mirror of
https://github.com/jhasse/poly2tri.git
synced 2024-11-19 12:06:09 +01:00
705 lines
23 KiB
Cython
705 lines
23 KiB
Cython
#
|
|
# Poly2Tri
|
|
# Copyright (c) 2009, Mason Green
|
|
# http://code.google.com/p/poly2tri/
|
|
#
|
|
# All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without modification,
|
|
# are permitted provided that the following conditions are met:
|
|
#
|
|
# Redistributions of source code must retain the above copyright notice,
|
|
# self list of conditions and the following disclaimer.
|
|
# Redistributions in binary form must reproduce the above copyright notice,
|
|
# self list of conditions and the following disclaimer in the documentation
|
|
# and/or other materials provided with the distribution.
|
|
# Neither the name of Poly2Tri nor the names of its contributors may be
|
|
# used to endorse or promote products derived from self software without specific
|
|
# prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
from random import shuffle
|
|
|
|
###
|
|
### Based on Raimund Seidel'e paper "A simple and fast incremental randomized
|
|
### algorithm for computing trapezoidal decompositions and for triangulating polygons"
|
|
### (Ported from poly2tri)
|
|
|
|
cdef extern from 'math.h':
|
|
double cos(double)
|
|
double sin(double)
|
|
double atan2(double, double)
|
|
double floor(double)
|
|
double sqrt(double)
|
|
|
|
class Triangulator:
|
|
|
|
def __init__(self, points):
|
|
self.polygons = []
|
|
self.edge_list = self.init_edges(points)
|
|
self.trapezoids = []
|
|
self.trapezoidal_map = TrapezoidalMap()
|
|
bounding_box = self.trapezoidal_map.bounding_box(self.edge_list)
|
|
self.query_graph = QueryGraph(Sink(bounding_box))
|
|
self.xmono_poly = []
|
|
self.process()
|
|
|
|
def trapezoidMap(self):
|
|
return self.trapezoidal_map.map
|
|
|
|
# Build the trapezoidal map and query graph
|
|
def process(self):
|
|
for e in self.edge_list:
|
|
traps = self.query_graph.follow_edge(e)
|
|
for t in traps:
|
|
try:
|
|
self.trapezoidal_map.map.remove(t)
|
|
except:
|
|
pass
|
|
for t in traps:
|
|
tlist = []
|
|
cp = t.contains(e.p)
|
|
cq = t.contains(e.q)
|
|
if cp and cq:
|
|
tlist = self.trapezoidal_map.case1(t, e)
|
|
self.query_graph.case1(t.sink, e, tlist)
|
|
elif cp and not cq:
|
|
tlist = self.trapezoidal_map.case2(t, e)
|
|
self.query_graph.case2(t.sink, e, tlist)
|
|
elif not cp and not cq:
|
|
tlist = self.trapezoidal_map.case3(t, e)
|
|
self.query_graph.case3(t.sink, e, tlist)
|
|
else:
|
|
tlist = self.trapezoidal_map.case4(t, e)
|
|
self.query_graph.case4(t.sink, e, tlist)
|
|
|
|
# Add new trapezoids to map
|
|
for t in tlist:
|
|
self.trapezoidal_map.map.append(t)
|
|
|
|
self.trapezoidal_map.clear()
|
|
|
|
# Mark outside trapezoids
|
|
for t in self.trapezoidal_map.map:
|
|
self.mark_outside(t)
|
|
|
|
# Collect interior trapezoids
|
|
for t in self.trapezoidal_map.map:
|
|
if t.inside():
|
|
self.trapezoids.append(t)
|
|
t.add_points()
|
|
|
|
self.create_mountains()
|
|
|
|
def mono_polies(self):
|
|
polies = []
|
|
for x in self.xmono_poly:
|
|
polies.append(x.monoPoly)
|
|
return polies
|
|
|
|
def create_mountains(self):
|
|
for s in self.edge_list:
|
|
if len(s.mpoints) > 0:
|
|
mountain = MonotoneMountain()
|
|
k = merge_sort(s.mpoints)
|
|
points = [s.p] + k + [s.q]
|
|
for p in points:
|
|
mountain.append(p)
|
|
mountain.process()
|
|
for t in mountain.triangles:
|
|
self.polygons.append(t)
|
|
self.xmono_poly.append(mountain)
|
|
|
|
def mark_outside(self, t):
|
|
if t.top is self.bounding_box.top or t.bottom is self.bounding_box.bottom:
|
|
t.trimNeighbors()
|
|
|
|
def init_edges(self, points):
|
|
edges = []
|
|
for i in range(len(points)-1):
|
|
edges.append(Edge(points[i], points[i+1]))
|
|
edges.append(Edge(points[0], points[-1]))
|
|
return self.order_edges(edges)
|
|
|
|
def order_edges(self, edges):
|
|
segs = []
|
|
for s in edges:
|
|
p = self.shearTransform(s.p)
|
|
q = self.shearTransform(s.q)
|
|
if p.x > q.x: segs.append(Edge(q, p))
|
|
elif p.x < q.x: segs.append(Edge(p, q))
|
|
shuffle(segs)
|
|
return segs
|
|
|
|
def shearTransform(self, point):
|
|
return Point(point.x + 1e-4 * point.y, point.y)
|
|
|
|
cdef list merge_sort(list l):
|
|
cdef list lleft, lright
|
|
cdef int p1, p2, p
|
|
if len(l)>1 :
|
|
lleft = merge_sort(l[:len(l)/2])
|
|
lright = merge_sort(l[len(l)/2:])
|
|
p1, p2, p = 0, 0, 0
|
|
while p1<len(lleft) and p2<len(lright):
|
|
if lleft[p1][0] < lright[p2][0]:
|
|
l[p]=lleft[p1]
|
|
p+=1
|
|
p1+=1
|
|
else:
|
|
l[p]=lright[p2]
|
|
p+=1
|
|
p2+=1
|
|
if p1<len(lleft):l[p:]=lleft[p1:]
|
|
elif p2<len(lright):l[p:]=lright[p2:]
|
|
else : print "internal error"
|
|
return l
|
|
|
|
cdef class Point:
|
|
|
|
cdef float x, y
|
|
|
|
next = None
|
|
prev = None
|
|
edge = None
|
|
edges = []
|
|
|
|
property x:
|
|
def __get__(self): return self.x
|
|
|
|
property y:
|
|
def __get__(self): return self.y
|
|
|
|
def __init__(self, float x, float y):
|
|
self.x = x
|
|
self.y = y
|
|
|
|
def __sub__(self, other):
|
|
if isinstance(other, Point):
|
|
return Point(self.x - other.x, self.y - other.y)
|
|
else:
|
|
return Point(self.x - other, self.y - other)
|
|
|
|
def __add__(self, other):
|
|
if isinstance(other, Point):
|
|
return Point(self.x + other.x, self.y + other.y)
|
|
else:
|
|
return Point(self.x + other, self.y + other)
|
|
|
|
def __mul__(self, float f):
|
|
return Point(self.x * f, self.y * f)
|
|
|
|
def __div__(self, float a):
|
|
return Point(self.x / a, self.y / a)
|
|
|
|
def cross(self, Point p):
|
|
return self.x * p.y - self.y * p.x
|
|
|
|
def dot(self, Point p):
|
|
return self.x * p.x + self.y * p.y
|
|
|
|
def length(self):
|
|
return sqrt(self.x * self.x + self.y * self.y)
|
|
|
|
def normalize(self):
|
|
return self / self.length()
|
|
|
|
def less(self, Point p):
|
|
return self.x < p.x
|
|
|
|
'''
|
|
# Sort along y axis
|
|
def greater(self, p):
|
|
if y < p.y:
|
|
return True
|
|
elif y > p.y:
|
|
return False
|
|
else:
|
|
if x < p.x:
|
|
return True
|
|
else:
|
|
return False
|
|
'''
|
|
|
|
def not_equal(self, p):
|
|
return not (p.x == self.x and p.y == self.y)
|
|
|
|
def clone(self):
|
|
return Point(self.x, self.y)
|
|
|
|
cdef class Edge:
|
|
|
|
cdef Point p, q
|
|
cdef bool above, below
|
|
cdef float slope, b
|
|
|
|
mpoints = []
|
|
|
|
def __init__(self, Point p, Point q):
|
|
self.p = p
|
|
self.q = q
|
|
self.slope = (q.y - p.y)/(q.x - p.x)
|
|
self.b = p.y - (p.x * self.slope)
|
|
|
|
property p:
|
|
def __get__(self): return self.p
|
|
|
|
property q:
|
|
def __get__(self): return self.q
|
|
|
|
property above:
|
|
def __get__(self): return self.above
|
|
|
|
property below:
|
|
def __get__(self): return self.below
|
|
|
|
cdef bool is_above(self, Point point):
|
|
return (floor(point.y) < floor(self.slope * point.x + self.b))
|
|
cdef bool is_below(self, Point point):
|
|
return (floor(point.y) > floor(self.slope * point.x + self.b))
|
|
|
|
cdef float intersect(self, Point c, Point d):
|
|
cdef float a1, a2, a3, a4, t
|
|
cdef Point a, b
|
|
a = self.p
|
|
b = self.q
|
|
a1 = self.signed_area(a, b, d)
|
|
a2 = self.signed_area(a, b, c)
|
|
if a1 != 0 and a2 != 0 and (a1 * a2) < 0:
|
|
a3 = self.signed_area(c, d, a)
|
|
a4 = a3 + a2 - a1
|
|
if a3 * a4 < 0:
|
|
t = a3 / (a3 - a4)
|
|
return a + ((b - a) * t)
|
|
return 0.0
|
|
|
|
cdef float signed_area(self, Point a, Point b, Point c):
|
|
return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x)
|
|
|
|
cdef Point line_intersect(Edge e, float x):
|
|
cdef float y = e.slope * x + e.b
|
|
return Point(x, y)
|
|
|
|
cdef class Trapezoid:
|
|
|
|
cdef:
|
|
Point left_point, right_point
|
|
Edge top, bottom
|
|
Trapezoid upper_left, lower_left
|
|
Trapezoid upper_right, lower_right
|
|
bool inside
|
|
object sink
|
|
|
|
def __init__(self, Point left_point, Point right_point, Edge top, Edge bottom):
|
|
self.left_point = left_point
|
|
self.right_point = right_point
|
|
self.top = top
|
|
self.bottom = bottom
|
|
self.upper_left = None
|
|
self.upper_right = None
|
|
self.lower_left = None
|
|
self.lower_right = None
|
|
self.inside = True
|
|
self.sink = None
|
|
|
|
property top:
|
|
def __get__(self): return self.top
|
|
|
|
property bottom:
|
|
def __get__(self): return self.bottom
|
|
|
|
property left_point:
|
|
def __get__(self): return self.left_point
|
|
|
|
property right_point:
|
|
def __get__(self): return self.right_point
|
|
|
|
property sink:
|
|
def __get__(self): return self.sink
|
|
def __set__(self, object s): self.sink = s
|
|
|
|
property upper_left:
|
|
def __get__(self): return self.upper_left
|
|
def __set__(self, Trapezoid other): self.upper_left = other
|
|
|
|
property upper_right:
|
|
def __get__(self): return self.upper_right
|
|
def __set__(self, Trapezoid other): self.upper_right = other
|
|
|
|
property lower_left:
|
|
def __get__(self): return self.lower_left
|
|
def __set__(self, Trapezoid other): self.lower_left = other
|
|
|
|
property lower_right:
|
|
def __get__(self): return self.lower_right
|
|
def __set__(self, Trapezoid other): self.lower_right = other
|
|
|
|
def update_left(self, Trapezoid ul, Trapezoid ll):
|
|
self.upper_left = ul
|
|
self.lower_left = ll
|
|
if ul != None: ul.upper_right = self
|
|
if ll != None: ll.lower_right = self
|
|
|
|
def update_right(self, Trapezoid ur, Trapezoid lr):
|
|
self.upper_right = ur
|
|
self.lower_right = lr
|
|
if ur != None: ur.upper_left = self
|
|
if lr != None: lr.lower_left = self
|
|
|
|
def update_left_right(self, Trapezoid ul, Trapezoid ll, Trapezoid ur, Trapezoid lr):
|
|
self.upper_left = ul
|
|
self.lower_left = ll
|
|
self.upper_right = ur
|
|
self.lower_right = lr
|
|
if ul != None: ul.upper_right = self
|
|
if ll != None: ll.lower_right = self
|
|
if ur != None: ur.upper_left = self
|
|
if lr != None: lr.lower_left = self
|
|
|
|
def trim_neighbors(self):
|
|
if self.inside:
|
|
self.inside = False
|
|
if self.upper_left != None: self.upper_left.trim_neighbors()
|
|
if self.lower_left != None: self.lower_left.trim_neighbors()
|
|
if self.upper_right != None: self.upper_right.trim_neighbors()
|
|
if self.lower_right != None: self.lower_right.trim_neighbors()
|
|
|
|
def contains(self, Point point):
|
|
return (point.x > self.left_point.x and point.x < self.right_point.x and
|
|
self.top.is_above(point) and self.bottom.is_below(point))
|
|
|
|
def vertices(self):
|
|
cdef list verts = []
|
|
verts.append(line_intersect(self.top, self.left_point.x))
|
|
verts.append(line_intersect(self.bottom, self.left_point.x))
|
|
verts.append(line_intersect(self.bottom, self.right_point.x))
|
|
verts.append(line_intersect(self.top, self.right_point.x))
|
|
return verts
|
|
|
|
def add_points(self):
|
|
if self.left_point != self.bottom.p:
|
|
self.bottom.mpoints.append(self.left_point.clone)
|
|
if self.right_point != self.bottom.q:
|
|
self.bottom.mpoints.append(self.right_point.clone)
|
|
if self.left_point != self.top.p:
|
|
self.top.mpoints.append(self.left_point.clone)
|
|
if self.right_point != self.top.q:
|
|
self.top.mpoints.append(self.right_point.clone)
|
|
|
|
class TrapezoidalMap:
|
|
|
|
map = []
|
|
margin = 50
|
|
bcross = None
|
|
tcross = None
|
|
|
|
def clear(self):
|
|
self.bcross = None
|
|
self.tcross = None
|
|
|
|
def case1(self, t, e):
|
|
trapezoids = []
|
|
trapezoids.append(Trapezoid(t.left_point, e.p, t.top, t.bottom))
|
|
trapezoids.append(Trapezoid(e.p, e.q, t.top, e))
|
|
trapezoids.append(Trapezoid(e.p, e.q, e, t.bottom))
|
|
trapezoids.append(Trapezoid(e.q, t.right_point, t.top, t.bottom))
|
|
trapezoids[0].update_left(t.upper_left, t.lower_left)
|
|
trapezoids[1].update_left_right(trapezoids[0], None, trapezoids[3], None)
|
|
trapezoids[2].update_left_right(None, trapezoids[0], None, trapezoids[3])
|
|
trapezoids[3].update_right(t.upper_right, t.lower_right)
|
|
return trapezoids
|
|
|
|
def case2(self, t, e):
|
|
rp = e.q if e.q.x == t.right_point.x else t.right_point
|
|
trapezoids = []
|
|
trapezoids.append(Trapezoid(t.left_point, e.p, t.top, t.bottom))
|
|
trapezoids.append(Trapezoid(e.p, rp, t.top, e))
|
|
trapezoids.append(Trapezoid(e.p, rp, e, t.bottom))
|
|
trapezoids[0].update_left(t.upper_left, t.lower_left)
|
|
trapezoids[1].update_left_right(trapezoids[0], None, t.upper_right, None)
|
|
trapezoids[2].update_left_right(None, trapezoids[0], None, t.lower_right)
|
|
self.bcross = t.bottom
|
|
self.tcross = t.top
|
|
e.above = trapezoids[1]
|
|
e.below = trapezoids[2]
|
|
return trapezoids
|
|
|
|
def case3(self, t, e):
|
|
lp = e.p if e.p.x == t.left_point.x else t.left_point
|
|
rp = e.q if e.q.x == t.right_point.x else t.right_point
|
|
trapezoids = []
|
|
if self.tcross is t.top:
|
|
trapezoids.append(t.upper_left)
|
|
trapezoids[0].update_right(t.upper_right, None)
|
|
trapezoids[0].right_point = rp
|
|
else:
|
|
trapezoids.append(Trapezoid(lp, rp, t.top, e))
|
|
trapezoids[0].update_left_right(t.upper_left, e.above, t.upper_right, None)
|
|
if self.bcross is t.bottom:
|
|
trapezoids.append(t.lower_left)
|
|
trapezoids[1].update_right(None, t.lower_right)
|
|
trapezoids[1].right_point = rp
|
|
else:
|
|
trapezoids.append(Trapezoid(lp, rp, e, t.bottom))
|
|
trapezoids[1].update_left_right(e.below, t.lower_left, None, t.lower_right)
|
|
self.bcross = t.bottom
|
|
self.tcross = t.top
|
|
e.above = trapezoids[0]
|
|
e.below = trapezoids[1]
|
|
return trapezoids
|
|
|
|
def case4(self, t, e):
|
|
lp = e.p if e.p.x == t.left_point.x else t.left_point
|
|
trapezoids = []
|
|
if self.tcross is t.top:
|
|
trapezoids.append(t.upper_left)
|
|
trapezoids[0].right_point = e.q
|
|
else:
|
|
trapezoids.append(Trapezoid(lp, e.q, t.top, e))
|
|
trapezoids[0].update_left(t.upper_left, e.above)
|
|
if self.bcross is t.bottom:
|
|
trapezoids.append(t.lower_left)
|
|
trapezoids[1].right_point = e.q
|
|
else:
|
|
trapezoids.append(Trapezoid(lp, e.q, e, t.bottom))
|
|
trapezoids[1].update_left(e.below, t.lower_left)
|
|
trapezoids.append(Trapezoid(e.q, t.right_point, t.top, t.bottom))
|
|
trapezoids[2].update_left_right(trapezoids[0], trapezoids[1], t.upper_right, t.lower_right)
|
|
|
|
return trapezoids
|
|
|
|
def bounding_box(self, edges):
|
|
margin = self.margin
|
|
max = edges[0].p + margin
|
|
min = edges[0].q - margin
|
|
for e in edges:
|
|
if e.p.x > max.x: max = Point(e.p.x + margin, max.y)
|
|
if e.p.y > max.y: max = Point(max.x, e.p.y + margin)
|
|
if e.q.x > max.x: max = Point(e.q.x + margin, max.y)
|
|
if e.q.y > max.y: max = Point(max.x, e.q.y + margin)
|
|
if e.p.x < min.x: min = Point(e.p.x - margin, min.y)
|
|
if e.p.y < min.y: min = Point(min.x, e.p.y - margin)
|
|
if e.q.x < min.x: min = Point(e.q.x - margin, min.y)
|
|
if e.q.y < min.y: min = Point(min.x, e.q.y - margin)
|
|
top = Edge(Point(min.x, max.y), Point(max.x, max.y))
|
|
bottom = Edge(Point(min.x, min.y), Point(max.x, min.y))
|
|
left = bottom.p
|
|
right = top.q
|
|
return Trapezoid(left, right, top, bottom)
|
|
|
|
class Node:
|
|
|
|
parent_list = []
|
|
|
|
def __init__(self, left, right):
|
|
self.left = left
|
|
self.right = right
|
|
if left != None: left.parent_list.append(self)
|
|
if right != None: right.parent_list.append(self)
|
|
|
|
def replace(self, node):
|
|
for parent in node.parent_list:
|
|
if parent.left is node:
|
|
parent.left = self
|
|
else:
|
|
parent.right = self
|
|
self.parent_list.append(parent)
|
|
|
|
class Sink(Node):
|
|
|
|
def __new__(cls, trapezoid):
|
|
if trapezoid.sink != None:
|
|
return trapezoid.sink
|
|
return Sink(trapezoid)
|
|
|
|
def __init__(self, trapezoid):
|
|
self.trapezoid = trapezoid
|
|
Node.__init__(self, None, None)
|
|
trapezoid.sink = self
|
|
|
|
def locate(self, e):
|
|
return self
|
|
|
|
class XNode(Node):
|
|
|
|
def __init__(self, point, lchild, rchild):
|
|
Node.__init__(self, lchild, rchild)
|
|
self.point = point
|
|
self.lchild = lchild
|
|
self.rchild = rchild
|
|
|
|
def locate(self, e):
|
|
if e.p.x >= self.point.x:
|
|
return self.right.locate(e)
|
|
return self.left.locate(e)
|
|
|
|
class YNode(Node):
|
|
|
|
def __init__(self, edge, lchild, rchild):
|
|
Node.__init__(self, lchild, rchild)
|
|
self.edge = edge
|
|
self.lchild = lchild
|
|
self.rchild = rchild
|
|
|
|
def locate(self, e):
|
|
if self.edge.is_above(e.p):
|
|
return self.right.locate(e)
|
|
elif self.edge.is_below(e.p):
|
|
return self.left.locate(e)
|
|
else:
|
|
if e.slope < self.edge.slope:
|
|
return self.right.locate(e)
|
|
return self.left.locate(e)
|
|
|
|
class QueryGraph:
|
|
|
|
head = None
|
|
|
|
def __init__(self, head):
|
|
self.head = head
|
|
|
|
def locate(self, e):
|
|
return self.head.locate(e).trapezoid
|
|
|
|
def follow_edge(self, e):
|
|
trapezoids = [self.locate(e)]
|
|
j = 0
|
|
while(e.q.x > trapezoids[j].right_point.x):
|
|
if e > trapezoids[j].right_point:
|
|
trapezoids.append(trapezoids[j].upper_right)
|
|
else:
|
|
trapezoids .append(trapezoids[j].lower_right)
|
|
j += 1
|
|
return trapezoids
|
|
|
|
def replace(self, sink, node):
|
|
if not sink.parent_list:
|
|
self.head = node
|
|
else:
|
|
node.replace(sink)
|
|
|
|
def case1(self, sink, e, tlist):
|
|
yNode = YNode(e, Sink(tlist[1]), Sink(tlist[2]))
|
|
qNode = XNode(e.q, yNode, Sink(tlist[3]))
|
|
pNode = XNode(e.p, Sink(tlist[0]), qNode)
|
|
self.replace(sink, pNode)
|
|
|
|
def case2(self, sink, e, tlist):
|
|
yNode = YNode(e, Sink(tlist[1]), Sink(tlist[2]))
|
|
pNode = XNode(e.p, Sink(tlist[0]), yNode)
|
|
self.replace(sink, pNode)
|
|
|
|
def case3(self, sink, e, tlist):
|
|
yNode = YNode(e, Sink(tlist[0]), Sink(tlist[1]))
|
|
self.replace(sink, yNode)
|
|
|
|
def case4(self, sink, e, tlist):
|
|
yNode = YNode(e, Sink(tlist[0]), Sink(tlist[1]))
|
|
qNode = XNode(e.q, yNode, Sink(tlist[2]))
|
|
self.replace(sink, qNode)
|
|
|
|
cdef float PI_SLOP = 3.1
|
|
|
|
cdef class MonotoneMountain:
|
|
|
|
cdef:
|
|
Point tail, head
|
|
int size
|
|
list convex_points
|
|
list mono_poly
|
|
list triangles
|
|
list convex_polies
|
|
bool positive
|
|
|
|
def __init__(self):
|
|
self.size = 0
|
|
self.tail, self.head = None
|
|
self.positive = False
|
|
self.convex_points = []
|
|
self.mono_poly = []
|
|
self.triangles = []
|
|
self.convex_polies = []
|
|
|
|
def append(self, Point point):
|
|
if self.size == 0:
|
|
self.head = point
|
|
self.size += 1
|
|
elif self.size == 1:
|
|
if point.not_equal(self.head):
|
|
self.tail = point
|
|
self.tail.prev = self.head
|
|
self.head.next = self.tail
|
|
self.size += 1
|
|
else:
|
|
if point.not_equal(self.tail):
|
|
self.tail.next = point
|
|
point.prev = self.tail
|
|
self.tail = point
|
|
self.size += 1
|
|
|
|
cdef void remove(self, Point point):
|
|
cdef Point next, prev
|
|
next = point.next
|
|
prev = point.prev
|
|
point.prev.next = next
|
|
point.next.prev = prev
|
|
self.size -= 1
|
|
|
|
def process(self):
|
|
self.positive = self.angle_sign()
|
|
self.gen_mono_poly()
|
|
p = self.head.next
|
|
while p != self.tail:
|
|
a = self.angle(p)
|
|
if a >= PI_SLOP or a <= -PI_SLOP: self.remove(p)
|
|
elif self.is_convex(p): self.convex_points.append(p)
|
|
p = p.next
|
|
self.triangulate()
|
|
|
|
cdef void triangulate(self):
|
|
while not len(self.convex_points) > 0:
|
|
ear = self.convex_points.remove(0)
|
|
a = ear.prev
|
|
b = ear
|
|
c = ear.next
|
|
triangle = [a, b, c]
|
|
self.triangles.append(triangle)
|
|
self.remove(ear)
|
|
if self.valid(a): self.convex_points.append(a)
|
|
if self.valid(c): self.convex_points.append(c)
|
|
assert(self.size <= 3, "Triangulation bug, please report")
|
|
|
|
cdef bool valid(self, Point p):
|
|
return p != self.head and p != self.tail and self.is_convex(p)
|
|
|
|
cdef void gen_mono_poly(self):
|
|
cdef Point p = self.head
|
|
while(p != None):
|
|
self.mono_poly.append(p)
|
|
p = p.next
|
|
|
|
cdef float angle(self, Point p):
|
|
cdef Point a = p.next - p
|
|
cdef Point b = p.prev - p
|
|
return atan2(a.cross(b), a.dot(b))
|
|
|
|
cdef float angle_sign(self):
|
|
cdef Point a = self.head.next - self.head
|
|
cdef Point b = self.tail - self.head
|
|
return atan2(a.cross(b), a.dot(b)) >= 0
|
|
|
|
cdef bool is_convex(self, Point p):
|
|
if self.positive != (self.angle(p) >= 0): return False
|
|
return True
|