {
void Triangle::Legalize(Point& opoint, Point& npoint)
{
if (&opoint == points_[0]) {
points_[1] = points_[0];
points_[0] = points_[2];
@ -116,8 +118,8 @@ void Triangle::Legalize(Point& opoint, Point& npoint) {
}
}
int Triangle::Index(const Point* p) {
int Triangle::Index(const Point* p)
{
if (p == points_[0]) {
return 0;
} else if (p == points_[1]) {
@ -128,8 +130,8 @@ int Triangle::Index(const Point* p) {
assert(0);
}
int Triangle::EdgeIndex(const Point* p1, const Point* p2) {
int Triangle::EdgeIndex(const Point* p1, const Point* p2)
{
if (points_[0] == p1) {
if (points_[1] == p2) {
return 2;
@ -152,17 +154,19 @@ int Triangle::EdgeIndex(const Point* p1, const Point* p2) {
return -1;
}
void Triangle::MarkConstrainedEdge(const int index) {
void Triangle::MarkConstrainedEdge(const int index)
{
constrained_edge[index] = true;
}
void Triangle::MarkConstrainedEdge(Edge& edge) {
void Triangle::MarkConstrainedEdge(Edge& edge)
{
MarkConstrainedEdge(edge.p, edge.q);
}
// Mark edge as constrained
void Triangle::MarkConstrainedEdge(Point* p, Point* q) {
void Triangle::MarkConstrainedEdge(Point* p, Point* q)
{
if ((q == points_[0] && p == points_[1]) || (q == points_[1] && p == points_[0])) {
constrained_edge[2] = true;
} else if ((q == points_[0] && p == points_[2]) || (q == points_[2] && p == points_[0])) {
@ -170,12 +174,11 @@ void Triangle::MarkConstrainedEdge(Point* p, Point* q) {
} else if ((q == points_[1] && p == points_[2]) || (q == points_[2] && p == points_[1])) {
constrained_edge[0] = true;
}
}
// The point counter-clockwise to given point
Point* Triangle::PointCW(Point& point) {
Point* Triangle::PointCW(Point& point)
{
if (&point == points_[0]) {
return points_[2];
} else if (&point == points_[1]) {
@ -187,8 +190,8 @@ Point* Triangle::PointCW(Point& point) {
}
// The point counter-clockwise to given point
Point* Triangle::PointCCW(Point& point) {
Point* Triangle::PointCCW(Point& point)
{
if (&point == points_[0]) {
return points_[1];
} else if (&point == points_[1]) {
@ -200,8 +203,8 @@ Point* Triangle::PointCCW(Point& point) {
}
// The neighbor clockwise to given point
Triangle* Triangle::NeighborCW(Point& point) {
Triangle* Triangle::NeighborCW(Point& point)
{
if (&point == points_[0]) {
return neighbors_[1];
} else if (&point == points_[1]) {
@ -211,8 +214,8 @@ Triangle* Triangle::NeighborCW(Point& point) {
}
// The neighbor counter-clockwise to given point
Triangle* Triangle::NeighborCCW(Point& point) {
Triangle* Triangle::NeighborCCW(Point& point)
{
if (&point == points_[0]) {
return neighbors_[2];
} else if (&point == points_[1]) {
@ -221,8 +224,8 @@ Triangle* Triangle::NeighborCCW(Point& point) {
return neighbors_[1];
}
bool Triangle::GetConstrainedEdgeCCW(Point& p) {
bool Triangle::GetConstrainedEdgeCCW(Point& p)
{
if (&p == points_[0]) {
return constrained_edge[2];
} else if (&p == points_[1]) {
@ -231,8 +234,8 @@ bool Triangle::GetConstrainedEdgeCCW(Point& p) {
return constrained_edge[1];
}
bool Triangle::GetConstrainedEdgeCW(Point& p) {
bool Triangle::GetConstrainedEdgeCW(Point& p)
{
if (&p == points_[0]) {
return constrained_edge[1];
} else if (&p == points_[1]) {
@ -241,8 +244,8 @@ bool Triangle::GetConstrainedEdgeCW(Point& p) {
return constrained_edge[0];
}
void Triangle::SetConstrainedEdgeCCW(Point& p, bool ce) {
void Triangle::SetConstrainedEdgeCCW(Point& p, bool ce)
{
if (&p == points_[0]) {
constrained_edge[2] = ce;
} else if (&p == points_[1]) {
@ -252,8 +255,8 @@ void Triangle::SetConstrainedEdgeCCW(Point& p, bool ce) {
}
}
void Triangle::SetConstrainedEdgeCW(Point& p, bool ce) {
void Triangle::SetConstrainedEdgeCW(Point& p, bool ce)
{
if (&p == points_[0]) {
constrained_edge[1] = ce;
} else if (&p == points_[1]) {
@ -263,8 +266,8 @@ void Triangle::SetConstrainedEdgeCW(Point& p, bool ce) {
}
}
bool Triangle::GetDelunayEdgeCCW(Point& p) {
bool Triangle::GetDelunayEdgeCCW(Point& p)
{
if (&p == points_[0]) {
return delaunay_edge[2];
} else if (&p == points_[1]) {
@ -273,8 +276,8 @@ bool Triangle::GetDelunayEdgeCCW(Point& p) {
return delaunay_edge[1];
}
bool Triangle::GetDelunayEdgeCW(Point& p) {
bool Triangle::GetDelunayEdgeCW(Point& p)
{
if (&p == points_[0]) {
return delaunay_edge[1];
} else if (&p == points_[1]) {
@ -283,8 +286,8 @@ bool Triangle::GetDelunayEdgeCW(Point& p) {
return delaunay_edge[0];
}
void Triangle::SetDelunayEdgeCCW(Point& p, bool e) {
void Triangle::SetDelunayEdgeCCW(Point& p, bool e)
{
if (&p == points_[0]) {
delaunay_edge[2] = e;
} else if (&p == points_[1]) {
@ -294,8 +297,8 @@ void Triangle::SetDelunayEdgeCCW(Point& p, bool e) {
}
}
void Triangle::SetDelunayEdgeCW(Point& p, bool e) {
void Triangle::SetDelunayEdgeCW(Point& p, bool e)
{
if (&p == points_[0]) {
delaunay_edge[1] = e;
} else if (&p == points_[1]) {
@ -306,7 +309,8 @@ void Triangle::SetDelunayEdgeCW(Point& p, bool e) {
}
// The neighbor across to given point
Triangle& Triangle::NeighborAcross(Point& opoint) {
Triangle& Triangle::NeighborAcross(Point& opoint)
{
if (&opoint == points_[0]) {
return *neighbors_[0];
} else if (&opoint == points_[1]) {
@ -315,7 +319,8 @@ Triangle& Triangle::NeighborAcross(Point& opoint) {
return *neighbors_[2];
}
void Triangle::DebugPrint() {
void Triangle::DebugPrint()
{
using namespace std;
cout << points_[0]->x << "," << points_[0]->y << " ";
cout << points_[1]->x << "," << points_[1]->y << " ";

View File

@ -43,69 +43,86 @@ struct Node;
struct Edge;
struct Point {
double x, y;
/// Default constructor does nothing (for performance).
Point() { x = 0.0; y = 0.0; }
Point()
{
x = 0.0; y = 0.0;
}
/// The edges this point constitutes an upper ending point
std::vector<Edge*> edge_list;
/// Construct using coordinates.
Point(double x, double y) : x(x), y(y) {}
Point(double x, double y) : x(x), y(y)
{
}
/// Set this point to all zeros.
void set_zero() { x = 0.0f; y = 0.0f; }
void set_zero()
{
x = 0.0f; y = 0.0f;
}
/// Set this point to some specified coordinates.
void set(double x_, double y_) { x = x_; y = y_; }
void set(double x_, double y_)
{
x = x_; y = y_;
}
/// Negate this point.
Point operator -() const { Point v; v.set(-x, -y); return v; }
Point operator -() const
{
Point v; v.set(-x, -y); return v;
}
/// Add a point to this point.
void operator += (const Point& v) {
void operator +=(const Point& v)
{
x += v.x; y += v.y;
}
/// Subtract a point from this point.
void operator -= (const Point& v) {
void operator -=(const Point& v)
{
x -= v.x; y -= v.y;
}
/// Multiply this point by a scalar.
void operator *= (double a) {
void operator *=(double a)
{
x *= a; y *= a;
}
/// Get the length of this point (the norm).
double Length() const {
double Length() const
{
return sqrt(x * x + y * y);
}
/// Convert this point into a unit point. Returns the Length.
double Normalize() {
double Normalize()
{
double len = Length();
x /= len;
y /= len;
return len;
}
void DebugPrint() {
void DebugPrint()
{
printf("%f,%f ", x, y);
}
};
// Represents a simple polygon's edge
struct Edge {
Point* p, *q;
/// Constructor
Edge(Point& p1, Point& p2) : p(&p1), q(&p2) {
Edge(Point& p1, Point& p2) : p(&p1), q(&p2)
{
if (p1.y > p2.y) {
q = &p1;
p = &p2;
@ -120,16 +137,13 @@ struct Edge {
}
q->edge_list.push_back(this);
}
};
// Triangle-based data structures are know to have better performance than quad-edge structures
// See: J. Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
// "Triangulations in CGAL"
class Triangle {
public:
/// Constructor
@ -191,10 +205,10 @@ private:
/// Has this triangle been marked as an interior triangle?
bool interior_;
};
inline bool cmp (const Point* a, const Point* b) {
inline bool cmp(const Point* a, const Point* b)
{
if (a->y < b->y) {
return true;
} else if (a->y == b->y) {
@ -207,75 +221,91 @@ inline bool cmp (const Point* a, const Point* b) {
}
/// Add two points_ component-wise.
inline Point operator + (const Point& a, const Point& b) {
inline Point operator +(const Point& a, const Point& b)
{
return Point(a.x + b.x, a.y + b.y);
}
/// Subtract two points_ component-wise.
inline Point operator - (const Point& a, const Point& b) {
inline Point operator -(const Point& a, const Point& b)
{
return Point(a.x - b.x, a.y - b.y);
}
/// Multiply point by scalar
inline Point operator * (double s, const Point& a) {
inline Point operator *(double s, const Point& a)
{
return Point(s * a.x, s * a.y);
}
inline bool operator == (const Point& a, const Point& b) {
inline bool operator ==(const Point& a, const Point& b)
{
return a.x == b.x && a.y == b.y;
}
inline bool operator != (const Point& a, const Point& b) {
inline bool operator !=(const Point& a, const Point& b)
{
return a.x != b.x && a.y != b.y;
}
/// Peform the dot product on two vectors.
inline double Dot(const Point& a, const Point& b) {
inline double Dot(const Point& a, const Point& b)
{
return a.x * b.x + a.y * b.y;
}
/// Perform the cross product on two vectors. In 2D this produces a scalar.
inline double Cross(const Point& a, const Point& b) {
inline double Cross(const Point& a, const Point& b)
{
return a.x * b.y - a.y * b.x;
}
/// Perform the cross product on a point and a scalar. In 2D this produces
/// a point.
inline Point Cross(const Point& a, double s) {
inline Point Cross(const Point& a, double s)
{
return Point(s * a.y, -s * a.x);
}
/// Perform the cross product on a scalar and a point. In 2D this produces
/// a point.
inline Point Cross(const double s, const Point& a) {
inline Point Cross(const double s, const Point& a)
{
return Point(-s * a.y, s * a.x);
}
inline Point* Triangle::GetPoint(const int& index) {
inline Point* Triangle::GetPoint(const int& index)
{
return points_[index];
}
inline Triangle* Triangle::GetNeighbor(const int& index) {
inline Triangle* Triangle::GetNeighbor(const int& index)
{
return neighbors_[index];
}
inline bool Triangle::Contains(Point* p) {
inline bool Triangle::Contains(Point* p)
{
return p == points_[0] || p == points_[1] || p == points_[2];
}
inline bool Triangle::Contains(const Edge& e) {
inline bool Triangle::Contains(const Edge& e)
{
return Contains(e.p) && Contains(e.q);
}
inline bool Triangle::Contains(Point* p, Point* q) {
inline bool Triangle::Contains(Point* p, Point* q)
{
return Contains(p) && Contains(q);
}
inline bool Triangle::IsInterior() {
inline bool Triangle::IsInterior()
{
return interior_;
}
inline void Triangle::IsInterior(bool b) {
inline void Triangle::IsInterior(bool b)
{
interior_ = b;
}

View File

@ -35,7 +35,10 @@
#include <math.h>
template<typename T, int size>
int array_length(T(&)[size]){return size;}
int array_length(T(&)[size])
{
return size;
}
const double PI_3div4 = 3 * M_PI / 4;
const double EPSILON = 1e-12;
@ -52,8 +55,8 @@ enum Orientation { CW, CCW, COLLINEAR };
* = (x1-x3)*(y2-y3) - (y1-y3)*(x2-x3)
* </pre>
*/
Orientation Orient2d(Point& pa, Point& pb, Point& pc ) {
Orientation Orient2d(Point& pa, Point& pb, Point& pc)
{
double detleft = (pa.x - pc.x) * (pb.y - pc.y);
double detright = (pa.y - pc.y) * (pb.x - pc.x);
double val = detleft - detright;
@ -63,11 +66,10 @@ Orientation Orient2d(Point& pa, Point& pb, Point& pc ) {
return CCW;
}
return CW;
}
bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd) {
bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd)
{
double pdx = pd.x;
double pdy = pd.y;
double adx = pa.x - pdx;
@ -95,7 +97,6 @@ bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd) {
}
return true;
}
#endif

View File

@ -30,12 +30,13 @@
*/
#include "advancing_front.h"
AdvancingFront::AdvancingFront() {
AdvancingFront::AdvancingFront()
{
head_ = tail_ = search_node_ = NULL;
}
Node* AdvancingFront::Locate(const double& x) {
Node* AdvancingFront::Locate(const double& x)
{
Node* node = search_node_;
if (x < node->value) {
@ -59,13 +60,14 @@ Node* AdvancingFront::Locate(const double& x) {
return NULL;
}
Node* AdvancingFront::FindSearchNode(const double& x) {
Node* AdvancingFront::FindSearchNode(const double& x)
{
// TODO: implement BST index
return search_node_;
}
Node* AdvancingFront::LocatePoint(Point* point) {
Node* AdvancingFront::LocatePoint(Point* point)
{
const double px = point->x;
Node* node = FindSearchNode(px);
const double nx = node->point->x;
@ -97,7 +99,8 @@ Node* AdvancingFront::LocatePoint(Point* point) {
return node;
}
AdvancingFront::~AdvancingFront() {
AdvancingFront::~AdvancingFront()
{
delete head_;
delete search_node_;
delete tail_;

View File

@ -34,7 +34,6 @@ struct Node;
// Advancing front node
struct Node {
Point* point;
Triangle* triangle;
@ -43,10 +42,14 @@ struct Node {
double value;
Node(Point& p) : point(&p), triangle(NULL), value(p.x), next(NULL), prev(NULL) {}
Node(Point& p) : point(&p), triangle(NULL), value(p.x), next(NULL), prev(NULL)
{
}
Node(Point& p, Triangle& t) : point(&p), triangle(&t), value(p.x),
next(NULL), prev(NULL) {}
next(NULL), prev(NULL)
{
}
/*
~Node() {
@ -55,12 +58,10 @@ struct Node {
printf(" ... gone!\n");
}
*/
};
// Advancing front
class AdvancingFront {
public:
AdvancingFront();
@ -84,16 +85,33 @@ private:
Node* head_, *tail_, *search_node_;
Node* FindSearchNode(const double& x);
};
inline Node* AdvancingFront::head() { return head_; }
inline void AdvancingFront::set_head(Node* node) { head_ = node; }
inline Node* AdvancingFront::head()
{
return head_;
}
inline void AdvancingFront::set_head(Node* node)
{
head_ = node;
}
inline Node* AdvancingFront::tail() { return tail_; }
inline void AdvancingFront::set_tail(Node* node) { tail_ = node; }
inline Node* AdvancingFront::tail()
{
return tail_;
}
inline void AdvancingFront::set_tail(Node* node)
{
tail_ = node;
}
inline Node* AdvancingFront::search() { return search_node_; }
inline Node* AdvancingFront::search()
{
return search_node_;
}
inline void AdvancingFront::set_search(Node* node) { search_node_ = node; }
inline void AdvancingFront::set_search(Node* node)
{
search_node_ = node;
}

View File

@ -30,28 +30,33 @@
*/
#include "cdt.h"
CDT::CDT(Point** polyline, const int& point_count) {
CDT::CDT(Point** polyline, const int& point_count)
{
sweep_context_ = new SweepContext(polyline, point_count);
sweep_ = new Sweep;
}
void CDT::AddHole(const Point poly_line[], const int point_count) {
void CDT::AddHole(const Point poly_line[], const int point_count)
{
}
void CDT::Triangulate() {
void CDT::Triangulate()
{
sweep_->Triangulate(*sweep_context_);
}
std::vector<Triangle*> CDT::GetTriangles() {
std::vector<Triangle*> CDT::GetTriangles()
{
return sweep_context_->GetTriangles();
}
std::list<Triangle*> CDT::GetMap() {
std::list<Triangle*> CDT::GetMap()
{
return sweep_context_->GetMap();
}
CDT::~CDT() {
CDT::~CDT()
{
delete sweep_context_;
delete sweep_;
}

View File

@ -35,7 +35,6 @@
class CDT
{
public:
/// Constructor
@ -56,5 +55,4 @@ private:
/// Destructor
~CDT();
};

View File

@ -35,7 +35,6 @@ class Triangle;
class Mesh
{
public:
/// Triangles that constitute the mesh
@ -46,5 +45,4 @@ public:
//val triangles = new ArrayBuffer[Triangle]
void clean(Triangle& triangle);
};

View File

@ -34,35 +34,31 @@
#include "../common/utils.h"
// Triangulate simple polygon with holes
void Sweep::Triangulate(SweepContext& tcx) {
void Sweep::Triangulate(SweepContext& tcx)
{
tcx.CreateAdvancingFront();
// Sweep points; build mesh
SweepPoints(tcx);
// Clean up
//FinalizationPolygon(tcx);
}
void Sweep::SweepPoints(SweepContext& tcx) {
void Sweep::SweepPoints(SweepContext& tcx)
{
for (int i = 1; i < tcx.point_count(); i++) {
//printf("%i = ",i);
printf("%i = ", i);
Point& point = *tcx.GetPoint(i);
//printf("size = %i\n", point.edge_list.size());
printf("%f,%f\n", point.x, point.y);
Node& node = PointEvent(tcx, point);
for (int i = 0; i < point.edge_list.size(); i++) {
EdgeEvent(tcx, point.edge_list[i], node);
}
}
}
}
void Sweep::FinalizationPolygon(SweepContext& tcx) {
void Sweep::FinalizationPolygon(SweepContext& tcx)
{
// Get an Internal triangle to start with
Triangle* t = tcx.front()->head()->next->triangle;
Point* p = tcx.front()->head()->next->point;
@ -83,8 +79,8 @@ void Sweep::FinalizationPolygon(SweepContext& tcx) {
* @param point
* @return
*/
Node& Sweep::PointEvent(SweepContext& tcx, Point& point) {
Node& Sweep::PointEvent(SweepContext& tcx, Point& point)
{
Node& node = tcx.LocateNode(point);
Node& new_node = NewFrontTriangle(tcx, point, node);
@ -100,8 +96,8 @@ Node& Sweep::PointEvent(SweepContext& tcx, Point& point) {
return new_node;
}
void Sweep::EdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
void Sweep::EdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
{
tcx.edge_event.constrained_edge = edge;
tcx.edge_event.right = edge->p->x > edge->q->x;
@ -114,11 +110,10 @@ void Sweep::EdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
// but for now this avoid the issue with cases that needs both flips and fills
FillEdgeEvent(tcx, edge, node);
EdgeEvent(tcx, *edge->p, *edge->q, node.triangle, *edge->q);
}
void Sweep::EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point) {
void Sweep::EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point)
{
if (IsEdgeSideOfTriangle(*triangle, ep, eq)) {
return;
}
@ -150,11 +145,10 @@ void Sweep::EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangl
// This triangle crosses constraint so lets flippin start!
FlipEdgeEvent(tcx, ep, eq, *triangle, point);
}
}
bool Sweep::IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq) {
bool Sweep::IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq)
{
int index = triangle.EdgeIndex(&ep, &eq);
if (index != -1) {
@ -168,8 +162,8 @@ bool Sweep::IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq) {
return false;
}
Node& Sweep::NewFrontTriangle(SweepContext& tcx, Point& point, Node& node ) {
Node& Sweep::NewFrontTriangle(SweepContext& tcx, Point& point, Node& node)
{
Triangle* triangle = new Triangle(point, *node.point, *node.next->point);
triangle->MarkNeighbor(*node.triangle);
@ -193,10 +187,9 @@ Node& Sweep::NewFrontTriangle(SweepContext& tcx, Point& point, Node& node ) {
* @param tcx
* @param node - middle node, that is the bottom of the hole
*/
void Sweep::Fill(SweepContext& tcx, Node& node) {
Triangle* triangle = new Triangle(*node.prev->point, *node.point,
*node.next->point);
void Sweep::Fill(SweepContext& tcx, Node& node)
{
Triangle* triangle = new Triangle(*node.prev->point, *node.point, *node.next->point);
// TODO: should copy the constrained_edge value from neighbor triangles
// for now constrained_edge values are copied during the legalize
@ -216,7 +209,6 @@ void Sweep::Fill(SweepContext& tcx, Node& node) {
// TODO: delete node from memory
//tcx.RemoveNode(node);
}
/**
@ -226,8 +218,8 @@ void Sweep::Fill(SweepContext& tcx, Node& node) {
* @param tcx
* @param n
*/
void Sweep::FillAdvancingFront(SweepContext& tcx, Node& n) {
void Sweep::FillAdvancingFront(SweepContext& tcx, Node& n)
{
// Fill right holes
Node* node = n.next;
@ -255,10 +247,10 @@ void Sweep::FillAdvancingFront(SweepContext& tcx, Node& n) {
FillBasin(tcx, n);
}
}
}
double Sweep::BasinAngle(Node& node) {
double Sweep::BasinAngle(Node& node)
{
double ax = node.point->x - node.next->next->point->x;
double ay = node.point->y - node.next->next->point->y;
return atan2(ay, ax);
@ -269,8 +261,8 @@ double Sweep::BasinAngle(Node& node) {
* @param node - middle node
* @return the angle between 3 front nodes
*/
double Sweep::HoleAngle(Node& node) {
double Sweep::HoleAngle(Node& node)
{
/* Complex plane
* ab = cosA +i*sinA
* ab = (ax + ay*i)(bx + by*i) = (ax*bx + ay*by) + i(ax*by-ay*bx)
@ -289,19 +281,17 @@ double Sweep::HoleAngle(Node& node) {
/**
* Returns true if triangle was legalized
*/
bool Sweep::Legalize(SweepContext& tcx, Triangle& t) {
bool Sweep::Legalize(SweepContext& tcx, Triangle& t)
{
// To legalize a triangle we start by finding if any of the three edges
// violate the Delaunay condition
for (int i = 0; i < 3; i++) {
if (t.delaunay_edge[i])
continue;
Triangle* ot = t.GetNeighbor(i);
if (ot) {
Point* p = t.GetPoint(i);
Point* op = ot->OppositePoint(t, *p);
int oi = ot->Index(op);
@ -316,7 +306,6 @@ bool Sweep::Legalize(SweepContext& tcx, Triangle& t) {
bool inside = Incircle(*p, *t.PointCCW(*p), *t.PointCW(*p), *op);
if (inside) {
// Lets mark this shared edge as Delaunay
t.delaunay_edge[i] = true;
ot->delaunay_edge[oi] = true;
@ -377,8 +366,8 @@ bool Sweep::Legalize(SweepContext& tcx, Triangle& t) {
* @param d - point opposite a
* @return true if d is inside circle, false if on circle edge
*/
bool Sweep::Incircle(Point& pa, Point& pb, Point& pc, Point& pd) {
bool Sweep::Incircle(Point& pa, Point& pb, Point& pc, Point& pd)
{
double adx = pa.x - pd.x;
double ady = pa.y - pd.y;
double bdx = pb.x - pd.x;
@ -427,8 +416,8 @@ bool Sweep::Incircle(Point& pa, Point& pb, Point& pc, Point& pd) {
* n4 n4
* </pre>
*/
void Sweep::RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op) {
void Sweep::RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op)
{
Triangle* n1, *n2, *n3, *n4;
n1 = t.NeighborCCW(p);
n2 = t.NeighborCW(p);
@ -485,8 +474,8 @@ void Sweep::RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op) {
* @param tcx
* @param node - starting node, this or next node will be left node
*/
void Sweep::FillBasin(SweepContext& tcx, Node& node) {
void Sweep::FillBasin(SweepContext& tcx, Node& node)
{
if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
tcx.basin.left_node = node.next->next;
} else {
@ -518,7 +507,6 @@ void Sweep::FillBasin(SweepContext& tcx, Node& node) {
tcx.basin.left_highest = tcx.basin.left_node->point->y > tcx.basin.right_node->point->y;
FillBasinReq(tcx, *tcx.basin.bottom_node);
}
/**
@ -528,8 +516,8 @@ void Sweep::FillBasin(SweepContext& tcx, Node& node) {
* @param node - bottom_node
* @param cnt - counter used to alternate on even and odd numbers
*/
void Sweep::FillBasinReq(SweepContext& tcx, Node& node) {
void Sweep::FillBasinReq(SweepContext& tcx, Node& node)
{
// if shallow stop filling
if (IsShallow(tcx, node)) {
return;
@ -561,11 +549,10 @@ void Sweep::FillBasinReq(SweepContext& tcx, Node& node) {
}
FillBasinReq(tcx, node);
}
bool Sweep::IsShallow(SweepContext& tcx, Node& node) {
bool Sweep::IsShallow(SweepContext& tcx, Node& node)
{
double height;
if (tcx.basin.left_highest) {
@ -581,18 +568,17 @@ bool Sweep::IsShallow(SweepContext& tcx, Node& node) {
return false;
}
void Sweep::FillEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
void Sweep::FillEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
{
if (tcx.edge_event.right) {
FillRightAboveEdgeEvent(tcx, edge, node);
} else {
FillLeftAboveEdgeEvent(tcx, edge, node);
}
}
void Sweep::FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
void Sweep::FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
{
while (node.next->point->x < edge->p->x) {
// Check if next node is below the edge
if (Orient2d(*edge->q, *node.next->point, *edge->p) == CCW) {
@ -601,11 +587,10 @@ void Sweep::FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
node = *node.next;
}
}
}
void Sweep::FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
void Sweep::FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
{
if (node.point->x < edge->p->x) {
if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
// Concave
@ -617,11 +602,10 @@ void Sweep::FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
FillRightBelowEdgeEvent(tcx, edge, node);
}
}
}
void Sweep::FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
void Sweep::FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
{
Fill(tcx, *node.next);
if (node.next->point != edge->p) {
// Next above or below edge?
@ -635,11 +619,10 @@ void Sweep::FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
}
}
}
}
void Sweep::FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
void Sweep::FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
{
// Next concave or convex?
if (Orient2d(*node.next->point, *node.next->next->point, *node.next->next->next->point) == CCW) {
// Concave
@ -654,11 +637,10 @@ void Sweep::FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
// Above
}
}
}
void Sweep::FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
void Sweep::FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
{
while (node.prev->point->x > edge->p->x) {
// Check if next node is below the edge
if (Orient2d(*edge->q, *node.prev->point, *edge->p) == CW) {
@ -667,11 +649,10 @@ void Sweep::FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
node = *node.prev;
}
}
}
void Sweep::FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
void Sweep::FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
{
if (node.point->x > edge->p->x) {
if (Orient2d(*node.point, *node.prev->point, *node.prev->prev->point) == CW) {
// Concave
@ -682,12 +663,11 @@ void Sweep::FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
// Retry this one
FillLeftBelowEdgeEvent(tcx, edge, node);
}
}
}
void Sweep::FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
void Sweep::FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
{
// Next concave or convex?
if (Orient2d(*node.prev->point, *node.prev->prev->point, *node.prev->prev->prev->point) == CW) {
// Concave
@ -704,8 +684,8 @@ void Sweep::FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
}
}
void Sweep::FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
void Sweep::FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
{
Fill(tcx, *node.prev);
if (node.prev->point != edge->p) {
// Next above or below edge?
@ -719,11 +699,10 @@ void Sweep::FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
}
}
}
}
void Sweep::FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& t, Point& p) {
void Sweep::FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& t, Point& p)
{
Triangle& ot = t.NeighborAcross(p);
Point& op = *ot.OppositePoint(t, p);
@ -761,8 +740,8 @@ void Sweep::FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& t,
}
}
Triangle& Sweep::NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op) {
Triangle& Sweep::NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op)
{
if (o == CCW) {
// ot is not crossing edge after flip
int edge_index = ot.EdgeIndex(&p, &op);
@ -780,8 +759,8 @@ Triangle& Sweep::NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triang
return ot;
}
Point& Sweep::NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op) {
Point& Sweep::NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op)
{
Orientation o2d = Orient2d(eq, op, ep);
if (o2d == CW) {
// Right
@ -793,12 +772,11 @@ Point& Sweep::NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op) {
//throw new RuntimeException("[Unsupported] Opposing point on constrained edge");
assert(0);
}
}
void Sweep::FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle,
Triangle& t, Point& p ) {
Triangle& t, Point& p)
{
Triangle& ot = t.NeighborAcross(p);
Point& op = *ot.OppositePoint(t, p);
@ -823,7 +801,6 @@ void Sweep::FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle&
Point& newP = NextFlipPoint(ep, eq, ot, op);
FlipScanEdgeEvent(tcx, ep, eq, flip_triangle, ot, newP);
}
}

View File

@ -44,7 +44,6 @@ struct Edge;
class Triangle;
class Sweep {
public:
void Triangulate(SweepContext& tcx);
@ -110,5 +109,4 @@ private:
void FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle, Triangle& t, Point& p);
void FinalizationPolygon(SweepContext& tcx);
};

View File

@ -4,8 +4,8 @@
#include <GL/glfw.h>
#include "advancing_front.h"
SweepContext::SweepContext(Point** polyline, const int& point_count) {
SweepContext::SweepContext(Point** polyline, const int& point_count)
{
basin = Basin();
edge_event = EdgeEvent();
@ -14,19 +14,20 @@ SweepContext::SweepContext(Point** polyline, const int& point_count) {
InitEdges(points_, point_count_);
InitTriangulation();
}
std::vector<Triangle*> SweepContext::GetTriangles() {
std::vector<Triangle*> SweepContext::GetTriangles()
{
return triangles_;
}
std::list<Triangle*> SweepContext::GetMap() {
std::list<Triangle*> SweepContext::GetMap()
{
return map_;
}
void SweepContext::InitTriangulation() {
void SweepContext::InitTriangulation()
{
double xmax(points_[0]->x), xmin(points_[0]->x);
double ymax(points_[0]->y), ymin(points_[0]->y);
@ -54,24 +55,23 @@ void SweepContext::InitTriangulation() {
double dt = glfwGetTime() - init_time;
printf("Sort time (secs) = %f\n", dt);
/*
printf("*************************\n");
for (int i = 0; i < point_count_; i++) {
printf("%f,%f ", points_[i]->x, points_[i]->y);
printf("%p\n", points_[i]);
}
/*
printf("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
for(int i = 0; i < edge_list.size(); i++) {
edge_list[i]->p->DebugPrint(); edge_list[i]->q->DebugPrint();
printf("%p, %p\n", edge_list[i]->p, edge_list[i]->q);
}
*/
}
void SweepContext::InitEdges(Point** polyline, const int& point_count) {
void SweepContext::InitEdges(Point** polyline, const int& point_count)
{
for (int i = 0; i < point_count; i++) {
int j = i < point_count - 1 ? i + 1 : 0;
edge_list.push_back(new Edge(*polyline[i], *polyline[j]));
@ -83,24 +83,26 @@ void SweepContext::InitEdges(Point** polyline, const int& point_count) {
printf("%p, %p\n", edge_list[i]->p, edge_list[i]->q);
}
*/
}
Point* SweepContext::GetPoint(const int& index) {
Point* SweepContext::GetPoint(const int& index)
{
return points_[index];
}
void SweepContext::AddToMap(Triangle* triangle ) {
void SweepContext::AddToMap(Triangle* triangle)
{
map_.push_back(triangle);
}
Node& SweepContext::LocateNode(Point& point) {
Node& SweepContext::LocateNode(Point& point)
{
// TODO implement search tree
return *front_->Locate(point.x);
}
void SweepContext::CreateAdvancingFront() {
void SweepContext::CreateAdvancingFront()
{
// Initial triangle
Triangle* triangle = new Triangle(*points_[0], *tail_, *head_);
@ -121,14 +123,15 @@ void SweepContext::CreateAdvancingFront() {
middle->next = front_->tail();
middle->prev = front_->head();
front_->tail()->prev = middle;
}
void SweepContext::RemoveNode(Node* node) {
void SweepContext::RemoveNode(Node* node)
{
delete node;
}
void SweepContext::MapTriangleToNodes(Triangle& t) {
void SweepContext::MapTriangleToNodes(Triangle& t)
{
for (int i = 0; i < 3; i++) {
if (t.GetNeighbor(i) == NULL) {
Node* n = front_->LocatePoint(t.PointCW(*t.GetPoint(i)));
@ -138,12 +141,13 @@ void SweepContext::MapTriangleToNodes(Triangle& t) {
}
}
void SweepContext::RemoveFromMap(Triangle* triangle) {
void SweepContext::RemoveFromMap(Triangle* triangle)
{
map_.remove(triangle);
}
void SweepContext::MeshClean(Triangle& triangle ) {
void SweepContext::MeshClean(Triangle& triangle)
{
if (&triangle != NULL && !triangle.IsInterior()) {
triangle.IsInterior(true);
triangles_.push_back(&triangle);
@ -154,7 +158,8 @@ void SweepContext::MeshClean(Triangle& triangle ) {
}
}
SweepContext::~SweepContext() {
SweepContext::~SweepContext()
{
delete head_;
delete tail_;
delete front_;

View File

@ -43,7 +43,6 @@ class AdvancingFront;
class SweepContext {
public:
// Constructor
@ -88,7 +87,6 @@ public:
std::vector<Edge*> edge_list;
struct Basin {
Node* left_node;
Node* bottom_node;
Node* right_node;
@ -96,25 +94,27 @@ public:
bool left_highest;
Basin() : left_node(NULL), bottom_node(NULL), right_node(NULL),
width(0.0), left_highest(false) {}
width(0.0), left_highest(false)
{
}
void Clear() {
void Clear()
{
left_node = NULL;
bottom_node = NULL;
right_node = NULL;
width = 0.0;
left_highest = false;
}
};
struct EdgeEvent {
Edge* constrained_edge;
bool right;
EdgeEvent() : constrained_edge(NULL), right(false) {}
EdgeEvent() : constrained_edge(NULL), right(false)
{
}
};
Basin basin;
@ -148,17 +148,34 @@ private:
bool right;
};
*/
};
inline AdvancingFront* SweepContext::front() { return front_; }
inline AdvancingFront* SweepContext::front()
{
return front_;
}
inline int SweepContext::point_count() { return point_count_; }
inline int SweepContext::point_count()
{
return point_count_;
}
inline void SweepContext::set_head(Point* p1) { head_ = p1; }
inline void SweepContext::set_head(Point* p1)
{
head_ = p1;
}
inline Point* SweepContext::head() { return head_; }
inline Point* SweepContext::head()
{
return head_;
}
inline void SweepContext::set_tail(Point* p1) { tail_ = p1; }
inline void SweepContext::set_tail(Point* p1)
{
tail_ = p1;
}
inline Point* SweepContext::tail() { return tail_; }
inline Point* SweepContext::tail()
{
return tail_;
}

View File

@ -58,7 +58,8 @@ vector<Triangle*> triangles;
/// Triangle map
list<Triangle*> map;
double StringToDouble(const std::string& s) {
double StringToDouble(const std::string& s)
{
std::istringstream i(s);
double x;
if (!(i >> x))
@ -68,8 +69,8 @@ double StringToDouble(const std::string& s) {
bool draw_map = true;
int main(int argc, char* argv[]) {
int main(int argc, char* argv[])
{
if (argc != 3) {
cout << "Usage: p2t filename zoom" << endl;
return 1;
@ -156,7 +157,6 @@ void Init()
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glClearColor(0.0, 0.0, 0.0, 0.0);
glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
}
void ShutDown(int return_code)
@ -172,8 +172,7 @@ void MainLoop(const double zoom)
// this just loops as long as the program runs
bool running = true;
while(running)
{
while (running) {
// calculate time elapsed, and the amount by which stuff rotates
double current_time = glfwGetTime(),
delta_rotate = (current_time - old_time) * rotations_per_tick * 360;
@ -202,8 +201,8 @@ void MainLoop(const double zoom)
}
}
void ResetZoom(double zoom, double cx, double cy, double width, double height) {
void ResetZoom(double zoom, double cx, double cy, double width, double height)
{
double left = -width / zoom;
double right = width / zoom;
double bottom = -height / zoom;
@ -223,18 +222,16 @@ void ResetZoom(double zoom, double cx, double cy, double width, double height) {
// Clear the screen
glClear(GL_COLOR_BUFFER_BIT);
}
void Draw(const double zoom) {
void Draw(const double zoom)
{
// reset zoom
Point center = Point(0, 0);
ResetZoom(zoom, center.x, center.y, 800, 600);
for (int i = 0; i < triangles.size(); i++) {
Triangle& t = *triangles[i];
Point& a = *t.GetPoint(0);
Point& b = *t.GetPoint(1);
@ -248,13 +245,11 @@ void Draw(const double zoom) {
glVertex2f(b.x, b.y);
glVertex2f(c.x, c.y);
glEnd();
}
}
}
void DrawMap(const double zoom) {
void DrawMap(const double zoom)
{
// reset zoom
Point center = Point(0, 0);
@ -262,7 +257,6 @@ void DrawMap(const double zoom) {
list<Triangle*>::iterator it;
for (it = map.begin(); it != map.end(); it++) {
Triangle& t = **it;
Point& a = *t.GetPoint(0);
Point& b = *t.GetPoint(1);
@ -285,12 +279,11 @@ void DrawMap(const double zoom) {
glVertex2f(c.x, c.y);
glVertex2f(a.x, a.y);
glEnd( );
}
}
}
void ConstrainedColor(bool constrain) {
void ConstrainedColor(bool constrain)
{
if (constrain) {
// Green
glColor3f(0, 1, 0);