mirror of
https://github.com/jhasse/poly2tri.git
synced 2025-08-08 00:05:41 +02:00
added fast robust predicates
This commit is contained in:
@@ -5,6 +5,7 @@ from math import pi as PI
|
||||
|
||||
from gl cimport *
|
||||
include "polydecomp.pxi"
|
||||
include "seidel.pxi"
|
||||
|
||||
cdef extern from 'math.h':
|
||||
double cos(double)
|
||||
|
@@ -4,15 +4,18 @@
|
||||
##
|
||||
from sys import float_info
|
||||
|
||||
def makeCCW(list poly):
|
||||
cdef extern from 'predicates.h':
|
||||
double orient2d(double *pa, double *pb, double *pc)
|
||||
|
||||
def make_ccw(list poly):
|
||||
cdef int br = 0
|
||||
# find bottom right point
|
||||
for i from 1 <= i < len(poly):
|
||||
if poly[i][1] < poly[br][1] or (poly[i][1] == poly[br][1] and poly[i][0] > poly[br][0]):
|
||||
br = i
|
||||
br = i
|
||||
# reverse poly if clockwise
|
||||
if not left(at(poly, br - 1), at(poly, br), at(poly, br + 1)):
|
||||
poly.reverse()
|
||||
poly.reverse()
|
||||
|
||||
cpdef list decompose_poly(list poly, list polys):
|
||||
|
||||
@@ -48,8 +51,8 @@ cpdef list decompose_poly(list poly, list polys):
|
||||
|
||||
# if there are no vertices to connect to, choose a point in the middle
|
||||
if lower_index == (upper_index + 1) % len(poly):
|
||||
p[0] = (lowerInt[0] + upperInt[0]) / 2
|
||||
p[1] = (lowerInt[1] + upperInt[1]) / 2
|
||||
p[0] = (lowerInt[0] + upperInt[0]) * 0.5
|
||||
p[1] = (lowerInt[1] + upperInt[1]) * 0.5
|
||||
|
||||
if i < upper_index:
|
||||
lower_poly.extend(poly[i:upper_index+1])
|
||||
@@ -99,26 +102,19 @@ cpdef list decompose_poly(list poly, list polys):
|
||||
else:
|
||||
decompose_poly(upper_poly, polys)
|
||||
decompose_poly(lower_poly, polys)
|
||||
|
||||
return
|
||||
|
||||
polys.append(poly)
|
||||
|
||||
cdef list intersection(list p1, list p2, list q1, list q2):
|
||||
cdef list i = []
|
||||
cdef float a1, b1, c1, a2, b2, c2, det
|
||||
a1 = p2[1] - p1[1]
|
||||
b1 = p1[0] - p2[0]
|
||||
c1 = a1 * p1[0] + b1 * p1[1]
|
||||
a2 = q2[1] - q1[1]
|
||||
b2 = q1[0] - q2[0]
|
||||
c2 = a2 * q1[0] + b2 * q1[1]
|
||||
det = a1 * b2 - a2 * b1
|
||||
if not eq(det, 0):
|
||||
# lines are not parallel
|
||||
i.append((b2 * c1 - b1 * c2) / det)
|
||||
i.append((a1 * c2 - a2 * c1) / det)
|
||||
return i
|
||||
cdef double pqx, pqy, bax, bay, t
|
||||
pqx = p1[0] - p2[0]
|
||||
pqy = p1[1] - p2[1]
|
||||
t = pqy*(q1[0]-p2[0]) - pqx*(q1[1]-p2[1])
|
||||
t /= pqx*(q2[1]-q1[1]) - pqy*(q2[0]-q1[0])
|
||||
bax = t*(q2[0]-q1[0]) + q1[0]
|
||||
bay = t*(q2[1]-q1[1]) + q1[1]
|
||||
return [bax, bay]
|
||||
|
||||
cdef bool eq(float a, float b):
|
||||
return abs(a - b) <= 1e-8
|
||||
@@ -130,16 +126,28 @@ cdef float area(list a, list b, list c):
|
||||
return (((b[0] - a[0])*(c[1] - a[1]))-((c[0] - a[0])*(b[1] - a[1])))
|
||||
|
||||
cdef bool left(list a, list b, list c):
|
||||
return area(a, b, c) > 0
|
||||
cdef double *x = [a[0], a[1]]
|
||||
cdef double *y = [b[0], b[1]]
|
||||
cdef double *z = [c[0], c[1]]
|
||||
return orient2d(x, y, z) > 0.0
|
||||
|
||||
cdef bool leftOn(list a, list b, list c):
|
||||
return area(a, b, c) >= 0
|
||||
cdef double *x = [a[0], a[1]]
|
||||
cdef double *y = [b[0], b[1]]
|
||||
cdef double *z = [c[0], c[1]]
|
||||
return orient2d(x, y, z) >= 0.0
|
||||
|
||||
cdef bool right(list a, list b, list c):
|
||||
return area(a, b, c) < 0
|
||||
cdef double *x = [a[0], a[1]]
|
||||
cdef double *y = [b[0], b[1]]
|
||||
cdef double *z = [c[0], c[1]]
|
||||
return orient2d(x, y, z) < 0.0
|
||||
|
||||
cdef bool rightOn(list a, list b, list c):
|
||||
return area(a, b, c) <= 0
|
||||
cdef double *x = [a[0], a[1]]
|
||||
cdef double *y = [b[0], b[1]]
|
||||
cdef double *z = [c[0], c[1]]
|
||||
return orient2d(x, y, z) <= 0.0
|
||||
|
||||
cdef float sqdist(list a, list b):
|
||||
cdef float dx = b[0] - a[0]
|
||||
|
4262
python/framework/predicates.c
Normal file
4262
python/framework/predicates.c
Normal file
File diff suppressed because it is too large
Load Diff
4
python/framework/predicates.h
Normal file
4
python/framework/predicates.h
Normal file
@@ -0,0 +1,4 @@
|
||||
double orient2d(pa, pb, pc);
|
||||
double *pa;
|
||||
double *pb;
|
||||
double *pc;
|
636
python/framework/seidel.pxi
Normal file
636
python/framework/seidel.pxi
Normal file
@@ -0,0 +1,636 @@
|
||||
#
|
||||
# Poly2Tri
|
||||
# Copyright (c) 2009, Mason Green
|
||||
# http://code.google.com/p/poly2tri/
|
||||
#
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification,
|
||||
# are permitted provided that the following conditions are met:
|
||||
#
|
||||
# Redistributions of source code must retain the above copyright notice,
|
||||
# self list of conditions and the following disclaimer.
|
||||
# Redistributions in binary form must reproduce the above copyright notice,
|
||||
# self list of conditions and the following disclaimer in the documentation
|
||||
# and/or other materials provided with the distribution.
|
||||
# Neither the name of Poly2Tri nor the names of its contributors may be
|
||||
# used to endorse or promote products derived from self software without specific
|
||||
# prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
#
|
||||
from random import shuffle
|
||||
|
||||
##
|
||||
## Based on Raimund Seidel'e paper "A simple and fast incremental randomized
|
||||
## algorithm for computing trapezoidal decompositions and for triangulating polygons"
|
||||
## (Ported from poly2tri)
|
||||
##
|
||||
|
||||
# Shear transform. May effect numerical robustness
|
||||
SHEAR = 1e-6
|
||||
|
||||
cdef extern from 'math.h':
|
||||
double atan2(double, double)
|
||||
|
||||
cdef extern from 'predicates.h':
|
||||
double orient2d(double *pa, double *pb, double *pc)
|
||||
|
||||
class Point(object):
|
||||
|
||||
def __init__(self, x, y):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.next, self.prev = None, None
|
||||
|
||||
def __sub__(self, other):
|
||||
if isinstance(other, Point):
|
||||
return Point(self.x - other.x, self.y - other.y)
|
||||
else:
|
||||
return Point(self.x - other, self.y - other)
|
||||
|
||||
def __add__(self, other):
|
||||
if isinstance(other, Point):
|
||||
return Point(self.x + other.x, self.y + other.y)
|
||||
else:
|
||||
return Point(self.x + other, self.y + other)
|
||||
|
||||
def __mul__(self, f):
|
||||
return Point(self.x * f, self.y * f)
|
||||
|
||||
def __div__(self, a):
|
||||
return Point(self.x / a, self.y / a)
|
||||
|
||||
def cross(self, p):
|
||||
return self.x * p.y - self.y * p.x
|
||||
|
||||
def dot(self, p):
|
||||
return self.x * p.x + self.y * p.y
|
||||
|
||||
def length(self):
|
||||
return sqrt(self.x * self.x + self.y * self.y)
|
||||
|
||||
def normalize(self):
|
||||
return self / self.length()
|
||||
|
||||
def less(self, p):
|
||||
return self.x < p.x
|
||||
|
||||
def neq(self, other):
|
||||
return other.x != self.x or other.y != self.y
|
||||
|
||||
def clone(self):
|
||||
return Point(self.x, self.y)
|
||||
|
||||
class Edge(object):
|
||||
|
||||
def __init__(self, p, q):
|
||||
self.p = p
|
||||
self.q = q
|
||||
self.slope = (q.y - p.y) / (q.x - p.x)
|
||||
self.b = p.y - (p.x * self.slope)
|
||||
self.above, self.below = None, None
|
||||
self.mpoints = []
|
||||
self.mpoints.append(p)
|
||||
self.mpoints.append(q)
|
||||
|
||||
##
|
||||
## NOTE Rounding accuracy significantly effects numerical robustness!!!
|
||||
##
|
||||
|
||||
def is_above(self, point):
|
||||
cdef double *a = [self.p.x, self.p.y]
|
||||
cdef double *b = [self.q.x, self.q.y]
|
||||
cdef double *c = [point.x, point.y]
|
||||
return orient2d(a, b, c) < 0
|
||||
|
||||
def is_below(self, point):
|
||||
cdef double *a = [self.p.x, self.p.y]
|
||||
cdef double *b = [self.q.x, self.q.y]
|
||||
cdef double *c = [point.x, point.y]
|
||||
return orient2d(a, b, c) > 0
|
||||
|
||||
def intersect(self, c, d):
|
||||
a = self.p
|
||||
b = self.q
|
||||
a1 = self.signed_area(a, b, d)
|
||||
a2 = self.signed_area(a, b, c)
|
||||
if a1 != 0.0 and a2 != 0.0 and (a1 * a2) < 0.0:
|
||||
a3 = self.signed_area(c, d, a)
|
||||
a4 = a3 + a2 - a1
|
||||
if a3 * a4 < 0.0:
|
||||
t = a3 / (a3 - a4)
|
||||
return a + ((b - a) * t)
|
||||
return 0.0
|
||||
|
||||
def signed_area(self, a, b, c):
|
||||
return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x)
|
||||
|
||||
class Trapezoid(object):
|
||||
|
||||
def __init__(self, left_point, right_point, top, bottom):
|
||||
self.left_point = left_point
|
||||
self.right_point = right_point
|
||||
self.top = top
|
||||
self.bottom = bottom
|
||||
self.upper_left = None
|
||||
self.upper_right = None
|
||||
self.lower_left = None
|
||||
self.lower_right = None
|
||||
self.inside = True
|
||||
self.sink = None
|
||||
self.key = hash(self)
|
||||
|
||||
def update_left(self, ul, ll):
|
||||
self.upper_left = ul
|
||||
if ul != None: ul.upper_right = self
|
||||
self.lower_left = ll
|
||||
if ll != None: ll.lower_right = self
|
||||
|
||||
def update_right(self, ur, lr):
|
||||
self.upper_right = ur
|
||||
if ur != None: ur.upper_left = self
|
||||
self.lower_right = lr
|
||||
if lr != None: lr.lower_left = self
|
||||
|
||||
def update_left_right(self, ul, ll, ur, lr):
|
||||
self.upper_left = ul
|
||||
if ul != None: ul.upper_right = self
|
||||
self.lower_left = ll
|
||||
if ll != None: ll.lower_right = self
|
||||
self.upper_right = ur
|
||||
if ur != None: ur.upper_left = self
|
||||
self.lower_right = lr
|
||||
if lr != None: lr.lower_left = self
|
||||
|
||||
def trim_neighbors(self):
|
||||
if self.inside:
|
||||
self.inside = False
|
||||
if self.upper_left != None: self.upper_left.trim_neighbors()
|
||||
if self.lower_left != None: self.lower_left.trim_neighbors()
|
||||
if self.upper_right != None: self.upper_right.trim_neighbors()
|
||||
if self.lower_right != None: self.lower_right.trim_neighbors()
|
||||
|
||||
def contains(self, point):
|
||||
return (point.x > self.left_point.x and point.x < self.right_point.x and
|
||||
self.top.is_above(point) and self.bottom.is_below(point))
|
||||
|
||||
def vertices(self):
|
||||
v1 = line_intersect(self.top, self.left_point.x)
|
||||
v2 = line_intersect(self.bottom, self.left_point.x)
|
||||
v3 = line_intersect(self.bottom, self.right_point.x)
|
||||
v4 = line_intersect(self.top, self.right_point.x)
|
||||
return v1, v2, v3, v4
|
||||
|
||||
def add_points(self):
|
||||
if self.left_point != self.bottom.p:
|
||||
self.bottom.mpoints.append(self.left_point.clone())
|
||||
if self.right_point != self.bottom.q:
|
||||
self.bottom.mpoints.append(self.right_point.clone())
|
||||
if self.left_point != self.top.p:
|
||||
self.top.mpoints.append(self.left_point.clone())
|
||||
if self.right_point != self.top.q:
|
||||
self.top.mpoints.append(self.right_point.clone())
|
||||
|
||||
def line_intersect(edge, x):
|
||||
y = edge.slope * x + edge.b
|
||||
return x, y
|
||||
|
||||
class Triangulator(object):
|
||||
|
||||
def __init__(self, poly_line):
|
||||
assert len(poly_line) > 3, "Number of points must be > 3"
|
||||
self.polygons = []
|
||||
self.trapezoids = []
|
||||
self.xmono_poly = []
|
||||
self.edge_list = self.init_edges(poly_line)
|
||||
self.trapezoidal_map = TrapezoidalMap()
|
||||
self.bounding_box = self.trapezoidal_map.bounding_box(self.edge_list)
|
||||
self.query_graph = QueryGraph(isink(self.bounding_box))
|
||||
|
||||
self.process()
|
||||
|
||||
def triangles(self):
|
||||
triangles = []
|
||||
for p in self.polygons:
|
||||
verts = []
|
||||
for v in p:
|
||||
verts.append((v.x, v.y))
|
||||
triangles.append(verts)
|
||||
return triangles
|
||||
|
||||
def trapezoid_map(self):
|
||||
return self.trapezoidal_map.map
|
||||
|
||||
# Build the trapezoidal map and query graph
|
||||
def process(self):
|
||||
for edge in self.edge_list:
|
||||
traps = self.query_graph.follow_edge(edge)
|
||||
for t in traps:
|
||||
# Remove old trapezods
|
||||
del self.trapezoidal_map.map[t.key]
|
||||
# Bisect old trapezoids and create new
|
||||
cp = t.contains(edge.p)
|
||||
cq = t.contains(edge.q)
|
||||
if cp and cq:
|
||||
tlist = self.trapezoidal_map.case1(t, edge)
|
||||
self.query_graph.case1(t.sink, edge, tlist)
|
||||
elif cp and not cq:
|
||||
tlist = self.trapezoidal_map.case2(t, edge)
|
||||
self.query_graph.case2(t.sink, edge, tlist)
|
||||
elif not cp and not cq:
|
||||
tlist = self.trapezoidal_map.case3(t, edge)
|
||||
self.query_graph.case3(t.sink, edge, tlist)
|
||||
else:
|
||||
tlist = self.trapezoidal_map.case4(t, edge)
|
||||
self.query_graph.case4(t.sink, edge, tlist)
|
||||
# Add new trapezoids to map
|
||||
for t in tlist:
|
||||
self.trapezoidal_map.map[t.key] = t
|
||||
self.trapezoidal_map.clear()
|
||||
|
||||
# Mark outside trapezoids w/ depth-first search
|
||||
for k, t in self.trapezoidal_map.map.items():
|
||||
self.mark_outside(t)
|
||||
|
||||
# Collect interior trapezoids
|
||||
for k, t in self.trapezoidal_map.map.items():
|
||||
if t.inside:
|
||||
self.trapezoids.append(t)
|
||||
t.add_points()
|
||||
|
||||
# Generate the triangles
|
||||
self.create_mountains()
|
||||
|
||||
def mono_polies(self):
|
||||
polies = []
|
||||
for x in self.xmono_poly:
|
||||
polies.append(x.monoPoly)
|
||||
return polies
|
||||
|
||||
def create_mountains(self):
|
||||
for edge in self.edge_list:
|
||||
if len(edge.mpoints) > 2:
|
||||
mountain = MonotoneMountain()
|
||||
points = merge_sort(edge.mpoints)
|
||||
for p in points:
|
||||
mountain.add(p)
|
||||
mountain.process()
|
||||
for t in mountain.triangles:
|
||||
self.polygons.append(t)
|
||||
self.xmono_poly.append(mountain)
|
||||
|
||||
def mark_outside(self, t):
|
||||
if t.top is self.bounding_box.top or t.bottom is self.bounding_box.bottom:
|
||||
t.trim_neighbors()
|
||||
|
||||
def init_edges(self, points):
|
||||
edge_list = []
|
||||
size = len(points)
|
||||
for i in range(size):
|
||||
j = i + 1 if i < size-1 else 0
|
||||
p = points[i][0], points[i][1]
|
||||
q = points[j][0], points[j][1]
|
||||
edge_list.append((p, q))
|
||||
return self.order_edges(edge_list)
|
||||
|
||||
def order_edges(self, edge_list):
|
||||
edges = []
|
||||
for e in edge_list:
|
||||
p = shear_transform(e[0])
|
||||
q = shear_transform(e[1])
|
||||
if p.x > q.x:
|
||||
edges.append(Edge(q, p))
|
||||
else:
|
||||
edges.append(Edge(p, q))
|
||||
# Randomized incremental algorithm
|
||||
shuffle(edges)
|
||||
return edges
|
||||
|
||||
def shear_transform(point):
|
||||
return Point(point[0] + SHEAR * point[1], point[1])
|
||||
|
||||
def merge_sort(l):
|
||||
if len(l)>1 :
|
||||
lleft = merge_sort(l[:len(l)/2])
|
||||
lright = merge_sort(l[len(l)/2:])
|
||||
p1, p2, p = 0, 0, 0
|
||||
while p1<len(lleft) and p2<len(lright):
|
||||
if lleft[p1].x < lright[p2].x:
|
||||
l[p]=lleft[p1]
|
||||
p+=1
|
||||
p1+=1
|
||||
else:
|
||||
l[p]=lright[p2]
|
||||
p+=1
|
||||
p2+=1
|
||||
if p1<len(lleft):l[p:]=lleft[p1:]
|
||||
elif p2<len(lright):l[p:]=lright[p2:]
|
||||
else : print "internal error"
|
||||
return l
|
||||
|
||||
class TrapezoidalMap(object):
|
||||
|
||||
def __init__(self):
|
||||
self.map = {}
|
||||
self.margin = 50.0
|
||||
self.bcross = None
|
||||
self.tcross = None
|
||||
|
||||
def clear(self):
|
||||
self.bcross = None
|
||||
self.tcross = None
|
||||
|
||||
def case1(self, t, e):
|
||||
trapezoids = []
|
||||
trapezoids.append(Trapezoid(t.left_point, e.p, t.top, t.bottom))
|
||||
trapezoids.append(Trapezoid(e.p, e.q, t.top, e))
|
||||
trapezoids.append(Trapezoid(e.p, e.q, e, t.bottom))
|
||||
trapezoids.append(Trapezoid(e.q, t.right_point, t.top, t.bottom))
|
||||
trapezoids[0].update_left(t.upper_left, t.lower_left)
|
||||
trapezoids[1].update_left_right(trapezoids[0], None, trapezoids[3], None)
|
||||
trapezoids[2].update_left_right(None, trapezoids[0], None, trapezoids[3])
|
||||
trapezoids[3].update_right(t.upper_right, t.lower_right)
|
||||
return trapezoids
|
||||
|
||||
def case2(self, t, e):
|
||||
rp = e.q if e.q.x == t.right_point.x else t.right_point
|
||||
trapezoids = []
|
||||
trapezoids.append(Trapezoid(t.left_point, e.p, t.top, t.bottom))
|
||||
trapezoids.append(Trapezoid(e.p, rp, t.top, e))
|
||||
trapezoids.append(Trapezoid(e.p, rp, e, t.bottom))
|
||||
trapezoids[0].update_left(t.upper_left, t.lower_left)
|
||||
trapezoids[1].update_left_right(trapezoids[0], None, t.upper_right, None)
|
||||
trapezoids[2].update_left_right(None, trapezoids[0], None, t.lower_right)
|
||||
self.bcross = t.bottom
|
||||
self.tcross = t.top
|
||||
e.above = trapezoids[1]
|
||||
e.below = trapezoids[2]
|
||||
return trapezoids
|
||||
|
||||
def case3(self, t, e):
|
||||
lp = e.p if e.p.x == t.left_point.x else t.left_point
|
||||
rp = e.q if e.q.x == t.right_point.x else t.right_point
|
||||
trapezoids = []
|
||||
if self.tcross is t.top:
|
||||
trapezoids.append(t.upper_left)
|
||||
trapezoids[0].update_right(t.upper_right, None)
|
||||
trapezoids[0].right_point = rp
|
||||
else:
|
||||
trapezoids.append(Trapezoid(lp, rp, t.top, e))
|
||||
trapezoids[0].update_left_right(t.upper_left, e.above, t.upper_right, None)
|
||||
if self.bcross is t.bottom:
|
||||
trapezoids.append(t.lower_left)
|
||||
trapezoids[1].update_right(None, t.lower_right)
|
||||
trapezoids[1].right_point = rp
|
||||
else:
|
||||
trapezoids.append(Trapezoid(lp, rp, e, t.bottom))
|
||||
trapezoids[1].update_left_right(e.below, t.lower_left, None, t.lower_right)
|
||||
self.bcross = t.bottom
|
||||
self.tcross = t.top
|
||||
e.above = trapezoids[0]
|
||||
e.below = trapezoids[1]
|
||||
return trapezoids
|
||||
|
||||
def case4(self, t, e):
|
||||
lp = e.p if e.p.x == t.left_point.x else t.left_point
|
||||
trapezoids = []
|
||||
if self.tcross is t.top:
|
||||
trapezoids.append(t.upper_left)
|
||||
trapezoids[0].right_point = e.q
|
||||
else:
|
||||
trapezoids.append(Trapezoid(lp, e.q, t.top, e))
|
||||
trapezoids[0].update_left(t.upper_left, e.above)
|
||||
if self.bcross is t.bottom:
|
||||
trapezoids.append(t.lower_left)
|
||||
trapezoids[1].right_point = e.q
|
||||
else:
|
||||
trapezoids.append(Trapezoid(lp, e.q, e, t.bottom))
|
||||
trapezoids[1].update_left(e.below, t.lower_left)
|
||||
trapezoids.append(Trapezoid(e.q, t.right_point, t.top, t.bottom))
|
||||
trapezoids[2].update_left_right(trapezoids[0], trapezoids[1], t.upper_right, t.lower_right)
|
||||
return trapezoids
|
||||
|
||||
def bounding_box(self, edges):
|
||||
margin = self.margin
|
||||
max = edges[0].p + margin
|
||||
min = edges[0].q - margin
|
||||
for e in edges:
|
||||
if e.p.x > max.x: max = Point(e.p.x + margin, max.y)
|
||||
if e.p.y > max.y: max = Point(max.x, e.p.y + margin)
|
||||
if e.q.x > max.x: max = Point(e.q.x + margin, max.y)
|
||||
if e.q.y > max.y: max = Point(max.x, e.q.y + margin)
|
||||
if e.p.x < min.x: min = Point(e.p.x - margin, min.y)
|
||||
if e.p.y < min.y: min = Point(min.x, e.p.y - margin)
|
||||
if e.q.x < min.x: min = Point(e.q.x - margin, min.y)
|
||||
if e.q.y < min.y: min = Point(min.x, e.q.y - margin)
|
||||
top = Edge(Point(min.x, max.y), Point(max.x, max.y))
|
||||
bottom = Edge(Point(min.x, min.y), Point(max.x, min.y))
|
||||
left = top.p
|
||||
right = top.q
|
||||
trap = Trapezoid(left, right, top, bottom)
|
||||
self.map[trap.key] = trap
|
||||
return trap
|
||||
|
||||
class Node(object):
|
||||
|
||||
def __init__(self, lchild, rchild):
|
||||
self.parent_list = []
|
||||
self.lchild = lchild
|
||||
self.rchild = rchild
|
||||
if lchild != None:
|
||||
lchild.parent_list.append(self)
|
||||
if rchild != None:
|
||||
rchild.parent_list.append(self)
|
||||
|
||||
def replace(self, node):
|
||||
for parent in node.parent_list:
|
||||
if parent.lchild is node:
|
||||
parent.lchild = self
|
||||
else:
|
||||
parent.rchild = self
|
||||
self.parent_list += node.parent_list
|
||||
|
||||
class Sink(Node):
|
||||
|
||||
def __init__(self, trapezoid):
|
||||
super(Sink, self).__init__(None, None)
|
||||
self.trapezoid = trapezoid
|
||||
trapezoid.sink = self
|
||||
|
||||
def locate(self, edge):
|
||||
return self
|
||||
|
||||
def isink(trapezoid):
|
||||
if trapezoid.sink is None:
|
||||
return Sink(trapezoid)
|
||||
return trapezoid.sink
|
||||
|
||||
class XNode(Node):
|
||||
|
||||
def __init__(self, point, lchild, rchild):
|
||||
super(XNode, self).__init__(lchild, rchild)
|
||||
self.point = point
|
||||
|
||||
def locate(self, edge):
|
||||
if edge.p.x >= self.point.x:
|
||||
return self.rchild.locate(edge)
|
||||
return self.lchild.locate(edge)
|
||||
|
||||
class YNode(Node):
|
||||
|
||||
def __init__(self, edge, lchild, rchild):
|
||||
super(YNode, self).__init__(lchild, rchild)
|
||||
self.edge = edge
|
||||
|
||||
def locate(self, edge):
|
||||
if self.edge.is_above(edge.p):
|
||||
return self.rchild.locate(edge)
|
||||
if self.edge.is_below(edge.p):
|
||||
return self.lchild.locate(edge)
|
||||
if edge.slope < self.edge.slope:
|
||||
return self.rchild.locate(edge)
|
||||
return self.lchild.locate(edge)
|
||||
|
||||
class QueryGraph:
|
||||
|
||||
def __init__(self, head):
|
||||
self.head = head
|
||||
|
||||
def locate(self, edge):
|
||||
return self.head.locate(edge).trapezoid
|
||||
|
||||
def follow_edge(self, edge):
|
||||
trapezoids = [self.locate(edge)]
|
||||
while(edge.q.x > trapezoids[-1].right_point.x):
|
||||
if edge.is_above(trapezoids[-1].right_point):
|
||||
trapezoids.append(trapezoids[-1].upper_right)
|
||||
else:
|
||||
trapezoids.append(trapezoids[-1].lower_right)
|
||||
return trapezoids
|
||||
|
||||
def replace(self, sink, node):
|
||||
if sink.parent_list:
|
||||
node.replace(sink)
|
||||
else:
|
||||
self.head = node
|
||||
|
||||
def case1(self, sink, edge, tlist):
|
||||
yNode = YNode(edge, isink(tlist[1]), isink(tlist[2]))
|
||||
qNode = XNode(edge.q, yNode, isink(tlist[3]))
|
||||
pNode = XNode(edge.p, isink(tlist[0]), qNode)
|
||||
self.replace(sink, pNode)
|
||||
|
||||
def case2(self, sink, edge, tlist):
|
||||
yNode = YNode(edge, isink(tlist[1]), isink(tlist[2]))
|
||||
pNode = XNode(edge.p, isink(tlist[0]), yNode)
|
||||
self.replace(sink, pNode)
|
||||
|
||||
def case3(self, sink, edge, tlist):
|
||||
yNode = YNode(edge, isink(tlist[0]), isink(tlist[1]))
|
||||
self.replace(sink, yNode)
|
||||
|
||||
def case4(self, sink, edge, tlist):
|
||||
yNode = YNode(edge, isink(tlist[0]), isink(tlist[1]))
|
||||
qNode = XNode(edge.q, yNode, isink(tlist[2]))
|
||||
self.replace(sink, qNode)
|
||||
|
||||
PI_SLOP = 3.1
|
||||
|
||||
class MonotoneMountain:
|
||||
|
||||
def __init__(self):
|
||||
self.size = 0
|
||||
self.tail = None
|
||||
self.head = None
|
||||
self.positive = False
|
||||
self.convex_points = []
|
||||
self.mono_poly = []
|
||||
self.triangles = []
|
||||
self.convex_polies = []
|
||||
|
||||
def add(self, point):
|
||||
if self.size is 0:
|
||||
self.head = point
|
||||
self.size = 1
|
||||
elif self.size is 1:
|
||||
if point.neq(self.head):
|
||||
self.tail = point
|
||||
self.tail.prev = self.head
|
||||
self.head.next = self.tail
|
||||
self.size = 2
|
||||
else:
|
||||
if point.neq(self.tail):
|
||||
self.tail.next = point
|
||||
point.prev = self.tail
|
||||
self.tail = point
|
||||
self.size += 1
|
||||
|
||||
def remove(self, point):
|
||||
next = point.next
|
||||
prev = point.prev
|
||||
point.prev.next = next
|
||||
point.next.prev = prev
|
||||
self.size -= 1
|
||||
|
||||
def process(self):
|
||||
self.positive = self.angle_sign()
|
||||
self.gen_mono_poly()
|
||||
p = self.head.next
|
||||
while p != self.tail:
|
||||
a = self.angle(p)
|
||||
if a >= PI_SLOP or a <= -PI_SLOP or a == 0:
|
||||
self.remove(p)
|
||||
elif self.is_convex(p):
|
||||
self.convex_points.append(p)
|
||||
p = p.next
|
||||
self.triangulate()
|
||||
|
||||
def triangulate(self):
|
||||
while self.convex_points:
|
||||
ear = self.convex_points.pop(0)
|
||||
a = ear.prev
|
||||
b = ear
|
||||
c = ear.next
|
||||
triangle = (a, b, c)
|
||||
self.triangles.append(triangle)
|
||||
self.remove(ear)
|
||||
if self.valid(a):
|
||||
self.convex_points.append(a)
|
||||
if self.valid(c):
|
||||
self.convex_points.append(c)
|
||||
#assert self.size <= 3, "Triangulation bug, please report"
|
||||
|
||||
def valid(self, p):
|
||||
return p != self.head and p != self.tail and self.is_convex(p)
|
||||
|
||||
def gen_mono_poly(self):
|
||||
p = self.head
|
||||
while(p != None):
|
||||
self.mono_poly.append(p)
|
||||
p = p.next
|
||||
|
||||
def angle(self, p):
|
||||
a = p.next - p
|
||||
b = p.prev - p
|
||||
return atan2(a.cross(b), a.dot(b))
|
||||
|
||||
def angle_sign(self):
|
||||
a = self.head.next - self.head
|
||||
b = self.tail - self.head
|
||||
return atan2(a.cross(b), a.dot(b)) >= 0
|
||||
|
||||
def is_convex(self, p):
|
||||
if self.positive != (self.angle(p) >= 0):
|
||||
return False
|
||||
return True
|
Reference in New Issue
Block a user