From b3ff213b5012c8982afc547af5351d530a53b0a9 Mon Sep 17 00:00:00 2001 From: zzzzrrr Date: Tue, 1 Dec 2009 11:19:22 -0500 Subject: [PATCH 1/2] added test --- python/framework/polydecomp.pxi | 2 +- python/poly2tri.py | 25 ++++++++++++++++++++++++- 2 files changed, 25 insertions(+), 2 deletions(-) diff --git a/python/framework/polydecomp.pxi b/python/framework/polydecomp.pxi index 3653b98..709d3d5 100644 --- a/python/framework/polydecomp.pxi +++ b/python/framework/polydecomp.pxi @@ -1,6 +1,6 @@ ## ## Ported from PolyDeomp by Mark Bayazit -## http://mnbayazit.com/406/credit +## http://mnbayazit.com/406/bayazit ## from sys import float_info diff --git a/python/poly2tri.py b/python/poly2tri.py index 3b56584..dc7c30d 100644 --- a/python/poly2tri.py +++ b/python/poly2tri.py @@ -22,6 +22,20 @@ class Poly2Tri(Game): [192.89701,377.80796],[177.18272,402.27225],[172.36129,413.87939],[169.14701,430.48653],[168.61129,458.52225], [168.61129,492.80796]] + test = [[235.04275999999999, 739.07534999999996], [218.13066000000001, 719.73902999999996], + [218.15215000000001, 709.96821], [218.17362, 700.19740000000002], [243.15215000000001, 685.27858000000003], + [268.13065, 670.35974999999996], [268.13065, 660.81429000000003], [268.13065, 651.26882999999998], + [314.55921999999998, 651.26882999999998], [360.98779000000002, 651.26882999999998], + [360.98683999999997, 666.44740000000002], [360.98046561000007, 669.27438118000009], + [360.96234088000011,672.68539864000013], [360.93345946999995, 676.58895225999993], + [360.89481504000003, 680.89354191999996], [360.84740125000002, 685.50766749999991], + [360.79221175999999, 690.33982888000003], [360.73024022999999, 695.29852593999999], + [360.66248032000004, 700.29225856000005], [360.58992569000003, 705.22952662000012], + [360.51357000000002, 710.01882999999998], [360.04131999999998, 738.41168000000005], + [310.51454999999999, 738.41168000000005], [260.98779999999999, 738.41168000000005], + [260.98779999999999, 748.41168000000005], [260.98779999999999, 758.41168000000005], + [256.47133000000002, 758.41168000000005], [251.95484999999999, 758.41168000000005]] + def __init__(self): super(Poly2Tri, self).__init__(*self.screen_size) @@ -50,13 +64,22 @@ class Poly2Tri(Game): dt = (self.time - t1) * 1000.0 print "time (ms) = %f , num polies = %d" % (dt, len(self.dude_poly)) + spam = [] + makeCCW(self.test) + clean = [] + for t in self.test: + x = round(t[0], 0) + y = round(t[1], 0) + clean.append([x,y]) + decompose_poly(clean, spam) + self.main_loop() def update(self): pass def render(self): - reset_zoom(2.1, (300, 450), self.screen_size) + reset_zoom(2.2, (300, 450), self.screen_size) red = 255, 0, 0 yellow = 255, 255, 0 green = 0, 255, 0 From 91c722558a1b1847871421a209cc51d0af6b87e1 Mon Sep 17 00:00:00 2001 From: zzzzrrr Date: Wed, 2 Dec 2009 15:19:08 -0500 Subject: [PATCH 2/2] added fast robust predicates --- python/bc.sh | 1 - python/framework/framework.pyx | 1 + python/framework/polydecomp.pxi | 56 +- python/framework/predicates.c | 4262 +++++++++++++++++++++++++++++++ python/framework/predicates.h | 4 + python/framework/seidel.pxi | 636 +++++ python/poly2tri.py | 114 +- python/setup.py | 2 +- 8 files changed, 5021 insertions(+), 55 deletions(-) create mode 100644 python/framework/predicates.c create mode 100644 python/framework/predicates.h create mode 100644 python/framework/seidel.pxi diff --git a/python/bc.sh b/python/bc.sh index 7bf4065..9c1bbd2 100644 --- a/python/bc.sh +++ b/python/bc.sh @@ -1,5 +1,4 @@ #!/bin/sh touch framework/framework.pyx -rm framework/*.c rm -rf build python setup.py build_ext -i \ No newline at end of file diff --git a/python/framework/framework.pyx b/python/framework/framework.pyx index 878237f..96736ba 100644 --- a/python/framework/framework.pyx +++ b/python/framework/framework.pyx @@ -5,6 +5,7 @@ from math import pi as PI from gl cimport * include "polydecomp.pxi" +include "seidel.pxi" cdef extern from 'math.h': double cos(double) diff --git a/python/framework/polydecomp.pxi b/python/framework/polydecomp.pxi index 709d3d5..c2add2f 100644 --- a/python/framework/polydecomp.pxi +++ b/python/framework/polydecomp.pxi @@ -4,15 +4,18 @@ ## from sys import float_info -def makeCCW(list poly): +cdef extern from 'predicates.h': + double orient2d(double *pa, double *pb, double *pc) + +def make_ccw(list poly): cdef int br = 0 # find bottom right point for i from 1 <= i < len(poly): if poly[i][1] < poly[br][1] or (poly[i][1] == poly[br][1] and poly[i][0] > poly[br][0]): - br = i + br = i # reverse poly if clockwise if not left(at(poly, br - 1), at(poly, br), at(poly, br + 1)): - poly.reverse() + poly.reverse() cpdef list decompose_poly(list poly, list polys): @@ -48,8 +51,8 @@ cpdef list decompose_poly(list poly, list polys): # if there are no vertices to connect to, choose a point in the middle if lower_index == (upper_index + 1) % len(poly): - p[0] = (lowerInt[0] + upperInt[0]) / 2 - p[1] = (lowerInt[1] + upperInt[1]) / 2 + p[0] = (lowerInt[0] + upperInt[0]) * 0.5 + p[1] = (lowerInt[1] + upperInt[1]) * 0.5 if i < upper_index: lower_poly.extend(poly[i:upper_index+1]) @@ -99,26 +102,19 @@ cpdef list decompose_poly(list poly, list polys): else: decompose_poly(upper_poly, polys) decompose_poly(lower_poly, polys) - return polys.append(poly) cdef list intersection(list p1, list p2, list q1, list q2): - cdef list i = [] - cdef float a1, b1, c1, a2, b2, c2, det - a1 = p2[1] - p1[1] - b1 = p1[0] - p2[0] - c1 = a1 * p1[0] + b1 * p1[1] - a2 = q2[1] - q1[1] - b2 = q1[0] - q2[0] - c2 = a2 * q1[0] + b2 * q1[1] - det = a1 * b2 - a2 * b1 - if not eq(det, 0): - # lines are not parallel - i.append((b2 * c1 - b1 * c2) / det) - i.append((a1 * c2 - a2 * c1) / det) - return i + cdef double pqx, pqy, bax, bay, t + pqx = p1[0] - p2[0] + pqy = p1[1] - p2[1] + t = pqy*(q1[0]-p2[0]) - pqx*(q1[1]-p2[1]) + t /= pqx*(q2[1]-q1[1]) - pqy*(q2[0]-q1[0]) + bax = t*(q2[0]-q1[0]) + q1[0] + bay = t*(q2[1]-q1[1]) + q1[1] + return [bax, bay] cdef bool eq(float a, float b): return abs(a - b) <= 1e-8 @@ -130,16 +126,28 @@ cdef float area(list a, list b, list c): return (((b[0] - a[0])*(c[1] - a[1]))-((c[0] - a[0])*(b[1] - a[1]))) cdef bool left(list a, list b, list c): - return area(a, b, c) > 0 + cdef double *x = [a[0], a[1]] + cdef double *y = [b[0], b[1]] + cdef double *z = [c[0], c[1]] + return orient2d(x, y, z) > 0.0 cdef bool leftOn(list a, list b, list c): - return area(a, b, c) >= 0 + cdef double *x = [a[0], a[1]] + cdef double *y = [b[0], b[1]] + cdef double *z = [c[0], c[1]] + return orient2d(x, y, z) >= 0.0 cdef bool right(list a, list b, list c): - return area(a, b, c) < 0 + cdef double *x = [a[0], a[1]] + cdef double *y = [b[0], b[1]] + cdef double *z = [c[0], c[1]] + return orient2d(x, y, z) < 0.0 cdef bool rightOn(list a, list b, list c): - return area(a, b, c) <= 0 + cdef double *x = [a[0], a[1]] + cdef double *y = [b[0], b[1]] + cdef double *z = [c[0], c[1]] + return orient2d(x, y, z) <= 0.0 cdef float sqdist(list a, list b): cdef float dx = b[0] - a[0] diff --git a/python/framework/predicates.c b/python/framework/predicates.c new file mode 100644 index 0000000..e0a6533 --- /dev/null +++ b/python/framework/predicates.c @@ -0,0 +1,4262 @@ +/*****************************************************************************/ +/* */ +/* Routines for Arbitrary Precision Floating-point Arithmetic */ +/* and Fast Robust Geometric Predicates */ +/* (predicates.c) */ +/* */ +/* May 18, 1996 */ +/* */ +/* Placed in the public domain by */ +/* Jonathan Richard Shewchuk */ +/* School of Computer Science */ +/* Carnegie Mellon University */ +/* 5000 Forbes Avenue */ +/* Pittsburgh, Pennsylvania 15213-3891 */ +/* jrs@cs.cmu.edu */ +/* */ +/* This file contains C implementation of algorithms for exact addition */ +/* and multiplication of floating-point numbers, and predicates for */ +/* robustly performing the orientation and incircle tests used in */ +/* computational geometry. The algorithms and underlying theory are */ +/* described in Jonathan Richard Shewchuk. "Adaptive Precision Floating- */ +/* Point Arithmetic and Fast Robust Geometric Predicates." Technical */ +/* Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon */ +/* University, Pittsburgh, Pennsylvania, May 1996. (Submitted to */ +/* Discrete & Computational Geometry.) */ +/* */ +/* This file, the paper listed above, and other information are available */ +/* from the Web page http://www.cs.cmu.edu/~quake/robust.html . */ +/* */ +/*****************************************************************************/ + +/*****************************************************************************/ +/* */ +/* Using this code: */ +/* */ +/* First, read the short or long version of the paper (from the Web page */ +/* above). */ +/* */ +/* Be sure to call exactinit() once, before calling any of the arithmetic */ +/* functions or geometric predicates. Also be sure to turn on the */ +/* optimizer when compiling this file. */ +/* */ +/* */ +/* Several geometric predicates are defined. Their parameters are all */ +/* points. Each point is an array of two or three floating-point */ +/* numbers. The geometric predicates, described in the papers, are */ +/* */ +/* orient2d(pa, pb, pc) */ +/* orient2dfast(pa, pb, pc) */ +/* orient3d(pa, pb, pc, pd) */ +/* orient3dfast(pa, pb, pc, pd) */ +/* incircle(pa, pb, pc, pd) */ +/* incirclefast(pa, pb, pc, pd) */ +/* insphere(pa, pb, pc, pd, pe) */ +/* inspherefast(pa, pb, pc, pd, pe) */ +/* */ +/* Those with suffix "fast" are approximate, non-robust versions. Those */ +/* without the suffix are adaptive precision, robust versions. There */ +/* are also versions with the suffices "exact" and "slow", which are */ +/* non-adaptive, exact arithmetic versions, which I use only for timings */ +/* in my arithmetic papers. */ +/* */ +/* */ +/* An expansion is represented by an array of floating-point numbers, */ +/* sorted from smallest to largest magnitude (possibly with interspersed */ +/* zeros). The length of each expansion is stored as a separate integer, */ +/* and each arithmetic function returns an integer which is the length */ +/* of the expansion it created. */ +/* */ +/* Several arithmetic functions are defined. Their parameters are */ +/* */ +/* e, f Input expansions */ +/* elen, flen Lengths of input expansions (must be >= 1) */ +/* h Output expansion */ +/* b Input scalar */ +/* */ +/* The arithmetic functions are */ +/* */ +/* grow_expansion(elen, e, b, h) */ +/* grow_expansion_zeroelim(elen, e, b, h) */ +/* expansion_sum(elen, e, flen, f, h) */ +/* expansion_sum_zeroelim1(elen, e, flen, f, h) */ +/* expansion_sum_zeroelim2(elen, e, flen, f, h) */ +/* fast_expansion_sum(elen, e, flen, f, h) */ +/* fast_expansion_sum_zeroelim(elen, e, flen, f, h) */ +/* linear_expansion_sum(elen, e, flen, f, h) */ +/* linear_expansion_sum_zeroelim(elen, e, flen, f, h) */ +/* scale_expansion(elen, e, b, h) */ +/* scale_expansion_zeroelim(elen, e, b, h) */ +/* compress(elen, e, h) */ +/* */ +/* All of these are described in the long version of the paper; some are */ +/* described in the short version. All return an integer that is the */ +/* length of h. Those with suffix _zeroelim perform zero elimination, */ +/* and are recommended over their counterparts. The procedure */ +/* fast_expansion_sum_zeroelim() (or linear_expansion_sum_zeroelim() on */ +/* processors that do not use the round-to-even tiebreaking rule) is */ +/* recommended over expansion_sum_zeroelim(). Each procedure has a */ +/* little note next to it (in the code below) that tells you whether or */ +/* not the output expansion may be the same array as one of the input */ +/* expansions. */ +/* */ +/* */ +/* If you look around below, you'll also find macros for a bunch of */ +/* simple unrolled arithmetic operations, and procedures for printing */ +/* expansions (commented out because they don't work with all C */ +/* compilers) and for generating random floating-point numbers whose */ +/* significand bits are all random. Most of the macros have undocumented */ +/* requirements that certain of their parameters should not be the same */ +/* variable; for safety, better to make sure all the parameters are */ +/* distinct variables. Feel free to send email to jrs@cs.cmu.edu if you */ +/* have questions. */ +/* */ +/*****************************************************************************/ + +#include +#include +#include +#include + +/* On some machines, the exact arithmetic routines might be defeated by the */ +/* use of internal extended precision floating-point registers. Sometimes */ +/* this problem can be fixed by defining certain values to be volatile, */ +/* thus forcing them to be stored to memory and rounded off. This isn't */ +/* a great solution, though, as it slows the arithmetic down. */ +/* */ +/* To try this out, write "#define INEXACT volatile" below. Normally, */ +/* however, INEXACT should be defined to be nothing. ("#define INEXACT".) */ + +#define INEXACT /* Nothing */ +/* #define INEXACT volatile */ + +#define REAL double /* float or double */ +#define REALPRINT doubleprint +#define REALRAND doublerand +#define NARROWRAND narrowdoublerand +#define UNIFORMRAND uniformdoublerand + +/* Which of the following two methods of finding the absolute values is */ +/* fastest is compiler-dependent. A few compilers can inline and optimize */ +/* the fabs() call; but most will incur the overhead of a function call, */ +/* which is disastrously slow. A faster way on IEEE machines might be to */ +/* mask the appropriate bit, but that's difficult to do in C. */ + +#define Absolute(a) ((a) >= 0.0 ? (a) : -(a)) +/* #define Absolute(a) fabs(a) */ + +/* Many of the operations are broken up into two pieces, a main part that */ +/* performs an approximate operation, and a "tail" that computes the */ +/* roundoff error of that operation. */ +/* */ +/* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(), */ +/* Split(), and Two_Product() are all implemented as described in the */ +/* reference. Each of these macros requires certain variables to be */ +/* defined in the calling routine. The variables `bvirt', `c', `abig', */ +/* `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because */ +/* they store the result of an operation that may incur roundoff error. */ +/* The input parameter `x' (or the highest numbered `x_' parameter) must */ +/* also be declared `INEXACT'. */ + +#define Fast_Two_Sum_Tail(a, b, x, y) \ + bvirt = x - a; \ + y = b - bvirt + +#define Fast_Two_Sum(a, b, x, y) \ + x = (REAL) (a + b); \ + Fast_Two_Sum_Tail(a, b, x, y) + +#define Fast_Two_Diff_Tail(a, b, x, y) \ + bvirt = a - x; \ + y = bvirt - b + +#define Fast_Two_Diff(a, b, x, y) \ + x = (REAL) (a - b); \ + Fast_Two_Diff_Tail(a, b, x, y) + +#define Two_Sum_Tail(a, b, x, y) \ + bvirt = (REAL) (x - a); \ + avirt = x - bvirt; \ + bround = b - bvirt; \ + around = a - avirt; \ + y = around + bround + +#define Two_Sum(a, b, x, y) \ + x = (REAL) (a + b); \ + Two_Sum_Tail(a, b, x, y) + +#define Two_Diff_Tail(a, b, x, y) \ + bvirt = (REAL) (a - x); \ + avirt = x + bvirt; \ + bround = bvirt - b; \ + around = a - avirt; \ + y = around + bround + +#define Two_Diff(a, b, x, y) \ + x = (REAL) (a - b); \ + Two_Diff_Tail(a, b, x, y) + +#define Split(a, ahi, alo) \ + c = (REAL) (splitter * a); \ + abig = (REAL) (c - a); \ + ahi = c - abig; \ + alo = a - ahi + +#define Two_Product_Tail(a, b, x, y) \ + Split(a, ahi, alo); \ + Split(b, bhi, blo); \ + err1 = x - (ahi * bhi); \ + err2 = err1 - (alo * bhi); \ + err3 = err2 - (ahi * blo); \ + y = (alo * blo) - err3 + +#define Two_Product(a, b, x, y) \ + x = (REAL) (a * b); \ + Two_Product_Tail(a, b, x, y) + +/* Two_Product_Presplit() is Two_Product() where one of the inputs has */ +/* already been split. Avoids redundant splitting. */ + +#define Two_Product_Presplit(a, b, bhi, blo, x, y) \ + x = (REAL) (a * b); \ + Split(a, ahi, alo); \ + err1 = x - (ahi * bhi); \ + err2 = err1 - (alo * bhi); \ + err3 = err2 - (ahi * blo); \ + y = (alo * blo) - err3 + +/* Two_Product_2Presplit() is Two_Product() where both of the inputs have */ +/* already been split. Avoids redundant splitting. */ + +#define Two_Product_2Presplit(a, ahi, alo, b, bhi, blo, x, y) \ + x = (REAL) (a * b); \ + err1 = x - (ahi * bhi); \ + err2 = err1 - (alo * bhi); \ + err3 = err2 - (ahi * blo); \ + y = (alo * blo) - err3 + +/* Square() can be done more quickly than Two_Product(). */ + +#define Square_Tail(a, x, y) \ + Split(a, ahi, alo); \ + err1 = x - (ahi * ahi); \ + err3 = err1 - ((ahi + ahi) * alo); \ + y = (alo * alo) - err3 + +#define Square(a, x, y) \ + x = (REAL) (a * a); \ + Square_Tail(a, x, y) + +/* Macros for summing expansions of various fixed lengths. These are all */ +/* unrolled versions of Expansion_Sum(). */ + +#define Two_One_Sum(a1, a0, b, x2, x1, x0) \ + Two_Sum(a0, b , _i, x0); \ + Two_Sum(a1, _i, x2, x1) + +#define Two_One_Diff(a1, a0, b, x2, x1, x0) \ + Two_Diff(a0, b , _i, x0); \ + Two_Sum( a1, _i, x2, x1) + +#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \ + Two_One_Sum(a1, a0, b0, _j, _0, x0); \ + Two_One_Sum(_j, _0, b1, x3, x2, x1) + +#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \ + Two_One_Diff(a1, a0, b0, _j, _0, x0); \ + Two_One_Diff(_j, _0, b1, x3, x2, x1) + +#define Four_One_Sum(a3, a2, a1, a0, b, x4, x3, x2, x1, x0) \ + Two_One_Sum(a1, a0, b , _j, x1, x0); \ + Two_One_Sum(a3, a2, _j, x4, x3, x2) + +#define Four_Two_Sum(a3, a2, a1, a0, b1, b0, x5, x4, x3, x2, x1, x0) \ + Four_One_Sum(a3, a2, a1, a0, b0, _k, _2, _1, _0, x0); \ + Four_One_Sum(_k, _2, _1, _0, b1, x5, x4, x3, x2, x1) + +#define Four_Four_Sum(a3, a2, a1, a0, b4, b3, b1, b0, x7, x6, x5, x4, x3, x2, \ + x1, x0) \ + Four_Two_Sum(a3, a2, a1, a0, b1, b0, _l, _2, _1, _0, x1, x0); \ + Four_Two_Sum(_l, _2, _1, _0, b4, b3, x7, x6, x5, x4, x3, x2) + +#define Eight_One_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b, x8, x7, x6, x5, x4, \ + x3, x2, x1, x0) \ + Four_One_Sum(a3, a2, a1, a0, b , _j, x3, x2, x1, x0); \ + Four_One_Sum(a7, a6, a5, a4, _j, x8, x7, x6, x5, x4) + +#define Eight_Two_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b1, b0, x9, x8, x7, \ + x6, x5, x4, x3, x2, x1, x0) \ + Eight_One_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b0, _k, _6, _5, _4, _3, _2, \ + _1, _0, x0); \ + Eight_One_Sum(_k, _6, _5, _4, _3, _2, _1, _0, b1, x9, x8, x7, x6, x5, x4, \ + x3, x2, x1) + +#define Eight_Four_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b4, b3, b1, b0, x11, \ + x10, x9, x8, x7, x6, x5, x4, x3, x2, x1, x0) \ + Eight_Two_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b1, b0, _l, _6, _5, _4, _3, \ + _2, _1, _0, x1, x0); \ + Eight_Two_Sum(_l, _6, _5, _4, _3, _2, _1, _0, b4, b3, x11, x10, x9, x8, \ + x7, x6, x5, x4, x3, x2) + +/* Macros for multiplying expansions of various fixed lengths. */ + +#define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \ + Split(b, bhi, blo); \ + Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \ + Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \ + Two_Sum(_i, _0, _k, x1); \ + Fast_Two_Sum(_j, _k, x3, x2) + +#define Four_One_Product(a3, a2, a1, a0, b, x7, x6, x5, x4, x3, x2, x1, x0) \ + Split(b, bhi, blo); \ + Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \ + Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \ + Two_Sum(_i, _0, _k, x1); \ + Fast_Two_Sum(_j, _k, _i, x2); \ + Two_Product_Presplit(a2, b, bhi, blo, _j, _0); \ + Two_Sum(_i, _0, _k, x3); \ + Fast_Two_Sum(_j, _k, _i, x4); \ + Two_Product_Presplit(a3, b, bhi, blo, _j, _0); \ + Two_Sum(_i, _0, _k, x5); \ + Fast_Two_Sum(_j, _k, x7, x6) + +#define Two_Two_Product(a1, a0, b1, b0, x7, x6, x5, x4, x3, x2, x1, x0) \ + Split(a0, a0hi, a0lo); \ + Split(b0, bhi, blo); \ + Two_Product_2Presplit(a0, a0hi, a0lo, b0, bhi, blo, _i, x0); \ + Split(a1, a1hi, a1lo); \ + Two_Product_2Presplit(a1, a1hi, a1lo, b0, bhi, blo, _j, _0); \ + Two_Sum(_i, _0, _k, _1); \ + Fast_Two_Sum(_j, _k, _l, _2); \ + Split(b1, bhi, blo); \ + Two_Product_2Presplit(a0, a0hi, a0lo, b1, bhi, blo, _i, _0); \ + Two_Sum(_1, _0, _k, x1); \ + Two_Sum(_2, _k, _j, _1); \ + Two_Sum(_l, _j, _m, _2); \ + Two_Product_2Presplit(a1, a1hi, a1lo, b1, bhi, blo, _j, _0); \ + Two_Sum(_i, _0, _n, _0); \ + Two_Sum(_1, _0, _i, x2); \ + Two_Sum(_2, _i, _k, _1); \ + Two_Sum(_m, _k, _l, _2); \ + Two_Sum(_j, _n, _k, _0); \ + Two_Sum(_1, _0, _j, x3); \ + Two_Sum(_2, _j, _i, _1); \ + Two_Sum(_l, _i, _m, _2); \ + Two_Sum(_1, _k, _i, x4); \ + Two_Sum(_2, _i, _k, x5); \ + Two_Sum(_m, _k, x7, x6) + +/* An expansion of length two can be squared more quickly than finding the */ +/* product of two different expansions of length two, and the result is */ +/* guaranteed to have no more than six (rather than eight) components. */ + +#define Two_Square(a1, a0, x5, x4, x3, x2, x1, x0) \ + Square(a0, _j, x0); \ + _0 = a0 + a0; \ + Two_Product(a1, _0, _k, _1); \ + Two_One_Sum(_k, _1, _j, _l, _2, x1); \ + Square(a1, _j, _1); \ + Two_Two_Sum(_j, _1, _l, _2, x5, x4, x3, x2) + +REAL splitter; /* = 2^ceiling(p / 2) + 1. Used to split floats in half. */ +REAL epsilon; /* = 2^(-p). Used to estimate roundoff errors. */ +/* A set of coefficients used to calculate maximum roundoff errors. */ +REAL resulterrbound; +REAL ccwerrboundA, ccwerrboundB, ccwerrboundC; +REAL o3derrboundA, o3derrboundB, o3derrboundC; +REAL iccerrboundA, iccerrboundB, iccerrboundC; +REAL isperrboundA, isperrboundB, isperrboundC; + +/*****************************************************************************/ +/* */ +/* doubleprint() Print the bit representation of a double. */ +/* */ +/* Useful for debugging exact arithmetic routines. */ +/* */ +/*****************************************************************************/ + +/* +void doubleprint(number) +double number; +{ + unsigned long long no; + unsigned long long sign, expo; + int exponent; + int i, bottomi; + + no = *(unsigned long long *) &number; + sign = no & 0x8000000000000000ll; + expo = (no >> 52) & 0x7ffll; + exponent = (int) expo; + exponent = exponent - 1023; + if (sign) { + printf("-"); + } else { + printf(" "); + } + if (exponent == -1023) { + printf( + "0.0000000000000000000000000000000000000000000000000000_ ( )"); + } else { + printf("1."); + bottomi = -1; + for (i = 0; i < 52; i++) { + if (no & 0x0008000000000000ll) { + printf("1"); + bottomi = i; + } else { + printf("0"); + } + no <<= 1; + } + printf("_%d (%d)", exponent, exponent - 1 - bottomi); + } +} +*/ + +/*****************************************************************************/ +/* */ +/* floatprint() Print the bit representation of a float. */ +/* */ +/* Useful for debugging exact arithmetic routines. */ +/* */ +/*****************************************************************************/ + +/* +void floatprint(number) +float number; +{ + unsigned no; + unsigned sign, expo; + int exponent; + int i, bottomi; + + no = *(unsigned *) &number; + sign = no & 0x80000000; + expo = (no >> 23) & 0xff; + exponent = (int) expo; + exponent = exponent - 127; + if (sign) { + printf("-"); + } else { + printf(" "); + } + if (exponent == -127) { + printf("0.00000000000000000000000_ ( )"); + } else { + printf("1."); + bottomi = -1; + for (i = 0; i < 23; i++) { + if (no & 0x00400000) { + printf("1"); + bottomi = i; + } else { + printf("0"); + } + no <<= 1; + } + printf("_%3d (%3d)", exponent, exponent - 1 - bottomi); + } +} +*/ + +/*****************************************************************************/ +/* */ +/* expansion_print() Print the bit representation of an expansion. */ +/* */ +/* Useful for debugging exact arithmetic routines. */ +/* */ +/*****************************************************************************/ + +/* +void expansion_print(elen, e) +int elen; +REAL *e; +{ + int i; + + for (i = elen - 1; i >= 0; i--) { + REALPRINT(e[i]); + if (i > 0) { + printf(" +\n"); + } else { + printf("\n"); + } + } +} +*/ + +/*****************************************************************************/ +/* */ +/* doublerand() Generate a double with random 53-bit significand and a */ +/* random exponent in [0, 511]. */ +/* */ +/*****************************************************************************/ + +double doublerand() +{ + double result; + double expo; + long a, b, c; + long i; + + a = rand(); + b = rand(); + c = rand(); + result = (double) (a - 1073741824) * 8388608.0 + (double) (b >> 8); + for (i = 512, expo = 2; i <= 131072; i *= 2, expo = expo * expo) { + if (c & i) { + result *= expo; + } + } + return result; +} + +/*****************************************************************************/ +/* */ +/* narrowdoublerand() Generate a double with random 53-bit significand */ +/* and a random exponent in [0, 7]. */ +/* */ +/*****************************************************************************/ + +double narrowdoublerand() +{ + double result; + double expo; + long a, b, c; + long i; + + a = rand(); + b = rand(); + c = rand(); + result = (double) (a - 1073741824) * 8388608.0 + (double) (b >> 8); + for (i = 512, expo = 2; i <= 2048; i *= 2, expo = expo * expo) { + if (c & i) { + result *= expo; + } + } + return result; +} + +/*****************************************************************************/ +/* */ +/* uniformdoublerand() Generate a double with random 53-bit significand. */ +/* */ +/*****************************************************************************/ + +double uniformdoublerand() +{ + double result; + long a, b; + + a = rand(); + b = rand(); + result = (double) (a - 1073741824) * 8388608.0 + (double) (b >> 8); + return result; +} + +/*****************************************************************************/ +/* */ +/* floatrand() Generate a float with random 24-bit significand and a */ +/* random exponent in [0, 63]. */ +/* */ +/*****************************************************************************/ + +float floatrand() +{ + float result; + float expo; + long a, c; + long i; + + a = rand(); + c = rand(); + result = (float) ((a - 1073741824) >> 6); + for (i = 512, expo = 2; i <= 16384; i *= 2, expo = expo * expo) { + if (c & i) { + result *= expo; + } + } + return result; +} + +/*****************************************************************************/ +/* */ +/* narrowfloatrand() Generate a float with random 24-bit significand and */ +/* a random exponent in [0, 7]. */ +/* */ +/*****************************************************************************/ + +float narrowfloatrand() +{ + float result; + float expo; + long a, c; + long i; + + a = rand(); + c = rand(); + result = (float) ((a - 1073741824) >> 6); + for (i = 512, expo = 2; i <= 2048; i *= 2, expo = expo * expo) { + if (c & i) { + result *= expo; + } + } + return result; +} + +/*****************************************************************************/ +/* */ +/* uniformfloatrand() Generate a float with random 24-bit significand. */ +/* */ +/*****************************************************************************/ + +float uniformfloatrand() +{ + float result; + long a; + + a = rand(); + result = (float) ((a - 1073741824) >> 6); + return result; +} + +/*****************************************************************************/ +/* */ +/* exactinit() Initialize the variables used for exact arithmetic. */ +/* */ +/* `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in */ +/* floating-point arithmetic. `epsilon' bounds the relative roundoff */ +/* error. It is used for floating-point error analysis. */ +/* */ +/* `splitter' is used to split floating-point numbers into two half- */ +/* length significands for exact multiplication. */ +/* */ +/* I imagine that a highly optimizing compiler might be too smart for its */ +/* own good, and somehow cause this routine to fail, if it pretends that */ +/* floating-point arithmetic is too much like real arithmetic. */ +/* */ +/* Don't change this routine unless you fully understand it. */ +/* */ +/*****************************************************************************/ + +void exactinit() +{ + REAL half; + REAL check, lastcheck; + int every_other; + + every_other = 1; + half = 0.5; + epsilon = 1.0; + splitter = 1.0; + check = 1.0; + /* Repeatedly divide `epsilon' by two until it is too small to add to */ + /* one without causing roundoff. (Also check if the sum is equal to */ + /* the previous sum, for machines that round up instead of using exact */ + /* rounding. Not that this library will work on such machines anyway. */ + do { + lastcheck = check; + epsilon *= half; + if (every_other) { + splitter *= 2.0; + } + every_other = !every_other; + check = 1.0 + epsilon; + } while ((check != 1.0) && (check != lastcheck)); + splitter += 1.0; + + /* Error bounds for orientation and incircle tests. */ + resulterrbound = (3.0 + 8.0 * epsilon) * epsilon; + ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon; + ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon; + ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon; + o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon; + o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon; + o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon; + iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon; + iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon; + iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon; + isperrboundA = (16.0 + 224.0 * epsilon) * epsilon; + isperrboundB = (5.0 + 72.0 * epsilon) * epsilon; + isperrboundC = (71.0 + 1408.0 * epsilon) * epsilon * epsilon; +} + +/*****************************************************************************/ +/* */ +/* grow_expansion() Add a scalar to an expansion. */ +/* */ +/* Sets h = e + b. See the long version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. If round-to-even is used (as */ +/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */ +/* properties as well. (That is, if e has one of these properties, so */ +/* will h.) */ +/* */ +/*****************************************************************************/ + +int grow_expansion(elen, e, b, h) /* e and h can be the same. */ +int elen; +REAL *e; +REAL b; +REAL *h; +{ + REAL Q; + INEXACT REAL Qnew; + int eindex; + REAL enow; + INEXACT REAL bvirt; + REAL avirt, bround, around; + + Q = b; + for (eindex = 0; eindex < elen; eindex++) { + enow = e[eindex]; + Two_Sum(Q, enow, Qnew, h[eindex]); + Q = Qnew; + } + h[eindex] = Q; + return eindex + 1; +} + +/*****************************************************************************/ +/* */ +/* grow_expansion_zeroelim() Add a scalar to an expansion, eliminating */ +/* zero components from the output expansion. */ +/* */ +/* Sets h = e + b. See the long version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. If round-to-even is used (as */ +/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */ +/* properties as well. (That is, if e has one of these properties, so */ +/* will h.) */ +/* */ +/*****************************************************************************/ + +int grow_expansion_zeroelim(elen, e, b, h) /* e and h can be the same. */ +int elen; +REAL *e; +REAL b; +REAL *h; +{ + REAL Q, hh; + INEXACT REAL Qnew; + int eindex, hindex; + REAL enow; + INEXACT REAL bvirt; + REAL avirt, bround, around; + + hindex = 0; + Q = b; + for (eindex = 0; eindex < elen; eindex++) { + enow = e[eindex]; + Two_Sum(Q, enow, Qnew, hh); + Q = Qnew; + if (hh != 0.0) { + h[hindex++] = hh; + } + } + if ((Q != 0.0) || (hindex == 0)) { + h[hindex++] = Q; + } + return hindex; +} + +/*****************************************************************************/ +/* */ +/* expansion_sum() Sum two expansions. */ +/* */ +/* Sets h = e + f. See the long version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. If round-to-even is used (as */ +/* with IEEE 754), maintains the nonadjacent property as well. (That is, */ +/* if e has one of these properties, so will h.) Does NOT maintain the */ +/* strongly nonoverlapping property. */ +/* */ +/*****************************************************************************/ + +int expansion_sum(elen, e, flen, f, h) +/* e and h can be the same, but f and h cannot. */ +int elen; +REAL *e; +int flen; +REAL *f; +REAL *h; +{ + REAL Q; + INEXACT REAL Qnew; + int findex, hindex, hlast; + REAL hnow; + INEXACT REAL bvirt; + REAL avirt, bround, around; + + Q = f[0]; + for (hindex = 0; hindex < elen; hindex++) { + hnow = e[hindex]; + Two_Sum(Q, hnow, Qnew, h[hindex]); + Q = Qnew; + } + h[hindex] = Q; + hlast = hindex; + for (findex = 1; findex < flen; findex++) { + Q = f[findex]; + for (hindex = findex; hindex <= hlast; hindex++) { + hnow = h[hindex]; + Two_Sum(Q, hnow, Qnew, h[hindex]); + Q = Qnew; + } + h[++hlast] = Q; + } + return hlast + 1; +} + +/*****************************************************************************/ +/* */ +/* expansion_sum_zeroelim1() Sum two expansions, eliminating zero */ +/* components from the output expansion. */ +/* */ +/* Sets h = e + f. See the long version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. If round-to-even is used (as */ +/* with IEEE 754), maintains the nonadjacent property as well. (That is, */ +/* if e has one of these properties, so will h.) Does NOT maintain the */ +/* strongly nonoverlapping property. */ +/* */ +/*****************************************************************************/ + +int expansion_sum_zeroelim1(elen, e, flen, f, h) +/* e and h can be the same, but f and h cannot. */ +int elen; +REAL *e; +int flen; +REAL *f; +REAL *h; +{ + REAL Q; + INEXACT REAL Qnew; + int index, findex, hindex, hlast; + REAL hnow; + INEXACT REAL bvirt; + REAL avirt, bround, around; + + Q = f[0]; + for (hindex = 0; hindex < elen; hindex++) { + hnow = e[hindex]; + Two_Sum(Q, hnow, Qnew, h[hindex]); + Q = Qnew; + } + h[hindex] = Q; + hlast = hindex; + for (findex = 1; findex < flen; findex++) { + Q = f[findex]; + for (hindex = findex; hindex <= hlast; hindex++) { + hnow = h[hindex]; + Two_Sum(Q, hnow, Qnew, h[hindex]); + Q = Qnew; + } + h[++hlast] = Q; + } + hindex = -1; + for (index = 0; index <= hlast; index++) { + hnow = h[index]; + if (hnow != 0.0) { + h[++hindex] = hnow; + } + } + if (hindex == -1) { + return 1; + } else { + return hindex + 1; + } +} + +/*****************************************************************************/ +/* */ +/* expansion_sum_zeroelim2() Sum two expansions, eliminating zero */ +/* components from the output expansion. */ +/* */ +/* Sets h = e + f. See the long version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. If round-to-even is used (as */ +/* with IEEE 754), maintains the nonadjacent property as well. (That is, */ +/* if e has one of these properties, so will h.) Does NOT maintain the */ +/* strongly nonoverlapping property. */ +/* */ +/*****************************************************************************/ + +int expansion_sum_zeroelim2(elen, e, flen, f, h) +/* e and h can be the same, but f and h cannot. */ +int elen; +REAL *e; +int flen; +REAL *f; +REAL *h; +{ + REAL Q, hh; + INEXACT REAL Qnew; + int eindex, findex, hindex, hlast; + REAL enow; + INEXACT REAL bvirt; + REAL avirt, bround, around; + + hindex = 0; + Q = f[0]; + for (eindex = 0; eindex < elen; eindex++) { + enow = e[eindex]; + Two_Sum(Q, enow, Qnew, hh); + Q = Qnew; + if (hh != 0.0) { + h[hindex++] = hh; + } + } + h[hindex] = Q; + hlast = hindex; + for (findex = 1; findex < flen; findex++) { + hindex = 0; + Q = f[findex]; + for (eindex = 0; eindex <= hlast; eindex++) { + enow = h[eindex]; + Two_Sum(Q, enow, Qnew, hh); + Q = Qnew; + if (hh != 0) { + h[hindex++] = hh; + } + } + h[hindex] = Q; + hlast = hindex; + } + return hlast + 1; +} + +/*****************************************************************************/ +/* */ +/* fast_expansion_sum() Sum two expansions. */ +/* */ +/* Sets h = e + f. See the long version of my paper for details. */ +/* */ +/* If round-to-even is used (as with IEEE 754), maintains the strongly */ +/* nonoverlapping property. (That is, if e is strongly nonoverlapping, h */ +/* will be also.) Does NOT maintain the nonoverlapping or nonadjacent */ +/* properties. */ +/* */ +/*****************************************************************************/ + +int fast_expansion_sum(elen, e, flen, f, h) /* h cannot be e or f. */ +int elen; +REAL *e; +int flen; +REAL *f; +REAL *h; +{ + REAL Q; + INEXACT REAL Qnew; + INEXACT REAL bvirt; + REAL avirt, bround, around; + int eindex, findex, hindex; + REAL enow, fnow; + + enow = e[0]; + fnow = f[0]; + eindex = findex = 0; + if ((fnow > enow) == (fnow > -enow)) { + Q = enow; + enow = e[++eindex]; + } else { + Q = fnow; + fnow = f[++findex]; + } + hindex = 0; + if ((eindex < elen) && (findex < flen)) { + if ((fnow > enow) == (fnow > -enow)) { + Fast_Two_Sum(enow, Q, Qnew, h[0]); + enow = e[++eindex]; + } else { + Fast_Two_Sum(fnow, Q, Qnew, h[0]); + fnow = f[++findex]; + } + Q = Qnew; + hindex = 1; + while ((eindex < elen) && (findex < flen)) { + if ((fnow > enow) == (fnow > -enow)) { + Two_Sum(Q, enow, Qnew, h[hindex]); + enow = e[++eindex]; + } else { + Two_Sum(Q, fnow, Qnew, h[hindex]); + fnow = f[++findex]; + } + Q = Qnew; + hindex++; + } + } + while (eindex < elen) { + Two_Sum(Q, enow, Qnew, h[hindex]); + enow = e[++eindex]; + Q = Qnew; + hindex++; + } + while (findex < flen) { + Two_Sum(Q, fnow, Qnew, h[hindex]); + fnow = f[++findex]; + Q = Qnew; + hindex++; + } + h[hindex] = Q; + return hindex + 1; +} + +/*****************************************************************************/ +/* */ +/* fast_expansion_sum_zeroelim() Sum two expansions, eliminating zero */ +/* components from the output expansion. */ +/* */ +/* Sets h = e + f. See the long version of my paper for details. */ +/* */ +/* If round-to-even is used (as with IEEE 754), maintains the strongly */ +/* nonoverlapping property. (That is, if e is strongly nonoverlapping, h */ +/* will be also.) Does NOT maintain the nonoverlapping or nonadjacent */ +/* properties. */ +/* */ +/*****************************************************************************/ + +int fast_expansion_sum_zeroelim(elen, e, flen, f, h) /* h cannot be e or f. */ +int elen; +REAL *e; +int flen; +REAL *f; +REAL *h; +{ + REAL Q; + INEXACT REAL Qnew; + INEXACT REAL hh; + INEXACT REAL bvirt; + REAL avirt, bround, around; + int eindex, findex, hindex; + REAL enow, fnow; + + enow = e[0]; + fnow = f[0]; + eindex = findex = 0; + if ((fnow > enow) == (fnow > -enow)) { + Q = enow; + enow = e[++eindex]; + } else { + Q = fnow; + fnow = f[++findex]; + } + hindex = 0; + if ((eindex < elen) && (findex < flen)) { + if ((fnow > enow) == (fnow > -enow)) { + Fast_Two_Sum(enow, Q, Qnew, hh); + enow = e[++eindex]; + } else { + Fast_Two_Sum(fnow, Q, Qnew, hh); + fnow = f[++findex]; + } + Q = Qnew; + if (hh != 0.0) { + h[hindex++] = hh; + } + while ((eindex < elen) && (findex < flen)) { + if ((fnow > enow) == (fnow > -enow)) { + Two_Sum(Q, enow, Qnew, hh); + enow = e[++eindex]; + } else { + Two_Sum(Q, fnow, Qnew, hh); + fnow = f[++findex]; + } + Q = Qnew; + if (hh != 0.0) { + h[hindex++] = hh; + } + } + } + while (eindex < elen) { + Two_Sum(Q, enow, Qnew, hh); + enow = e[++eindex]; + Q = Qnew; + if (hh != 0.0) { + h[hindex++] = hh; + } + } + while (findex < flen) { + Two_Sum(Q, fnow, Qnew, hh); + fnow = f[++findex]; + Q = Qnew; + if (hh != 0.0) { + h[hindex++] = hh; + } + } + if ((Q != 0.0) || (hindex == 0)) { + h[hindex++] = Q; + } + return hindex; +} + +/*****************************************************************************/ +/* */ +/* linear_expansion_sum() Sum two expansions. */ +/* */ +/* Sets h = e + f. See either version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. (That is, if e is */ +/* nonoverlapping, h will be also.) */ +/* */ +/*****************************************************************************/ + +int linear_expansion_sum(elen, e, flen, f, h) /* h cannot be e or f. */ +int elen; +REAL *e; +int flen; +REAL *f; +REAL *h; +{ + REAL Q, q; + INEXACT REAL Qnew; + INEXACT REAL R; + INEXACT REAL bvirt; + REAL avirt, bround, around; + int eindex, findex, hindex; + REAL enow, fnow; + REAL g0; + + enow = e[0]; + fnow = f[0]; + eindex = findex = 0; + if ((fnow > enow) == (fnow > -enow)) { + g0 = enow; + enow = e[++eindex]; + } else { + g0 = fnow; + fnow = f[++findex]; + } + if ((eindex < elen) && ((findex >= flen) + || ((fnow > enow) == (fnow > -enow)))) { + Fast_Two_Sum(enow, g0, Qnew, q); + enow = e[++eindex]; + } else { + Fast_Two_Sum(fnow, g0, Qnew, q); + fnow = f[++findex]; + } + Q = Qnew; + for (hindex = 0; hindex < elen + flen - 2; hindex++) { + if ((eindex < elen) && ((findex >= flen) + || ((fnow > enow) == (fnow > -enow)))) { + Fast_Two_Sum(enow, q, R, h[hindex]); + enow = e[++eindex]; + } else { + Fast_Two_Sum(fnow, q, R, h[hindex]); + fnow = f[++findex]; + } + Two_Sum(Q, R, Qnew, q); + Q = Qnew; + } + h[hindex] = q; + h[hindex + 1] = Q; + return hindex + 2; +} + +/*****************************************************************************/ +/* */ +/* linear_expansion_sum_zeroelim() Sum two expansions, eliminating zero */ +/* components from the output expansion. */ +/* */ +/* Sets h = e + f. See either version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. (That is, if e is */ +/* nonoverlapping, h will be also.) */ +/* */ +/*****************************************************************************/ + +int linear_expansion_sum_zeroelim(elen, e, flen, f, h)/* h cannot be e or f. */ +int elen; +REAL *e; +int flen; +REAL *f; +REAL *h; +{ + REAL Q, q, hh; + INEXACT REAL Qnew; + INEXACT REAL R; + INEXACT REAL bvirt; + REAL avirt, bround, around; + int eindex, findex, hindex; + int count; + REAL enow, fnow; + REAL g0; + + enow = e[0]; + fnow = f[0]; + eindex = findex = 0; + hindex = 0; + if ((fnow > enow) == (fnow > -enow)) { + g0 = enow; + enow = e[++eindex]; + } else { + g0 = fnow; + fnow = f[++findex]; + } + if ((eindex < elen) && ((findex >= flen) + || ((fnow > enow) == (fnow > -enow)))) { + Fast_Two_Sum(enow, g0, Qnew, q); + enow = e[++eindex]; + } else { + Fast_Two_Sum(fnow, g0, Qnew, q); + fnow = f[++findex]; + } + Q = Qnew; + for (count = 2; count < elen + flen; count++) { + if ((eindex < elen) && ((findex >= flen) + || ((fnow > enow) == (fnow > -enow)))) { + Fast_Two_Sum(enow, q, R, hh); + enow = e[++eindex]; + } else { + Fast_Two_Sum(fnow, q, R, hh); + fnow = f[++findex]; + } + Two_Sum(Q, R, Qnew, q); + Q = Qnew; + if (hh != 0) { + h[hindex++] = hh; + } + } + if (q != 0) { + h[hindex++] = q; + } + if ((Q != 0.0) || (hindex == 0)) { + h[hindex++] = Q; + } + return hindex; +} + +/*****************************************************************************/ +/* */ +/* scale_expansion() Multiply an expansion by a scalar. */ +/* */ +/* Sets h = be. See either version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. If round-to-even is used (as */ +/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */ +/* properties as well. (That is, if e has one of these properties, so */ +/* will h.) */ +/* */ +/*****************************************************************************/ + +int scale_expansion(elen, e, b, h) /* e and h cannot be the same. */ +int elen; +REAL *e; +REAL b; +REAL *h; +{ + INEXACT REAL Q; + INEXACT REAL sum; + INEXACT REAL product1; + REAL product0; + int eindex, hindex; + REAL enow; + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + + Split(b, bhi, blo); + Two_Product_Presplit(e[0], b, bhi, blo, Q, h[0]); + hindex = 1; + for (eindex = 1; eindex < elen; eindex++) { + enow = e[eindex]; + Two_Product_Presplit(enow, b, bhi, blo, product1, product0); + Two_Sum(Q, product0, sum, h[hindex]); + hindex++; + Two_Sum(product1, sum, Q, h[hindex]); + hindex++; + } + h[hindex] = Q; + return elen + elen; +} + +/*****************************************************************************/ +/* */ +/* scale_expansion_zeroelim() Multiply an expansion by a scalar, */ +/* eliminating zero components from the */ +/* output expansion. */ +/* */ +/* Sets h = be. See either version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. If round-to-even is used (as */ +/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */ +/* properties as well. (That is, if e has one of these properties, so */ +/* will h.) */ +/* */ +/*****************************************************************************/ + +int scale_expansion_zeroelim(elen, e, b, h) /* e and h cannot be the same. */ +int elen; +REAL *e; +REAL b; +REAL *h; +{ + INEXACT REAL Q, sum; + REAL hh; + INEXACT REAL product1; + REAL product0; + int eindex, hindex; + REAL enow; + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + + Split(b, bhi, blo); + Two_Product_Presplit(e[0], b, bhi, blo, Q, hh); + hindex = 0; + if (hh != 0) { + h[hindex++] = hh; + } + for (eindex = 1; eindex < elen; eindex++) { + enow = e[eindex]; + Two_Product_Presplit(enow, b, bhi, blo, product1, product0); + Two_Sum(Q, product0, sum, hh); + if (hh != 0) { + h[hindex++] = hh; + } + Fast_Two_Sum(product1, sum, Q, hh); + if (hh != 0) { + h[hindex++] = hh; + } + } + if ((Q != 0.0) || (hindex == 0)) { + h[hindex++] = Q; + } + return hindex; +} + +/*****************************************************************************/ +/* */ +/* compress() Compress an expansion. */ +/* */ +/* See the long version of my paper for details. */ +/* */ +/* Maintains the nonoverlapping property. If round-to-even is used (as */ +/* with IEEE 754), then any nonoverlapping expansion is converted to a */ +/* nonadjacent expansion. */ +/* */ +/*****************************************************************************/ + +int compress(elen, e, h) /* e and h may be the same. */ +int elen; +REAL *e; +REAL *h; +{ + REAL Q, q; + INEXACT REAL Qnew; + int eindex, hindex; + INEXACT REAL bvirt; + REAL enow, hnow; + int top, bottom; + + bottom = elen - 1; + Q = e[bottom]; + for (eindex = elen - 2; eindex >= 0; eindex--) { + enow = e[eindex]; + Fast_Two_Sum(Q, enow, Qnew, q); + if (q != 0) { + h[bottom--] = Qnew; + Q = q; + } else { + Q = Qnew; + } + } + top = 0; + for (hindex = bottom + 1; hindex < elen; hindex++) { + hnow = h[hindex]; + Fast_Two_Sum(hnow, Q, Qnew, q); + if (q != 0) { + h[top++] = q; + } + Q = Qnew; + } + h[top] = Q; + return top + 1; +} + +/*****************************************************************************/ +/* */ +/* estimate() Produce a one-word estimate of an expansion's value. */ +/* */ +/* See either version of my paper for details. */ +/* */ +/*****************************************************************************/ + +REAL estimate(elen, e) +int elen; +REAL *e; +{ + REAL Q; + int eindex; + + Q = e[0]; + for (eindex = 1; eindex < elen; eindex++) { + Q += e[eindex]; + } + return Q; +} + +/*****************************************************************************/ +/* */ +/* orient2dfast() Approximate 2D orientation test. Nonrobust. */ +/* orient2dexact() Exact 2D orientation test. Robust. */ +/* orient2dslow() Another exact 2D orientation test. Robust. */ +/* orient2d() Adaptive exact 2D orientation test. Robust. */ +/* */ +/* Return a positive value if the points pa, pb, and pc occur */ +/* in counterclockwise order; a negative value if they occur */ +/* in clockwise order; and zero if they are collinear. The */ +/* result is also a rough approximation of twice the signed */ +/* area of the triangle defined by the three points. */ +/* */ +/* Only the first and last routine should be used; the middle two are for */ +/* timings. */ +/* */ +/* The last three use exact arithmetic to ensure a correct answer. The */ +/* result returned is the determinant of a matrix. In orient2d() only, */ +/* this determinant is computed adaptively, in the sense that exact */ +/* arithmetic is used only to the degree it is needed to ensure that the */ +/* returned value has the correct sign. Hence, orient2d() is usually quite */ +/* fast, but will run more slowly when the input points are collinear or */ +/* nearly so. */ +/* */ +/*****************************************************************************/ + +REAL orient2dfast(pa, pb, pc) +REAL *pa; +REAL *pb; +REAL *pc; +{ + REAL acx, bcx, acy, bcy; + + acx = pa[0] - pc[0]; + bcx = pb[0] - pc[0]; + acy = pa[1] - pc[1]; + bcy = pb[1] - pc[1]; + return acx * bcy - acy * bcx; +} + +REAL orient2dexact(pa, pb, pc) +REAL *pa; +REAL *pb; +REAL *pc; +{ + INEXACT REAL axby1, axcy1, bxcy1, bxay1, cxay1, cxby1; + REAL axby0, axcy0, bxcy0, bxay0, cxay0, cxby0; + REAL aterms[4], bterms[4], cterms[4]; + INEXACT REAL aterms3, bterms3, cterms3; + REAL v[8], w[12]; + int vlength, wlength; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j; + REAL _0; + + Two_Product(pa[0], pb[1], axby1, axby0); + Two_Product(pa[0], pc[1], axcy1, axcy0); + Two_Two_Diff(axby1, axby0, axcy1, axcy0, + aterms3, aterms[2], aterms[1], aterms[0]); + aterms[3] = aterms3; + + Two_Product(pb[0], pc[1], bxcy1, bxcy0); + Two_Product(pb[0], pa[1], bxay1, bxay0); + Two_Two_Diff(bxcy1, bxcy0, bxay1, bxay0, + bterms3, bterms[2], bterms[1], bterms[0]); + bterms[3] = bterms3; + + Two_Product(pc[0], pa[1], cxay1, cxay0); + Two_Product(pc[0], pb[1], cxby1, cxby0); + Two_Two_Diff(cxay1, cxay0, cxby1, cxby0, + cterms3, cterms[2], cterms[1], cterms[0]); + cterms[3] = cterms3; + + vlength = fast_expansion_sum_zeroelim(4, aterms, 4, bterms, v); + wlength = fast_expansion_sum_zeroelim(vlength, v, 4, cterms, w); + + return w[wlength - 1]; +} + +REAL orient2dslow(pa, pb, pc) +REAL *pa; +REAL *pb; +REAL *pc; +{ + INEXACT REAL acx, acy, bcx, bcy; + REAL acxtail, acytail; + REAL bcxtail, bcytail; + REAL negate, negatetail; + REAL axby[8], bxay[8]; + INEXACT REAL axby7, bxay7; + REAL deter[16]; + int deterlen; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL a0hi, a0lo, a1hi, a1lo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j, _k, _l, _m, _n; + REAL _0, _1, _2; + + Two_Diff(pa[0], pc[0], acx, acxtail); + Two_Diff(pa[1], pc[1], acy, acytail); + Two_Diff(pb[0], pc[0], bcx, bcxtail); + Two_Diff(pb[1], pc[1], bcy, bcytail); + + Two_Two_Product(acx, acxtail, bcy, bcytail, + axby7, axby[6], axby[5], axby[4], + axby[3], axby[2], axby[1], axby[0]); + axby[7] = axby7; + negate = -acy; + negatetail = -acytail; + Two_Two_Product(bcx, bcxtail, negate, negatetail, + bxay7, bxay[6], bxay[5], bxay[4], + bxay[3], bxay[2], bxay[1], bxay[0]); + bxay[7] = bxay7; + + deterlen = fast_expansion_sum_zeroelim(8, axby, 8, bxay, deter); + + return deter[deterlen - 1]; +} + +REAL orient2dadapt(pa, pb, pc, detsum) +REAL *pa; +REAL *pb; +REAL *pc; +REAL detsum; +{ + INEXACT REAL acx, acy, bcx, bcy; + REAL acxtail, acytail, bcxtail, bcytail; + INEXACT REAL detleft, detright; + REAL detlefttail, detrighttail; + REAL det, errbound; + REAL B[4], C1[8], C2[12], D[16]; + INEXACT REAL B3; + int C1length, C2length, Dlength; + REAL u[4]; + INEXACT REAL u3; + INEXACT REAL s1, t1; + REAL s0, t0; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j; + REAL _0; + + acx = (REAL) (pa[0] - pc[0]); + bcx = (REAL) (pb[0] - pc[0]); + acy = (REAL) (pa[1] - pc[1]); + bcy = (REAL) (pb[1] - pc[1]); + + Two_Product(acx, bcy, detleft, detlefttail); + Two_Product(acy, bcx, detright, detrighttail); + + Two_Two_Diff(detleft, detlefttail, detright, detrighttail, + B3, B[2], B[1], B[0]); + B[3] = B3; + + det = estimate(4, B); + errbound = ccwerrboundB * detsum; + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + Two_Diff_Tail(pa[0], pc[0], acx, acxtail); + Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail); + Two_Diff_Tail(pa[1], pc[1], acy, acytail); + Two_Diff_Tail(pb[1], pc[1], bcy, bcytail); + + if ((acxtail == 0.0) && (acytail == 0.0) + && (bcxtail == 0.0) && (bcytail == 0.0)) { + return det; + } + + errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det); + det += (acx * bcytail + bcy * acxtail) + - (acy * bcxtail + bcx * acytail); + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + Two_Product(acxtail, bcy, s1, s0); + Two_Product(acytail, bcx, t1, t0); + Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]); + u[3] = u3; + C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1); + + Two_Product(acx, bcytail, s1, s0); + Two_Product(acy, bcxtail, t1, t0); + Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]); + u[3] = u3; + C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2); + + Two_Product(acxtail, bcytail, s1, s0); + Two_Product(acytail, bcxtail, t1, t0); + Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]); + u[3] = u3; + Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D); + + return(D[Dlength - 1]); +} + +REAL orient2d(pa, pb, pc) +REAL *pa; +REAL *pb; +REAL *pc; +{ + REAL detleft, detright, det; + REAL detsum, errbound; + + detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]); + detright = (pa[1] - pc[1]) * (pb[0] - pc[0]); + det = detleft - detright; + + if (detleft > 0.0) { + if (detright <= 0.0) { + return det; + } else { + detsum = detleft + detright; + } + } else if (detleft < 0.0) { + if (detright >= 0.0) { + return det; + } else { + detsum = -detleft - detright; + } + } else { + return det; + } + + errbound = ccwerrboundA * detsum; + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + return orient2dadapt(pa, pb, pc, detsum); +} + +/*****************************************************************************/ +/* */ +/* orient3dfast() Approximate 3D orientation test. Nonrobust. */ +/* orient3dexact() Exact 3D orientation test. Robust. */ +/* orient3dslow() Another exact 3D orientation test. Robust. */ +/* orient3d() Adaptive exact 3D orientation test. Robust. */ +/* */ +/* Return a positive value if the point pd lies below the */ +/* plane passing through pa, pb, and pc; "below" is defined so */ +/* that pa, pb, and pc appear in counterclockwise order when */ +/* viewed from above the plane. Returns a negative value if */ +/* pd lies above the plane. Returns zero if the points are */ +/* coplanar. The result is also a rough approximation of six */ +/* times the signed volume of the tetrahedron defined by the */ +/* four points. */ +/* */ +/* Only the first and last routine should be used; the middle two are for */ +/* timings. */ +/* */ +/* The last three use exact arithmetic to ensure a correct answer. The */ +/* result returned is the determinant of a matrix. In orient3d() only, */ +/* this determinant is computed adaptively, in the sense that exact */ +/* arithmetic is used only to the degree it is needed to ensure that the */ +/* returned value has the correct sign. Hence, orient3d() is usually quite */ +/* fast, but will run more slowly when the input points are coplanar or */ +/* nearly so. */ +/* */ +/*****************************************************************************/ + +REAL orient3dfast(pa, pb, pc, pd) +REAL *pa; +REAL *pb; +REAL *pc; +REAL *pd; +{ + REAL adx, bdx, cdx; + REAL ady, bdy, cdy; + REAL adz, bdz, cdz; + + adx = pa[0] - pd[0]; + bdx = pb[0] - pd[0]; + cdx = pc[0] - pd[0]; + ady = pa[1] - pd[1]; + bdy = pb[1] - pd[1]; + cdy = pc[1] - pd[1]; + adz = pa[2] - pd[2]; + bdz = pb[2] - pd[2]; + cdz = pc[2] - pd[2]; + + return adx * (bdy * cdz - bdz * cdy) + + bdx * (cdy * adz - cdz * ady) + + cdx * (ady * bdz - adz * bdy); +} + +REAL orient3dexact(pa, pb, pc, pd) +REAL *pa; +REAL *pb; +REAL *pc; +REAL *pd; +{ + INEXACT REAL axby1, bxcy1, cxdy1, dxay1, axcy1, bxdy1; + INEXACT REAL bxay1, cxby1, dxcy1, axdy1, cxay1, dxby1; + REAL axby0, bxcy0, cxdy0, dxay0, axcy0, bxdy0; + REAL bxay0, cxby0, dxcy0, axdy0, cxay0, dxby0; + REAL ab[4], bc[4], cd[4], da[4], ac[4], bd[4]; + REAL temp8[8]; + int templen; + REAL abc[12], bcd[12], cda[12], dab[12]; + int abclen, bcdlen, cdalen, dablen; + REAL adet[24], bdet[24], cdet[24], ddet[24]; + int alen, blen, clen, dlen; + REAL abdet[48], cddet[48]; + int ablen, cdlen; + REAL deter[96]; + int deterlen; + int i; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j; + REAL _0; + + Two_Product(pa[0], pb[1], axby1, axby0); + Two_Product(pb[0], pa[1], bxay1, bxay0); + Two_Two_Diff(axby1, axby0, bxay1, bxay0, ab[3], ab[2], ab[1], ab[0]); + + Two_Product(pb[0], pc[1], bxcy1, bxcy0); + Two_Product(pc[0], pb[1], cxby1, cxby0); + Two_Two_Diff(bxcy1, bxcy0, cxby1, cxby0, bc[3], bc[2], bc[1], bc[0]); + + Two_Product(pc[0], pd[1], cxdy1, cxdy0); + Two_Product(pd[0], pc[1], dxcy1, dxcy0); + Two_Two_Diff(cxdy1, cxdy0, dxcy1, dxcy0, cd[3], cd[2], cd[1], cd[0]); + + Two_Product(pd[0], pa[1], dxay1, dxay0); + Two_Product(pa[0], pd[1], axdy1, axdy0); + Two_Two_Diff(dxay1, dxay0, axdy1, axdy0, da[3], da[2], da[1], da[0]); + + Two_Product(pa[0], pc[1], axcy1, axcy0); + Two_Product(pc[0], pa[1], cxay1, cxay0); + Two_Two_Diff(axcy1, axcy0, cxay1, cxay0, ac[3], ac[2], ac[1], ac[0]); + + Two_Product(pb[0], pd[1], bxdy1, bxdy0); + Two_Product(pd[0], pb[1], dxby1, dxby0); + Two_Two_Diff(bxdy1, bxdy0, dxby1, dxby0, bd[3], bd[2], bd[1], bd[0]); + + templen = fast_expansion_sum_zeroelim(4, cd, 4, da, temp8); + cdalen = fast_expansion_sum_zeroelim(templen, temp8, 4, ac, cda); + templen = fast_expansion_sum_zeroelim(4, da, 4, ab, temp8); + dablen = fast_expansion_sum_zeroelim(templen, temp8, 4, bd, dab); + for (i = 0; i < 4; i++) { + bd[i] = -bd[i]; + ac[i] = -ac[i]; + } + templen = fast_expansion_sum_zeroelim(4, ab, 4, bc, temp8); + abclen = fast_expansion_sum_zeroelim(templen, temp8, 4, ac, abc); + templen = fast_expansion_sum_zeroelim(4, bc, 4, cd, temp8); + bcdlen = fast_expansion_sum_zeroelim(templen, temp8, 4, bd, bcd); + + alen = scale_expansion_zeroelim(bcdlen, bcd, pa[2], adet); + blen = scale_expansion_zeroelim(cdalen, cda, -pb[2], bdet); + clen = scale_expansion_zeroelim(dablen, dab, pc[2], cdet); + dlen = scale_expansion_zeroelim(abclen, abc, -pd[2], ddet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet); + deterlen = fast_expansion_sum_zeroelim(ablen, abdet, cdlen, cddet, deter); + + return deter[deterlen - 1]; +} + +REAL orient3dslow(pa, pb, pc, pd) +REAL *pa; +REAL *pb; +REAL *pc; +REAL *pd; +{ + INEXACT REAL adx, ady, adz, bdx, bdy, bdz, cdx, cdy, cdz; + REAL adxtail, adytail, adztail; + REAL bdxtail, bdytail, bdztail; + REAL cdxtail, cdytail, cdztail; + REAL negate, negatetail; + INEXACT REAL axby7, bxcy7, axcy7, bxay7, cxby7, cxay7; + REAL axby[8], bxcy[8], axcy[8], bxay[8], cxby[8], cxay[8]; + REAL temp16[16], temp32[32], temp32t[32]; + int temp16len, temp32len, temp32tlen; + REAL adet[64], bdet[64], cdet[64]; + int alen, blen, clen; + REAL abdet[128]; + int ablen; + REAL deter[192]; + int deterlen; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL a0hi, a0lo, a1hi, a1lo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j, _k, _l, _m, _n; + REAL _0, _1, _2; + + Two_Diff(pa[0], pd[0], adx, adxtail); + Two_Diff(pa[1], pd[1], ady, adytail); + Two_Diff(pa[2], pd[2], adz, adztail); + Two_Diff(pb[0], pd[0], bdx, bdxtail); + Two_Diff(pb[1], pd[1], bdy, bdytail); + Two_Diff(pb[2], pd[2], bdz, bdztail); + Two_Diff(pc[0], pd[0], cdx, cdxtail); + Two_Diff(pc[1], pd[1], cdy, cdytail); + Two_Diff(pc[2], pd[2], cdz, cdztail); + + Two_Two_Product(adx, adxtail, bdy, bdytail, + axby7, axby[6], axby[5], axby[4], + axby[3], axby[2], axby[1], axby[0]); + axby[7] = axby7; + negate = -ady; + negatetail = -adytail; + Two_Two_Product(bdx, bdxtail, negate, negatetail, + bxay7, bxay[6], bxay[5], bxay[4], + bxay[3], bxay[2], bxay[1], bxay[0]); + bxay[7] = bxay7; + Two_Two_Product(bdx, bdxtail, cdy, cdytail, + bxcy7, bxcy[6], bxcy[5], bxcy[4], + bxcy[3], bxcy[2], bxcy[1], bxcy[0]); + bxcy[7] = bxcy7; + negate = -bdy; + negatetail = -bdytail; + Two_Two_Product(cdx, cdxtail, negate, negatetail, + cxby7, cxby[6], cxby[5], cxby[4], + cxby[3], cxby[2], cxby[1], cxby[0]); + cxby[7] = cxby7; + Two_Two_Product(cdx, cdxtail, ady, adytail, + cxay7, cxay[6], cxay[5], cxay[4], + cxay[3], cxay[2], cxay[1], cxay[0]); + cxay[7] = cxay7; + negate = -cdy; + negatetail = -cdytail; + Two_Two_Product(adx, adxtail, negate, negatetail, + axcy7, axcy[6], axcy[5], axcy[4], + axcy[3], axcy[2], axcy[1], axcy[0]); + axcy[7] = axcy7; + + temp16len = fast_expansion_sum_zeroelim(8, bxcy, 8, cxby, temp16); + temp32len = scale_expansion_zeroelim(temp16len, temp16, adz, temp32); + temp32tlen = scale_expansion_zeroelim(temp16len, temp16, adztail, temp32t); + alen = fast_expansion_sum_zeroelim(temp32len, temp32, temp32tlen, temp32t, + adet); + + temp16len = fast_expansion_sum_zeroelim(8, cxay, 8, axcy, temp16); + temp32len = scale_expansion_zeroelim(temp16len, temp16, bdz, temp32); + temp32tlen = scale_expansion_zeroelim(temp16len, temp16, bdztail, temp32t); + blen = fast_expansion_sum_zeroelim(temp32len, temp32, temp32tlen, temp32t, + bdet); + + temp16len = fast_expansion_sum_zeroelim(8, axby, 8, bxay, temp16); + temp32len = scale_expansion_zeroelim(temp16len, temp16, cdz, temp32); + temp32tlen = scale_expansion_zeroelim(temp16len, temp16, cdztail, temp32t); + clen = fast_expansion_sum_zeroelim(temp32len, temp32, temp32tlen, temp32t, + cdet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + deterlen = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, deter); + + return deter[deterlen - 1]; +} + +REAL orient3dadapt(pa, pb, pc, pd, permanent) +REAL *pa; +REAL *pb; +REAL *pc; +REAL *pd; +REAL permanent; +{ + INEXACT REAL adx, bdx, cdx, ady, bdy, cdy, adz, bdz, cdz; + REAL det, errbound; + + INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1; + REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0; + REAL bc[4], ca[4], ab[4]; + INEXACT REAL bc3, ca3, ab3; + REAL adet[8], bdet[8], cdet[8]; + int alen, blen, clen; + REAL abdet[16]; + int ablen; + REAL *finnow, *finother, *finswap; + REAL fin1[192], fin2[192]; + int finlength; + + REAL adxtail, bdxtail, cdxtail; + REAL adytail, bdytail, cdytail; + REAL adztail, bdztail, cdztail; + INEXACT REAL at_blarge, at_clarge; + INEXACT REAL bt_clarge, bt_alarge; + INEXACT REAL ct_alarge, ct_blarge; + REAL at_b[4], at_c[4], bt_c[4], bt_a[4], ct_a[4], ct_b[4]; + int at_blen, at_clen, bt_clen, bt_alen, ct_alen, ct_blen; + INEXACT REAL bdxt_cdy1, cdxt_bdy1, cdxt_ady1; + INEXACT REAL adxt_cdy1, adxt_bdy1, bdxt_ady1; + REAL bdxt_cdy0, cdxt_bdy0, cdxt_ady0; + REAL adxt_cdy0, adxt_bdy0, bdxt_ady0; + INEXACT REAL bdyt_cdx1, cdyt_bdx1, cdyt_adx1; + INEXACT REAL adyt_cdx1, adyt_bdx1, bdyt_adx1; + REAL bdyt_cdx0, cdyt_bdx0, cdyt_adx0; + REAL adyt_cdx0, adyt_bdx0, bdyt_adx0; + REAL bct[8], cat[8], abt[8]; + int bctlen, catlen, abtlen; + INEXACT REAL bdxt_cdyt1, cdxt_bdyt1, cdxt_adyt1; + INEXACT REAL adxt_cdyt1, adxt_bdyt1, bdxt_adyt1; + REAL bdxt_cdyt0, cdxt_bdyt0, cdxt_adyt0; + REAL adxt_cdyt0, adxt_bdyt0, bdxt_adyt0; + REAL u[4], v[12], w[16]; + INEXACT REAL u3; + int vlength, wlength; + REAL negate; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j, _k; + REAL _0; + + adx = (REAL) (pa[0] - pd[0]); + bdx = (REAL) (pb[0] - pd[0]); + cdx = (REAL) (pc[0] - pd[0]); + ady = (REAL) (pa[1] - pd[1]); + bdy = (REAL) (pb[1] - pd[1]); + cdy = (REAL) (pc[1] - pd[1]); + adz = (REAL) (pa[2] - pd[2]); + bdz = (REAL) (pb[2] - pd[2]); + cdz = (REAL) (pc[2] - pd[2]); + + Two_Product(bdx, cdy, bdxcdy1, bdxcdy0); + Two_Product(cdx, bdy, cdxbdy1, cdxbdy0); + Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]); + bc[3] = bc3; + alen = scale_expansion_zeroelim(4, bc, adz, adet); + + Two_Product(cdx, ady, cdxady1, cdxady0); + Two_Product(adx, cdy, adxcdy1, adxcdy0); + Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]); + ca[3] = ca3; + blen = scale_expansion_zeroelim(4, ca, bdz, bdet); + + Two_Product(adx, bdy, adxbdy1, adxbdy0); + Two_Product(bdx, ady, bdxady1, bdxady0); + Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]); + ab[3] = ab3; + clen = scale_expansion_zeroelim(4, ab, cdz, cdet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1); + + det = estimate(finlength, fin1); + errbound = o3derrboundB * permanent; + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + Two_Diff_Tail(pa[0], pd[0], adx, adxtail); + Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail); + Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail); + Two_Diff_Tail(pa[1], pd[1], ady, adytail); + Two_Diff_Tail(pb[1], pd[1], bdy, bdytail); + Two_Diff_Tail(pc[1], pd[1], cdy, cdytail); + Two_Diff_Tail(pa[2], pd[2], adz, adztail); + Two_Diff_Tail(pb[2], pd[2], bdz, bdztail); + Two_Diff_Tail(pc[2], pd[2], cdz, cdztail); + + if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) + && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0) + && (adztail == 0.0) && (bdztail == 0.0) && (cdztail == 0.0)) { + return det; + } + + errbound = o3derrboundC * permanent + resulterrbound * Absolute(det); + det += (adz * ((bdx * cdytail + cdy * bdxtail) + - (bdy * cdxtail + cdx * bdytail)) + + adztail * (bdx * cdy - bdy * cdx)) + + (bdz * ((cdx * adytail + ady * cdxtail) + - (cdy * adxtail + adx * cdytail)) + + bdztail * (cdx * ady - cdy * adx)) + + (cdz * ((adx * bdytail + bdy * adxtail) + - (ady * bdxtail + bdx * adytail)) + + cdztail * (adx * bdy - ady * bdx)); + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + finnow = fin1; + finother = fin2; + + if (adxtail == 0.0) { + if (adytail == 0.0) { + at_b[0] = 0.0; + at_blen = 1; + at_c[0] = 0.0; + at_clen = 1; + } else { + negate = -adytail; + Two_Product(negate, bdx, at_blarge, at_b[0]); + at_b[1] = at_blarge; + at_blen = 2; + Two_Product(adytail, cdx, at_clarge, at_c[0]); + at_c[1] = at_clarge; + at_clen = 2; + } + } else { + if (adytail == 0.0) { + Two_Product(adxtail, bdy, at_blarge, at_b[0]); + at_b[1] = at_blarge; + at_blen = 2; + negate = -adxtail; + Two_Product(negate, cdy, at_clarge, at_c[0]); + at_c[1] = at_clarge; + at_clen = 2; + } else { + Two_Product(adxtail, bdy, adxt_bdy1, adxt_bdy0); + Two_Product(adytail, bdx, adyt_bdx1, adyt_bdx0); + Two_Two_Diff(adxt_bdy1, adxt_bdy0, adyt_bdx1, adyt_bdx0, + at_blarge, at_b[2], at_b[1], at_b[0]); + at_b[3] = at_blarge; + at_blen = 4; + Two_Product(adytail, cdx, adyt_cdx1, adyt_cdx0); + Two_Product(adxtail, cdy, adxt_cdy1, adxt_cdy0); + Two_Two_Diff(adyt_cdx1, adyt_cdx0, adxt_cdy1, adxt_cdy0, + at_clarge, at_c[2], at_c[1], at_c[0]); + at_c[3] = at_clarge; + at_clen = 4; + } + } + if (bdxtail == 0.0) { + if (bdytail == 0.0) { + bt_c[0] = 0.0; + bt_clen = 1; + bt_a[0] = 0.0; + bt_alen = 1; + } else { + negate = -bdytail; + Two_Product(negate, cdx, bt_clarge, bt_c[0]); + bt_c[1] = bt_clarge; + bt_clen = 2; + Two_Product(bdytail, adx, bt_alarge, bt_a[0]); + bt_a[1] = bt_alarge; + bt_alen = 2; + } + } else { + if (bdytail == 0.0) { + Two_Product(bdxtail, cdy, bt_clarge, bt_c[0]); + bt_c[1] = bt_clarge; + bt_clen = 2; + negate = -bdxtail; + Two_Product(negate, ady, bt_alarge, bt_a[0]); + bt_a[1] = bt_alarge; + bt_alen = 2; + } else { + Two_Product(bdxtail, cdy, bdxt_cdy1, bdxt_cdy0); + Two_Product(bdytail, cdx, bdyt_cdx1, bdyt_cdx0); + Two_Two_Diff(bdxt_cdy1, bdxt_cdy0, bdyt_cdx1, bdyt_cdx0, + bt_clarge, bt_c[2], bt_c[1], bt_c[0]); + bt_c[3] = bt_clarge; + bt_clen = 4; + Two_Product(bdytail, adx, bdyt_adx1, bdyt_adx0); + Two_Product(bdxtail, ady, bdxt_ady1, bdxt_ady0); + Two_Two_Diff(bdyt_adx1, bdyt_adx0, bdxt_ady1, bdxt_ady0, + bt_alarge, bt_a[2], bt_a[1], bt_a[0]); + bt_a[3] = bt_alarge; + bt_alen = 4; + } + } + if (cdxtail == 0.0) { + if (cdytail == 0.0) { + ct_a[0] = 0.0; + ct_alen = 1; + ct_b[0] = 0.0; + ct_blen = 1; + } else { + negate = -cdytail; + Two_Product(negate, adx, ct_alarge, ct_a[0]); + ct_a[1] = ct_alarge; + ct_alen = 2; + Two_Product(cdytail, bdx, ct_blarge, ct_b[0]); + ct_b[1] = ct_blarge; + ct_blen = 2; + } + } else { + if (cdytail == 0.0) { + Two_Product(cdxtail, ady, ct_alarge, ct_a[0]); + ct_a[1] = ct_alarge; + ct_alen = 2; + negate = -cdxtail; + Two_Product(negate, bdy, ct_blarge, ct_b[0]); + ct_b[1] = ct_blarge; + ct_blen = 2; + } else { + Two_Product(cdxtail, ady, cdxt_ady1, cdxt_ady0); + Two_Product(cdytail, adx, cdyt_adx1, cdyt_adx0); + Two_Two_Diff(cdxt_ady1, cdxt_ady0, cdyt_adx1, cdyt_adx0, + ct_alarge, ct_a[2], ct_a[1], ct_a[0]); + ct_a[3] = ct_alarge; + ct_alen = 4; + Two_Product(cdytail, bdx, cdyt_bdx1, cdyt_bdx0); + Two_Product(cdxtail, bdy, cdxt_bdy1, cdxt_bdy0); + Two_Two_Diff(cdyt_bdx1, cdyt_bdx0, cdxt_bdy1, cdxt_bdy0, + ct_blarge, ct_b[2], ct_b[1], ct_b[0]); + ct_b[3] = ct_blarge; + ct_blen = 4; + } + } + + bctlen = fast_expansion_sum_zeroelim(bt_clen, bt_c, ct_blen, ct_b, bct); + wlength = scale_expansion_zeroelim(bctlen, bct, adz, w); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, + finother); + finswap = finnow; finnow = finother; finother = finswap; + + catlen = fast_expansion_sum_zeroelim(ct_alen, ct_a, at_clen, at_c, cat); + wlength = scale_expansion_zeroelim(catlen, cat, bdz, w); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, + finother); + finswap = finnow; finnow = finother; finother = finswap; + + abtlen = fast_expansion_sum_zeroelim(at_blen, at_b, bt_alen, bt_a, abt); + wlength = scale_expansion_zeroelim(abtlen, abt, cdz, w); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, + finother); + finswap = finnow; finnow = finother; finother = finswap; + + if (adztail != 0.0) { + vlength = scale_expansion_zeroelim(4, bc, adztail, v); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (bdztail != 0.0) { + vlength = scale_expansion_zeroelim(4, ca, bdztail, v); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (cdztail != 0.0) { + vlength = scale_expansion_zeroelim(4, ab, cdztail, v); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + + if (adxtail != 0.0) { + if (bdytail != 0.0) { + Two_Product(adxtail, bdytail, adxt_bdyt1, adxt_bdyt0); + Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdz, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + if (cdztail != 0.0) { + Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdztail, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + if (cdytail != 0.0) { + negate = -adxtail; + Two_Product(negate, cdytail, adxt_cdyt1, adxt_cdyt0); + Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdz, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + if (bdztail != 0.0) { + Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdztail, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + } + if (bdxtail != 0.0) { + if (cdytail != 0.0) { + Two_Product(bdxtail, cdytail, bdxt_cdyt1, bdxt_cdyt0); + Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adz, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + if (adztail != 0.0) { + Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adztail, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + if (adytail != 0.0) { + negate = -bdxtail; + Two_Product(negate, adytail, bdxt_adyt1, bdxt_adyt0); + Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdz, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + if (cdztail != 0.0) { + Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdztail, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + } + if (cdxtail != 0.0) { + if (adytail != 0.0) { + Two_Product(cdxtail, adytail, cdxt_adyt1, cdxt_adyt0); + Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdz, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + if (bdztail != 0.0) { + Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdztail, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + if (bdytail != 0.0) { + negate = -cdxtail; + Two_Product(negate, bdytail, cdxt_bdyt1, cdxt_bdyt0); + Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adz, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + if (adztail != 0.0) { + Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adztail, u3, u[2], u[1], u[0]); + u[3] = u3; + finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + } + + if (adztail != 0.0) { + wlength = scale_expansion_zeroelim(bctlen, bct, adztail, w); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (bdztail != 0.0) { + wlength = scale_expansion_zeroelim(catlen, cat, bdztail, w); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (cdztail != 0.0) { + wlength = scale_expansion_zeroelim(abtlen, abt, cdztail, w); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, + finother); + finswap = finnow; finnow = finother; finother = finswap; + } + + return finnow[finlength - 1]; +} + +REAL orient3d(pa, pb, pc, pd) +REAL *pa; +REAL *pb; +REAL *pc; +REAL *pd; +{ + REAL adx, bdx, cdx, ady, bdy, cdy, adz, bdz, cdz; + REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady; + REAL det; + REAL permanent, errbound; + + adx = pa[0] - pd[0]; + bdx = pb[0] - pd[0]; + cdx = pc[0] - pd[0]; + ady = pa[1] - pd[1]; + bdy = pb[1] - pd[1]; + cdy = pc[1] - pd[1]; + adz = pa[2] - pd[2]; + bdz = pb[2] - pd[2]; + cdz = pc[2] - pd[2]; + + bdxcdy = bdx * cdy; + cdxbdy = cdx * bdy; + + cdxady = cdx * ady; + adxcdy = adx * cdy; + + adxbdy = adx * bdy; + bdxady = bdx * ady; + + det = adz * (bdxcdy - cdxbdy) + + bdz * (cdxady - adxcdy) + + cdz * (adxbdy - bdxady); + + permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * Absolute(adz) + + (Absolute(cdxady) + Absolute(adxcdy)) * Absolute(bdz) + + (Absolute(adxbdy) + Absolute(bdxady)) * Absolute(cdz); + errbound = o3derrboundA * permanent; + if ((det > errbound) || (-det > errbound)) { + return det; + } + + return orient3dadapt(pa, pb, pc, pd, permanent); +} + +/*****************************************************************************/ +/* */ +/* incirclefast() Approximate 2D incircle test. Nonrobust. */ +/* incircleexact() Exact 2D incircle test. Robust. */ +/* incircleslow() Another exact 2D incircle test. Robust. */ +/* incircle() Adaptive exact 2D incircle test. Robust. */ +/* */ +/* Return a positive value if the point pd lies inside the */ +/* circle passing through pa, pb, and pc; a negative value if */ +/* it lies outside; and zero if the four points are cocircular.*/ +/* The points pa, pb, and pc must be in counterclockwise */ +/* order, or the sign of the result will be reversed. */ +/* */ +/* Only the first and last routine should be used; the middle two are for */ +/* timings. */ +/* */ +/* The last three use exact arithmetic to ensure a correct answer. The */ +/* result returned is the determinant of a matrix. In incircle() only, */ +/* this determinant is computed adaptively, in the sense that exact */ +/* arithmetic is used only to the degree it is needed to ensure that the */ +/* returned value has the correct sign. Hence, incircle() is usually quite */ +/* fast, but will run more slowly when the input points are cocircular or */ +/* nearly so. */ +/* */ +/*****************************************************************************/ + +REAL incirclefast(pa, pb, pc, pd) +REAL *pa; +REAL *pb; +REAL *pc; +REAL *pd; +{ + REAL adx, ady, bdx, bdy, cdx, cdy; + REAL abdet, bcdet, cadet; + REAL alift, blift, clift; + + adx = pa[0] - pd[0]; + ady = pa[1] - pd[1]; + bdx = pb[0] - pd[0]; + bdy = pb[1] - pd[1]; + cdx = pc[0] - pd[0]; + cdy = pc[1] - pd[1]; + + abdet = adx * bdy - bdx * ady; + bcdet = bdx * cdy - cdx * bdy; + cadet = cdx * ady - adx * cdy; + alift = adx * adx + ady * ady; + blift = bdx * bdx + bdy * bdy; + clift = cdx * cdx + cdy * cdy; + + return alift * bcdet + blift * cadet + clift * abdet; +} + +REAL incircleexact(pa, pb, pc, pd) +REAL *pa; +REAL *pb; +REAL *pc; +REAL *pd; +{ + INEXACT REAL axby1, bxcy1, cxdy1, dxay1, axcy1, bxdy1; + INEXACT REAL bxay1, cxby1, dxcy1, axdy1, cxay1, dxby1; + REAL axby0, bxcy0, cxdy0, dxay0, axcy0, bxdy0; + REAL bxay0, cxby0, dxcy0, axdy0, cxay0, dxby0; + REAL ab[4], bc[4], cd[4], da[4], ac[4], bd[4]; + REAL temp8[8]; + int templen; + REAL abc[12], bcd[12], cda[12], dab[12]; + int abclen, bcdlen, cdalen, dablen; + REAL det24x[24], det24y[24], det48x[48], det48y[48]; + int xlen, ylen; + REAL adet[96], bdet[96], cdet[96], ddet[96]; + int alen, blen, clen, dlen; + REAL abdet[192], cddet[192]; + int ablen, cdlen; + REAL deter[384]; + int deterlen; + int i; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j; + REAL _0; + + Two_Product(pa[0], pb[1], axby1, axby0); + Two_Product(pb[0], pa[1], bxay1, bxay0); + Two_Two_Diff(axby1, axby0, bxay1, bxay0, ab[3], ab[2], ab[1], ab[0]); + + Two_Product(pb[0], pc[1], bxcy1, bxcy0); + Two_Product(pc[0], pb[1], cxby1, cxby0); + Two_Two_Diff(bxcy1, bxcy0, cxby1, cxby0, bc[3], bc[2], bc[1], bc[0]); + + Two_Product(pc[0], pd[1], cxdy1, cxdy0); + Two_Product(pd[0], pc[1], dxcy1, dxcy0); + Two_Two_Diff(cxdy1, cxdy0, dxcy1, dxcy0, cd[3], cd[2], cd[1], cd[0]); + + Two_Product(pd[0], pa[1], dxay1, dxay0); + Two_Product(pa[0], pd[1], axdy1, axdy0); + Two_Two_Diff(dxay1, dxay0, axdy1, axdy0, da[3], da[2], da[1], da[0]); + + Two_Product(pa[0], pc[1], axcy1, axcy0); + Two_Product(pc[0], pa[1], cxay1, cxay0); + Two_Two_Diff(axcy1, axcy0, cxay1, cxay0, ac[3], ac[2], ac[1], ac[0]); + + Two_Product(pb[0], pd[1], bxdy1, bxdy0); + Two_Product(pd[0], pb[1], dxby1, dxby0); + Two_Two_Diff(bxdy1, bxdy0, dxby1, dxby0, bd[3], bd[2], bd[1], bd[0]); + + templen = fast_expansion_sum_zeroelim(4, cd, 4, da, temp8); + cdalen = fast_expansion_sum_zeroelim(templen, temp8, 4, ac, cda); + templen = fast_expansion_sum_zeroelim(4, da, 4, ab, temp8); + dablen = fast_expansion_sum_zeroelim(templen, temp8, 4, bd, dab); + for (i = 0; i < 4; i++) { + bd[i] = -bd[i]; + ac[i] = -ac[i]; + } + templen = fast_expansion_sum_zeroelim(4, ab, 4, bc, temp8); + abclen = fast_expansion_sum_zeroelim(templen, temp8, 4, ac, abc); + templen = fast_expansion_sum_zeroelim(4, bc, 4, cd, temp8); + bcdlen = fast_expansion_sum_zeroelim(templen, temp8, 4, bd, bcd); + + xlen = scale_expansion_zeroelim(bcdlen, bcd, pa[0], det24x); + xlen = scale_expansion_zeroelim(xlen, det24x, pa[0], det48x); + ylen = scale_expansion_zeroelim(bcdlen, bcd, pa[1], det24y); + ylen = scale_expansion_zeroelim(ylen, det24y, pa[1], det48y); + alen = fast_expansion_sum_zeroelim(xlen, det48x, ylen, det48y, adet); + + xlen = scale_expansion_zeroelim(cdalen, cda, pb[0], det24x); + xlen = scale_expansion_zeroelim(xlen, det24x, -pb[0], det48x); + ylen = scale_expansion_zeroelim(cdalen, cda, pb[1], det24y); + ylen = scale_expansion_zeroelim(ylen, det24y, -pb[1], det48y); + blen = fast_expansion_sum_zeroelim(xlen, det48x, ylen, det48y, bdet); + + xlen = scale_expansion_zeroelim(dablen, dab, pc[0], det24x); + xlen = scale_expansion_zeroelim(xlen, det24x, pc[0], det48x); + ylen = scale_expansion_zeroelim(dablen, dab, pc[1], det24y); + ylen = scale_expansion_zeroelim(ylen, det24y, pc[1], det48y); + clen = fast_expansion_sum_zeroelim(xlen, det48x, ylen, det48y, cdet); + + xlen = scale_expansion_zeroelim(abclen, abc, pd[0], det24x); + xlen = scale_expansion_zeroelim(xlen, det24x, -pd[0], det48x); + ylen = scale_expansion_zeroelim(abclen, abc, pd[1], det24y); + ylen = scale_expansion_zeroelim(ylen, det24y, -pd[1], det48y); + dlen = fast_expansion_sum_zeroelim(xlen, det48x, ylen, det48y, ddet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet); + deterlen = fast_expansion_sum_zeroelim(ablen, abdet, cdlen, cddet, deter); + + return deter[deterlen - 1]; +} + +REAL incircleslow(pa, pb, pc, pd) +REAL *pa; +REAL *pb; +REAL *pc; +REAL *pd; +{ + INEXACT REAL adx, bdx, cdx, ady, bdy, cdy; + REAL adxtail, bdxtail, cdxtail; + REAL adytail, bdytail, cdytail; + REAL negate, negatetail; + INEXACT REAL axby7, bxcy7, axcy7, bxay7, cxby7, cxay7; + REAL axby[8], bxcy[8], axcy[8], bxay[8], cxby[8], cxay[8]; + REAL temp16[16]; + int temp16len; + REAL detx[32], detxx[64], detxt[32], detxxt[64], detxtxt[64]; + int xlen, xxlen, xtlen, xxtlen, xtxtlen; + REAL x1[128], x2[192]; + int x1len, x2len; + REAL dety[32], detyy[64], detyt[32], detyyt[64], detytyt[64]; + int ylen, yylen, ytlen, yytlen, ytytlen; + REAL y1[128], y2[192]; + int y1len, y2len; + REAL adet[384], bdet[384], cdet[384], abdet[768], deter[1152]; + int alen, blen, clen, ablen, deterlen; + int i; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL a0hi, a0lo, a1hi, a1lo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j, _k, _l, _m, _n; + REAL _0, _1, _2; + + Two_Diff(pa[0], pd[0], adx, adxtail); + Two_Diff(pa[1], pd[1], ady, adytail); + Two_Diff(pb[0], pd[0], bdx, bdxtail); + Two_Diff(pb[1], pd[1], bdy, bdytail); + Two_Diff(pc[0], pd[0], cdx, cdxtail); + Two_Diff(pc[1], pd[1], cdy, cdytail); + + Two_Two_Product(adx, adxtail, bdy, bdytail, + axby7, axby[6], axby[5], axby[4], + axby[3], axby[2], axby[1], axby[0]); + axby[7] = axby7; + negate = -ady; + negatetail = -adytail; + Two_Two_Product(bdx, bdxtail, negate, negatetail, + bxay7, bxay[6], bxay[5], bxay[4], + bxay[3], bxay[2], bxay[1], bxay[0]); + bxay[7] = bxay7; + Two_Two_Product(bdx, bdxtail, cdy, cdytail, + bxcy7, bxcy[6], bxcy[5], bxcy[4], + bxcy[3], bxcy[2], bxcy[1], bxcy[0]); + bxcy[7] = bxcy7; + negate = -bdy; + negatetail = -bdytail; + Two_Two_Product(cdx, cdxtail, negate, negatetail, + cxby7, cxby[6], cxby[5], cxby[4], + cxby[3], cxby[2], cxby[1], cxby[0]); + cxby[7] = cxby7; + Two_Two_Product(cdx, cdxtail, ady, adytail, + cxay7, cxay[6], cxay[5], cxay[4], + cxay[3], cxay[2], cxay[1], cxay[0]); + cxay[7] = cxay7; + negate = -cdy; + negatetail = -cdytail; + Two_Two_Product(adx, adxtail, negate, negatetail, + axcy7, axcy[6], axcy[5], axcy[4], + axcy[3], axcy[2], axcy[1], axcy[0]); + axcy[7] = axcy7; + + + temp16len = fast_expansion_sum_zeroelim(8, bxcy, 8, cxby, temp16); + + xlen = scale_expansion_zeroelim(temp16len, temp16, adx, detx); + xxlen = scale_expansion_zeroelim(xlen, detx, adx, detxx); + xtlen = scale_expansion_zeroelim(temp16len, temp16, adxtail, detxt); + xxtlen = scale_expansion_zeroelim(xtlen, detxt, adx, detxxt); + for (i = 0; i < xxtlen; i++) { + detxxt[i] *= 2.0; + } + xtxtlen = scale_expansion_zeroelim(xtlen, detxt, adxtail, detxtxt); + x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1); + x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2); + + ylen = scale_expansion_zeroelim(temp16len, temp16, ady, dety); + yylen = scale_expansion_zeroelim(ylen, dety, ady, detyy); + ytlen = scale_expansion_zeroelim(temp16len, temp16, adytail, detyt); + yytlen = scale_expansion_zeroelim(ytlen, detyt, ady, detyyt); + for (i = 0; i < yytlen; i++) { + detyyt[i] *= 2.0; + } + ytytlen = scale_expansion_zeroelim(ytlen, detyt, adytail, detytyt); + y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1); + y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2); + + alen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, adet); + + + temp16len = fast_expansion_sum_zeroelim(8, cxay, 8, axcy, temp16); + + xlen = scale_expansion_zeroelim(temp16len, temp16, bdx, detx); + xxlen = scale_expansion_zeroelim(xlen, detx, bdx, detxx); + xtlen = scale_expansion_zeroelim(temp16len, temp16, bdxtail, detxt); + xxtlen = scale_expansion_zeroelim(xtlen, detxt, bdx, detxxt); + for (i = 0; i < xxtlen; i++) { + detxxt[i] *= 2.0; + } + xtxtlen = scale_expansion_zeroelim(xtlen, detxt, bdxtail, detxtxt); + x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1); + x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2); + + ylen = scale_expansion_zeroelim(temp16len, temp16, bdy, dety); + yylen = scale_expansion_zeroelim(ylen, dety, bdy, detyy); + ytlen = scale_expansion_zeroelim(temp16len, temp16, bdytail, detyt); + yytlen = scale_expansion_zeroelim(ytlen, detyt, bdy, detyyt); + for (i = 0; i < yytlen; i++) { + detyyt[i] *= 2.0; + } + ytytlen = scale_expansion_zeroelim(ytlen, detyt, bdytail, detytyt); + y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1); + y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2); + + blen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, bdet); + + + temp16len = fast_expansion_sum_zeroelim(8, axby, 8, bxay, temp16); + + xlen = scale_expansion_zeroelim(temp16len, temp16, cdx, detx); + xxlen = scale_expansion_zeroelim(xlen, detx, cdx, detxx); + xtlen = scale_expansion_zeroelim(temp16len, temp16, cdxtail, detxt); + xxtlen = scale_expansion_zeroelim(xtlen, detxt, cdx, detxxt); + for (i = 0; i < xxtlen; i++) { + detxxt[i] *= 2.0; + } + xtxtlen = scale_expansion_zeroelim(xtlen, detxt, cdxtail, detxtxt); + x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1); + x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2); + + ylen = scale_expansion_zeroelim(temp16len, temp16, cdy, dety); + yylen = scale_expansion_zeroelim(ylen, dety, cdy, detyy); + ytlen = scale_expansion_zeroelim(temp16len, temp16, cdytail, detyt); + yytlen = scale_expansion_zeroelim(ytlen, detyt, cdy, detyyt); + for (i = 0; i < yytlen; i++) { + detyyt[i] *= 2.0; + } + ytytlen = scale_expansion_zeroelim(ytlen, detyt, cdytail, detytyt); + y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1); + y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2); + + clen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, cdet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + deterlen = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, deter); + + return deter[deterlen - 1]; +} + +REAL incircleadapt(pa, pb, pc, pd, permanent) +REAL *pa; +REAL *pb; +REAL *pc; +REAL *pd; +REAL permanent; +{ + INEXACT REAL adx, bdx, cdx, ady, bdy, cdy; + REAL det, errbound; + + INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1; + REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0; + REAL bc[4], ca[4], ab[4]; + INEXACT REAL bc3, ca3, ab3; + REAL axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32]; + int axbclen, axxbclen, aybclen, ayybclen, alen; + REAL bxca[8], bxxca[16], byca[8], byyca[16], bdet[32]; + int bxcalen, bxxcalen, bycalen, byycalen, blen; + REAL cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32]; + int cxablen, cxxablen, cyablen, cyyablen, clen; + REAL abdet[64]; + int ablen; + REAL fin1[1152], fin2[1152]; + REAL *finnow, *finother, *finswap; + int finlength; + + REAL adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail; + INEXACT REAL adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1; + REAL adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0; + REAL aa[4], bb[4], cc[4]; + INEXACT REAL aa3, bb3, cc3; + INEXACT REAL ti1, tj1; + REAL ti0, tj0; + REAL u[4], v[4]; + INEXACT REAL u3, v3; + REAL temp8[8], temp16a[16], temp16b[16], temp16c[16]; + REAL temp32a[32], temp32b[32], temp48[48], temp64[64]; + int temp8len, temp16alen, temp16blen, temp16clen; + int temp32alen, temp32blen, temp48len, temp64len; + REAL axtbb[8], axtcc[8], aytbb[8], aytcc[8]; + int axtbblen, axtcclen, aytbblen, aytcclen; + REAL bxtaa[8], bxtcc[8], bytaa[8], bytcc[8]; + int bxtaalen, bxtcclen, bytaalen, bytcclen; + REAL cxtaa[8], cxtbb[8], cytaa[8], cytbb[8]; + int cxtaalen, cxtbblen, cytaalen, cytbblen; + REAL axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8]; + int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen; + REAL axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16]; + int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen; + REAL axtbctt[8], aytbctt[8], bxtcatt[8]; + REAL bytcatt[8], cxtabtt[8], cytabtt[8]; + int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen; + REAL abt[8], bct[8], cat[8]; + int abtlen, bctlen, catlen; + REAL abtt[4], bctt[4], catt[4]; + int abttlen, bcttlen, cattlen; + INEXACT REAL abtt3, bctt3, catt3; + REAL negate; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j; + REAL _0; + + adx = (REAL) (pa[0] - pd[0]); + bdx = (REAL) (pb[0] - pd[0]); + cdx = (REAL) (pc[0] - pd[0]); + ady = (REAL) (pa[1] - pd[1]); + bdy = (REAL) (pb[1] - pd[1]); + cdy = (REAL) (pc[1] - pd[1]); + + Two_Product(bdx, cdy, bdxcdy1, bdxcdy0); + Two_Product(cdx, bdy, cdxbdy1, cdxbdy0); + Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]); + bc[3] = bc3; + axbclen = scale_expansion_zeroelim(4, bc, adx, axbc); + axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc); + aybclen = scale_expansion_zeroelim(4, bc, ady, aybc); + ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc); + alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet); + + Two_Product(cdx, ady, cdxady1, cdxady0); + Two_Product(adx, cdy, adxcdy1, adxcdy0); + Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]); + ca[3] = ca3; + bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca); + bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca); + bycalen = scale_expansion_zeroelim(4, ca, bdy, byca); + byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca); + blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet); + + Two_Product(adx, bdy, adxbdy1, adxbdy0); + Two_Product(bdx, ady, bdxady1, bdxady0); + Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]); + ab[3] = ab3; + cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab); + cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab); + cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab); + cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab); + clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1); + + det = estimate(finlength, fin1); + errbound = iccerrboundB * permanent; + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + Two_Diff_Tail(pa[0], pd[0], adx, adxtail); + Two_Diff_Tail(pa[1], pd[1], ady, adytail); + Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail); + Two_Diff_Tail(pb[1], pd[1], bdy, bdytail); + Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail); + Two_Diff_Tail(pc[1], pd[1], cdy, cdytail); + if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) + && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) { + return det; + } + + errbound = iccerrboundC * permanent + resulterrbound * Absolute(det); + det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail) + - (bdy * cdxtail + cdx * bdytail)) + + 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx)) + + ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail) + - (cdy * adxtail + adx * cdytail)) + + 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx)) + + ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail) + - (ady * bdxtail + bdx * adytail)) + + 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx)); + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + finnow = fin1; + finother = fin2; + + if ((bdxtail != 0.0) || (bdytail != 0.0) + || (cdxtail != 0.0) || (cdytail != 0.0)) { + Square(adx, adxadx1, adxadx0); + Square(ady, adyady1, adyady0); + Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]); + aa[3] = aa3; + } + if ((cdxtail != 0.0) || (cdytail != 0.0) + || (adxtail != 0.0) || (adytail != 0.0)) { + Square(bdx, bdxbdx1, bdxbdx0); + Square(bdy, bdybdy1, bdybdy0); + Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]); + bb[3] = bb3; + } + if ((adxtail != 0.0) || (adytail != 0.0) + || (bdxtail != 0.0) || (bdytail != 0.0)) { + Square(cdx, cdxcdx1, cdxcdx0); + Square(cdy, cdycdy1, cdycdy0); + Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]); + cc[3] = cc3; + } + + if (adxtail != 0.0) { + axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc); + temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx, + temp16a); + + axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc); + temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b); + + axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb); + temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c); + + temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (adytail != 0.0) { + aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc); + temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady, + temp16a); + + aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb); + temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b); + + aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc); + temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c); + + temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (bdxtail != 0.0) { + bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca); + temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx, + temp16a); + + bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa); + temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b); + + bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc); + temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c); + + temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (bdytail != 0.0) { + bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca); + temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy, + temp16a); + + bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc); + temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b); + + bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa); + temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c); + + temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (cdxtail != 0.0) { + cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab); + temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx, + temp16a); + + cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb); + temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b); + + cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa); + temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c); + + temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (cdytail != 0.0) { + cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab); + temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy, + temp16a); + + cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa); + temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b); + + cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb); + temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c); + + temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + + if ((adxtail != 0.0) || (adytail != 0.0)) { + if ((bdxtail != 0.0) || (bdytail != 0.0) + || (cdxtail != 0.0) || (cdytail != 0.0)) { + Two_Product(bdxtail, cdy, ti1, ti0); + Two_Product(bdx, cdytail, tj1, tj0); + Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]); + u[3] = u3; + negate = -bdy; + Two_Product(cdxtail, negate, ti1, ti0); + negate = -bdytail; + Two_Product(cdx, negate, tj1, tj0); + Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]); + v[3] = v3; + bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct); + + Two_Product(bdxtail, cdytail, ti1, ti0); + Two_Product(cdxtail, bdytail, tj1, tj0); + Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]); + bctt[3] = bctt3; + bcttlen = 4; + } else { + bct[0] = 0.0; + bctlen = 1; + bctt[0] = 0.0; + bcttlen = 1; + } + + if (adxtail != 0.0) { + temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a); + axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct); + temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx, + temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + if (bdytail != 0.0) { + temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8); + temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, + temp16a); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, + temp16a, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (cdytail != 0.0) { + temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8); + temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, + temp16a); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, + temp16a, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + + temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail, + temp32a); + axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt); + temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx, + temp16a); + temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail, + temp16b); + temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32b); + temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, + temp64, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (adytail != 0.0) { + temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a); + aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct); + temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady, + temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + + + temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail, + temp32a); + aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt); + temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady, + temp16a); + temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail, + temp16b); + temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32b); + temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, + temp64, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + if ((bdxtail != 0.0) || (bdytail != 0.0)) { + if ((cdxtail != 0.0) || (cdytail != 0.0) + || (adxtail != 0.0) || (adytail != 0.0)) { + Two_Product(cdxtail, ady, ti1, ti0); + Two_Product(cdx, adytail, tj1, tj0); + Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]); + u[3] = u3; + negate = -cdy; + Two_Product(adxtail, negate, ti1, ti0); + negate = -cdytail; + Two_Product(adx, negate, tj1, tj0); + Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]); + v[3] = v3; + catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat); + + Two_Product(cdxtail, adytail, ti1, ti0); + Two_Product(adxtail, cdytail, tj1, tj0); + Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]); + catt[3] = catt3; + cattlen = 4; + } else { + cat[0] = 0.0; + catlen = 1; + catt[0] = 0.0; + cattlen = 1; + } + + if (bdxtail != 0.0) { + temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a); + bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat); + temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx, + temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + if (cdytail != 0.0) { + temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8); + temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, + temp16a); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, + temp16a, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (adytail != 0.0) { + temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8); + temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, + temp16a); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, + temp16a, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + + temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail, + temp32a); + bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt); + temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx, + temp16a); + temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail, + temp16b); + temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32b); + temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, + temp64, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (bdytail != 0.0) { + temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a); + bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat); + temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy, + temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + + + temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail, + temp32a); + bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt); + temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy, + temp16a); + temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail, + temp16b); + temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32b); + temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, + temp64, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + if ((cdxtail != 0.0) || (cdytail != 0.0)) { + if ((adxtail != 0.0) || (adytail != 0.0) + || (bdxtail != 0.0) || (bdytail != 0.0)) { + Two_Product(adxtail, bdy, ti1, ti0); + Two_Product(adx, bdytail, tj1, tj0); + Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]); + u[3] = u3; + negate = -ady; + Two_Product(bdxtail, negate, ti1, ti0); + negate = -adytail; + Two_Product(bdx, negate, tj1, tj0); + Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]); + v[3] = v3; + abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt); + + Two_Product(adxtail, bdytail, ti1, ti0); + Two_Product(bdxtail, adytail, tj1, tj0); + Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]); + abtt[3] = abtt3; + abttlen = 4; + } else { + abt[0] = 0.0; + abtlen = 1; + abtt[0] = 0.0; + abttlen = 1; + } + + if (cdxtail != 0.0) { + temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a); + cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt); + temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx, + temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + if (adytail != 0.0) { + temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8); + temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, + temp16a); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, + temp16a, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (bdytail != 0.0) { + temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8); + temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, + temp16a); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, + temp16a, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + + temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail, + temp32a); + cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt); + temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx, + temp16a); + temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail, + temp16b); + temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32b); + temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, + temp64, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + if (cdytail != 0.0) { + temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a); + cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt); + temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy, + temp32a); + temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp32alen, temp32a, temp48); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, + temp48, finother); + finswap = finnow; finnow = finother; finother = finswap; + + + temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail, + temp32a); + cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt); + temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy, + temp16a); + temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail, + temp16b); + temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, + temp16blen, temp16b, temp32b); + temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64); + finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, + temp64, finother); + finswap = finnow; finnow = finother; finother = finswap; + } + } + + return finnow[finlength - 1]; +} + +REAL incircle(pa, pb, pc, pd) +REAL *pa; +REAL *pb; +REAL *pc; +REAL *pd; +{ + REAL adx, bdx, cdx, ady, bdy, cdy; + REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady; + REAL alift, blift, clift; + REAL det; + REAL permanent, errbound; + + adx = pa[0] - pd[0]; + bdx = pb[0] - pd[0]; + cdx = pc[0] - pd[0]; + ady = pa[1] - pd[1]; + bdy = pb[1] - pd[1]; + cdy = pc[1] - pd[1]; + + bdxcdy = bdx * cdy; + cdxbdy = cdx * bdy; + alift = adx * adx + ady * ady; + + cdxady = cdx * ady; + adxcdy = adx * cdy; + blift = bdx * bdx + bdy * bdy; + + adxbdy = adx * bdy; + bdxady = bdx * ady; + clift = cdx * cdx + cdy * cdy; + + det = alift * (bdxcdy - cdxbdy) + + blift * (cdxady - adxcdy) + + clift * (adxbdy - bdxady); + + permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift + + (Absolute(cdxady) + Absolute(adxcdy)) * blift + + (Absolute(adxbdy) + Absolute(bdxady)) * clift; + errbound = iccerrboundA * permanent; + if ((det > errbound) || (-det > errbound)) { + return det; + } + + return incircleadapt(pa, pb, pc, pd, permanent); +} + +/*****************************************************************************/ +/* */ +/* inspherefast() Approximate 3D insphere test. Nonrobust. */ +/* insphereexact() Exact 3D insphere test. Robust. */ +/* insphereslow() Another exact 3D insphere test. Robust. */ +/* insphere() Adaptive exact 3D insphere test. Robust. */ +/* */ +/* Return a positive value if the point pe lies inside the */ +/* sphere passing through pa, pb, pc, and pd; a negative value */ +/* if it lies outside; and zero if the five points are */ +/* cospherical. The points pa, pb, pc, and pd must be ordered */ +/* so that they have a positive orientation (as defined by */ +/* orient3d()), or the sign of the result will be reversed. */ +/* */ +/* Only the first and last routine should be used; the middle two are for */ +/* timings. */ +/* */ +/* The last three use exact arithmetic to ensure a correct answer. The */ +/* result returned is the determinant of a matrix. In insphere() only, */ +/* this determinant is computed adaptively, in the sense that exact */ +/* arithmetic is used only to the degree it is needed to ensure that the */ +/* returned value has the correct sign. Hence, insphere() is usually quite */ +/* fast, but will run more slowly when the input points are cospherical or */ +/* nearly so. */ +/* */ +/*****************************************************************************/ + +REAL inspherefast(pa, pb, pc, pd, pe) +REAL *pa; +REAL *pb; +REAL *pc; +REAL *pd; +REAL *pe; +{ + REAL aex, bex, cex, dex; + REAL aey, bey, cey, dey; + REAL aez, bez, cez, dez; + REAL alift, blift, clift, dlift; + REAL ab, bc, cd, da, ac, bd; + REAL abc, bcd, cda, dab; + + aex = pa[0] - pe[0]; + bex = pb[0] - pe[0]; + cex = pc[0] - pe[0]; + dex = pd[0] - pe[0]; + aey = pa[1] - pe[1]; + bey = pb[1] - pe[1]; + cey = pc[1] - pe[1]; + dey = pd[1] - pe[1]; + aez = pa[2] - pe[2]; + bez = pb[2] - pe[2]; + cez = pc[2] - pe[2]; + dez = pd[2] - pe[2]; + + ab = aex * bey - bex * aey; + bc = bex * cey - cex * bey; + cd = cex * dey - dex * cey; + da = dex * aey - aex * dey; + + ac = aex * cey - cex * aey; + bd = bex * dey - dex * bey; + + abc = aez * bc - bez * ac + cez * ab; + bcd = bez * cd - cez * bd + dez * bc; + cda = cez * da + dez * ac + aez * cd; + dab = dez * ab + aez * bd + bez * da; + + alift = aex * aex + aey * aey + aez * aez; + blift = bex * bex + bey * bey + bez * bez; + clift = cex * cex + cey * cey + cez * cez; + dlift = dex * dex + dey * dey + dez * dez; + + return (dlift * abc - clift * dab) + (blift * cda - alift * bcd); +} + +REAL insphereexact(pa, pb, pc, pd, pe) +REAL *pa; +REAL *pb; +REAL *pc; +REAL *pd; +REAL *pe; +{ + INEXACT REAL axby1, bxcy1, cxdy1, dxey1, exay1; + INEXACT REAL bxay1, cxby1, dxcy1, exdy1, axey1; + INEXACT REAL axcy1, bxdy1, cxey1, dxay1, exby1; + INEXACT REAL cxay1, dxby1, excy1, axdy1, bxey1; + REAL axby0, bxcy0, cxdy0, dxey0, exay0; + REAL bxay0, cxby0, dxcy0, exdy0, axey0; + REAL axcy0, bxdy0, cxey0, dxay0, exby0; + REAL cxay0, dxby0, excy0, axdy0, bxey0; + REAL ab[4], bc[4], cd[4], de[4], ea[4]; + REAL ac[4], bd[4], ce[4], da[4], eb[4]; + REAL temp8a[8], temp8b[8], temp16[16]; + int temp8alen, temp8blen, temp16len; + REAL abc[24], bcd[24], cde[24], dea[24], eab[24]; + REAL abd[24], bce[24], cda[24], deb[24], eac[24]; + int abclen, bcdlen, cdelen, dealen, eablen; + int abdlen, bcelen, cdalen, deblen, eaclen; + REAL temp48a[48], temp48b[48]; + int temp48alen, temp48blen; + REAL abcd[96], bcde[96], cdea[96], deab[96], eabc[96]; + int abcdlen, bcdelen, cdealen, deablen, eabclen; + REAL temp192[192]; + REAL det384x[384], det384y[384], det384z[384]; + int xlen, ylen, zlen; + REAL detxy[768]; + int xylen; + REAL adet[1152], bdet[1152], cdet[1152], ddet[1152], edet[1152]; + int alen, blen, clen, dlen, elen; + REAL abdet[2304], cddet[2304], cdedet[3456]; + int ablen, cdlen; + REAL deter[5760]; + int deterlen; + int i; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j; + REAL _0; + + Two_Product(pa[0], pb[1], axby1, axby0); + Two_Product(pb[0], pa[1], bxay1, bxay0); + Two_Two_Diff(axby1, axby0, bxay1, bxay0, ab[3], ab[2], ab[1], ab[0]); + + Two_Product(pb[0], pc[1], bxcy1, bxcy0); + Two_Product(pc[0], pb[1], cxby1, cxby0); + Two_Two_Diff(bxcy1, bxcy0, cxby1, cxby0, bc[3], bc[2], bc[1], bc[0]); + + Two_Product(pc[0], pd[1], cxdy1, cxdy0); + Two_Product(pd[0], pc[1], dxcy1, dxcy0); + Two_Two_Diff(cxdy1, cxdy0, dxcy1, dxcy0, cd[3], cd[2], cd[1], cd[0]); + + Two_Product(pd[0], pe[1], dxey1, dxey0); + Two_Product(pe[0], pd[1], exdy1, exdy0); + Two_Two_Diff(dxey1, dxey0, exdy1, exdy0, de[3], de[2], de[1], de[0]); + + Two_Product(pe[0], pa[1], exay1, exay0); + Two_Product(pa[0], pe[1], axey1, axey0); + Two_Two_Diff(exay1, exay0, axey1, axey0, ea[3], ea[2], ea[1], ea[0]); + + Two_Product(pa[0], pc[1], axcy1, axcy0); + Two_Product(pc[0], pa[1], cxay1, cxay0); + Two_Two_Diff(axcy1, axcy0, cxay1, cxay0, ac[3], ac[2], ac[1], ac[0]); + + Two_Product(pb[0], pd[1], bxdy1, bxdy0); + Two_Product(pd[0], pb[1], dxby1, dxby0); + Two_Two_Diff(bxdy1, bxdy0, dxby1, dxby0, bd[3], bd[2], bd[1], bd[0]); + + Two_Product(pc[0], pe[1], cxey1, cxey0); + Two_Product(pe[0], pc[1], excy1, excy0); + Two_Two_Diff(cxey1, cxey0, excy1, excy0, ce[3], ce[2], ce[1], ce[0]); + + Two_Product(pd[0], pa[1], dxay1, dxay0); + Two_Product(pa[0], pd[1], axdy1, axdy0); + Two_Two_Diff(dxay1, dxay0, axdy1, axdy0, da[3], da[2], da[1], da[0]); + + Two_Product(pe[0], pb[1], exby1, exby0); + Two_Product(pb[0], pe[1], bxey1, bxey0); + Two_Two_Diff(exby1, exby0, bxey1, bxey0, eb[3], eb[2], eb[1], eb[0]); + + temp8alen = scale_expansion_zeroelim(4, bc, pa[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, ac, -pb[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, ab, pc[2], temp8a); + abclen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + abc); + + temp8alen = scale_expansion_zeroelim(4, cd, pb[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, bd, -pc[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, bc, pd[2], temp8a); + bcdlen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + bcd); + + temp8alen = scale_expansion_zeroelim(4, de, pc[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, ce, -pd[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, cd, pe[2], temp8a); + cdelen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + cde); + + temp8alen = scale_expansion_zeroelim(4, ea, pd[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, da, -pe[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, de, pa[2], temp8a); + dealen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + dea); + + temp8alen = scale_expansion_zeroelim(4, ab, pe[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, eb, -pa[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, ea, pb[2], temp8a); + eablen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + eab); + + temp8alen = scale_expansion_zeroelim(4, bd, pa[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, da, pb[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, ab, pd[2], temp8a); + abdlen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + abd); + + temp8alen = scale_expansion_zeroelim(4, ce, pb[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, eb, pc[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, bc, pe[2], temp8a); + bcelen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + bce); + + temp8alen = scale_expansion_zeroelim(4, da, pc[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, ac, pd[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, cd, pa[2], temp8a); + cdalen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + cda); + + temp8alen = scale_expansion_zeroelim(4, eb, pd[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, bd, pe[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, de, pb[2], temp8a); + deblen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + deb); + + temp8alen = scale_expansion_zeroelim(4, ac, pe[2], temp8a); + temp8blen = scale_expansion_zeroelim(4, ce, pa[2], temp8b); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b, + temp16); + temp8alen = scale_expansion_zeroelim(4, ea, pc[2], temp8a); + eaclen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16, + eac); + + temp48alen = fast_expansion_sum_zeroelim(cdelen, cde, bcelen, bce, temp48a); + temp48blen = fast_expansion_sum_zeroelim(deblen, deb, bcdlen, bcd, temp48b); + for (i = 0; i < temp48blen; i++) { + temp48b[i] = -temp48b[i]; + } + bcdelen = fast_expansion_sum_zeroelim(temp48alen, temp48a, + temp48blen, temp48b, bcde); + xlen = scale_expansion_zeroelim(bcdelen, bcde, pa[0], temp192); + xlen = scale_expansion_zeroelim(xlen, temp192, pa[0], det384x); + ylen = scale_expansion_zeroelim(bcdelen, bcde, pa[1], temp192); + ylen = scale_expansion_zeroelim(ylen, temp192, pa[1], det384y); + zlen = scale_expansion_zeroelim(bcdelen, bcde, pa[2], temp192); + zlen = scale_expansion_zeroelim(zlen, temp192, pa[2], det384z); + xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy); + alen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, adet); + + temp48alen = fast_expansion_sum_zeroelim(dealen, dea, cdalen, cda, temp48a); + temp48blen = fast_expansion_sum_zeroelim(eaclen, eac, cdelen, cde, temp48b); + for (i = 0; i < temp48blen; i++) { + temp48b[i] = -temp48b[i]; + } + cdealen = fast_expansion_sum_zeroelim(temp48alen, temp48a, + temp48blen, temp48b, cdea); + xlen = scale_expansion_zeroelim(cdealen, cdea, pb[0], temp192); + xlen = scale_expansion_zeroelim(xlen, temp192, pb[0], det384x); + ylen = scale_expansion_zeroelim(cdealen, cdea, pb[1], temp192); + ylen = scale_expansion_zeroelim(ylen, temp192, pb[1], det384y); + zlen = scale_expansion_zeroelim(cdealen, cdea, pb[2], temp192); + zlen = scale_expansion_zeroelim(zlen, temp192, pb[2], det384z); + xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy); + blen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, bdet); + + temp48alen = fast_expansion_sum_zeroelim(eablen, eab, deblen, deb, temp48a); + temp48blen = fast_expansion_sum_zeroelim(abdlen, abd, dealen, dea, temp48b); + for (i = 0; i < temp48blen; i++) { + temp48b[i] = -temp48b[i]; + } + deablen = fast_expansion_sum_zeroelim(temp48alen, temp48a, + temp48blen, temp48b, deab); + xlen = scale_expansion_zeroelim(deablen, deab, pc[0], temp192); + xlen = scale_expansion_zeroelim(xlen, temp192, pc[0], det384x); + ylen = scale_expansion_zeroelim(deablen, deab, pc[1], temp192); + ylen = scale_expansion_zeroelim(ylen, temp192, pc[1], det384y); + zlen = scale_expansion_zeroelim(deablen, deab, pc[2], temp192); + zlen = scale_expansion_zeroelim(zlen, temp192, pc[2], det384z); + xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy); + clen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, cdet); + + temp48alen = fast_expansion_sum_zeroelim(abclen, abc, eaclen, eac, temp48a); + temp48blen = fast_expansion_sum_zeroelim(bcelen, bce, eablen, eab, temp48b); + for (i = 0; i < temp48blen; i++) { + temp48b[i] = -temp48b[i]; + } + eabclen = fast_expansion_sum_zeroelim(temp48alen, temp48a, + temp48blen, temp48b, eabc); + xlen = scale_expansion_zeroelim(eabclen, eabc, pd[0], temp192); + xlen = scale_expansion_zeroelim(xlen, temp192, pd[0], det384x); + ylen = scale_expansion_zeroelim(eabclen, eabc, pd[1], temp192); + ylen = scale_expansion_zeroelim(ylen, temp192, pd[1], det384y); + zlen = scale_expansion_zeroelim(eabclen, eabc, pd[2], temp192); + zlen = scale_expansion_zeroelim(zlen, temp192, pd[2], det384z); + xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy); + dlen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, ddet); + + temp48alen = fast_expansion_sum_zeroelim(bcdlen, bcd, abdlen, abd, temp48a); + temp48blen = fast_expansion_sum_zeroelim(cdalen, cda, abclen, abc, temp48b); + for (i = 0; i < temp48blen; i++) { + temp48b[i] = -temp48b[i]; + } + abcdlen = fast_expansion_sum_zeroelim(temp48alen, temp48a, + temp48blen, temp48b, abcd); + xlen = scale_expansion_zeroelim(abcdlen, abcd, pe[0], temp192); + xlen = scale_expansion_zeroelim(xlen, temp192, pe[0], det384x); + ylen = scale_expansion_zeroelim(abcdlen, abcd, pe[1], temp192); + ylen = scale_expansion_zeroelim(ylen, temp192, pe[1], det384y); + zlen = scale_expansion_zeroelim(abcdlen, abcd, pe[2], temp192); + zlen = scale_expansion_zeroelim(zlen, temp192, pe[2], det384z); + xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy); + elen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, edet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet); + cdelen = fast_expansion_sum_zeroelim(cdlen, cddet, elen, edet, cdedet); + deterlen = fast_expansion_sum_zeroelim(ablen, abdet, cdelen, cdedet, deter); + + return deter[deterlen - 1]; +} + +REAL insphereslow(pa, pb, pc, pd, pe) +REAL *pa; +REAL *pb; +REAL *pc; +REAL *pd; +REAL *pe; +{ + INEXACT REAL aex, bex, cex, dex, aey, bey, cey, dey, aez, bez, cez, dez; + REAL aextail, bextail, cextail, dextail; + REAL aeytail, beytail, ceytail, deytail; + REAL aeztail, beztail, ceztail, deztail; + REAL negate, negatetail; + INEXACT REAL axby7, bxcy7, cxdy7, dxay7, axcy7, bxdy7; + INEXACT REAL bxay7, cxby7, dxcy7, axdy7, cxay7, dxby7; + REAL axby[8], bxcy[8], cxdy[8], dxay[8], axcy[8], bxdy[8]; + REAL bxay[8], cxby[8], dxcy[8], axdy[8], cxay[8], dxby[8]; + REAL ab[16], bc[16], cd[16], da[16], ac[16], bd[16]; + int ablen, bclen, cdlen, dalen, aclen, bdlen; + REAL temp32a[32], temp32b[32], temp64a[64], temp64b[64], temp64c[64]; + int temp32alen, temp32blen, temp64alen, temp64blen, temp64clen; + REAL temp128[128], temp192[192]; + int temp128len, temp192len; + REAL detx[384], detxx[768], detxt[384], detxxt[768], detxtxt[768]; + int xlen, xxlen, xtlen, xxtlen, xtxtlen; + REAL x1[1536], x2[2304]; + int x1len, x2len; + REAL dety[384], detyy[768], detyt[384], detyyt[768], detytyt[768]; + int ylen, yylen, ytlen, yytlen, ytytlen; + REAL y1[1536], y2[2304]; + int y1len, y2len; + REAL detz[384], detzz[768], detzt[384], detzzt[768], detztzt[768]; + int zlen, zzlen, ztlen, zztlen, ztztlen; + REAL z1[1536], z2[2304]; + int z1len, z2len; + REAL detxy[4608]; + int xylen; + REAL adet[6912], bdet[6912], cdet[6912], ddet[6912]; + int alen, blen, clen, dlen; + REAL abdet[13824], cddet[13824], deter[27648]; + int deterlen; + int i; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL a0hi, a0lo, a1hi, a1lo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j, _k, _l, _m, _n; + REAL _0, _1, _2; + + Two_Diff(pa[0], pe[0], aex, aextail); + Two_Diff(pa[1], pe[1], aey, aeytail); + Two_Diff(pa[2], pe[2], aez, aeztail); + Two_Diff(pb[0], pe[0], bex, bextail); + Two_Diff(pb[1], pe[1], bey, beytail); + Two_Diff(pb[2], pe[2], bez, beztail); + Two_Diff(pc[0], pe[0], cex, cextail); + Two_Diff(pc[1], pe[1], cey, ceytail); + Two_Diff(pc[2], pe[2], cez, ceztail); + Two_Diff(pd[0], pe[0], dex, dextail); + Two_Diff(pd[1], pe[1], dey, deytail); + Two_Diff(pd[2], pe[2], dez, deztail); + + Two_Two_Product(aex, aextail, bey, beytail, + axby7, axby[6], axby[5], axby[4], + axby[3], axby[2], axby[1], axby[0]); + axby[7] = axby7; + negate = -aey; + negatetail = -aeytail; + Two_Two_Product(bex, bextail, negate, negatetail, + bxay7, bxay[6], bxay[5], bxay[4], + bxay[3], bxay[2], bxay[1], bxay[0]); + bxay[7] = bxay7; + ablen = fast_expansion_sum_zeroelim(8, axby, 8, bxay, ab); + Two_Two_Product(bex, bextail, cey, ceytail, + bxcy7, bxcy[6], bxcy[5], bxcy[4], + bxcy[3], bxcy[2], bxcy[1], bxcy[0]); + bxcy[7] = bxcy7; + negate = -bey; + negatetail = -beytail; + Two_Two_Product(cex, cextail, negate, negatetail, + cxby7, cxby[6], cxby[5], cxby[4], + cxby[3], cxby[2], cxby[1], cxby[0]); + cxby[7] = cxby7; + bclen = fast_expansion_sum_zeroelim(8, bxcy, 8, cxby, bc); + Two_Two_Product(cex, cextail, dey, deytail, + cxdy7, cxdy[6], cxdy[5], cxdy[4], + cxdy[3], cxdy[2], cxdy[1], cxdy[0]); + cxdy[7] = cxdy7; + negate = -cey; + negatetail = -ceytail; + Two_Two_Product(dex, dextail, negate, negatetail, + dxcy7, dxcy[6], dxcy[5], dxcy[4], + dxcy[3], dxcy[2], dxcy[1], dxcy[0]); + dxcy[7] = dxcy7; + cdlen = fast_expansion_sum_zeroelim(8, cxdy, 8, dxcy, cd); + Two_Two_Product(dex, dextail, aey, aeytail, + dxay7, dxay[6], dxay[5], dxay[4], + dxay[3], dxay[2], dxay[1], dxay[0]); + dxay[7] = dxay7; + negate = -dey; + negatetail = -deytail; + Two_Two_Product(aex, aextail, negate, negatetail, + axdy7, axdy[6], axdy[5], axdy[4], + axdy[3], axdy[2], axdy[1], axdy[0]); + axdy[7] = axdy7; + dalen = fast_expansion_sum_zeroelim(8, dxay, 8, axdy, da); + Two_Two_Product(aex, aextail, cey, ceytail, + axcy7, axcy[6], axcy[5], axcy[4], + axcy[3], axcy[2], axcy[1], axcy[0]); + axcy[7] = axcy7; + negate = -aey; + negatetail = -aeytail; + Two_Two_Product(cex, cextail, negate, negatetail, + cxay7, cxay[6], cxay[5], cxay[4], + cxay[3], cxay[2], cxay[1], cxay[0]); + cxay[7] = cxay7; + aclen = fast_expansion_sum_zeroelim(8, axcy, 8, cxay, ac); + Two_Two_Product(bex, bextail, dey, deytail, + bxdy7, bxdy[6], bxdy[5], bxdy[4], + bxdy[3], bxdy[2], bxdy[1], bxdy[0]); + bxdy[7] = bxdy7; + negate = -bey; + negatetail = -beytail; + Two_Two_Product(dex, dextail, negate, negatetail, + dxby7, dxby[6], dxby[5], dxby[4], + dxby[3], dxby[2], dxby[1], dxby[0]); + dxby[7] = dxby7; + bdlen = fast_expansion_sum_zeroelim(8, bxdy, 8, dxby, bd); + + temp32alen = scale_expansion_zeroelim(cdlen, cd, -bez, temp32a); + temp32blen = scale_expansion_zeroelim(cdlen, cd, -beztail, temp32b); + temp64alen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64a); + temp32alen = scale_expansion_zeroelim(bdlen, bd, cez, temp32a); + temp32blen = scale_expansion_zeroelim(bdlen, bd, ceztail, temp32b); + temp64blen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64b); + temp32alen = scale_expansion_zeroelim(bclen, bc, -dez, temp32a); + temp32blen = scale_expansion_zeroelim(bclen, bc, -deztail, temp32b); + temp64clen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64c); + temp128len = fast_expansion_sum_zeroelim(temp64alen, temp64a, + temp64blen, temp64b, temp128); + temp192len = fast_expansion_sum_zeroelim(temp64clen, temp64c, + temp128len, temp128, temp192); + xlen = scale_expansion_zeroelim(temp192len, temp192, aex, detx); + xxlen = scale_expansion_zeroelim(xlen, detx, aex, detxx); + xtlen = scale_expansion_zeroelim(temp192len, temp192, aextail, detxt); + xxtlen = scale_expansion_zeroelim(xtlen, detxt, aex, detxxt); + for (i = 0; i < xxtlen; i++) { + detxxt[i] *= 2.0; + } + xtxtlen = scale_expansion_zeroelim(xtlen, detxt, aextail, detxtxt); + x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1); + x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2); + ylen = scale_expansion_zeroelim(temp192len, temp192, aey, dety); + yylen = scale_expansion_zeroelim(ylen, dety, aey, detyy); + ytlen = scale_expansion_zeroelim(temp192len, temp192, aeytail, detyt); + yytlen = scale_expansion_zeroelim(ytlen, detyt, aey, detyyt); + for (i = 0; i < yytlen; i++) { + detyyt[i] *= 2.0; + } + ytytlen = scale_expansion_zeroelim(ytlen, detyt, aeytail, detytyt); + y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1); + y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2); + zlen = scale_expansion_zeroelim(temp192len, temp192, aez, detz); + zzlen = scale_expansion_zeroelim(zlen, detz, aez, detzz); + ztlen = scale_expansion_zeroelim(temp192len, temp192, aeztail, detzt); + zztlen = scale_expansion_zeroelim(ztlen, detzt, aez, detzzt); + for (i = 0; i < zztlen; i++) { + detzzt[i] *= 2.0; + } + ztztlen = scale_expansion_zeroelim(ztlen, detzt, aeztail, detztzt); + z1len = fast_expansion_sum_zeroelim(zzlen, detzz, zztlen, detzzt, z1); + z2len = fast_expansion_sum_zeroelim(z1len, z1, ztztlen, detztzt, z2); + xylen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, detxy); + alen = fast_expansion_sum_zeroelim(z2len, z2, xylen, detxy, adet); + + temp32alen = scale_expansion_zeroelim(dalen, da, cez, temp32a); + temp32blen = scale_expansion_zeroelim(dalen, da, ceztail, temp32b); + temp64alen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64a); + temp32alen = scale_expansion_zeroelim(aclen, ac, dez, temp32a); + temp32blen = scale_expansion_zeroelim(aclen, ac, deztail, temp32b); + temp64blen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64b); + temp32alen = scale_expansion_zeroelim(cdlen, cd, aez, temp32a); + temp32blen = scale_expansion_zeroelim(cdlen, cd, aeztail, temp32b); + temp64clen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64c); + temp128len = fast_expansion_sum_zeroelim(temp64alen, temp64a, + temp64blen, temp64b, temp128); + temp192len = fast_expansion_sum_zeroelim(temp64clen, temp64c, + temp128len, temp128, temp192); + xlen = scale_expansion_zeroelim(temp192len, temp192, bex, detx); + xxlen = scale_expansion_zeroelim(xlen, detx, bex, detxx); + xtlen = scale_expansion_zeroelim(temp192len, temp192, bextail, detxt); + xxtlen = scale_expansion_zeroelim(xtlen, detxt, bex, detxxt); + for (i = 0; i < xxtlen; i++) { + detxxt[i] *= 2.0; + } + xtxtlen = scale_expansion_zeroelim(xtlen, detxt, bextail, detxtxt); + x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1); + x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2); + ylen = scale_expansion_zeroelim(temp192len, temp192, bey, dety); + yylen = scale_expansion_zeroelim(ylen, dety, bey, detyy); + ytlen = scale_expansion_zeroelim(temp192len, temp192, beytail, detyt); + yytlen = scale_expansion_zeroelim(ytlen, detyt, bey, detyyt); + for (i = 0; i < yytlen; i++) { + detyyt[i] *= 2.0; + } + ytytlen = scale_expansion_zeroelim(ytlen, detyt, beytail, detytyt); + y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1); + y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2); + zlen = scale_expansion_zeroelim(temp192len, temp192, bez, detz); + zzlen = scale_expansion_zeroelim(zlen, detz, bez, detzz); + ztlen = scale_expansion_zeroelim(temp192len, temp192, beztail, detzt); + zztlen = scale_expansion_zeroelim(ztlen, detzt, bez, detzzt); + for (i = 0; i < zztlen; i++) { + detzzt[i] *= 2.0; + } + ztztlen = scale_expansion_zeroelim(ztlen, detzt, beztail, detztzt); + z1len = fast_expansion_sum_zeroelim(zzlen, detzz, zztlen, detzzt, z1); + z2len = fast_expansion_sum_zeroelim(z1len, z1, ztztlen, detztzt, z2); + xylen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, detxy); + blen = fast_expansion_sum_zeroelim(z2len, z2, xylen, detxy, bdet); + + temp32alen = scale_expansion_zeroelim(ablen, ab, -dez, temp32a); + temp32blen = scale_expansion_zeroelim(ablen, ab, -deztail, temp32b); + temp64alen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64a); + temp32alen = scale_expansion_zeroelim(bdlen, bd, -aez, temp32a); + temp32blen = scale_expansion_zeroelim(bdlen, bd, -aeztail, temp32b); + temp64blen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64b); + temp32alen = scale_expansion_zeroelim(dalen, da, -bez, temp32a); + temp32blen = scale_expansion_zeroelim(dalen, da, -beztail, temp32b); + temp64clen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64c); + temp128len = fast_expansion_sum_zeroelim(temp64alen, temp64a, + temp64blen, temp64b, temp128); + temp192len = fast_expansion_sum_zeroelim(temp64clen, temp64c, + temp128len, temp128, temp192); + xlen = scale_expansion_zeroelim(temp192len, temp192, cex, detx); + xxlen = scale_expansion_zeroelim(xlen, detx, cex, detxx); + xtlen = scale_expansion_zeroelim(temp192len, temp192, cextail, detxt); + xxtlen = scale_expansion_zeroelim(xtlen, detxt, cex, detxxt); + for (i = 0; i < xxtlen; i++) { + detxxt[i] *= 2.0; + } + xtxtlen = scale_expansion_zeroelim(xtlen, detxt, cextail, detxtxt); + x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1); + x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2); + ylen = scale_expansion_zeroelim(temp192len, temp192, cey, dety); + yylen = scale_expansion_zeroelim(ylen, dety, cey, detyy); + ytlen = scale_expansion_zeroelim(temp192len, temp192, ceytail, detyt); + yytlen = scale_expansion_zeroelim(ytlen, detyt, cey, detyyt); + for (i = 0; i < yytlen; i++) { + detyyt[i] *= 2.0; + } + ytytlen = scale_expansion_zeroelim(ytlen, detyt, ceytail, detytyt); + y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1); + y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2); + zlen = scale_expansion_zeroelim(temp192len, temp192, cez, detz); + zzlen = scale_expansion_zeroelim(zlen, detz, cez, detzz); + ztlen = scale_expansion_zeroelim(temp192len, temp192, ceztail, detzt); + zztlen = scale_expansion_zeroelim(ztlen, detzt, cez, detzzt); + for (i = 0; i < zztlen; i++) { + detzzt[i] *= 2.0; + } + ztztlen = scale_expansion_zeroelim(ztlen, detzt, ceztail, detztzt); + z1len = fast_expansion_sum_zeroelim(zzlen, detzz, zztlen, detzzt, z1); + z2len = fast_expansion_sum_zeroelim(z1len, z1, ztztlen, detztzt, z2); + xylen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, detxy); + clen = fast_expansion_sum_zeroelim(z2len, z2, xylen, detxy, cdet); + + temp32alen = scale_expansion_zeroelim(bclen, bc, aez, temp32a); + temp32blen = scale_expansion_zeroelim(bclen, bc, aeztail, temp32b); + temp64alen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64a); + temp32alen = scale_expansion_zeroelim(aclen, ac, -bez, temp32a); + temp32blen = scale_expansion_zeroelim(aclen, ac, -beztail, temp32b); + temp64blen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64b); + temp32alen = scale_expansion_zeroelim(ablen, ab, cez, temp32a); + temp32blen = scale_expansion_zeroelim(ablen, ab, ceztail, temp32b); + temp64clen = fast_expansion_sum_zeroelim(temp32alen, temp32a, + temp32blen, temp32b, temp64c); + temp128len = fast_expansion_sum_zeroelim(temp64alen, temp64a, + temp64blen, temp64b, temp128); + temp192len = fast_expansion_sum_zeroelim(temp64clen, temp64c, + temp128len, temp128, temp192); + xlen = scale_expansion_zeroelim(temp192len, temp192, dex, detx); + xxlen = scale_expansion_zeroelim(xlen, detx, dex, detxx); + xtlen = scale_expansion_zeroelim(temp192len, temp192, dextail, detxt); + xxtlen = scale_expansion_zeroelim(xtlen, detxt, dex, detxxt); + for (i = 0; i < xxtlen; i++) { + detxxt[i] *= 2.0; + } + xtxtlen = scale_expansion_zeroelim(xtlen, detxt, dextail, detxtxt); + x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1); + x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2); + ylen = scale_expansion_zeroelim(temp192len, temp192, dey, dety); + yylen = scale_expansion_zeroelim(ylen, dety, dey, detyy); + ytlen = scale_expansion_zeroelim(temp192len, temp192, deytail, detyt); + yytlen = scale_expansion_zeroelim(ytlen, detyt, dey, detyyt); + for (i = 0; i < yytlen; i++) { + detyyt[i] *= 2.0; + } + ytytlen = scale_expansion_zeroelim(ytlen, detyt, deytail, detytyt); + y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1); + y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2); + zlen = scale_expansion_zeroelim(temp192len, temp192, dez, detz); + zzlen = scale_expansion_zeroelim(zlen, detz, dez, detzz); + ztlen = scale_expansion_zeroelim(temp192len, temp192, deztail, detzt); + zztlen = scale_expansion_zeroelim(ztlen, detzt, dez, detzzt); + for (i = 0; i < zztlen; i++) { + detzzt[i] *= 2.0; + } + ztztlen = scale_expansion_zeroelim(ztlen, detzt, deztail, detztzt); + z1len = fast_expansion_sum_zeroelim(zzlen, detzz, zztlen, detzzt, z1); + z2len = fast_expansion_sum_zeroelim(z1len, z1, ztztlen, detztzt, z2); + xylen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, detxy); + dlen = fast_expansion_sum_zeroelim(z2len, z2, xylen, detxy, ddet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet); + deterlen = fast_expansion_sum_zeroelim(ablen, abdet, cdlen, cddet, deter); + + return deter[deterlen - 1]; +} + +REAL insphereadapt(pa, pb, pc, pd, pe, permanent) +REAL *pa; +REAL *pb; +REAL *pc; +REAL *pd; +REAL *pe; +REAL permanent; +{ + INEXACT REAL aex, bex, cex, dex, aey, bey, cey, dey, aez, bez, cez, dez; + REAL det, errbound; + + INEXACT REAL aexbey1, bexaey1, bexcey1, cexbey1; + INEXACT REAL cexdey1, dexcey1, dexaey1, aexdey1; + INEXACT REAL aexcey1, cexaey1, bexdey1, dexbey1; + REAL aexbey0, bexaey0, bexcey0, cexbey0; + REAL cexdey0, dexcey0, dexaey0, aexdey0; + REAL aexcey0, cexaey0, bexdey0, dexbey0; + REAL ab[4], bc[4], cd[4], da[4], ac[4], bd[4]; + INEXACT REAL ab3, bc3, cd3, da3, ac3, bd3; + REAL abeps, bceps, cdeps, daeps, aceps, bdeps; + REAL temp8a[8], temp8b[8], temp8c[8], temp16[16], temp24[24], temp48[48]; + int temp8alen, temp8blen, temp8clen, temp16len, temp24len, temp48len; + REAL xdet[96], ydet[96], zdet[96], xydet[192]; + int xlen, ylen, zlen, xylen; + REAL adet[288], bdet[288], cdet[288], ddet[288]; + int alen, blen, clen, dlen; + REAL abdet[576], cddet[576]; + int ablen, cdlen; + REAL fin1[1152]; + int finlength; + + REAL aextail, bextail, cextail, dextail; + REAL aeytail, beytail, ceytail, deytail; + REAL aeztail, beztail, ceztail, deztail; + + INEXACT REAL bvirt; + REAL avirt, bround, around; + INEXACT REAL c; + INEXACT REAL abig; + REAL ahi, alo, bhi, blo; + REAL err1, err2, err3; + INEXACT REAL _i, _j; + REAL _0; + + aex = (REAL) (pa[0] - pe[0]); + bex = (REAL) (pb[0] - pe[0]); + cex = (REAL) (pc[0] - pe[0]); + dex = (REAL) (pd[0] - pe[0]); + aey = (REAL) (pa[1] - pe[1]); + bey = (REAL) (pb[1] - pe[1]); + cey = (REAL) (pc[1] - pe[1]); + dey = (REAL) (pd[1] - pe[1]); + aez = (REAL) (pa[2] - pe[2]); + bez = (REAL) (pb[2] - pe[2]); + cez = (REAL) (pc[2] - pe[2]); + dez = (REAL) (pd[2] - pe[2]); + + Two_Product(aex, bey, aexbey1, aexbey0); + Two_Product(bex, aey, bexaey1, bexaey0); + Two_Two_Diff(aexbey1, aexbey0, bexaey1, bexaey0, ab3, ab[2], ab[1], ab[0]); + ab[3] = ab3; + + Two_Product(bex, cey, bexcey1, bexcey0); + Two_Product(cex, bey, cexbey1, cexbey0); + Two_Two_Diff(bexcey1, bexcey0, cexbey1, cexbey0, bc3, bc[2], bc[1], bc[0]); + bc[3] = bc3; + + Two_Product(cex, dey, cexdey1, cexdey0); + Two_Product(dex, cey, dexcey1, dexcey0); + Two_Two_Diff(cexdey1, cexdey0, dexcey1, dexcey0, cd3, cd[2], cd[1], cd[0]); + cd[3] = cd3; + + Two_Product(dex, aey, dexaey1, dexaey0); + Two_Product(aex, dey, aexdey1, aexdey0); + Two_Two_Diff(dexaey1, dexaey0, aexdey1, aexdey0, da3, da[2], da[1], da[0]); + da[3] = da3; + + Two_Product(aex, cey, aexcey1, aexcey0); + Two_Product(cex, aey, cexaey1, cexaey0); + Two_Two_Diff(aexcey1, aexcey0, cexaey1, cexaey0, ac3, ac[2], ac[1], ac[0]); + ac[3] = ac3; + + Two_Product(bex, dey, bexdey1, bexdey0); + Two_Product(dex, bey, dexbey1, dexbey0); + Two_Two_Diff(bexdey1, bexdey0, dexbey1, dexbey0, bd3, bd[2], bd[1], bd[0]); + bd[3] = bd3; + + temp8alen = scale_expansion_zeroelim(4, cd, bez, temp8a); + temp8blen = scale_expansion_zeroelim(4, bd, -cez, temp8b); + temp8clen = scale_expansion_zeroelim(4, bc, dez, temp8c); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, + temp8blen, temp8b, temp16); + temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c, + temp16len, temp16, temp24); + temp48len = scale_expansion_zeroelim(temp24len, temp24, aex, temp48); + xlen = scale_expansion_zeroelim(temp48len, temp48, -aex, xdet); + temp48len = scale_expansion_zeroelim(temp24len, temp24, aey, temp48); + ylen = scale_expansion_zeroelim(temp48len, temp48, -aey, ydet); + temp48len = scale_expansion_zeroelim(temp24len, temp24, aez, temp48); + zlen = scale_expansion_zeroelim(temp48len, temp48, -aez, zdet); + xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet); + alen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, adet); + + temp8alen = scale_expansion_zeroelim(4, da, cez, temp8a); + temp8blen = scale_expansion_zeroelim(4, ac, dez, temp8b); + temp8clen = scale_expansion_zeroelim(4, cd, aez, temp8c); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, + temp8blen, temp8b, temp16); + temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c, + temp16len, temp16, temp24); + temp48len = scale_expansion_zeroelim(temp24len, temp24, bex, temp48); + xlen = scale_expansion_zeroelim(temp48len, temp48, bex, xdet); + temp48len = scale_expansion_zeroelim(temp24len, temp24, bey, temp48); + ylen = scale_expansion_zeroelim(temp48len, temp48, bey, ydet); + temp48len = scale_expansion_zeroelim(temp24len, temp24, bez, temp48); + zlen = scale_expansion_zeroelim(temp48len, temp48, bez, zdet); + xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet); + blen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, bdet); + + temp8alen = scale_expansion_zeroelim(4, ab, dez, temp8a); + temp8blen = scale_expansion_zeroelim(4, bd, aez, temp8b); + temp8clen = scale_expansion_zeroelim(4, da, bez, temp8c); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, + temp8blen, temp8b, temp16); + temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c, + temp16len, temp16, temp24); + temp48len = scale_expansion_zeroelim(temp24len, temp24, cex, temp48); + xlen = scale_expansion_zeroelim(temp48len, temp48, -cex, xdet); + temp48len = scale_expansion_zeroelim(temp24len, temp24, cey, temp48); + ylen = scale_expansion_zeroelim(temp48len, temp48, -cey, ydet); + temp48len = scale_expansion_zeroelim(temp24len, temp24, cez, temp48); + zlen = scale_expansion_zeroelim(temp48len, temp48, -cez, zdet); + xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet); + clen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, cdet); + + temp8alen = scale_expansion_zeroelim(4, bc, aez, temp8a); + temp8blen = scale_expansion_zeroelim(4, ac, -bez, temp8b); + temp8clen = scale_expansion_zeroelim(4, ab, cez, temp8c); + temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, + temp8blen, temp8b, temp16); + temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c, + temp16len, temp16, temp24); + temp48len = scale_expansion_zeroelim(temp24len, temp24, dex, temp48); + xlen = scale_expansion_zeroelim(temp48len, temp48, dex, xdet); + temp48len = scale_expansion_zeroelim(temp24len, temp24, dey, temp48); + ylen = scale_expansion_zeroelim(temp48len, temp48, dey, ydet); + temp48len = scale_expansion_zeroelim(temp24len, temp24, dez, temp48); + zlen = scale_expansion_zeroelim(temp48len, temp48, dez, zdet); + xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet); + dlen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, ddet); + + ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); + cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet); + finlength = fast_expansion_sum_zeroelim(ablen, abdet, cdlen, cddet, fin1); + + det = estimate(finlength, fin1); + errbound = isperrboundB * permanent; + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + Two_Diff_Tail(pa[0], pe[0], aex, aextail); + Two_Diff_Tail(pa[1], pe[1], aey, aeytail); + Two_Diff_Tail(pa[2], pe[2], aez, aeztail); + Two_Diff_Tail(pb[0], pe[0], bex, bextail); + Two_Diff_Tail(pb[1], pe[1], bey, beytail); + Two_Diff_Tail(pb[2], pe[2], bez, beztail); + Two_Diff_Tail(pc[0], pe[0], cex, cextail); + Two_Diff_Tail(pc[1], pe[1], cey, ceytail); + Two_Diff_Tail(pc[2], pe[2], cez, ceztail); + Two_Diff_Tail(pd[0], pe[0], dex, dextail); + Two_Diff_Tail(pd[1], pe[1], dey, deytail); + Two_Diff_Tail(pd[2], pe[2], dez, deztail); + if ((aextail == 0.0) && (aeytail == 0.0) && (aeztail == 0.0) + && (bextail == 0.0) && (beytail == 0.0) && (beztail == 0.0) + && (cextail == 0.0) && (ceytail == 0.0) && (ceztail == 0.0) + && (dextail == 0.0) && (deytail == 0.0) && (deztail == 0.0)) { + return det; + } + + errbound = isperrboundC * permanent + resulterrbound * Absolute(det); + abeps = (aex * beytail + bey * aextail) + - (aey * bextail + bex * aeytail); + bceps = (bex * ceytail + cey * bextail) + - (bey * cextail + cex * beytail); + cdeps = (cex * deytail + dey * cextail) + - (cey * dextail + dex * ceytail); + daeps = (dex * aeytail + aey * dextail) + - (dey * aextail + aex * deytail); + aceps = (aex * ceytail + cey * aextail) + - (aey * cextail + cex * aeytail); + bdeps = (bex * deytail + dey * bextail) + - (bey * dextail + dex * beytail); + det += (((bex * bex + bey * bey + bez * bez) + * ((cez * daeps + dez * aceps + aez * cdeps) + + (ceztail * da3 + deztail * ac3 + aeztail * cd3)) + + (dex * dex + dey * dey + dez * dez) + * ((aez * bceps - bez * aceps + cez * abeps) + + (aeztail * bc3 - beztail * ac3 + ceztail * ab3))) + - ((aex * aex + aey * aey + aez * aez) + * ((bez * cdeps - cez * bdeps + dez * bceps) + + (beztail * cd3 - ceztail * bd3 + deztail * bc3)) + + (cex * cex + cey * cey + cez * cez) + * ((dez * abeps + aez * bdeps + bez * daeps) + + (deztail * ab3 + aeztail * bd3 + beztail * da3)))) + + 2.0 * (((bex * bextail + bey * beytail + bez * beztail) + * (cez * da3 + dez * ac3 + aez * cd3) + + (dex * dextail + dey * deytail + dez * deztail) + * (aez * bc3 - bez * ac3 + cez * ab3)) + - ((aex * aextail + aey * aeytail + aez * aeztail) + * (bez * cd3 - cez * bd3 + dez * bc3) + + (cex * cextail + cey * ceytail + cez * ceztail) + * (dez * ab3 + aez * bd3 + bez * da3))); + if ((det >= errbound) || (-det >= errbound)) { + return det; + } + + return insphereexact(pa, pb, pc, pd, pe); +} + +REAL insphere(pa, pb, pc, pd, pe) +REAL *pa; +REAL *pb; +REAL *pc; +REAL *pd; +REAL *pe; +{ + REAL aex, bex, cex, dex; + REAL aey, bey, cey, dey; + REAL aez, bez, cez, dez; + REAL aexbey, bexaey, bexcey, cexbey, cexdey, dexcey, dexaey, aexdey; + REAL aexcey, cexaey, bexdey, dexbey; + REAL alift, blift, clift, dlift; + REAL ab, bc, cd, da, ac, bd; + REAL abc, bcd, cda, dab; + REAL aezplus, bezplus, cezplus, dezplus; + REAL aexbeyplus, bexaeyplus, bexceyplus, cexbeyplus; + REAL cexdeyplus, dexceyplus, dexaeyplus, aexdeyplus; + REAL aexceyplus, cexaeyplus, bexdeyplus, dexbeyplus; + REAL det; + REAL permanent, errbound; + + aex = pa[0] - pe[0]; + bex = pb[0] - pe[0]; + cex = pc[0] - pe[0]; + dex = pd[0] - pe[0]; + aey = pa[1] - pe[1]; + bey = pb[1] - pe[1]; + cey = pc[1] - pe[1]; + dey = pd[1] - pe[1]; + aez = pa[2] - pe[2]; + bez = pb[2] - pe[2]; + cez = pc[2] - pe[2]; + dez = pd[2] - pe[2]; + + aexbey = aex * bey; + bexaey = bex * aey; + ab = aexbey - bexaey; + bexcey = bex * cey; + cexbey = cex * bey; + bc = bexcey - cexbey; + cexdey = cex * dey; + dexcey = dex * cey; + cd = cexdey - dexcey; + dexaey = dex * aey; + aexdey = aex * dey; + da = dexaey - aexdey; + + aexcey = aex * cey; + cexaey = cex * aey; + ac = aexcey - cexaey; + bexdey = bex * dey; + dexbey = dex * bey; + bd = bexdey - dexbey; + + abc = aez * bc - bez * ac + cez * ab; + bcd = bez * cd - cez * bd + dez * bc; + cda = cez * da + dez * ac + aez * cd; + dab = dez * ab + aez * bd + bez * da; + + alift = aex * aex + aey * aey + aez * aez; + blift = bex * bex + bey * bey + bez * bez; + clift = cex * cex + cey * cey + cez * cez; + dlift = dex * dex + dey * dey + dez * dez; + + det = (dlift * abc - clift * dab) + (blift * cda - alift * bcd); + + aezplus = Absolute(aez); + bezplus = Absolute(bez); + cezplus = Absolute(cez); + dezplus = Absolute(dez); + aexbeyplus = Absolute(aexbey); + bexaeyplus = Absolute(bexaey); + bexceyplus = Absolute(bexcey); + cexbeyplus = Absolute(cexbey); + cexdeyplus = Absolute(cexdey); + dexceyplus = Absolute(dexcey); + dexaeyplus = Absolute(dexaey); + aexdeyplus = Absolute(aexdey); + aexceyplus = Absolute(aexcey); + cexaeyplus = Absolute(cexaey); + bexdeyplus = Absolute(bexdey); + dexbeyplus = Absolute(dexbey); + permanent = ((cexdeyplus + dexceyplus) * bezplus + + (dexbeyplus + bexdeyplus) * cezplus + + (bexceyplus + cexbeyplus) * dezplus) + * alift + + ((dexaeyplus + aexdeyplus) * cezplus + + (aexceyplus + cexaeyplus) * dezplus + + (cexdeyplus + dexceyplus) * aezplus) + * blift + + ((aexbeyplus + bexaeyplus) * dezplus + + (bexdeyplus + dexbeyplus) * aezplus + + (dexaeyplus + aexdeyplus) * bezplus) + * clift + + ((bexceyplus + cexbeyplus) * aezplus + + (cexaeyplus + aexceyplus) * bezplus + + (aexbeyplus + bexaeyplus) * cezplus) + * dlift; + errbound = isperrboundA * permanent; + if ((det > errbound) || (-det > errbound)) { + return det; + } + + return insphereadapt(pa, pb, pc, pd, pe, permanent); +} diff --git a/python/framework/predicates.h b/python/framework/predicates.h new file mode 100644 index 0000000..a5334af --- /dev/null +++ b/python/framework/predicates.h @@ -0,0 +1,4 @@ +double orient2d(pa, pb, pc); +double *pa; +double *pb; +double *pc; diff --git a/python/framework/seidel.pxi b/python/framework/seidel.pxi new file mode 100644 index 0000000..2b7a18a --- /dev/null +++ b/python/framework/seidel.pxi @@ -0,0 +1,636 @@ +# +# Poly2Tri +# Copyright (c) 2009, Mason Green +# http://code.google.com/p/poly2tri/ +# +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without modification, +# are permitted provided that the following conditions are met: +# +# Redistributions of source code must retain the above copyright notice, +# self list of conditions and the following disclaimer. +# Redistributions in binary form must reproduce the above copyright notice, +# self list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# Neither the name of Poly2Tri nor the names of its contributors may be +# used to endorse or promote products derived from self software without specific +# prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR +# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +# +from random import shuffle + +## +## Based on Raimund Seidel'e paper "A simple and fast incremental randomized +## algorithm for computing trapezoidal decompositions and for triangulating polygons" +## (Ported from poly2tri) +## + +# Shear transform. May effect numerical robustness +SHEAR = 1e-6 + +cdef extern from 'math.h': + double atan2(double, double) + +cdef extern from 'predicates.h': + double orient2d(double *pa, double *pb, double *pc) + +class Point(object): + + def __init__(self, x, y): + self.x = x + self.y = y + self.next, self.prev = None, None + + def __sub__(self, other): + if isinstance(other, Point): + return Point(self.x - other.x, self.y - other.y) + else: + return Point(self.x - other, self.y - other) + + def __add__(self, other): + if isinstance(other, Point): + return Point(self.x + other.x, self.y + other.y) + else: + return Point(self.x + other, self.y + other) + + def __mul__(self, f): + return Point(self.x * f, self.y * f) + + def __div__(self, a): + return Point(self.x / a, self.y / a) + + def cross(self, p): + return self.x * p.y - self.y * p.x + + def dot(self, p): + return self.x * p.x + self.y * p.y + + def length(self): + return sqrt(self.x * self.x + self.y * self.y) + + def normalize(self): + return self / self.length() + + def less(self, p): + return self.x < p.x + + def neq(self, other): + return other.x != self.x or other.y != self.y + + def clone(self): + return Point(self.x, self.y) + +class Edge(object): + + def __init__(self, p, q): + self.p = p + self.q = q + self.slope = (q.y - p.y) / (q.x - p.x) + self.b = p.y - (p.x * self.slope) + self.above, self.below = None, None + self.mpoints = [] + self.mpoints.append(p) + self.mpoints.append(q) + + ## + ## NOTE Rounding accuracy significantly effects numerical robustness!!! + ## + + def is_above(self, point): + cdef double *a = [self.p.x, self.p.y] + cdef double *b = [self.q.x, self.q.y] + cdef double *c = [point.x, point.y] + return orient2d(a, b, c) < 0 + + def is_below(self, point): + cdef double *a = [self.p.x, self.p.y] + cdef double *b = [self.q.x, self.q.y] + cdef double *c = [point.x, point.y] + return orient2d(a, b, c) > 0 + + def intersect(self, c, d): + a = self.p + b = self.q + a1 = self.signed_area(a, b, d) + a2 = self.signed_area(a, b, c) + if a1 != 0.0 and a2 != 0.0 and (a1 * a2) < 0.0: + a3 = self.signed_area(c, d, a) + a4 = a3 + a2 - a1 + if a3 * a4 < 0.0: + t = a3 / (a3 - a4) + return a + ((b - a) * t) + return 0.0 + + def signed_area(self, a, b, c): + return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x) + +class Trapezoid(object): + + def __init__(self, left_point, right_point, top, bottom): + self.left_point = left_point + self.right_point = right_point + self.top = top + self.bottom = bottom + self.upper_left = None + self.upper_right = None + self.lower_left = None + self.lower_right = None + self.inside = True + self.sink = None + self.key = hash(self) + + def update_left(self, ul, ll): + self.upper_left = ul + if ul != None: ul.upper_right = self + self.lower_left = ll + if ll != None: ll.lower_right = self + + def update_right(self, ur, lr): + self.upper_right = ur + if ur != None: ur.upper_left = self + self.lower_right = lr + if lr != None: lr.lower_left = self + + def update_left_right(self, ul, ll, ur, lr): + self.upper_left = ul + if ul != None: ul.upper_right = self + self.lower_left = ll + if ll != None: ll.lower_right = self + self.upper_right = ur + if ur != None: ur.upper_left = self + self.lower_right = lr + if lr != None: lr.lower_left = self + + def trim_neighbors(self): + if self.inside: + self.inside = False + if self.upper_left != None: self.upper_left.trim_neighbors() + if self.lower_left != None: self.lower_left.trim_neighbors() + if self.upper_right != None: self.upper_right.trim_neighbors() + if self.lower_right != None: self.lower_right.trim_neighbors() + + def contains(self, point): + return (point.x > self.left_point.x and point.x < self.right_point.x and + self.top.is_above(point) and self.bottom.is_below(point)) + + def vertices(self): + v1 = line_intersect(self.top, self.left_point.x) + v2 = line_intersect(self.bottom, self.left_point.x) + v3 = line_intersect(self.bottom, self.right_point.x) + v4 = line_intersect(self.top, self.right_point.x) + return v1, v2, v3, v4 + + def add_points(self): + if self.left_point != self.bottom.p: + self.bottom.mpoints.append(self.left_point.clone()) + if self.right_point != self.bottom.q: + self.bottom.mpoints.append(self.right_point.clone()) + if self.left_point != self.top.p: + self.top.mpoints.append(self.left_point.clone()) + if self.right_point != self.top.q: + self.top.mpoints.append(self.right_point.clone()) + +def line_intersect(edge, x): + y = edge.slope * x + edge.b + return x, y + +class Triangulator(object): + + def __init__(self, poly_line): + assert len(poly_line) > 3, "Number of points must be > 3" + self.polygons = [] + self.trapezoids = [] + self.xmono_poly = [] + self.edge_list = self.init_edges(poly_line) + self.trapezoidal_map = TrapezoidalMap() + self.bounding_box = self.trapezoidal_map.bounding_box(self.edge_list) + self.query_graph = QueryGraph(isink(self.bounding_box)) + + self.process() + + def triangles(self): + triangles = [] + for p in self.polygons: + verts = [] + for v in p: + verts.append((v.x, v.y)) + triangles.append(verts) + return triangles + + def trapezoid_map(self): + return self.trapezoidal_map.map + + # Build the trapezoidal map and query graph + def process(self): + for edge in self.edge_list: + traps = self.query_graph.follow_edge(edge) + for t in traps: + # Remove old trapezods + del self.trapezoidal_map.map[t.key] + # Bisect old trapezoids and create new + cp = t.contains(edge.p) + cq = t.contains(edge.q) + if cp and cq: + tlist = self.trapezoidal_map.case1(t, edge) + self.query_graph.case1(t.sink, edge, tlist) + elif cp and not cq: + tlist = self.trapezoidal_map.case2(t, edge) + self.query_graph.case2(t.sink, edge, tlist) + elif not cp and not cq: + tlist = self.trapezoidal_map.case3(t, edge) + self.query_graph.case3(t.sink, edge, tlist) + else: + tlist = self.trapezoidal_map.case4(t, edge) + self.query_graph.case4(t.sink, edge, tlist) + # Add new trapezoids to map + for t in tlist: + self.trapezoidal_map.map[t.key] = t + self.trapezoidal_map.clear() + + # Mark outside trapezoids w/ depth-first search + for k, t in self.trapezoidal_map.map.items(): + self.mark_outside(t) + + # Collect interior trapezoids + for k, t in self.trapezoidal_map.map.items(): + if t.inside: + self.trapezoids.append(t) + t.add_points() + + # Generate the triangles + self.create_mountains() + + def mono_polies(self): + polies = [] + for x in self.xmono_poly: + polies.append(x.monoPoly) + return polies + + def create_mountains(self): + for edge in self.edge_list: + if len(edge.mpoints) > 2: + mountain = MonotoneMountain() + points = merge_sort(edge.mpoints) + for p in points: + mountain.add(p) + mountain.process() + for t in mountain.triangles: + self.polygons.append(t) + self.xmono_poly.append(mountain) + + def mark_outside(self, t): + if t.top is self.bounding_box.top or t.bottom is self.bounding_box.bottom: + t.trim_neighbors() + + def init_edges(self, points): + edge_list = [] + size = len(points) + for i in range(size): + j = i + 1 if i < size-1 else 0 + p = points[i][0], points[i][1] + q = points[j][0], points[j][1] + edge_list.append((p, q)) + return self.order_edges(edge_list) + + def order_edges(self, edge_list): + edges = [] + for e in edge_list: + p = shear_transform(e[0]) + q = shear_transform(e[1]) + if p.x > q.x: + edges.append(Edge(q, p)) + else: + edges.append(Edge(p, q)) + # Randomized incremental algorithm + shuffle(edges) + return edges + +def shear_transform(point): + return Point(point[0] + SHEAR * point[1], point[1]) + +def merge_sort(l): + if len(l)>1 : + lleft = merge_sort(l[:len(l)/2]) + lright = merge_sort(l[len(l)/2:]) + p1, p2, p = 0, 0, 0 + while p1 max.x: max = Point(e.p.x + margin, max.y) + if e.p.y > max.y: max = Point(max.x, e.p.y + margin) + if e.q.x > max.x: max = Point(e.q.x + margin, max.y) + if e.q.y > max.y: max = Point(max.x, e.q.y + margin) + if e.p.x < min.x: min = Point(e.p.x - margin, min.y) + if e.p.y < min.y: min = Point(min.x, e.p.y - margin) + if e.q.x < min.x: min = Point(e.q.x - margin, min.y) + if e.q.y < min.y: min = Point(min.x, e.q.y - margin) + top = Edge(Point(min.x, max.y), Point(max.x, max.y)) + bottom = Edge(Point(min.x, min.y), Point(max.x, min.y)) + left = top.p + right = top.q + trap = Trapezoid(left, right, top, bottom) + self.map[trap.key] = trap + return trap + +class Node(object): + + def __init__(self, lchild, rchild): + self.parent_list = [] + self.lchild = lchild + self.rchild = rchild + if lchild != None: + lchild.parent_list.append(self) + if rchild != None: + rchild.parent_list.append(self) + + def replace(self, node): + for parent in node.parent_list: + if parent.lchild is node: + parent.lchild = self + else: + parent.rchild = self + self.parent_list += node.parent_list + +class Sink(Node): + + def __init__(self, trapezoid): + super(Sink, self).__init__(None, None) + self.trapezoid = trapezoid + trapezoid.sink = self + + def locate(self, edge): + return self + +def isink(trapezoid): + if trapezoid.sink is None: + return Sink(trapezoid) + return trapezoid.sink + +class XNode(Node): + + def __init__(self, point, lchild, rchild): + super(XNode, self).__init__(lchild, rchild) + self.point = point + + def locate(self, edge): + if edge.p.x >= self.point.x: + return self.rchild.locate(edge) + return self.lchild.locate(edge) + +class YNode(Node): + + def __init__(self, edge, lchild, rchild): + super(YNode, self).__init__(lchild, rchild) + self.edge = edge + + def locate(self, edge): + if self.edge.is_above(edge.p): + return self.rchild.locate(edge) + if self.edge.is_below(edge.p): + return self.lchild.locate(edge) + if edge.slope < self.edge.slope: + return self.rchild.locate(edge) + return self.lchild.locate(edge) + +class QueryGraph: + + def __init__(self, head): + self.head = head + + def locate(self, edge): + return self.head.locate(edge).trapezoid + + def follow_edge(self, edge): + trapezoids = [self.locate(edge)] + while(edge.q.x > trapezoids[-1].right_point.x): + if edge.is_above(trapezoids[-1].right_point): + trapezoids.append(trapezoids[-1].upper_right) + else: + trapezoids.append(trapezoids[-1].lower_right) + return trapezoids + + def replace(self, sink, node): + if sink.parent_list: + node.replace(sink) + else: + self.head = node + + def case1(self, sink, edge, tlist): + yNode = YNode(edge, isink(tlist[1]), isink(tlist[2])) + qNode = XNode(edge.q, yNode, isink(tlist[3])) + pNode = XNode(edge.p, isink(tlist[0]), qNode) + self.replace(sink, pNode) + + def case2(self, sink, edge, tlist): + yNode = YNode(edge, isink(tlist[1]), isink(tlist[2])) + pNode = XNode(edge.p, isink(tlist[0]), yNode) + self.replace(sink, pNode) + + def case3(self, sink, edge, tlist): + yNode = YNode(edge, isink(tlist[0]), isink(tlist[1])) + self.replace(sink, yNode) + + def case4(self, sink, edge, tlist): + yNode = YNode(edge, isink(tlist[0]), isink(tlist[1])) + qNode = XNode(edge.q, yNode, isink(tlist[2])) + self.replace(sink, qNode) + +PI_SLOP = 3.1 + +class MonotoneMountain: + + def __init__(self): + self.size = 0 + self.tail = None + self.head = None + self.positive = False + self.convex_points = [] + self.mono_poly = [] + self.triangles = [] + self.convex_polies = [] + + def add(self, point): + if self.size is 0: + self.head = point + self.size = 1 + elif self.size is 1: + if point.neq(self.head): + self.tail = point + self.tail.prev = self.head + self.head.next = self.tail + self.size = 2 + else: + if point.neq(self.tail): + self.tail.next = point + point.prev = self.tail + self.tail = point + self.size += 1 + + def remove(self, point): + next = point.next + prev = point.prev + point.prev.next = next + point.next.prev = prev + self.size -= 1 + + def process(self): + self.positive = self.angle_sign() + self.gen_mono_poly() + p = self.head.next + while p != self.tail: + a = self.angle(p) + if a >= PI_SLOP or a <= -PI_SLOP or a == 0: + self.remove(p) + elif self.is_convex(p): + self.convex_points.append(p) + p = p.next + self.triangulate() + + def triangulate(self): + while self.convex_points: + ear = self.convex_points.pop(0) + a = ear.prev + b = ear + c = ear.next + triangle = (a, b, c) + self.triangles.append(triangle) + self.remove(ear) + if self.valid(a): + self.convex_points.append(a) + if self.valid(c): + self.convex_points.append(c) + #assert self.size <= 3, "Triangulation bug, please report" + + def valid(self, p): + return p != self.head and p != self.tail and self.is_convex(p) + + def gen_mono_poly(self): + p = self.head + while(p != None): + self.mono_poly.append(p) + p = p.next + + def angle(self, p): + a = p.next - p + b = p.prev - p + return atan2(a.cross(b), a.dot(b)) + + def angle_sign(self): + a = self.head.next - self.head + b = self.tail - self.head + return atan2(a.cross(b), a.dot(b)) >= 0 + + def is_convex(self, p): + if self.positive != (self.angle(p) >= 0): + return False + return True \ No newline at end of file diff --git a/python/poly2tri.py b/python/poly2tri.py index dc7c30d..e0818ed 100644 --- a/python/poly2tri.py +++ b/python/poly2tri.py @@ -1,7 +1,5 @@ #!/usr/bin/env python2.6 -from framework import Game, draw_polygon, reset_zoom, draw_line, decompose_poly, makeCCW - -from seidel import Triangulator +from framework import Game, draw_polygon, reset_zoom, draw_line, decompose_poly, make_ccw, Triangulator class Poly2Tri(Game): @@ -21,7 +19,7 @@ class Poly2Tri(Game): [243.61129,330.48653],[245.21844,335.12939],[245.03987,344.4151],[229.86129,349.4151],[209.14701,362.09367], [192.89701,377.80796],[177.18272,402.27225],[172.36129,413.87939],[169.14701,430.48653],[168.61129,458.52225], [168.61129,492.80796]] - + test = [[235.04275999999999, 739.07534999999996], [218.13066000000001, 719.73902999999996], [218.15215000000001, 709.96821], [218.17362, 700.19740000000002], [243.15215000000001, 685.27858000000003], [268.13065, 670.35974999999996], [268.13065, 660.81429000000003], [268.13065, 651.26882999999998], @@ -35,7 +33,79 @@ class Poly2Tri(Game): [310.51454999999999, 738.41168000000005], [260.98779999999999, 738.41168000000005], [260.98779999999999, 748.41168000000005], [260.98779999999999, 758.41168000000005], [256.47133000000002, 758.41168000000005], [251.95484999999999, 758.41168000000005]] - + + test2 = [[101.25, 1006.8145], [-0.0, 869.65629999999999], [0.012800000000000001, 630.57820000000004], + [0.025600000000000001, 391.5], [13.7628, 385.74239999999998], [20.536000000000001, 382.96260000000001], + [26.871200000000002, 380.49279999999999],[32.864100000000001, 378.30540000000002], + [38.610700000000001, 376.37279999999998], [44.206600000000002, 374.66730000000001], + [49.747799999999998, 373.16129999999998], [55.329900000000002, 371.82709999999997], + [61.0488, 370.63720000000001],[67.000299999999996, 369.56400000000002], [73.280299999999997, 368.5797], + [77.521299999999997, 368.07459999999998], [82.578500000000005, 367.66539999999998], + [88.263199999999998, 367.35390000000001], [94.386899999999997, 367.14170000000001], + [100.7611, 367.0308], [107.1972, 367.02269999999999], [113.5067, 367.11930000000001], + [119.5009, 367.32229999999998], [124.9913, 367.63339999999999], [129.7894, 368.05450000000002], + [136.77860000000001, 368.94200000000001], [143.9999, 370.10390000000001], [151.3793, 371.52069999999998], + [158.84270000000001, 373.17270000000002], [166.3159, 375.04050000000001], [173.72499999999999, 377.10449999999997], + [180.9957, 379.34500000000003], [188.0539, 381.74250000000001], [194.82570000000001, 384.27749999999997], + [201.23679999999999, 386.93029999999999], [212.5, 391.83980000000003], [212.08760000000001, 550.41989999999998], + [211.67509999999999, 709.0], [274.00200000000001, 709.0], [336.3288, 709.0], [335.66520000000003, 636.25], + [335.55739999999997, 623.91790000000003], [335.45409999999998, 611.09199999999998], [335.3569, 598.0163], + [335.267, 584.93499999999995], [335.18599999999998, 572.09220000000005], [335.11540000000002, 559.73199999999997], + [335.0566, 548.09860000000003], [335.0111, 537.43600000000004], [334.98039999999997, 527.98839999999996], + [334.96589999999998, 520.0], [334.93029999999999, 476.5], [264.0222, 418.0], [193.114, 359.5], + [193.05699999999999, 295.4984], [193.0, 231.49680000000001], [308.7516, 115.7484], [424.50319999999999, 0.0], + [430.71390000000002, -0.0], [436.9246, -0.0], [458.9753, 20.0], [481.02589999999998, 40.0], + [558.38530000000003, 40.0], [635.74469999999997, 40.0], [660.50120000000004, 19.9588], + [685.25779999999997, -0.082400000000000001], [692.0471, 0.20880000000000001], + [698.8365, 0.5], [809.42550000000006, 115.9161], [920.01459999999997, 231.3321], [919.75729999999999, 295.3526], + [919.5, 359.37310000000002], [850.31790000000001, 416.4366], [781.13589999999999, 473.5], + [781.06790000000001, 593.7577], [781.0, 714.0154], [842.25, 713.7577], [903.5, 713.5], [903.5, 552.5], [903.5, 391.5], + [915.5, 386.2894], [925.01319999999998, 382.34390000000002], [934.29579999999999, 378.88010000000003], + [943.42060000000004, 375.8827], [952.46050000000002,373.33629999999999], [961.48839999999996, 371.22570000000002], + [970.57719999999995, 369.53559999999999], [979.79989999999998, 368.25069999999999], + [989.22929999999997, 367.35570000000001], [998.9384, 366.83539999999999], [1009.0, 366.67430000000002], + [1018.876, 366.87939999999998], [1028.7419, 367.4649], [1038.5688, 368.42529999999999], + [1048.3277, 369.75490000000002], [1057.9897000000001, 371.44799999999998], [1067.5259000000001, 373.49900000000002], + [1076.9074000000001, 375.90219999999999], [1086.1052, 378.65210000000002], [1095.0904, 381.74290000000002], + [1103.8340000000001, 385.16899999999998], [1105.4327000000001, 385.83539999999999], + [1107.0215000000001, 386.49689999999998], [1108.5744999999999, 387.1429], [1110.0654999999999, 387.76240000000001], + [1111.4684, 388.34469999999999], [1112.7573, 388.87900000000002], [1113.9059, 389.3544], + [1114.8883000000001, 389.76010000000002], [1115.6784, 390.08530000000002], [1116.25, 390.3193], + [1119.0, 391.43849999999998], [1118.9577999999999, 633.4692], [1118.9155000000001, 875.5],[1016.0895, 1009.5], + [913.26340000000005, 1143.5], [908.63170000000002, 1143.8047999999999], [904.0, 1144.1096], [904.0, 993.0548], + [904.0, 842.0], [842.5, 842.0], [781.0, 842.0], [781.0, 918.5], [781.0, 995.0], [758.5, 995.0], + [753.20910000000003, 995.00739999999996], [748.79459999999995, 995.03269999999998], + [745.18129999999996, 995.08109999999999], [742.29399999999998, 995.15729999999996], + [740.05730000000005, 995.26639999999998], [738.39599999999996, 995.41330000000005], + [737.23490000000004, 995.60289999999998], [736.49869999999999, 995.84010000000001], + [736.11210000000005, 996.13], [736.0, 996.47739999999999], [736.09749999999997, 996.82140000000004], + [736.42740000000003, 997.11329999999998], [737.04610000000002, 997.3587], [738.01009999999997, 997.56290000000001], + [739.37559999999996, 997.73140000000001], [741.19910000000004, 997.86959999999999], [743.53679999999997, 997.9828], + [746.44510000000002, 998.07659999999998], [749.98040000000003,998.15629999999999], + [754.19910000000004, 998.22739999999999], [772.39829999999995, 998.5], [823.72850000000005, 1071.0], + [875.05859999999996, 1143.5], [558.86419999999998, 1143.7516000000001], [507.74619999999999, 1143.787], + [459.17950000000002, 1143.8106], [413.82889999999998, 1143.8226], [372.35939999999999, 1143.8232], + [335.43560000000002, 1143.8130000000001], [303.7226, 1143.7919999999999], [277.88499999999999, 1143.7606000000001], + [258.58789999999999, 1143.7192], [246.49590000000001, 1143.6679999999999], [242.2739, 1143.6072999999999], + [244.95830000000001, 1139.4844000000001], [252.41210000000001, 1128.4439], [263.45999999999998, 1112.2019], + [276.92660000000001, 1092.4740999999999], [291.63650000000001, 1070.9766], [306.41430000000003, 1049.4251999999999], + [320.0847, 1029.5360000000001], [331.47219999999999, 1013.0247000000001], [339.4015, 1001.6074], + [342.69729999999998, 997.0], [342.98259999999999, 996.91470000000004], [343.6619, 996.82510000000002], + [344.70080000000002, 996.7328], [346.06450000000001, 996.63959999999997], [347.71870000000001, 996.54729999999995], + [349.62880000000001, 996.45770000000005], [351.76029999999997, 996.37249999999995], + [354.07859999999999, 996.29349999999999], [356.54919999999998, 996.22249999999997], [359.1377, 996.16110000000003], + [363.04469999999998, 996.07169999999996], [366.26229999999998, 995.97929999999997], + [368.85410000000002, 995.87580000000003], [370.88319999999999, 995.75319999999999], + [372.41320000000002, 995.60320000000002], [373.50729999999999,995.41790000000003], + [374.22899999999998, 995.18920000000003], [374.64159999999998, 994.90880000000004], + [374.80860000000001, 994.56889999999999], [374.79329999999999, 994.16110000000003], + [374.63619999999997, 993.7568], [374.2833, 993.4194], [373.65809999999999, 993.14160000000004], + [372.6841, 992.91570000000002], [371.28500000000003, 992.73419999999999], [369.3843, 992.58960000000002], + [366.90559999999999, 992.47429999999997], [363.77249999999998, 992.38059999999996], + [359.90839999999997, 992.30119999999999], [355.2371, 992.22839999999997], [336.0, 991.95680000000004], + [336.0, 914.97839999999997], [336.0, 838.0], [274.0, 838.0], [212.0, 838.0], [212.0, 991.0], [212.0, 1144.0], + [207.25, 1143.9864], [202.5, 1143.9727]] + def __init__(self): super(Poly2Tri, self).__init__(*self.screen_size) @@ -56,22 +126,13 @@ class Poly2Tri(Game): for p in self.dude: p[0] -= 75 - - makeCCW(self.dude) - self.dude_poly = [] - t1 = self.time - decompose_poly(self.dude, self.dude_poly) - dt = (self.time - t1) * 1000.0 - print "time (ms) = %f , num polies = %d" % (dt, len(self.dude_poly)) - spam = [] - makeCCW(self.test) - clean = [] - for t in self.test: - x = round(t[0], 0) - y = round(t[1], 0) - clean.append([x,y]) - decompose_poly(clean, spam) + make_ccw(self.dude) + self.decomp_poly = [] + t1 = self.time + decompose_poly(self.dude, self.decomp_poly) + dt = (self.time - t1) * 1000.0 + print "time (ms) = %f , num polies = %d" % (dt, len(self.decomp_poly)) self.main_loop() @@ -79,16 +140,16 @@ class Poly2Tri(Game): pass def render(self): - reset_zoom(2.2, (300, 450), self.screen_size) + reset_zoom(2.0, (300, 450), self.screen_size) red = 255, 0, 0 yellow = 255, 255, 0 green = 0, 255, 0 for t in self.triangles: draw_polygon(t, red) - for p in self.dude_poly: + for p in self.decomp_poly: draw_polygon(p, red) - + ''' for t in self.trapezoids: verts = self.trapezoids[t].vertices() @@ -99,8 +160,6 @@ class Poly2Tri(Game): p1 = e.p.x, e.p.y p2 = e.q.x, e.q.y draw_line(p1, p2, green) - - #draw_polygon(self.points, green) def load_points(self, file_name): @@ -113,9 +172,6 @@ class Poly2Tri(Game): break points.append((float(s[0]), float(s[1]))) return points - -spam = (544.80998999999997, 579.86046999999996), (544.80998999999997, 450.57477), (594.09569999999997, 450.57477), (643.38142000000005, 450.57477), (643.38142000000005, 525.26486999999997), (643.38142000000005, 599.95487000000003), (603.67391999999995, 654.55056999999999), (563.96655999999996, 709.14621999999997), (554.38819999999998, 709.14621999999997), (544.80998999999997, 709.14621999999997) -eggs = [474.80999000000003, 555.15656999999999], [474.80999000000003, 530.87086999999997], [509.09570000000002, 530.87086999999997], [543.38142000000005, 530.87086999999997], [543.38142000000005, 555.15656999999999], [543.38142000000005, 579.44227000000001], [509.09570000000002, 579.44227000000001], [474.80999000000003, 579.44227000000001] - + if __name__ == '__main__': demo = Poly2Tri() \ No newline at end of file diff --git a/python/setup.py b/python/setup.py index 113ffdb..f48de47 100644 --- a/python/setup.py +++ b/python/setup.py @@ -9,7 +9,7 @@ from Cython.Distutils import build_ext version = '0.1' -sourcefiles = ['framework/framework.pyx'] +sourcefiles = ['framework/framework.pyx', 'framework/predicates.c'] # Platform-dependent submodules