mirror of
https://github.com/jhasse/poly2tri.git
synced 2024-11-05 22:09:52 +01:00
4263 lines
168 KiB
C
4263 lines
168 KiB
C
/*****************************************************************************/
|
|
/* */
|
|
/* Routines for Arbitrary Precision Floating-point Arithmetic */
|
|
/* and Fast Robust Geometric Predicates */
|
|
/* (predicates.c) */
|
|
/* */
|
|
/* May 18, 1996 */
|
|
/* */
|
|
/* Placed in the public domain by */
|
|
/* Jonathan Richard Shewchuk */
|
|
/* School of Computer Science */
|
|
/* Carnegie Mellon University */
|
|
/* 5000 Forbes Avenue */
|
|
/* Pittsburgh, Pennsylvania 15213-3891 */
|
|
/* jrs@cs.cmu.edu */
|
|
/* */
|
|
/* This file contains C implementation of algorithms for exact addition */
|
|
/* and multiplication of floating-point numbers, and predicates for */
|
|
/* robustly performing the orientation and incircle tests used in */
|
|
/* computational geometry. The algorithms and underlying theory are */
|
|
/* described in Jonathan Richard Shewchuk. "Adaptive Precision Floating- */
|
|
/* Point Arithmetic and Fast Robust Geometric Predicates." Technical */
|
|
/* Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon */
|
|
/* University, Pittsburgh, Pennsylvania, May 1996. (Submitted to */
|
|
/* Discrete & Computational Geometry.) */
|
|
/* */
|
|
/* This file, the paper listed above, and other information are available */
|
|
/* from the Web page http://www.cs.cmu.edu/~quake/robust.html . */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* Using this code: */
|
|
/* */
|
|
/* First, read the short or long version of the paper (from the Web page */
|
|
/* above). */
|
|
/* */
|
|
/* Be sure to call exactinit() once, before calling any of the arithmetic */
|
|
/* functions or geometric predicates. Also be sure to turn on the */
|
|
/* optimizer when compiling this file. */
|
|
/* */
|
|
/* */
|
|
/* Several geometric predicates are defined. Their parameters are all */
|
|
/* points. Each point is an array of two or three floating-point */
|
|
/* numbers. The geometric predicates, described in the papers, are */
|
|
/* */
|
|
/* orient2d(pa, pb, pc) */
|
|
/* orient2dfast(pa, pb, pc) */
|
|
/* orient3d(pa, pb, pc, pd) */
|
|
/* orient3dfast(pa, pb, pc, pd) */
|
|
/* incircle(pa, pb, pc, pd) */
|
|
/* incirclefast(pa, pb, pc, pd) */
|
|
/* insphere(pa, pb, pc, pd, pe) */
|
|
/* inspherefast(pa, pb, pc, pd, pe) */
|
|
/* */
|
|
/* Those with suffix "fast" are approximate, non-robust versions. Those */
|
|
/* without the suffix are adaptive precision, robust versions. There */
|
|
/* are also versions with the suffices "exact" and "slow", which are */
|
|
/* non-adaptive, exact arithmetic versions, which I use only for timings */
|
|
/* in my arithmetic papers. */
|
|
/* */
|
|
/* */
|
|
/* An expansion is represented by an array of floating-point numbers, */
|
|
/* sorted from smallest to largest magnitude (possibly with interspersed */
|
|
/* zeros). The length of each expansion is stored as a separate integer, */
|
|
/* and each arithmetic function returns an integer which is the length */
|
|
/* of the expansion it created. */
|
|
/* */
|
|
/* Several arithmetic functions are defined. Their parameters are */
|
|
/* */
|
|
/* e, f Input expansions */
|
|
/* elen, flen Lengths of input expansions (must be >= 1) */
|
|
/* h Output expansion */
|
|
/* b Input scalar */
|
|
/* */
|
|
/* The arithmetic functions are */
|
|
/* */
|
|
/* grow_expansion(elen, e, b, h) */
|
|
/* grow_expansion_zeroelim(elen, e, b, h) */
|
|
/* expansion_sum(elen, e, flen, f, h) */
|
|
/* expansion_sum_zeroelim1(elen, e, flen, f, h) */
|
|
/* expansion_sum_zeroelim2(elen, e, flen, f, h) */
|
|
/* fast_expansion_sum(elen, e, flen, f, h) */
|
|
/* fast_expansion_sum_zeroelim(elen, e, flen, f, h) */
|
|
/* linear_expansion_sum(elen, e, flen, f, h) */
|
|
/* linear_expansion_sum_zeroelim(elen, e, flen, f, h) */
|
|
/* scale_expansion(elen, e, b, h) */
|
|
/* scale_expansion_zeroelim(elen, e, b, h) */
|
|
/* compress(elen, e, h) */
|
|
/* */
|
|
/* All of these are described in the long version of the paper; some are */
|
|
/* described in the short version. All return an integer that is the */
|
|
/* length of h. Those with suffix _zeroelim perform zero elimination, */
|
|
/* and are recommended over their counterparts. The procedure */
|
|
/* fast_expansion_sum_zeroelim() (or linear_expansion_sum_zeroelim() on */
|
|
/* processors that do not use the round-to-even tiebreaking rule) is */
|
|
/* recommended over expansion_sum_zeroelim(). Each procedure has a */
|
|
/* little note next to it (in the code below) that tells you whether or */
|
|
/* not the output expansion may be the same array as one of the input */
|
|
/* expansions. */
|
|
/* */
|
|
/* */
|
|
/* If you look around below, you'll also find macros for a bunch of */
|
|
/* simple unrolled arithmetic operations, and procedures for printing */
|
|
/* expansions (commented out because they don't work with all C */
|
|
/* compilers) and for generating random floating-point numbers whose */
|
|
/* significand bits are all random. Most of the macros have undocumented */
|
|
/* requirements that certain of their parameters should not be the same */
|
|
/* variable; for safety, better to make sure all the parameters are */
|
|
/* distinct variables. Feel free to send email to jrs@cs.cmu.edu if you */
|
|
/* have questions. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <sys/time.h>
|
|
|
|
/* On some machines, the exact arithmetic routines might be defeated by the */
|
|
/* use of internal extended precision floating-point registers. Sometimes */
|
|
/* this problem can be fixed by defining certain values to be volatile, */
|
|
/* thus forcing them to be stored to memory and rounded off. This isn't */
|
|
/* a great solution, though, as it slows the arithmetic down. */
|
|
/* */
|
|
/* To try this out, write "#define INEXACT volatile" below. Normally, */
|
|
/* however, INEXACT should be defined to be nothing. ("#define INEXACT".) */
|
|
|
|
#define INEXACT /* Nothing */
|
|
/* #define INEXACT volatile */
|
|
|
|
#define REAL double /* float or double */
|
|
#define REALPRINT doubleprint
|
|
#define REALRAND doublerand
|
|
#define NARROWRAND narrowdoublerand
|
|
#define UNIFORMRAND uniformdoublerand
|
|
|
|
/* Which of the following two methods of finding the absolute values is */
|
|
/* fastest is compiler-dependent. A few compilers can inline and optimize */
|
|
/* the fabs() call; but most will incur the overhead of a function call, */
|
|
/* which is disastrously slow. A faster way on IEEE machines might be to */
|
|
/* mask the appropriate bit, but that's difficult to do in C. */
|
|
|
|
#define Absolute(a) ((a) >= 0.0 ? (a) : -(a))
|
|
/* #define Absolute(a) fabs(a) */
|
|
|
|
/* Many of the operations are broken up into two pieces, a main part that */
|
|
/* performs an approximate operation, and a "tail" that computes the */
|
|
/* roundoff error of that operation. */
|
|
/* */
|
|
/* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(), */
|
|
/* Split(), and Two_Product() are all implemented as described in the */
|
|
/* reference. Each of these macros requires certain variables to be */
|
|
/* defined in the calling routine. The variables `bvirt', `c', `abig', */
|
|
/* `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because */
|
|
/* they store the result of an operation that may incur roundoff error. */
|
|
/* The input parameter `x' (or the highest numbered `x_' parameter) must */
|
|
/* also be declared `INEXACT'. */
|
|
|
|
#define Fast_Two_Sum_Tail(a, b, x, y) \
|
|
bvirt = x - a; \
|
|
y = b - bvirt
|
|
|
|
#define Fast_Two_Sum(a, b, x, y) \
|
|
x = (REAL) (a + b); \
|
|
Fast_Two_Sum_Tail(a, b, x, y)
|
|
|
|
#define Fast_Two_Diff_Tail(a, b, x, y) \
|
|
bvirt = a - x; \
|
|
y = bvirt - b
|
|
|
|
#define Fast_Two_Diff(a, b, x, y) \
|
|
x = (REAL) (a - b); \
|
|
Fast_Two_Diff_Tail(a, b, x, y)
|
|
|
|
#define Two_Sum_Tail(a, b, x, y) \
|
|
bvirt = (REAL) (x - a); \
|
|
avirt = x - bvirt; \
|
|
bround = b - bvirt; \
|
|
around = a - avirt; \
|
|
y = around + bround
|
|
|
|
#define Two_Sum(a, b, x, y) \
|
|
x = (REAL) (a + b); \
|
|
Two_Sum_Tail(a, b, x, y)
|
|
|
|
#define Two_Diff_Tail(a, b, x, y) \
|
|
bvirt = (REAL) (a - x); \
|
|
avirt = x + bvirt; \
|
|
bround = bvirt - b; \
|
|
around = a - avirt; \
|
|
y = around + bround
|
|
|
|
#define Two_Diff(a, b, x, y) \
|
|
x = (REAL) (a - b); \
|
|
Two_Diff_Tail(a, b, x, y)
|
|
|
|
#define Split(a, ahi, alo) \
|
|
c = (REAL) (splitter * a); \
|
|
abig = (REAL) (c - a); \
|
|
ahi = c - abig; \
|
|
alo = a - ahi
|
|
|
|
#define Two_Product_Tail(a, b, x, y) \
|
|
Split(a, ahi, alo); \
|
|
Split(b, bhi, blo); \
|
|
err1 = x - (ahi * bhi); \
|
|
err2 = err1 - (alo * bhi); \
|
|
err3 = err2 - (ahi * blo); \
|
|
y = (alo * blo) - err3
|
|
|
|
#define Two_Product(a, b, x, y) \
|
|
x = (REAL) (a * b); \
|
|
Two_Product_Tail(a, b, x, y)
|
|
|
|
/* Two_Product_Presplit() is Two_Product() where one of the inputs has */
|
|
/* already been split. Avoids redundant splitting. */
|
|
|
|
#define Two_Product_Presplit(a, b, bhi, blo, x, y) \
|
|
x = (REAL) (a * b); \
|
|
Split(a, ahi, alo); \
|
|
err1 = x - (ahi * bhi); \
|
|
err2 = err1 - (alo * bhi); \
|
|
err3 = err2 - (ahi * blo); \
|
|
y = (alo * blo) - err3
|
|
|
|
/* Two_Product_2Presplit() is Two_Product() where both of the inputs have */
|
|
/* already been split. Avoids redundant splitting. */
|
|
|
|
#define Two_Product_2Presplit(a, ahi, alo, b, bhi, blo, x, y) \
|
|
x = (REAL) (a * b); \
|
|
err1 = x - (ahi * bhi); \
|
|
err2 = err1 - (alo * bhi); \
|
|
err3 = err2 - (ahi * blo); \
|
|
y = (alo * blo) - err3
|
|
|
|
/* Square() can be done more quickly than Two_Product(). */
|
|
|
|
#define Square_Tail(a, x, y) \
|
|
Split(a, ahi, alo); \
|
|
err1 = x - (ahi * ahi); \
|
|
err3 = err1 - ((ahi + ahi) * alo); \
|
|
y = (alo * alo) - err3
|
|
|
|
#define Square(a, x, y) \
|
|
x = (REAL) (a * a); \
|
|
Square_Tail(a, x, y)
|
|
|
|
/* Macros for summing expansions of various fixed lengths. These are all */
|
|
/* unrolled versions of Expansion_Sum(). */
|
|
|
|
#define Two_One_Sum(a1, a0, b, x2, x1, x0) \
|
|
Two_Sum(a0, b , _i, x0); \
|
|
Two_Sum(a1, _i, x2, x1)
|
|
|
|
#define Two_One_Diff(a1, a0, b, x2, x1, x0) \
|
|
Two_Diff(a0, b , _i, x0); \
|
|
Two_Sum( a1, _i, x2, x1)
|
|
|
|
#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
|
|
Two_One_Sum(a1, a0, b0, _j, _0, x0); \
|
|
Two_One_Sum(_j, _0, b1, x3, x2, x1)
|
|
|
|
#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
|
|
Two_One_Diff(a1, a0, b0, _j, _0, x0); \
|
|
Two_One_Diff(_j, _0, b1, x3, x2, x1)
|
|
|
|
#define Four_One_Sum(a3, a2, a1, a0, b, x4, x3, x2, x1, x0) \
|
|
Two_One_Sum(a1, a0, b , _j, x1, x0); \
|
|
Two_One_Sum(a3, a2, _j, x4, x3, x2)
|
|
|
|
#define Four_Two_Sum(a3, a2, a1, a0, b1, b0, x5, x4, x3, x2, x1, x0) \
|
|
Four_One_Sum(a3, a2, a1, a0, b0, _k, _2, _1, _0, x0); \
|
|
Four_One_Sum(_k, _2, _1, _0, b1, x5, x4, x3, x2, x1)
|
|
|
|
#define Four_Four_Sum(a3, a2, a1, a0, b4, b3, b1, b0, x7, x6, x5, x4, x3, x2, \
|
|
x1, x0) \
|
|
Four_Two_Sum(a3, a2, a1, a0, b1, b0, _l, _2, _1, _0, x1, x0); \
|
|
Four_Two_Sum(_l, _2, _1, _0, b4, b3, x7, x6, x5, x4, x3, x2)
|
|
|
|
#define Eight_One_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b, x8, x7, x6, x5, x4, \
|
|
x3, x2, x1, x0) \
|
|
Four_One_Sum(a3, a2, a1, a0, b , _j, x3, x2, x1, x0); \
|
|
Four_One_Sum(a7, a6, a5, a4, _j, x8, x7, x6, x5, x4)
|
|
|
|
#define Eight_Two_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b1, b0, x9, x8, x7, \
|
|
x6, x5, x4, x3, x2, x1, x0) \
|
|
Eight_One_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b0, _k, _6, _5, _4, _3, _2, \
|
|
_1, _0, x0); \
|
|
Eight_One_Sum(_k, _6, _5, _4, _3, _2, _1, _0, b1, x9, x8, x7, x6, x5, x4, \
|
|
x3, x2, x1)
|
|
|
|
#define Eight_Four_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b4, b3, b1, b0, x11, \
|
|
x10, x9, x8, x7, x6, x5, x4, x3, x2, x1, x0) \
|
|
Eight_Two_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b1, b0, _l, _6, _5, _4, _3, \
|
|
_2, _1, _0, x1, x0); \
|
|
Eight_Two_Sum(_l, _6, _5, _4, _3, _2, _1, _0, b4, b3, x11, x10, x9, x8, \
|
|
x7, x6, x5, x4, x3, x2)
|
|
|
|
/* Macros for multiplying expansions of various fixed lengths. */
|
|
|
|
#define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \
|
|
Split(b, bhi, blo); \
|
|
Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \
|
|
Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \
|
|
Two_Sum(_i, _0, _k, x1); \
|
|
Fast_Two_Sum(_j, _k, x3, x2)
|
|
|
|
#define Four_One_Product(a3, a2, a1, a0, b, x7, x6, x5, x4, x3, x2, x1, x0) \
|
|
Split(b, bhi, blo); \
|
|
Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \
|
|
Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \
|
|
Two_Sum(_i, _0, _k, x1); \
|
|
Fast_Two_Sum(_j, _k, _i, x2); \
|
|
Two_Product_Presplit(a2, b, bhi, blo, _j, _0); \
|
|
Two_Sum(_i, _0, _k, x3); \
|
|
Fast_Two_Sum(_j, _k, _i, x4); \
|
|
Two_Product_Presplit(a3, b, bhi, blo, _j, _0); \
|
|
Two_Sum(_i, _0, _k, x5); \
|
|
Fast_Two_Sum(_j, _k, x7, x6)
|
|
|
|
#define Two_Two_Product(a1, a0, b1, b0, x7, x6, x5, x4, x3, x2, x1, x0) \
|
|
Split(a0, a0hi, a0lo); \
|
|
Split(b0, bhi, blo); \
|
|
Two_Product_2Presplit(a0, a0hi, a0lo, b0, bhi, blo, _i, x0); \
|
|
Split(a1, a1hi, a1lo); \
|
|
Two_Product_2Presplit(a1, a1hi, a1lo, b0, bhi, blo, _j, _0); \
|
|
Two_Sum(_i, _0, _k, _1); \
|
|
Fast_Two_Sum(_j, _k, _l, _2); \
|
|
Split(b1, bhi, blo); \
|
|
Two_Product_2Presplit(a0, a0hi, a0lo, b1, bhi, blo, _i, _0); \
|
|
Two_Sum(_1, _0, _k, x1); \
|
|
Two_Sum(_2, _k, _j, _1); \
|
|
Two_Sum(_l, _j, _m, _2); \
|
|
Two_Product_2Presplit(a1, a1hi, a1lo, b1, bhi, blo, _j, _0); \
|
|
Two_Sum(_i, _0, _n, _0); \
|
|
Two_Sum(_1, _0, _i, x2); \
|
|
Two_Sum(_2, _i, _k, _1); \
|
|
Two_Sum(_m, _k, _l, _2); \
|
|
Two_Sum(_j, _n, _k, _0); \
|
|
Two_Sum(_1, _0, _j, x3); \
|
|
Two_Sum(_2, _j, _i, _1); \
|
|
Two_Sum(_l, _i, _m, _2); \
|
|
Two_Sum(_1, _k, _i, x4); \
|
|
Two_Sum(_2, _i, _k, x5); \
|
|
Two_Sum(_m, _k, x7, x6)
|
|
|
|
/* An expansion of length two can be squared more quickly than finding the */
|
|
/* product of two different expansions of length two, and the result is */
|
|
/* guaranteed to have no more than six (rather than eight) components. */
|
|
|
|
#define Two_Square(a1, a0, x5, x4, x3, x2, x1, x0) \
|
|
Square(a0, _j, x0); \
|
|
_0 = a0 + a0; \
|
|
Two_Product(a1, _0, _k, _1); \
|
|
Two_One_Sum(_k, _1, _j, _l, _2, x1); \
|
|
Square(a1, _j, _1); \
|
|
Two_Two_Sum(_j, _1, _l, _2, x5, x4, x3, x2)
|
|
|
|
REAL splitter; /* = 2^ceiling(p / 2) + 1. Used to split floats in half. */
|
|
REAL epsilon; /* = 2^(-p). Used to estimate roundoff errors. */
|
|
/* A set of coefficients used to calculate maximum roundoff errors. */
|
|
REAL resulterrbound;
|
|
REAL ccwerrboundA, ccwerrboundB, ccwerrboundC;
|
|
REAL o3derrboundA, o3derrboundB, o3derrboundC;
|
|
REAL iccerrboundA, iccerrboundB, iccerrboundC;
|
|
REAL isperrboundA, isperrboundB, isperrboundC;
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* doubleprint() Print the bit representation of a double. */
|
|
/* */
|
|
/* Useful for debugging exact arithmetic routines. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
/*
|
|
void doubleprint(number)
|
|
double number;
|
|
{
|
|
unsigned long long no;
|
|
unsigned long long sign, expo;
|
|
int exponent;
|
|
int i, bottomi;
|
|
|
|
no = *(unsigned long long *) &number;
|
|
sign = no & 0x8000000000000000ll;
|
|
expo = (no >> 52) & 0x7ffll;
|
|
exponent = (int) expo;
|
|
exponent = exponent - 1023;
|
|
if (sign) {
|
|
printf("-");
|
|
} else {
|
|
printf(" ");
|
|
}
|
|
if (exponent == -1023) {
|
|
printf(
|
|
"0.0000000000000000000000000000000000000000000000000000_ ( )");
|
|
} else {
|
|
printf("1.");
|
|
bottomi = -1;
|
|
for (i = 0; i < 52; i++) {
|
|
if (no & 0x0008000000000000ll) {
|
|
printf("1");
|
|
bottomi = i;
|
|
} else {
|
|
printf("0");
|
|
}
|
|
no <<= 1;
|
|
}
|
|
printf("_%d (%d)", exponent, exponent - 1 - bottomi);
|
|
}
|
|
}
|
|
*/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* floatprint() Print the bit representation of a float. */
|
|
/* */
|
|
/* Useful for debugging exact arithmetic routines. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
/*
|
|
void floatprint(number)
|
|
float number;
|
|
{
|
|
unsigned no;
|
|
unsigned sign, expo;
|
|
int exponent;
|
|
int i, bottomi;
|
|
|
|
no = *(unsigned *) &number;
|
|
sign = no & 0x80000000;
|
|
expo = (no >> 23) & 0xff;
|
|
exponent = (int) expo;
|
|
exponent = exponent - 127;
|
|
if (sign) {
|
|
printf("-");
|
|
} else {
|
|
printf(" ");
|
|
}
|
|
if (exponent == -127) {
|
|
printf("0.00000000000000000000000_ ( )");
|
|
} else {
|
|
printf("1.");
|
|
bottomi = -1;
|
|
for (i = 0; i < 23; i++) {
|
|
if (no & 0x00400000) {
|
|
printf("1");
|
|
bottomi = i;
|
|
} else {
|
|
printf("0");
|
|
}
|
|
no <<= 1;
|
|
}
|
|
printf("_%3d (%3d)", exponent, exponent - 1 - bottomi);
|
|
}
|
|
}
|
|
*/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* expansion_print() Print the bit representation of an expansion. */
|
|
/* */
|
|
/* Useful for debugging exact arithmetic routines. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
/*
|
|
void expansion_print(elen, e)
|
|
int elen;
|
|
REAL *e;
|
|
{
|
|
int i;
|
|
|
|
for (i = elen - 1; i >= 0; i--) {
|
|
REALPRINT(e[i]);
|
|
if (i > 0) {
|
|
printf(" +\n");
|
|
} else {
|
|
printf("\n");
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* doublerand() Generate a double with random 53-bit significand and a */
|
|
/* random exponent in [0, 511]. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
double doublerand()
|
|
{
|
|
double result;
|
|
double expo;
|
|
long a, b, c;
|
|
long i;
|
|
|
|
a = rand();
|
|
b = rand();
|
|
c = rand();
|
|
result = (double) (a - 1073741824) * 8388608.0 + (double) (b >> 8);
|
|
for (i = 512, expo = 2; i <= 131072; i *= 2, expo = expo * expo) {
|
|
if (c & i) {
|
|
result *= expo;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* narrowdoublerand() Generate a double with random 53-bit significand */
|
|
/* and a random exponent in [0, 7]. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
double narrowdoublerand()
|
|
{
|
|
double result;
|
|
double expo;
|
|
long a, b, c;
|
|
long i;
|
|
|
|
a = rand();
|
|
b = rand();
|
|
c = rand();
|
|
result = (double) (a - 1073741824) * 8388608.0 + (double) (b >> 8);
|
|
for (i = 512, expo = 2; i <= 2048; i *= 2, expo = expo * expo) {
|
|
if (c & i) {
|
|
result *= expo;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* uniformdoublerand() Generate a double with random 53-bit significand. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
double uniformdoublerand()
|
|
{
|
|
double result;
|
|
long a, b;
|
|
|
|
a = rand();
|
|
b = rand();
|
|
result = (double) (a - 1073741824) * 8388608.0 + (double) (b >> 8);
|
|
return result;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* floatrand() Generate a float with random 24-bit significand and a */
|
|
/* random exponent in [0, 63]. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
float floatrand()
|
|
{
|
|
float result;
|
|
float expo;
|
|
long a, c;
|
|
long i;
|
|
|
|
a = rand();
|
|
c = rand();
|
|
result = (float) ((a - 1073741824) >> 6);
|
|
for (i = 512, expo = 2; i <= 16384; i *= 2, expo = expo * expo) {
|
|
if (c & i) {
|
|
result *= expo;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* narrowfloatrand() Generate a float with random 24-bit significand and */
|
|
/* a random exponent in [0, 7]. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
float narrowfloatrand()
|
|
{
|
|
float result;
|
|
float expo;
|
|
long a, c;
|
|
long i;
|
|
|
|
a = rand();
|
|
c = rand();
|
|
result = (float) ((a - 1073741824) >> 6);
|
|
for (i = 512, expo = 2; i <= 2048; i *= 2, expo = expo * expo) {
|
|
if (c & i) {
|
|
result *= expo;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* uniformfloatrand() Generate a float with random 24-bit significand. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
float uniformfloatrand()
|
|
{
|
|
float result;
|
|
long a;
|
|
|
|
a = rand();
|
|
result = (float) ((a - 1073741824) >> 6);
|
|
return result;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* exactinit() Initialize the variables used for exact arithmetic. */
|
|
/* */
|
|
/* `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in */
|
|
/* floating-point arithmetic. `epsilon' bounds the relative roundoff */
|
|
/* error. It is used for floating-point error analysis. */
|
|
/* */
|
|
/* `splitter' is used to split floating-point numbers into two half- */
|
|
/* length significands for exact multiplication. */
|
|
/* */
|
|
/* I imagine that a highly optimizing compiler might be too smart for its */
|
|
/* own good, and somehow cause this routine to fail, if it pretends that */
|
|
/* floating-point arithmetic is too much like real arithmetic. */
|
|
/* */
|
|
/* Don't change this routine unless you fully understand it. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
void exactinit()
|
|
{
|
|
REAL half;
|
|
REAL check, lastcheck;
|
|
int every_other;
|
|
|
|
every_other = 1;
|
|
half = 0.5;
|
|
epsilon = 1.0;
|
|
splitter = 1.0;
|
|
check = 1.0;
|
|
/* Repeatedly divide `epsilon' by two until it is too small to add to */
|
|
/* one without causing roundoff. (Also check if the sum is equal to */
|
|
/* the previous sum, for machines that round up instead of using exact */
|
|
/* rounding. Not that this library will work on such machines anyway. */
|
|
do {
|
|
lastcheck = check;
|
|
epsilon *= half;
|
|
if (every_other) {
|
|
splitter *= 2.0;
|
|
}
|
|
every_other = !every_other;
|
|
check = 1.0 + epsilon;
|
|
} while ((check != 1.0) && (check != lastcheck));
|
|
splitter += 1.0;
|
|
|
|
/* Error bounds for orientation and incircle tests. */
|
|
resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;
|
|
ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;
|
|
ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;
|
|
ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;
|
|
o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon;
|
|
o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon;
|
|
o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon;
|
|
iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;
|
|
iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;
|
|
iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;
|
|
isperrboundA = (16.0 + 224.0 * epsilon) * epsilon;
|
|
isperrboundB = (5.0 + 72.0 * epsilon) * epsilon;
|
|
isperrboundC = (71.0 + 1408.0 * epsilon) * epsilon * epsilon;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* grow_expansion() Add a scalar to an expansion. */
|
|
/* */
|
|
/* Sets h = e + b. See the long version of my paper for details. */
|
|
/* */
|
|
/* Maintains the nonoverlapping property. If round-to-even is used (as */
|
|
/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */
|
|
/* properties as well. (That is, if e has one of these properties, so */
|
|
/* will h.) */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
int grow_expansion(elen, e, b, h) /* e and h can be the same. */
|
|
int elen;
|
|
REAL *e;
|
|
REAL b;
|
|
REAL *h;
|
|
{
|
|
REAL Q;
|
|
INEXACT REAL Qnew;
|
|
int eindex;
|
|
REAL enow;
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
|
|
Q = b;
|
|
for (eindex = 0; eindex < elen; eindex++) {
|
|
enow = e[eindex];
|
|
Two_Sum(Q, enow, Qnew, h[eindex]);
|
|
Q = Qnew;
|
|
}
|
|
h[eindex] = Q;
|
|
return eindex + 1;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* grow_expansion_zeroelim() Add a scalar to an expansion, eliminating */
|
|
/* zero components from the output expansion. */
|
|
/* */
|
|
/* Sets h = e + b. See the long version of my paper for details. */
|
|
/* */
|
|
/* Maintains the nonoverlapping property. If round-to-even is used (as */
|
|
/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */
|
|
/* properties as well. (That is, if e has one of these properties, so */
|
|
/* will h.) */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
int grow_expansion_zeroelim(elen, e, b, h) /* e and h can be the same. */
|
|
int elen;
|
|
REAL *e;
|
|
REAL b;
|
|
REAL *h;
|
|
{
|
|
REAL Q, hh;
|
|
INEXACT REAL Qnew;
|
|
int eindex, hindex;
|
|
REAL enow;
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
|
|
hindex = 0;
|
|
Q = b;
|
|
for (eindex = 0; eindex < elen; eindex++) {
|
|
enow = e[eindex];
|
|
Two_Sum(Q, enow, Qnew, hh);
|
|
Q = Qnew;
|
|
if (hh != 0.0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
}
|
|
if ((Q != 0.0) || (hindex == 0)) {
|
|
h[hindex++] = Q;
|
|
}
|
|
return hindex;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* expansion_sum() Sum two expansions. */
|
|
/* */
|
|
/* Sets h = e + f. See the long version of my paper for details. */
|
|
/* */
|
|
/* Maintains the nonoverlapping property. If round-to-even is used (as */
|
|
/* with IEEE 754), maintains the nonadjacent property as well. (That is, */
|
|
/* if e has one of these properties, so will h.) Does NOT maintain the */
|
|
/* strongly nonoverlapping property. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
int expansion_sum(elen, e, flen, f, h)
|
|
/* e and h can be the same, but f and h cannot. */
|
|
int elen;
|
|
REAL *e;
|
|
int flen;
|
|
REAL *f;
|
|
REAL *h;
|
|
{
|
|
REAL Q;
|
|
INEXACT REAL Qnew;
|
|
int findex, hindex, hlast;
|
|
REAL hnow;
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
|
|
Q = f[0];
|
|
for (hindex = 0; hindex < elen; hindex++) {
|
|
hnow = e[hindex];
|
|
Two_Sum(Q, hnow, Qnew, h[hindex]);
|
|
Q = Qnew;
|
|
}
|
|
h[hindex] = Q;
|
|
hlast = hindex;
|
|
for (findex = 1; findex < flen; findex++) {
|
|
Q = f[findex];
|
|
for (hindex = findex; hindex <= hlast; hindex++) {
|
|
hnow = h[hindex];
|
|
Two_Sum(Q, hnow, Qnew, h[hindex]);
|
|
Q = Qnew;
|
|
}
|
|
h[++hlast] = Q;
|
|
}
|
|
return hlast + 1;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* expansion_sum_zeroelim1() Sum two expansions, eliminating zero */
|
|
/* components from the output expansion. */
|
|
/* */
|
|
/* Sets h = e + f. See the long version of my paper for details. */
|
|
/* */
|
|
/* Maintains the nonoverlapping property. If round-to-even is used (as */
|
|
/* with IEEE 754), maintains the nonadjacent property as well. (That is, */
|
|
/* if e has one of these properties, so will h.) Does NOT maintain the */
|
|
/* strongly nonoverlapping property. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
int expansion_sum_zeroelim1(elen, e, flen, f, h)
|
|
/* e and h can be the same, but f and h cannot. */
|
|
int elen;
|
|
REAL *e;
|
|
int flen;
|
|
REAL *f;
|
|
REAL *h;
|
|
{
|
|
REAL Q;
|
|
INEXACT REAL Qnew;
|
|
int index, findex, hindex, hlast;
|
|
REAL hnow;
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
|
|
Q = f[0];
|
|
for (hindex = 0; hindex < elen; hindex++) {
|
|
hnow = e[hindex];
|
|
Two_Sum(Q, hnow, Qnew, h[hindex]);
|
|
Q = Qnew;
|
|
}
|
|
h[hindex] = Q;
|
|
hlast = hindex;
|
|
for (findex = 1; findex < flen; findex++) {
|
|
Q = f[findex];
|
|
for (hindex = findex; hindex <= hlast; hindex++) {
|
|
hnow = h[hindex];
|
|
Two_Sum(Q, hnow, Qnew, h[hindex]);
|
|
Q = Qnew;
|
|
}
|
|
h[++hlast] = Q;
|
|
}
|
|
hindex = -1;
|
|
for (index = 0; index <= hlast; index++) {
|
|
hnow = h[index];
|
|
if (hnow != 0.0) {
|
|
h[++hindex] = hnow;
|
|
}
|
|
}
|
|
if (hindex == -1) {
|
|
return 1;
|
|
} else {
|
|
return hindex + 1;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* expansion_sum_zeroelim2() Sum two expansions, eliminating zero */
|
|
/* components from the output expansion. */
|
|
/* */
|
|
/* Sets h = e + f. See the long version of my paper for details. */
|
|
/* */
|
|
/* Maintains the nonoverlapping property. If round-to-even is used (as */
|
|
/* with IEEE 754), maintains the nonadjacent property as well. (That is, */
|
|
/* if e has one of these properties, so will h.) Does NOT maintain the */
|
|
/* strongly nonoverlapping property. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
int expansion_sum_zeroelim2(elen, e, flen, f, h)
|
|
/* e and h can be the same, but f and h cannot. */
|
|
int elen;
|
|
REAL *e;
|
|
int flen;
|
|
REAL *f;
|
|
REAL *h;
|
|
{
|
|
REAL Q, hh;
|
|
INEXACT REAL Qnew;
|
|
int eindex, findex, hindex, hlast;
|
|
REAL enow;
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
|
|
hindex = 0;
|
|
Q = f[0];
|
|
for (eindex = 0; eindex < elen; eindex++) {
|
|
enow = e[eindex];
|
|
Two_Sum(Q, enow, Qnew, hh);
|
|
Q = Qnew;
|
|
if (hh != 0.0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
}
|
|
h[hindex] = Q;
|
|
hlast = hindex;
|
|
for (findex = 1; findex < flen; findex++) {
|
|
hindex = 0;
|
|
Q = f[findex];
|
|
for (eindex = 0; eindex <= hlast; eindex++) {
|
|
enow = h[eindex];
|
|
Two_Sum(Q, enow, Qnew, hh);
|
|
Q = Qnew;
|
|
if (hh != 0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
}
|
|
h[hindex] = Q;
|
|
hlast = hindex;
|
|
}
|
|
return hlast + 1;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* fast_expansion_sum() Sum two expansions. */
|
|
/* */
|
|
/* Sets h = e + f. See the long version of my paper for details. */
|
|
/* */
|
|
/* If round-to-even is used (as with IEEE 754), maintains the strongly */
|
|
/* nonoverlapping property. (That is, if e is strongly nonoverlapping, h */
|
|
/* will be also.) Does NOT maintain the nonoverlapping or nonadjacent */
|
|
/* properties. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
int fast_expansion_sum(elen, e, flen, f, h) /* h cannot be e or f. */
|
|
int elen;
|
|
REAL *e;
|
|
int flen;
|
|
REAL *f;
|
|
REAL *h;
|
|
{
|
|
REAL Q;
|
|
INEXACT REAL Qnew;
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
int eindex, findex, hindex;
|
|
REAL enow, fnow;
|
|
|
|
enow = e[0];
|
|
fnow = f[0];
|
|
eindex = findex = 0;
|
|
if ((fnow > enow) == (fnow > -enow)) {
|
|
Q = enow;
|
|
enow = e[++eindex];
|
|
} else {
|
|
Q = fnow;
|
|
fnow = f[++findex];
|
|
}
|
|
hindex = 0;
|
|
if ((eindex < elen) && (findex < flen)) {
|
|
if ((fnow > enow) == (fnow > -enow)) {
|
|
Fast_Two_Sum(enow, Q, Qnew, h[0]);
|
|
enow = e[++eindex];
|
|
} else {
|
|
Fast_Two_Sum(fnow, Q, Qnew, h[0]);
|
|
fnow = f[++findex];
|
|
}
|
|
Q = Qnew;
|
|
hindex = 1;
|
|
while ((eindex < elen) && (findex < flen)) {
|
|
if ((fnow > enow) == (fnow > -enow)) {
|
|
Two_Sum(Q, enow, Qnew, h[hindex]);
|
|
enow = e[++eindex];
|
|
} else {
|
|
Two_Sum(Q, fnow, Qnew, h[hindex]);
|
|
fnow = f[++findex];
|
|
}
|
|
Q = Qnew;
|
|
hindex++;
|
|
}
|
|
}
|
|
while (eindex < elen) {
|
|
Two_Sum(Q, enow, Qnew, h[hindex]);
|
|
enow = e[++eindex];
|
|
Q = Qnew;
|
|
hindex++;
|
|
}
|
|
while (findex < flen) {
|
|
Two_Sum(Q, fnow, Qnew, h[hindex]);
|
|
fnow = f[++findex];
|
|
Q = Qnew;
|
|
hindex++;
|
|
}
|
|
h[hindex] = Q;
|
|
return hindex + 1;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* fast_expansion_sum_zeroelim() Sum two expansions, eliminating zero */
|
|
/* components from the output expansion. */
|
|
/* */
|
|
/* Sets h = e + f. See the long version of my paper for details. */
|
|
/* */
|
|
/* If round-to-even is used (as with IEEE 754), maintains the strongly */
|
|
/* nonoverlapping property. (That is, if e is strongly nonoverlapping, h */
|
|
/* will be also.) Does NOT maintain the nonoverlapping or nonadjacent */
|
|
/* properties. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
int fast_expansion_sum_zeroelim(elen, e, flen, f, h) /* h cannot be e or f. */
|
|
int elen;
|
|
REAL *e;
|
|
int flen;
|
|
REAL *f;
|
|
REAL *h;
|
|
{
|
|
REAL Q;
|
|
INEXACT REAL Qnew;
|
|
INEXACT REAL hh;
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
int eindex, findex, hindex;
|
|
REAL enow, fnow;
|
|
|
|
enow = e[0];
|
|
fnow = f[0];
|
|
eindex = findex = 0;
|
|
if ((fnow > enow) == (fnow > -enow)) {
|
|
Q = enow;
|
|
enow = e[++eindex];
|
|
} else {
|
|
Q = fnow;
|
|
fnow = f[++findex];
|
|
}
|
|
hindex = 0;
|
|
if ((eindex < elen) && (findex < flen)) {
|
|
if ((fnow > enow) == (fnow > -enow)) {
|
|
Fast_Two_Sum(enow, Q, Qnew, hh);
|
|
enow = e[++eindex];
|
|
} else {
|
|
Fast_Two_Sum(fnow, Q, Qnew, hh);
|
|
fnow = f[++findex];
|
|
}
|
|
Q = Qnew;
|
|
if (hh != 0.0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
while ((eindex < elen) && (findex < flen)) {
|
|
if ((fnow > enow) == (fnow > -enow)) {
|
|
Two_Sum(Q, enow, Qnew, hh);
|
|
enow = e[++eindex];
|
|
} else {
|
|
Two_Sum(Q, fnow, Qnew, hh);
|
|
fnow = f[++findex];
|
|
}
|
|
Q = Qnew;
|
|
if (hh != 0.0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
}
|
|
}
|
|
while (eindex < elen) {
|
|
Two_Sum(Q, enow, Qnew, hh);
|
|
enow = e[++eindex];
|
|
Q = Qnew;
|
|
if (hh != 0.0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
}
|
|
while (findex < flen) {
|
|
Two_Sum(Q, fnow, Qnew, hh);
|
|
fnow = f[++findex];
|
|
Q = Qnew;
|
|
if (hh != 0.0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
}
|
|
if ((Q != 0.0) || (hindex == 0)) {
|
|
h[hindex++] = Q;
|
|
}
|
|
return hindex;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* linear_expansion_sum() Sum two expansions. */
|
|
/* */
|
|
/* Sets h = e + f. See either version of my paper for details. */
|
|
/* */
|
|
/* Maintains the nonoverlapping property. (That is, if e is */
|
|
/* nonoverlapping, h will be also.) */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
int linear_expansion_sum(elen, e, flen, f, h) /* h cannot be e or f. */
|
|
int elen;
|
|
REAL *e;
|
|
int flen;
|
|
REAL *f;
|
|
REAL *h;
|
|
{
|
|
REAL Q, q;
|
|
INEXACT REAL Qnew;
|
|
INEXACT REAL R;
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
int eindex, findex, hindex;
|
|
REAL enow, fnow;
|
|
REAL g0;
|
|
|
|
enow = e[0];
|
|
fnow = f[0];
|
|
eindex = findex = 0;
|
|
if ((fnow > enow) == (fnow > -enow)) {
|
|
g0 = enow;
|
|
enow = e[++eindex];
|
|
} else {
|
|
g0 = fnow;
|
|
fnow = f[++findex];
|
|
}
|
|
if ((eindex < elen) && ((findex >= flen)
|
|
|| ((fnow > enow) == (fnow > -enow)))) {
|
|
Fast_Two_Sum(enow, g0, Qnew, q);
|
|
enow = e[++eindex];
|
|
} else {
|
|
Fast_Two_Sum(fnow, g0, Qnew, q);
|
|
fnow = f[++findex];
|
|
}
|
|
Q = Qnew;
|
|
for (hindex = 0; hindex < elen + flen - 2; hindex++) {
|
|
if ((eindex < elen) && ((findex >= flen)
|
|
|| ((fnow > enow) == (fnow > -enow)))) {
|
|
Fast_Two_Sum(enow, q, R, h[hindex]);
|
|
enow = e[++eindex];
|
|
} else {
|
|
Fast_Two_Sum(fnow, q, R, h[hindex]);
|
|
fnow = f[++findex];
|
|
}
|
|
Two_Sum(Q, R, Qnew, q);
|
|
Q = Qnew;
|
|
}
|
|
h[hindex] = q;
|
|
h[hindex + 1] = Q;
|
|
return hindex + 2;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* linear_expansion_sum_zeroelim() Sum two expansions, eliminating zero */
|
|
/* components from the output expansion. */
|
|
/* */
|
|
/* Sets h = e + f. See either version of my paper for details. */
|
|
/* */
|
|
/* Maintains the nonoverlapping property. (That is, if e is */
|
|
/* nonoverlapping, h will be also.) */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
int linear_expansion_sum_zeroelim(elen, e, flen, f, h)/* h cannot be e or f. */
|
|
int elen;
|
|
REAL *e;
|
|
int flen;
|
|
REAL *f;
|
|
REAL *h;
|
|
{
|
|
REAL Q, q, hh;
|
|
INEXACT REAL Qnew;
|
|
INEXACT REAL R;
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
int eindex, findex, hindex;
|
|
int count;
|
|
REAL enow, fnow;
|
|
REAL g0;
|
|
|
|
enow = e[0];
|
|
fnow = f[0];
|
|
eindex = findex = 0;
|
|
hindex = 0;
|
|
if ((fnow > enow) == (fnow > -enow)) {
|
|
g0 = enow;
|
|
enow = e[++eindex];
|
|
} else {
|
|
g0 = fnow;
|
|
fnow = f[++findex];
|
|
}
|
|
if ((eindex < elen) && ((findex >= flen)
|
|
|| ((fnow > enow) == (fnow > -enow)))) {
|
|
Fast_Two_Sum(enow, g0, Qnew, q);
|
|
enow = e[++eindex];
|
|
} else {
|
|
Fast_Two_Sum(fnow, g0, Qnew, q);
|
|
fnow = f[++findex];
|
|
}
|
|
Q = Qnew;
|
|
for (count = 2; count < elen + flen; count++) {
|
|
if ((eindex < elen) && ((findex >= flen)
|
|
|| ((fnow > enow) == (fnow > -enow)))) {
|
|
Fast_Two_Sum(enow, q, R, hh);
|
|
enow = e[++eindex];
|
|
} else {
|
|
Fast_Two_Sum(fnow, q, R, hh);
|
|
fnow = f[++findex];
|
|
}
|
|
Two_Sum(Q, R, Qnew, q);
|
|
Q = Qnew;
|
|
if (hh != 0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
}
|
|
if (q != 0) {
|
|
h[hindex++] = q;
|
|
}
|
|
if ((Q != 0.0) || (hindex == 0)) {
|
|
h[hindex++] = Q;
|
|
}
|
|
return hindex;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* scale_expansion() Multiply an expansion by a scalar. */
|
|
/* */
|
|
/* Sets h = be. See either version of my paper for details. */
|
|
/* */
|
|
/* Maintains the nonoverlapping property. If round-to-even is used (as */
|
|
/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */
|
|
/* properties as well. (That is, if e has one of these properties, so */
|
|
/* will h.) */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
int scale_expansion(elen, e, b, h) /* e and h cannot be the same. */
|
|
int elen;
|
|
REAL *e;
|
|
REAL b;
|
|
REAL *h;
|
|
{
|
|
INEXACT REAL Q;
|
|
INEXACT REAL sum;
|
|
INEXACT REAL product1;
|
|
REAL product0;
|
|
int eindex, hindex;
|
|
REAL enow;
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL ahi, alo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
|
|
Split(b, bhi, blo);
|
|
Two_Product_Presplit(e[0], b, bhi, blo, Q, h[0]);
|
|
hindex = 1;
|
|
for (eindex = 1; eindex < elen; eindex++) {
|
|
enow = e[eindex];
|
|
Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
|
|
Two_Sum(Q, product0, sum, h[hindex]);
|
|
hindex++;
|
|
Two_Sum(product1, sum, Q, h[hindex]);
|
|
hindex++;
|
|
}
|
|
h[hindex] = Q;
|
|
return elen + elen;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* scale_expansion_zeroelim() Multiply an expansion by a scalar, */
|
|
/* eliminating zero components from the */
|
|
/* output expansion. */
|
|
/* */
|
|
/* Sets h = be. See either version of my paper for details. */
|
|
/* */
|
|
/* Maintains the nonoverlapping property. If round-to-even is used (as */
|
|
/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */
|
|
/* properties as well. (That is, if e has one of these properties, so */
|
|
/* will h.) */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
int scale_expansion_zeroelim(elen, e, b, h) /* e and h cannot be the same. */
|
|
int elen;
|
|
REAL *e;
|
|
REAL b;
|
|
REAL *h;
|
|
{
|
|
INEXACT REAL Q, sum;
|
|
REAL hh;
|
|
INEXACT REAL product1;
|
|
REAL product0;
|
|
int eindex, hindex;
|
|
REAL enow;
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL ahi, alo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
|
|
Split(b, bhi, blo);
|
|
Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);
|
|
hindex = 0;
|
|
if (hh != 0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
for (eindex = 1; eindex < elen; eindex++) {
|
|
enow = e[eindex];
|
|
Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
|
|
Two_Sum(Q, product0, sum, hh);
|
|
if (hh != 0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
Fast_Two_Sum(product1, sum, Q, hh);
|
|
if (hh != 0) {
|
|
h[hindex++] = hh;
|
|
}
|
|
}
|
|
if ((Q != 0.0) || (hindex == 0)) {
|
|
h[hindex++] = Q;
|
|
}
|
|
return hindex;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* compress() Compress an expansion. */
|
|
/* */
|
|
/* See the long version of my paper for details. */
|
|
/* */
|
|
/* Maintains the nonoverlapping property. If round-to-even is used (as */
|
|
/* with IEEE 754), then any nonoverlapping expansion is converted to a */
|
|
/* nonadjacent expansion. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
int compress(elen, e, h) /* e and h may be the same. */
|
|
int elen;
|
|
REAL *e;
|
|
REAL *h;
|
|
{
|
|
REAL Q, q;
|
|
INEXACT REAL Qnew;
|
|
int eindex, hindex;
|
|
INEXACT REAL bvirt;
|
|
REAL enow, hnow;
|
|
int top, bottom;
|
|
|
|
bottom = elen - 1;
|
|
Q = e[bottom];
|
|
for (eindex = elen - 2; eindex >= 0; eindex--) {
|
|
enow = e[eindex];
|
|
Fast_Two_Sum(Q, enow, Qnew, q);
|
|
if (q != 0) {
|
|
h[bottom--] = Qnew;
|
|
Q = q;
|
|
} else {
|
|
Q = Qnew;
|
|
}
|
|
}
|
|
top = 0;
|
|
for (hindex = bottom + 1; hindex < elen; hindex++) {
|
|
hnow = h[hindex];
|
|
Fast_Two_Sum(hnow, Q, Qnew, q);
|
|
if (q != 0) {
|
|
h[top++] = q;
|
|
}
|
|
Q = Qnew;
|
|
}
|
|
h[top] = Q;
|
|
return top + 1;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* estimate() Produce a one-word estimate of an expansion's value. */
|
|
/* */
|
|
/* See either version of my paper for details. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
REAL estimate(elen, e)
|
|
int elen;
|
|
REAL *e;
|
|
{
|
|
REAL Q;
|
|
int eindex;
|
|
|
|
Q = e[0];
|
|
for (eindex = 1; eindex < elen; eindex++) {
|
|
Q += e[eindex];
|
|
}
|
|
return Q;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* orient2dfast() Approximate 2D orientation test. Nonrobust. */
|
|
/* orient2dexact() Exact 2D orientation test. Robust. */
|
|
/* orient2dslow() Another exact 2D orientation test. Robust. */
|
|
/* orient2d() Adaptive exact 2D orientation test. Robust. */
|
|
/* */
|
|
/* Return a positive value if the points pa, pb, and pc occur */
|
|
/* in counterclockwise order; a negative value if they occur */
|
|
/* in clockwise order; and zero if they are collinear. The */
|
|
/* result is also a rough approximation of twice the signed */
|
|
/* area of the triangle defined by the three points. */
|
|
/* */
|
|
/* Only the first and last routine should be used; the middle two are for */
|
|
/* timings. */
|
|
/* */
|
|
/* The last three use exact arithmetic to ensure a correct answer. The */
|
|
/* result returned is the determinant of a matrix. In orient2d() only, */
|
|
/* this determinant is computed adaptively, in the sense that exact */
|
|
/* arithmetic is used only to the degree it is needed to ensure that the */
|
|
/* returned value has the correct sign. Hence, orient2d() is usually quite */
|
|
/* fast, but will run more slowly when the input points are collinear or */
|
|
/* nearly so. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
REAL orient2dfast(pa, pb, pc)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
{
|
|
REAL acx, bcx, acy, bcy;
|
|
|
|
acx = pa[0] - pc[0];
|
|
bcx = pb[0] - pc[0];
|
|
acy = pa[1] - pc[1];
|
|
bcy = pb[1] - pc[1];
|
|
return acx * bcy - acy * bcx;
|
|
}
|
|
|
|
REAL orient2dexact(pa, pb, pc)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
{
|
|
INEXACT REAL axby1, axcy1, bxcy1, bxay1, cxay1, cxby1;
|
|
REAL axby0, axcy0, bxcy0, bxay0, cxay0, cxby0;
|
|
REAL aterms[4], bterms[4], cterms[4];
|
|
INEXACT REAL aterms3, bterms3, cterms3;
|
|
REAL v[8], w[12];
|
|
int vlength, wlength;
|
|
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL ahi, alo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
INEXACT REAL _i, _j;
|
|
REAL _0;
|
|
|
|
Two_Product(pa[0], pb[1], axby1, axby0);
|
|
Two_Product(pa[0], pc[1], axcy1, axcy0);
|
|
Two_Two_Diff(axby1, axby0, axcy1, axcy0,
|
|
aterms3, aterms[2], aterms[1], aterms[0]);
|
|
aterms[3] = aterms3;
|
|
|
|
Two_Product(pb[0], pc[1], bxcy1, bxcy0);
|
|
Two_Product(pb[0], pa[1], bxay1, bxay0);
|
|
Two_Two_Diff(bxcy1, bxcy0, bxay1, bxay0,
|
|
bterms3, bterms[2], bterms[1], bterms[0]);
|
|
bterms[3] = bterms3;
|
|
|
|
Two_Product(pc[0], pa[1], cxay1, cxay0);
|
|
Two_Product(pc[0], pb[1], cxby1, cxby0);
|
|
Two_Two_Diff(cxay1, cxay0, cxby1, cxby0,
|
|
cterms3, cterms[2], cterms[1], cterms[0]);
|
|
cterms[3] = cterms3;
|
|
|
|
vlength = fast_expansion_sum_zeroelim(4, aterms, 4, bterms, v);
|
|
wlength = fast_expansion_sum_zeroelim(vlength, v, 4, cterms, w);
|
|
|
|
return w[wlength - 1];
|
|
}
|
|
|
|
REAL orient2dslow(pa, pb, pc)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
{
|
|
INEXACT REAL acx, acy, bcx, bcy;
|
|
REAL acxtail, acytail;
|
|
REAL bcxtail, bcytail;
|
|
REAL negate, negatetail;
|
|
REAL axby[8], bxay[8];
|
|
INEXACT REAL axby7, bxay7;
|
|
REAL deter[16];
|
|
int deterlen;
|
|
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL a0hi, a0lo, a1hi, a1lo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
INEXACT REAL _i, _j, _k, _l, _m, _n;
|
|
REAL _0, _1, _2;
|
|
|
|
Two_Diff(pa[0], pc[0], acx, acxtail);
|
|
Two_Diff(pa[1], pc[1], acy, acytail);
|
|
Two_Diff(pb[0], pc[0], bcx, bcxtail);
|
|
Two_Diff(pb[1], pc[1], bcy, bcytail);
|
|
|
|
Two_Two_Product(acx, acxtail, bcy, bcytail,
|
|
axby7, axby[6], axby[5], axby[4],
|
|
axby[3], axby[2], axby[1], axby[0]);
|
|
axby[7] = axby7;
|
|
negate = -acy;
|
|
negatetail = -acytail;
|
|
Two_Two_Product(bcx, bcxtail, negate, negatetail,
|
|
bxay7, bxay[6], bxay[5], bxay[4],
|
|
bxay[3], bxay[2], bxay[1], bxay[0]);
|
|
bxay[7] = bxay7;
|
|
|
|
deterlen = fast_expansion_sum_zeroelim(8, axby, 8, bxay, deter);
|
|
|
|
return deter[deterlen - 1];
|
|
}
|
|
|
|
REAL orient2dadapt(pa, pb, pc, detsum)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
REAL detsum;
|
|
{
|
|
INEXACT REAL acx, acy, bcx, bcy;
|
|
REAL acxtail, acytail, bcxtail, bcytail;
|
|
INEXACT REAL detleft, detright;
|
|
REAL detlefttail, detrighttail;
|
|
REAL det, errbound;
|
|
REAL B[4], C1[8], C2[12], D[16];
|
|
INEXACT REAL B3;
|
|
int C1length, C2length, Dlength;
|
|
REAL u[4];
|
|
INEXACT REAL u3;
|
|
INEXACT REAL s1, t1;
|
|
REAL s0, t0;
|
|
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL ahi, alo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
INEXACT REAL _i, _j;
|
|
REAL _0;
|
|
|
|
acx = (REAL) (pa[0] - pc[0]);
|
|
bcx = (REAL) (pb[0] - pc[0]);
|
|
acy = (REAL) (pa[1] - pc[1]);
|
|
bcy = (REAL) (pb[1] - pc[1]);
|
|
|
|
Two_Product(acx, bcy, detleft, detlefttail);
|
|
Two_Product(acy, bcx, detright, detrighttail);
|
|
|
|
Two_Two_Diff(detleft, detlefttail, detright, detrighttail,
|
|
B3, B[2], B[1], B[0]);
|
|
B[3] = B3;
|
|
|
|
det = estimate(4, B);
|
|
errbound = ccwerrboundB * detsum;
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
return det;
|
|
}
|
|
|
|
Two_Diff_Tail(pa[0], pc[0], acx, acxtail);
|
|
Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail);
|
|
Two_Diff_Tail(pa[1], pc[1], acy, acytail);
|
|
Two_Diff_Tail(pb[1], pc[1], bcy, bcytail);
|
|
|
|
if ((acxtail == 0.0) && (acytail == 0.0)
|
|
&& (bcxtail == 0.0) && (bcytail == 0.0)) {
|
|
return det;
|
|
}
|
|
|
|
errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det);
|
|
det += (acx * bcytail + bcy * acxtail)
|
|
- (acy * bcxtail + bcx * acytail);
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
return det;
|
|
}
|
|
|
|
Two_Product(acxtail, bcy, s1, s0);
|
|
Two_Product(acytail, bcx, t1, t0);
|
|
Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1);
|
|
|
|
Two_Product(acx, bcytail, s1, s0);
|
|
Two_Product(acy, bcxtail, t1, t0);
|
|
Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2);
|
|
|
|
Two_Product(acxtail, bcytail, s1, s0);
|
|
Two_Product(acytail, bcxtail, t1, t0);
|
|
Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D);
|
|
|
|
return(D[Dlength - 1]);
|
|
}
|
|
|
|
REAL orient2d(pa, pb, pc)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
{
|
|
REAL detleft, detright, det;
|
|
REAL detsum, errbound;
|
|
|
|
detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]);
|
|
detright = (pa[1] - pc[1]) * (pb[0] - pc[0]);
|
|
det = detleft - detright;
|
|
|
|
if (detleft > 0.0) {
|
|
if (detright <= 0.0) {
|
|
return det;
|
|
} else {
|
|
detsum = detleft + detright;
|
|
}
|
|
} else if (detleft < 0.0) {
|
|
if (detright >= 0.0) {
|
|
return det;
|
|
} else {
|
|
detsum = -detleft - detright;
|
|
}
|
|
} else {
|
|
return det;
|
|
}
|
|
|
|
errbound = ccwerrboundA * detsum;
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
return det;
|
|
}
|
|
|
|
return orient2dadapt(pa, pb, pc, detsum);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* orient3dfast() Approximate 3D orientation test. Nonrobust. */
|
|
/* orient3dexact() Exact 3D orientation test. Robust. */
|
|
/* orient3dslow() Another exact 3D orientation test. Robust. */
|
|
/* orient3d() Adaptive exact 3D orientation test. Robust. */
|
|
/* */
|
|
/* Return a positive value if the point pd lies below the */
|
|
/* plane passing through pa, pb, and pc; "below" is defined so */
|
|
/* that pa, pb, and pc appear in counterclockwise order when */
|
|
/* viewed from above the plane. Returns a negative value if */
|
|
/* pd lies above the plane. Returns zero if the points are */
|
|
/* coplanar. The result is also a rough approximation of six */
|
|
/* times the signed volume of the tetrahedron defined by the */
|
|
/* four points. */
|
|
/* */
|
|
/* Only the first and last routine should be used; the middle two are for */
|
|
/* timings. */
|
|
/* */
|
|
/* The last three use exact arithmetic to ensure a correct answer. The */
|
|
/* result returned is the determinant of a matrix. In orient3d() only, */
|
|
/* this determinant is computed adaptively, in the sense that exact */
|
|
/* arithmetic is used only to the degree it is needed to ensure that the */
|
|
/* returned value has the correct sign. Hence, orient3d() is usually quite */
|
|
/* fast, but will run more slowly when the input points are coplanar or */
|
|
/* nearly so. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
REAL orient3dfast(pa, pb, pc, pd)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
REAL *pd;
|
|
{
|
|
REAL adx, bdx, cdx;
|
|
REAL ady, bdy, cdy;
|
|
REAL adz, bdz, cdz;
|
|
|
|
adx = pa[0] - pd[0];
|
|
bdx = pb[0] - pd[0];
|
|
cdx = pc[0] - pd[0];
|
|
ady = pa[1] - pd[1];
|
|
bdy = pb[1] - pd[1];
|
|
cdy = pc[1] - pd[1];
|
|
adz = pa[2] - pd[2];
|
|
bdz = pb[2] - pd[2];
|
|
cdz = pc[2] - pd[2];
|
|
|
|
return adx * (bdy * cdz - bdz * cdy)
|
|
+ bdx * (cdy * adz - cdz * ady)
|
|
+ cdx * (ady * bdz - adz * bdy);
|
|
}
|
|
|
|
REAL orient3dexact(pa, pb, pc, pd)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
REAL *pd;
|
|
{
|
|
INEXACT REAL axby1, bxcy1, cxdy1, dxay1, axcy1, bxdy1;
|
|
INEXACT REAL bxay1, cxby1, dxcy1, axdy1, cxay1, dxby1;
|
|
REAL axby0, bxcy0, cxdy0, dxay0, axcy0, bxdy0;
|
|
REAL bxay0, cxby0, dxcy0, axdy0, cxay0, dxby0;
|
|
REAL ab[4], bc[4], cd[4], da[4], ac[4], bd[4];
|
|
REAL temp8[8];
|
|
int templen;
|
|
REAL abc[12], bcd[12], cda[12], dab[12];
|
|
int abclen, bcdlen, cdalen, dablen;
|
|
REAL adet[24], bdet[24], cdet[24], ddet[24];
|
|
int alen, blen, clen, dlen;
|
|
REAL abdet[48], cddet[48];
|
|
int ablen, cdlen;
|
|
REAL deter[96];
|
|
int deterlen;
|
|
int i;
|
|
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL ahi, alo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
INEXACT REAL _i, _j;
|
|
REAL _0;
|
|
|
|
Two_Product(pa[0], pb[1], axby1, axby0);
|
|
Two_Product(pb[0], pa[1], bxay1, bxay0);
|
|
Two_Two_Diff(axby1, axby0, bxay1, bxay0, ab[3], ab[2], ab[1], ab[0]);
|
|
|
|
Two_Product(pb[0], pc[1], bxcy1, bxcy0);
|
|
Two_Product(pc[0], pb[1], cxby1, cxby0);
|
|
Two_Two_Diff(bxcy1, bxcy0, cxby1, cxby0, bc[3], bc[2], bc[1], bc[0]);
|
|
|
|
Two_Product(pc[0], pd[1], cxdy1, cxdy0);
|
|
Two_Product(pd[0], pc[1], dxcy1, dxcy0);
|
|
Two_Two_Diff(cxdy1, cxdy0, dxcy1, dxcy0, cd[3], cd[2], cd[1], cd[0]);
|
|
|
|
Two_Product(pd[0], pa[1], dxay1, dxay0);
|
|
Two_Product(pa[0], pd[1], axdy1, axdy0);
|
|
Two_Two_Diff(dxay1, dxay0, axdy1, axdy0, da[3], da[2], da[1], da[0]);
|
|
|
|
Two_Product(pa[0], pc[1], axcy1, axcy0);
|
|
Two_Product(pc[0], pa[1], cxay1, cxay0);
|
|
Two_Two_Diff(axcy1, axcy0, cxay1, cxay0, ac[3], ac[2], ac[1], ac[0]);
|
|
|
|
Two_Product(pb[0], pd[1], bxdy1, bxdy0);
|
|
Two_Product(pd[0], pb[1], dxby1, dxby0);
|
|
Two_Two_Diff(bxdy1, bxdy0, dxby1, dxby0, bd[3], bd[2], bd[1], bd[0]);
|
|
|
|
templen = fast_expansion_sum_zeroelim(4, cd, 4, da, temp8);
|
|
cdalen = fast_expansion_sum_zeroelim(templen, temp8, 4, ac, cda);
|
|
templen = fast_expansion_sum_zeroelim(4, da, 4, ab, temp8);
|
|
dablen = fast_expansion_sum_zeroelim(templen, temp8, 4, bd, dab);
|
|
for (i = 0; i < 4; i++) {
|
|
bd[i] = -bd[i];
|
|
ac[i] = -ac[i];
|
|
}
|
|
templen = fast_expansion_sum_zeroelim(4, ab, 4, bc, temp8);
|
|
abclen = fast_expansion_sum_zeroelim(templen, temp8, 4, ac, abc);
|
|
templen = fast_expansion_sum_zeroelim(4, bc, 4, cd, temp8);
|
|
bcdlen = fast_expansion_sum_zeroelim(templen, temp8, 4, bd, bcd);
|
|
|
|
alen = scale_expansion_zeroelim(bcdlen, bcd, pa[2], adet);
|
|
blen = scale_expansion_zeroelim(cdalen, cda, -pb[2], bdet);
|
|
clen = scale_expansion_zeroelim(dablen, dab, pc[2], cdet);
|
|
dlen = scale_expansion_zeroelim(abclen, abc, -pd[2], ddet);
|
|
|
|
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
|
|
cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet);
|
|
deterlen = fast_expansion_sum_zeroelim(ablen, abdet, cdlen, cddet, deter);
|
|
|
|
return deter[deterlen - 1];
|
|
}
|
|
|
|
REAL orient3dslow(pa, pb, pc, pd)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
REAL *pd;
|
|
{
|
|
INEXACT REAL adx, ady, adz, bdx, bdy, bdz, cdx, cdy, cdz;
|
|
REAL adxtail, adytail, adztail;
|
|
REAL bdxtail, bdytail, bdztail;
|
|
REAL cdxtail, cdytail, cdztail;
|
|
REAL negate, negatetail;
|
|
INEXACT REAL axby7, bxcy7, axcy7, bxay7, cxby7, cxay7;
|
|
REAL axby[8], bxcy[8], axcy[8], bxay[8], cxby[8], cxay[8];
|
|
REAL temp16[16], temp32[32], temp32t[32];
|
|
int temp16len, temp32len, temp32tlen;
|
|
REAL adet[64], bdet[64], cdet[64];
|
|
int alen, blen, clen;
|
|
REAL abdet[128];
|
|
int ablen;
|
|
REAL deter[192];
|
|
int deterlen;
|
|
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL a0hi, a0lo, a1hi, a1lo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
INEXACT REAL _i, _j, _k, _l, _m, _n;
|
|
REAL _0, _1, _2;
|
|
|
|
Two_Diff(pa[0], pd[0], adx, adxtail);
|
|
Two_Diff(pa[1], pd[1], ady, adytail);
|
|
Two_Diff(pa[2], pd[2], adz, adztail);
|
|
Two_Diff(pb[0], pd[0], bdx, bdxtail);
|
|
Two_Diff(pb[1], pd[1], bdy, bdytail);
|
|
Two_Diff(pb[2], pd[2], bdz, bdztail);
|
|
Two_Diff(pc[0], pd[0], cdx, cdxtail);
|
|
Two_Diff(pc[1], pd[1], cdy, cdytail);
|
|
Two_Diff(pc[2], pd[2], cdz, cdztail);
|
|
|
|
Two_Two_Product(adx, adxtail, bdy, bdytail,
|
|
axby7, axby[6], axby[5], axby[4],
|
|
axby[3], axby[2], axby[1], axby[0]);
|
|
axby[7] = axby7;
|
|
negate = -ady;
|
|
negatetail = -adytail;
|
|
Two_Two_Product(bdx, bdxtail, negate, negatetail,
|
|
bxay7, bxay[6], bxay[5], bxay[4],
|
|
bxay[3], bxay[2], bxay[1], bxay[0]);
|
|
bxay[7] = bxay7;
|
|
Two_Two_Product(bdx, bdxtail, cdy, cdytail,
|
|
bxcy7, bxcy[6], bxcy[5], bxcy[4],
|
|
bxcy[3], bxcy[2], bxcy[1], bxcy[0]);
|
|
bxcy[7] = bxcy7;
|
|
negate = -bdy;
|
|
negatetail = -bdytail;
|
|
Two_Two_Product(cdx, cdxtail, negate, negatetail,
|
|
cxby7, cxby[6], cxby[5], cxby[4],
|
|
cxby[3], cxby[2], cxby[1], cxby[0]);
|
|
cxby[7] = cxby7;
|
|
Two_Two_Product(cdx, cdxtail, ady, adytail,
|
|
cxay7, cxay[6], cxay[5], cxay[4],
|
|
cxay[3], cxay[2], cxay[1], cxay[0]);
|
|
cxay[7] = cxay7;
|
|
negate = -cdy;
|
|
negatetail = -cdytail;
|
|
Two_Two_Product(adx, adxtail, negate, negatetail,
|
|
axcy7, axcy[6], axcy[5], axcy[4],
|
|
axcy[3], axcy[2], axcy[1], axcy[0]);
|
|
axcy[7] = axcy7;
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(8, bxcy, 8, cxby, temp16);
|
|
temp32len = scale_expansion_zeroelim(temp16len, temp16, adz, temp32);
|
|
temp32tlen = scale_expansion_zeroelim(temp16len, temp16, adztail, temp32t);
|
|
alen = fast_expansion_sum_zeroelim(temp32len, temp32, temp32tlen, temp32t,
|
|
adet);
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(8, cxay, 8, axcy, temp16);
|
|
temp32len = scale_expansion_zeroelim(temp16len, temp16, bdz, temp32);
|
|
temp32tlen = scale_expansion_zeroelim(temp16len, temp16, bdztail, temp32t);
|
|
blen = fast_expansion_sum_zeroelim(temp32len, temp32, temp32tlen, temp32t,
|
|
bdet);
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(8, axby, 8, bxay, temp16);
|
|
temp32len = scale_expansion_zeroelim(temp16len, temp16, cdz, temp32);
|
|
temp32tlen = scale_expansion_zeroelim(temp16len, temp16, cdztail, temp32t);
|
|
clen = fast_expansion_sum_zeroelim(temp32len, temp32, temp32tlen, temp32t,
|
|
cdet);
|
|
|
|
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
|
|
deterlen = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, deter);
|
|
|
|
return deter[deterlen - 1];
|
|
}
|
|
|
|
REAL orient3dadapt(pa, pb, pc, pd, permanent)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
REAL *pd;
|
|
REAL permanent;
|
|
{
|
|
INEXACT REAL adx, bdx, cdx, ady, bdy, cdy, adz, bdz, cdz;
|
|
REAL det, errbound;
|
|
|
|
INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
|
|
REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
|
|
REAL bc[4], ca[4], ab[4];
|
|
INEXACT REAL bc3, ca3, ab3;
|
|
REAL adet[8], bdet[8], cdet[8];
|
|
int alen, blen, clen;
|
|
REAL abdet[16];
|
|
int ablen;
|
|
REAL *finnow, *finother, *finswap;
|
|
REAL fin1[192], fin2[192];
|
|
int finlength;
|
|
|
|
REAL adxtail, bdxtail, cdxtail;
|
|
REAL adytail, bdytail, cdytail;
|
|
REAL adztail, bdztail, cdztail;
|
|
INEXACT REAL at_blarge, at_clarge;
|
|
INEXACT REAL bt_clarge, bt_alarge;
|
|
INEXACT REAL ct_alarge, ct_blarge;
|
|
REAL at_b[4], at_c[4], bt_c[4], bt_a[4], ct_a[4], ct_b[4];
|
|
int at_blen, at_clen, bt_clen, bt_alen, ct_alen, ct_blen;
|
|
INEXACT REAL bdxt_cdy1, cdxt_bdy1, cdxt_ady1;
|
|
INEXACT REAL adxt_cdy1, adxt_bdy1, bdxt_ady1;
|
|
REAL bdxt_cdy0, cdxt_bdy0, cdxt_ady0;
|
|
REAL adxt_cdy0, adxt_bdy0, bdxt_ady0;
|
|
INEXACT REAL bdyt_cdx1, cdyt_bdx1, cdyt_adx1;
|
|
INEXACT REAL adyt_cdx1, adyt_bdx1, bdyt_adx1;
|
|
REAL bdyt_cdx0, cdyt_bdx0, cdyt_adx0;
|
|
REAL adyt_cdx0, adyt_bdx0, bdyt_adx0;
|
|
REAL bct[8], cat[8], abt[8];
|
|
int bctlen, catlen, abtlen;
|
|
INEXACT REAL bdxt_cdyt1, cdxt_bdyt1, cdxt_adyt1;
|
|
INEXACT REAL adxt_cdyt1, adxt_bdyt1, bdxt_adyt1;
|
|
REAL bdxt_cdyt0, cdxt_bdyt0, cdxt_adyt0;
|
|
REAL adxt_cdyt0, adxt_bdyt0, bdxt_adyt0;
|
|
REAL u[4], v[12], w[16];
|
|
INEXACT REAL u3;
|
|
int vlength, wlength;
|
|
REAL negate;
|
|
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL ahi, alo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
INEXACT REAL _i, _j, _k;
|
|
REAL _0;
|
|
|
|
adx = (REAL) (pa[0] - pd[0]);
|
|
bdx = (REAL) (pb[0] - pd[0]);
|
|
cdx = (REAL) (pc[0] - pd[0]);
|
|
ady = (REAL) (pa[1] - pd[1]);
|
|
bdy = (REAL) (pb[1] - pd[1]);
|
|
cdy = (REAL) (pc[1] - pd[1]);
|
|
adz = (REAL) (pa[2] - pd[2]);
|
|
bdz = (REAL) (pb[2] - pd[2]);
|
|
cdz = (REAL) (pc[2] - pd[2]);
|
|
|
|
Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
|
|
Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
|
|
Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
|
|
bc[3] = bc3;
|
|
alen = scale_expansion_zeroelim(4, bc, adz, adet);
|
|
|
|
Two_Product(cdx, ady, cdxady1, cdxady0);
|
|
Two_Product(adx, cdy, adxcdy1, adxcdy0);
|
|
Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
|
|
ca[3] = ca3;
|
|
blen = scale_expansion_zeroelim(4, ca, bdz, bdet);
|
|
|
|
Two_Product(adx, bdy, adxbdy1, adxbdy0);
|
|
Two_Product(bdx, ady, bdxady1, bdxady0);
|
|
Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
|
|
ab[3] = ab3;
|
|
clen = scale_expansion_zeroelim(4, ab, cdz, cdet);
|
|
|
|
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
|
|
finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
|
|
|
|
det = estimate(finlength, fin1);
|
|
errbound = o3derrboundB * permanent;
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
return det;
|
|
}
|
|
|
|
Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
|
|
Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
|
|
Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
|
|
Two_Diff_Tail(pa[1], pd[1], ady, adytail);
|
|
Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
|
|
Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
|
|
Two_Diff_Tail(pa[2], pd[2], adz, adztail);
|
|
Two_Diff_Tail(pb[2], pd[2], bdz, bdztail);
|
|
Two_Diff_Tail(pc[2], pd[2], cdz, cdztail);
|
|
|
|
if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0)
|
|
&& (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)
|
|
&& (adztail == 0.0) && (bdztail == 0.0) && (cdztail == 0.0)) {
|
|
return det;
|
|
}
|
|
|
|
errbound = o3derrboundC * permanent + resulterrbound * Absolute(det);
|
|
det += (adz * ((bdx * cdytail + cdy * bdxtail)
|
|
- (bdy * cdxtail + cdx * bdytail))
|
|
+ adztail * (bdx * cdy - bdy * cdx))
|
|
+ (bdz * ((cdx * adytail + ady * cdxtail)
|
|
- (cdy * adxtail + adx * cdytail))
|
|
+ bdztail * (cdx * ady - cdy * adx))
|
|
+ (cdz * ((adx * bdytail + bdy * adxtail)
|
|
- (ady * bdxtail + bdx * adytail))
|
|
+ cdztail * (adx * bdy - ady * bdx));
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
return det;
|
|
}
|
|
|
|
finnow = fin1;
|
|
finother = fin2;
|
|
|
|
if (adxtail == 0.0) {
|
|
if (adytail == 0.0) {
|
|
at_b[0] = 0.0;
|
|
at_blen = 1;
|
|
at_c[0] = 0.0;
|
|
at_clen = 1;
|
|
} else {
|
|
negate = -adytail;
|
|
Two_Product(negate, bdx, at_blarge, at_b[0]);
|
|
at_b[1] = at_blarge;
|
|
at_blen = 2;
|
|
Two_Product(adytail, cdx, at_clarge, at_c[0]);
|
|
at_c[1] = at_clarge;
|
|
at_clen = 2;
|
|
}
|
|
} else {
|
|
if (adytail == 0.0) {
|
|
Two_Product(adxtail, bdy, at_blarge, at_b[0]);
|
|
at_b[1] = at_blarge;
|
|
at_blen = 2;
|
|
negate = -adxtail;
|
|
Two_Product(negate, cdy, at_clarge, at_c[0]);
|
|
at_c[1] = at_clarge;
|
|
at_clen = 2;
|
|
} else {
|
|
Two_Product(adxtail, bdy, adxt_bdy1, adxt_bdy0);
|
|
Two_Product(adytail, bdx, adyt_bdx1, adyt_bdx0);
|
|
Two_Two_Diff(adxt_bdy1, adxt_bdy0, adyt_bdx1, adyt_bdx0,
|
|
at_blarge, at_b[2], at_b[1], at_b[0]);
|
|
at_b[3] = at_blarge;
|
|
at_blen = 4;
|
|
Two_Product(adytail, cdx, adyt_cdx1, adyt_cdx0);
|
|
Two_Product(adxtail, cdy, adxt_cdy1, adxt_cdy0);
|
|
Two_Two_Diff(adyt_cdx1, adyt_cdx0, adxt_cdy1, adxt_cdy0,
|
|
at_clarge, at_c[2], at_c[1], at_c[0]);
|
|
at_c[3] = at_clarge;
|
|
at_clen = 4;
|
|
}
|
|
}
|
|
if (bdxtail == 0.0) {
|
|
if (bdytail == 0.0) {
|
|
bt_c[0] = 0.0;
|
|
bt_clen = 1;
|
|
bt_a[0] = 0.0;
|
|
bt_alen = 1;
|
|
} else {
|
|
negate = -bdytail;
|
|
Two_Product(negate, cdx, bt_clarge, bt_c[0]);
|
|
bt_c[1] = bt_clarge;
|
|
bt_clen = 2;
|
|
Two_Product(bdytail, adx, bt_alarge, bt_a[0]);
|
|
bt_a[1] = bt_alarge;
|
|
bt_alen = 2;
|
|
}
|
|
} else {
|
|
if (bdytail == 0.0) {
|
|
Two_Product(bdxtail, cdy, bt_clarge, bt_c[0]);
|
|
bt_c[1] = bt_clarge;
|
|
bt_clen = 2;
|
|
negate = -bdxtail;
|
|
Two_Product(negate, ady, bt_alarge, bt_a[0]);
|
|
bt_a[1] = bt_alarge;
|
|
bt_alen = 2;
|
|
} else {
|
|
Two_Product(bdxtail, cdy, bdxt_cdy1, bdxt_cdy0);
|
|
Two_Product(bdytail, cdx, bdyt_cdx1, bdyt_cdx0);
|
|
Two_Two_Diff(bdxt_cdy1, bdxt_cdy0, bdyt_cdx1, bdyt_cdx0,
|
|
bt_clarge, bt_c[2], bt_c[1], bt_c[0]);
|
|
bt_c[3] = bt_clarge;
|
|
bt_clen = 4;
|
|
Two_Product(bdytail, adx, bdyt_adx1, bdyt_adx0);
|
|
Two_Product(bdxtail, ady, bdxt_ady1, bdxt_ady0);
|
|
Two_Two_Diff(bdyt_adx1, bdyt_adx0, bdxt_ady1, bdxt_ady0,
|
|
bt_alarge, bt_a[2], bt_a[1], bt_a[0]);
|
|
bt_a[3] = bt_alarge;
|
|
bt_alen = 4;
|
|
}
|
|
}
|
|
if (cdxtail == 0.0) {
|
|
if (cdytail == 0.0) {
|
|
ct_a[0] = 0.0;
|
|
ct_alen = 1;
|
|
ct_b[0] = 0.0;
|
|
ct_blen = 1;
|
|
} else {
|
|
negate = -cdytail;
|
|
Two_Product(negate, adx, ct_alarge, ct_a[0]);
|
|
ct_a[1] = ct_alarge;
|
|
ct_alen = 2;
|
|
Two_Product(cdytail, bdx, ct_blarge, ct_b[0]);
|
|
ct_b[1] = ct_blarge;
|
|
ct_blen = 2;
|
|
}
|
|
} else {
|
|
if (cdytail == 0.0) {
|
|
Two_Product(cdxtail, ady, ct_alarge, ct_a[0]);
|
|
ct_a[1] = ct_alarge;
|
|
ct_alen = 2;
|
|
negate = -cdxtail;
|
|
Two_Product(negate, bdy, ct_blarge, ct_b[0]);
|
|
ct_b[1] = ct_blarge;
|
|
ct_blen = 2;
|
|
} else {
|
|
Two_Product(cdxtail, ady, cdxt_ady1, cdxt_ady0);
|
|
Two_Product(cdytail, adx, cdyt_adx1, cdyt_adx0);
|
|
Two_Two_Diff(cdxt_ady1, cdxt_ady0, cdyt_adx1, cdyt_adx0,
|
|
ct_alarge, ct_a[2], ct_a[1], ct_a[0]);
|
|
ct_a[3] = ct_alarge;
|
|
ct_alen = 4;
|
|
Two_Product(cdytail, bdx, cdyt_bdx1, cdyt_bdx0);
|
|
Two_Product(cdxtail, bdy, cdxt_bdy1, cdxt_bdy0);
|
|
Two_Two_Diff(cdyt_bdx1, cdyt_bdx0, cdxt_bdy1, cdxt_bdy0,
|
|
ct_blarge, ct_b[2], ct_b[1], ct_b[0]);
|
|
ct_b[3] = ct_blarge;
|
|
ct_blen = 4;
|
|
}
|
|
}
|
|
|
|
bctlen = fast_expansion_sum_zeroelim(bt_clen, bt_c, ct_blen, ct_b, bct);
|
|
wlength = scale_expansion_zeroelim(bctlen, bct, adz, w);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
|
|
catlen = fast_expansion_sum_zeroelim(ct_alen, ct_a, at_clen, at_c, cat);
|
|
wlength = scale_expansion_zeroelim(catlen, cat, bdz, w);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
|
|
abtlen = fast_expansion_sum_zeroelim(at_blen, at_b, bt_alen, bt_a, abt);
|
|
wlength = scale_expansion_zeroelim(abtlen, abt, cdz, w);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
|
|
if (adztail != 0.0) {
|
|
vlength = scale_expansion_zeroelim(4, bc, adztail, v);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (bdztail != 0.0) {
|
|
vlength = scale_expansion_zeroelim(4, ca, bdztail, v);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (cdztail != 0.0) {
|
|
vlength = scale_expansion_zeroelim(4, ab, cdztail, v);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
|
|
if (adxtail != 0.0) {
|
|
if (bdytail != 0.0) {
|
|
Two_Product(adxtail, bdytail, adxt_bdyt1, adxt_bdyt0);
|
|
Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdz, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (cdztail != 0.0) {
|
|
Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdztail, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
if (cdytail != 0.0) {
|
|
negate = -adxtail;
|
|
Two_Product(negate, cdytail, adxt_cdyt1, adxt_cdyt0);
|
|
Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdz, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (bdztail != 0.0) {
|
|
Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdztail, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
}
|
|
if (bdxtail != 0.0) {
|
|
if (cdytail != 0.0) {
|
|
Two_Product(bdxtail, cdytail, bdxt_cdyt1, bdxt_cdyt0);
|
|
Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adz, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (adztail != 0.0) {
|
|
Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adztail, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
if (adytail != 0.0) {
|
|
negate = -bdxtail;
|
|
Two_Product(negate, adytail, bdxt_adyt1, bdxt_adyt0);
|
|
Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdz, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (cdztail != 0.0) {
|
|
Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdztail, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
}
|
|
if (cdxtail != 0.0) {
|
|
if (adytail != 0.0) {
|
|
Two_Product(cdxtail, adytail, cdxt_adyt1, cdxt_adyt0);
|
|
Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdz, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (bdztail != 0.0) {
|
|
Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdztail, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
if (bdytail != 0.0) {
|
|
negate = -cdxtail;
|
|
Two_Product(negate, bdytail, cdxt_bdyt1, cdxt_bdyt0);
|
|
Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adz, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (adztail != 0.0) {
|
|
Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adztail, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (adztail != 0.0) {
|
|
wlength = scale_expansion_zeroelim(bctlen, bct, adztail, w);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (bdztail != 0.0) {
|
|
wlength = scale_expansion_zeroelim(catlen, cat, bdztail, w);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (cdztail != 0.0) {
|
|
wlength = scale_expansion_zeroelim(abtlen, abt, cdztail, w);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
|
|
finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
|
|
return finnow[finlength - 1];
|
|
}
|
|
|
|
REAL orient3d(pa, pb, pc, pd)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
REAL *pd;
|
|
{
|
|
REAL adx, bdx, cdx, ady, bdy, cdy, adz, bdz, cdz;
|
|
REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
|
|
REAL det;
|
|
REAL permanent, errbound;
|
|
|
|
adx = pa[0] - pd[0];
|
|
bdx = pb[0] - pd[0];
|
|
cdx = pc[0] - pd[0];
|
|
ady = pa[1] - pd[1];
|
|
bdy = pb[1] - pd[1];
|
|
cdy = pc[1] - pd[1];
|
|
adz = pa[2] - pd[2];
|
|
bdz = pb[2] - pd[2];
|
|
cdz = pc[2] - pd[2];
|
|
|
|
bdxcdy = bdx * cdy;
|
|
cdxbdy = cdx * bdy;
|
|
|
|
cdxady = cdx * ady;
|
|
adxcdy = adx * cdy;
|
|
|
|
adxbdy = adx * bdy;
|
|
bdxady = bdx * ady;
|
|
|
|
det = adz * (bdxcdy - cdxbdy)
|
|
+ bdz * (cdxady - adxcdy)
|
|
+ cdz * (adxbdy - bdxady);
|
|
|
|
permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * Absolute(adz)
|
|
+ (Absolute(cdxady) + Absolute(adxcdy)) * Absolute(bdz)
|
|
+ (Absolute(adxbdy) + Absolute(bdxady)) * Absolute(cdz);
|
|
errbound = o3derrboundA * permanent;
|
|
if ((det > errbound) || (-det > errbound)) {
|
|
return det;
|
|
}
|
|
|
|
return orient3dadapt(pa, pb, pc, pd, permanent);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* incirclefast() Approximate 2D incircle test. Nonrobust. */
|
|
/* incircleexact() Exact 2D incircle test. Robust. */
|
|
/* incircleslow() Another exact 2D incircle test. Robust. */
|
|
/* incircle() Adaptive exact 2D incircle test. Robust. */
|
|
/* */
|
|
/* Return a positive value if the point pd lies inside the */
|
|
/* circle passing through pa, pb, and pc; a negative value if */
|
|
/* it lies outside; and zero if the four points are cocircular.*/
|
|
/* The points pa, pb, and pc must be in counterclockwise */
|
|
/* order, or the sign of the result will be reversed. */
|
|
/* */
|
|
/* Only the first and last routine should be used; the middle two are for */
|
|
/* timings. */
|
|
/* */
|
|
/* The last three use exact arithmetic to ensure a correct answer. The */
|
|
/* result returned is the determinant of a matrix. In incircle() only, */
|
|
/* this determinant is computed adaptively, in the sense that exact */
|
|
/* arithmetic is used only to the degree it is needed to ensure that the */
|
|
/* returned value has the correct sign. Hence, incircle() is usually quite */
|
|
/* fast, but will run more slowly when the input points are cocircular or */
|
|
/* nearly so. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
REAL incirclefast(pa, pb, pc, pd)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
REAL *pd;
|
|
{
|
|
REAL adx, ady, bdx, bdy, cdx, cdy;
|
|
REAL abdet, bcdet, cadet;
|
|
REAL alift, blift, clift;
|
|
|
|
adx = pa[0] - pd[0];
|
|
ady = pa[1] - pd[1];
|
|
bdx = pb[0] - pd[0];
|
|
bdy = pb[1] - pd[1];
|
|
cdx = pc[0] - pd[0];
|
|
cdy = pc[1] - pd[1];
|
|
|
|
abdet = adx * bdy - bdx * ady;
|
|
bcdet = bdx * cdy - cdx * bdy;
|
|
cadet = cdx * ady - adx * cdy;
|
|
alift = adx * adx + ady * ady;
|
|
blift = bdx * bdx + bdy * bdy;
|
|
clift = cdx * cdx + cdy * cdy;
|
|
|
|
return alift * bcdet + blift * cadet + clift * abdet;
|
|
}
|
|
|
|
REAL incircleexact(pa, pb, pc, pd)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
REAL *pd;
|
|
{
|
|
INEXACT REAL axby1, bxcy1, cxdy1, dxay1, axcy1, bxdy1;
|
|
INEXACT REAL bxay1, cxby1, dxcy1, axdy1, cxay1, dxby1;
|
|
REAL axby0, bxcy0, cxdy0, dxay0, axcy0, bxdy0;
|
|
REAL bxay0, cxby0, dxcy0, axdy0, cxay0, dxby0;
|
|
REAL ab[4], bc[4], cd[4], da[4], ac[4], bd[4];
|
|
REAL temp8[8];
|
|
int templen;
|
|
REAL abc[12], bcd[12], cda[12], dab[12];
|
|
int abclen, bcdlen, cdalen, dablen;
|
|
REAL det24x[24], det24y[24], det48x[48], det48y[48];
|
|
int xlen, ylen;
|
|
REAL adet[96], bdet[96], cdet[96], ddet[96];
|
|
int alen, blen, clen, dlen;
|
|
REAL abdet[192], cddet[192];
|
|
int ablen, cdlen;
|
|
REAL deter[384];
|
|
int deterlen;
|
|
int i;
|
|
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL ahi, alo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
INEXACT REAL _i, _j;
|
|
REAL _0;
|
|
|
|
Two_Product(pa[0], pb[1], axby1, axby0);
|
|
Two_Product(pb[0], pa[1], bxay1, bxay0);
|
|
Two_Two_Diff(axby1, axby0, bxay1, bxay0, ab[3], ab[2], ab[1], ab[0]);
|
|
|
|
Two_Product(pb[0], pc[1], bxcy1, bxcy0);
|
|
Two_Product(pc[0], pb[1], cxby1, cxby0);
|
|
Two_Two_Diff(bxcy1, bxcy0, cxby1, cxby0, bc[3], bc[2], bc[1], bc[0]);
|
|
|
|
Two_Product(pc[0], pd[1], cxdy1, cxdy0);
|
|
Two_Product(pd[0], pc[1], dxcy1, dxcy0);
|
|
Two_Two_Diff(cxdy1, cxdy0, dxcy1, dxcy0, cd[3], cd[2], cd[1], cd[0]);
|
|
|
|
Two_Product(pd[0], pa[1], dxay1, dxay0);
|
|
Two_Product(pa[0], pd[1], axdy1, axdy0);
|
|
Two_Two_Diff(dxay1, dxay0, axdy1, axdy0, da[3], da[2], da[1], da[0]);
|
|
|
|
Two_Product(pa[0], pc[1], axcy1, axcy0);
|
|
Two_Product(pc[0], pa[1], cxay1, cxay0);
|
|
Two_Two_Diff(axcy1, axcy0, cxay1, cxay0, ac[3], ac[2], ac[1], ac[0]);
|
|
|
|
Two_Product(pb[0], pd[1], bxdy1, bxdy0);
|
|
Two_Product(pd[0], pb[1], dxby1, dxby0);
|
|
Two_Two_Diff(bxdy1, bxdy0, dxby1, dxby0, bd[3], bd[2], bd[1], bd[0]);
|
|
|
|
templen = fast_expansion_sum_zeroelim(4, cd, 4, da, temp8);
|
|
cdalen = fast_expansion_sum_zeroelim(templen, temp8, 4, ac, cda);
|
|
templen = fast_expansion_sum_zeroelim(4, da, 4, ab, temp8);
|
|
dablen = fast_expansion_sum_zeroelim(templen, temp8, 4, bd, dab);
|
|
for (i = 0; i < 4; i++) {
|
|
bd[i] = -bd[i];
|
|
ac[i] = -ac[i];
|
|
}
|
|
templen = fast_expansion_sum_zeroelim(4, ab, 4, bc, temp8);
|
|
abclen = fast_expansion_sum_zeroelim(templen, temp8, 4, ac, abc);
|
|
templen = fast_expansion_sum_zeroelim(4, bc, 4, cd, temp8);
|
|
bcdlen = fast_expansion_sum_zeroelim(templen, temp8, 4, bd, bcd);
|
|
|
|
xlen = scale_expansion_zeroelim(bcdlen, bcd, pa[0], det24x);
|
|
xlen = scale_expansion_zeroelim(xlen, det24x, pa[0], det48x);
|
|
ylen = scale_expansion_zeroelim(bcdlen, bcd, pa[1], det24y);
|
|
ylen = scale_expansion_zeroelim(ylen, det24y, pa[1], det48y);
|
|
alen = fast_expansion_sum_zeroelim(xlen, det48x, ylen, det48y, adet);
|
|
|
|
xlen = scale_expansion_zeroelim(cdalen, cda, pb[0], det24x);
|
|
xlen = scale_expansion_zeroelim(xlen, det24x, -pb[0], det48x);
|
|
ylen = scale_expansion_zeroelim(cdalen, cda, pb[1], det24y);
|
|
ylen = scale_expansion_zeroelim(ylen, det24y, -pb[1], det48y);
|
|
blen = fast_expansion_sum_zeroelim(xlen, det48x, ylen, det48y, bdet);
|
|
|
|
xlen = scale_expansion_zeroelim(dablen, dab, pc[0], det24x);
|
|
xlen = scale_expansion_zeroelim(xlen, det24x, pc[0], det48x);
|
|
ylen = scale_expansion_zeroelim(dablen, dab, pc[1], det24y);
|
|
ylen = scale_expansion_zeroelim(ylen, det24y, pc[1], det48y);
|
|
clen = fast_expansion_sum_zeroelim(xlen, det48x, ylen, det48y, cdet);
|
|
|
|
xlen = scale_expansion_zeroelim(abclen, abc, pd[0], det24x);
|
|
xlen = scale_expansion_zeroelim(xlen, det24x, -pd[0], det48x);
|
|
ylen = scale_expansion_zeroelim(abclen, abc, pd[1], det24y);
|
|
ylen = scale_expansion_zeroelim(ylen, det24y, -pd[1], det48y);
|
|
dlen = fast_expansion_sum_zeroelim(xlen, det48x, ylen, det48y, ddet);
|
|
|
|
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
|
|
cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet);
|
|
deterlen = fast_expansion_sum_zeroelim(ablen, abdet, cdlen, cddet, deter);
|
|
|
|
return deter[deterlen - 1];
|
|
}
|
|
|
|
REAL incircleslow(pa, pb, pc, pd)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
REAL *pd;
|
|
{
|
|
INEXACT REAL adx, bdx, cdx, ady, bdy, cdy;
|
|
REAL adxtail, bdxtail, cdxtail;
|
|
REAL adytail, bdytail, cdytail;
|
|
REAL negate, negatetail;
|
|
INEXACT REAL axby7, bxcy7, axcy7, bxay7, cxby7, cxay7;
|
|
REAL axby[8], bxcy[8], axcy[8], bxay[8], cxby[8], cxay[8];
|
|
REAL temp16[16];
|
|
int temp16len;
|
|
REAL detx[32], detxx[64], detxt[32], detxxt[64], detxtxt[64];
|
|
int xlen, xxlen, xtlen, xxtlen, xtxtlen;
|
|
REAL x1[128], x2[192];
|
|
int x1len, x2len;
|
|
REAL dety[32], detyy[64], detyt[32], detyyt[64], detytyt[64];
|
|
int ylen, yylen, ytlen, yytlen, ytytlen;
|
|
REAL y1[128], y2[192];
|
|
int y1len, y2len;
|
|
REAL adet[384], bdet[384], cdet[384], abdet[768], deter[1152];
|
|
int alen, blen, clen, ablen, deterlen;
|
|
int i;
|
|
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL a0hi, a0lo, a1hi, a1lo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
INEXACT REAL _i, _j, _k, _l, _m, _n;
|
|
REAL _0, _1, _2;
|
|
|
|
Two_Diff(pa[0], pd[0], adx, adxtail);
|
|
Two_Diff(pa[1], pd[1], ady, adytail);
|
|
Two_Diff(pb[0], pd[0], bdx, bdxtail);
|
|
Two_Diff(pb[1], pd[1], bdy, bdytail);
|
|
Two_Diff(pc[0], pd[0], cdx, cdxtail);
|
|
Two_Diff(pc[1], pd[1], cdy, cdytail);
|
|
|
|
Two_Two_Product(adx, adxtail, bdy, bdytail,
|
|
axby7, axby[6], axby[5], axby[4],
|
|
axby[3], axby[2], axby[1], axby[0]);
|
|
axby[7] = axby7;
|
|
negate = -ady;
|
|
negatetail = -adytail;
|
|
Two_Two_Product(bdx, bdxtail, negate, negatetail,
|
|
bxay7, bxay[6], bxay[5], bxay[4],
|
|
bxay[3], bxay[2], bxay[1], bxay[0]);
|
|
bxay[7] = bxay7;
|
|
Two_Two_Product(bdx, bdxtail, cdy, cdytail,
|
|
bxcy7, bxcy[6], bxcy[5], bxcy[4],
|
|
bxcy[3], bxcy[2], bxcy[1], bxcy[0]);
|
|
bxcy[7] = bxcy7;
|
|
negate = -bdy;
|
|
negatetail = -bdytail;
|
|
Two_Two_Product(cdx, cdxtail, negate, negatetail,
|
|
cxby7, cxby[6], cxby[5], cxby[4],
|
|
cxby[3], cxby[2], cxby[1], cxby[0]);
|
|
cxby[7] = cxby7;
|
|
Two_Two_Product(cdx, cdxtail, ady, adytail,
|
|
cxay7, cxay[6], cxay[5], cxay[4],
|
|
cxay[3], cxay[2], cxay[1], cxay[0]);
|
|
cxay[7] = cxay7;
|
|
negate = -cdy;
|
|
negatetail = -cdytail;
|
|
Two_Two_Product(adx, adxtail, negate, negatetail,
|
|
axcy7, axcy[6], axcy[5], axcy[4],
|
|
axcy[3], axcy[2], axcy[1], axcy[0]);
|
|
axcy[7] = axcy7;
|
|
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(8, bxcy, 8, cxby, temp16);
|
|
|
|
xlen = scale_expansion_zeroelim(temp16len, temp16, adx, detx);
|
|
xxlen = scale_expansion_zeroelim(xlen, detx, adx, detxx);
|
|
xtlen = scale_expansion_zeroelim(temp16len, temp16, adxtail, detxt);
|
|
xxtlen = scale_expansion_zeroelim(xtlen, detxt, adx, detxxt);
|
|
for (i = 0; i < xxtlen; i++) {
|
|
detxxt[i] *= 2.0;
|
|
}
|
|
xtxtlen = scale_expansion_zeroelim(xtlen, detxt, adxtail, detxtxt);
|
|
x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1);
|
|
x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2);
|
|
|
|
ylen = scale_expansion_zeroelim(temp16len, temp16, ady, dety);
|
|
yylen = scale_expansion_zeroelim(ylen, dety, ady, detyy);
|
|
ytlen = scale_expansion_zeroelim(temp16len, temp16, adytail, detyt);
|
|
yytlen = scale_expansion_zeroelim(ytlen, detyt, ady, detyyt);
|
|
for (i = 0; i < yytlen; i++) {
|
|
detyyt[i] *= 2.0;
|
|
}
|
|
ytytlen = scale_expansion_zeroelim(ytlen, detyt, adytail, detytyt);
|
|
y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1);
|
|
y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2);
|
|
|
|
alen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, adet);
|
|
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(8, cxay, 8, axcy, temp16);
|
|
|
|
xlen = scale_expansion_zeroelim(temp16len, temp16, bdx, detx);
|
|
xxlen = scale_expansion_zeroelim(xlen, detx, bdx, detxx);
|
|
xtlen = scale_expansion_zeroelim(temp16len, temp16, bdxtail, detxt);
|
|
xxtlen = scale_expansion_zeroelim(xtlen, detxt, bdx, detxxt);
|
|
for (i = 0; i < xxtlen; i++) {
|
|
detxxt[i] *= 2.0;
|
|
}
|
|
xtxtlen = scale_expansion_zeroelim(xtlen, detxt, bdxtail, detxtxt);
|
|
x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1);
|
|
x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2);
|
|
|
|
ylen = scale_expansion_zeroelim(temp16len, temp16, bdy, dety);
|
|
yylen = scale_expansion_zeroelim(ylen, dety, bdy, detyy);
|
|
ytlen = scale_expansion_zeroelim(temp16len, temp16, bdytail, detyt);
|
|
yytlen = scale_expansion_zeroelim(ytlen, detyt, bdy, detyyt);
|
|
for (i = 0; i < yytlen; i++) {
|
|
detyyt[i] *= 2.0;
|
|
}
|
|
ytytlen = scale_expansion_zeroelim(ytlen, detyt, bdytail, detytyt);
|
|
y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1);
|
|
y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2);
|
|
|
|
blen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, bdet);
|
|
|
|
|
|
temp16len = fast_expansion_sum_zeroelim(8, axby, 8, bxay, temp16);
|
|
|
|
xlen = scale_expansion_zeroelim(temp16len, temp16, cdx, detx);
|
|
xxlen = scale_expansion_zeroelim(xlen, detx, cdx, detxx);
|
|
xtlen = scale_expansion_zeroelim(temp16len, temp16, cdxtail, detxt);
|
|
xxtlen = scale_expansion_zeroelim(xtlen, detxt, cdx, detxxt);
|
|
for (i = 0; i < xxtlen; i++) {
|
|
detxxt[i] *= 2.0;
|
|
}
|
|
xtxtlen = scale_expansion_zeroelim(xtlen, detxt, cdxtail, detxtxt);
|
|
x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1);
|
|
x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2);
|
|
|
|
ylen = scale_expansion_zeroelim(temp16len, temp16, cdy, dety);
|
|
yylen = scale_expansion_zeroelim(ylen, dety, cdy, detyy);
|
|
ytlen = scale_expansion_zeroelim(temp16len, temp16, cdytail, detyt);
|
|
yytlen = scale_expansion_zeroelim(ytlen, detyt, cdy, detyyt);
|
|
for (i = 0; i < yytlen; i++) {
|
|
detyyt[i] *= 2.0;
|
|
}
|
|
ytytlen = scale_expansion_zeroelim(ytlen, detyt, cdytail, detytyt);
|
|
y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1);
|
|
y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2);
|
|
|
|
clen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, cdet);
|
|
|
|
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
|
|
deterlen = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, deter);
|
|
|
|
return deter[deterlen - 1];
|
|
}
|
|
|
|
REAL incircleadapt(pa, pb, pc, pd, permanent)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
REAL *pd;
|
|
REAL permanent;
|
|
{
|
|
INEXACT REAL adx, bdx, cdx, ady, bdy, cdy;
|
|
REAL det, errbound;
|
|
|
|
INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
|
|
REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
|
|
REAL bc[4], ca[4], ab[4];
|
|
INEXACT REAL bc3, ca3, ab3;
|
|
REAL axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];
|
|
int axbclen, axxbclen, aybclen, ayybclen, alen;
|
|
REAL bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];
|
|
int bxcalen, bxxcalen, bycalen, byycalen, blen;
|
|
REAL cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];
|
|
int cxablen, cxxablen, cyablen, cyyablen, clen;
|
|
REAL abdet[64];
|
|
int ablen;
|
|
REAL fin1[1152], fin2[1152];
|
|
REAL *finnow, *finother, *finswap;
|
|
int finlength;
|
|
|
|
REAL adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
|
|
INEXACT REAL adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;
|
|
REAL adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;
|
|
REAL aa[4], bb[4], cc[4];
|
|
INEXACT REAL aa3, bb3, cc3;
|
|
INEXACT REAL ti1, tj1;
|
|
REAL ti0, tj0;
|
|
REAL u[4], v[4];
|
|
INEXACT REAL u3, v3;
|
|
REAL temp8[8], temp16a[16], temp16b[16], temp16c[16];
|
|
REAL temp32a[32], temp32b[32], temp48[48], temp64[64];
|
|
int temp8len, temp16alen, temp16blen, temp16clen;
|
|
int temp32alen, temp32blen, temp48len, temp64len;
|
|
REAL axtbb[8], axtcc[8], aytbb[8], aytcc[8];
|
|
int axtbblen, axtcclen, aytbblen, aytcclen;
|
|
REAL bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];
|
|
int bxtaalen, bxtcclen, bytaalen, bytcclen;
|
|
REAL cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];
|
|
int cxtaalen, cxtbblen, cytaalen, cytbblen;
|
|
REAL axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];
|
|
int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
|
|
REAL axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];
|
|
int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;
|
|
REAL axtbctt[8], aytbctt[8], bxtcatt[8];
|
|
REAL bytcatt[8], cxtabtt[8], cytabtt[8];
|
|
int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;
|
|
REAL abt[8], bct[8], cat[8];
|
|
int abtlen, bctlen, catlen;
|
|
REAL abtt[4], bctt[4], catt[4];
|
|
int abttlen, bcttlen, cattlen;
|
|
INEXACT REAL abtt3, bctt3, catt3;
|
|
REAL negate;
|
|
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL ahi, alo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
INEXACT REAL _i, _j;
|
|
REAL _0;
|
|
|
|
adx = (REAL) (pa[0] - pd[0]);
|
|
bdx = (REAL) (pb[0] - pd[0]);
|
|
cdx = (REAL) (pc[0] - pd[0]);
|
|
ady = (REAL) (pa[1] - pd[1]);
|
|
bdy = (REAL) (pb[1] - pd[1]);
|
|
cdy = (REAL) (pc[1] - pd[1]);
|
|
|
|
Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
|
|
Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
|
|
Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
|
|
bc[3] = bc3;
|
|
axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);
|
|
axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);
|
|
aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);
|
|
ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);
|
|
alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);
|
|
|
|
Two_Product(cdx, ady, cdxady1, cdxady0);
|
|
Two_Product(adx, cdy, adxcdy1, adxcdy0);
|
|
Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
|
|
ca[3] = ca3;
|
|
bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);
|
|
bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);
|
|
bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);
|
|
byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);
|
|
blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);
|
|
|
|
Two_Product(adx, bdy, adxbdy1, adxbdy0);
|
|
Two_Product(bdx, ady, bdxady1, bdxady0);
|
|
Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
|
|
ab[3] = ab3;
|
|
cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);
|
|
cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);
|
|
cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);
|
|
cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);
|
|
clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);
|
|
|
|
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
|
|
finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
|
|
|
|
det = estimate(finlength, fin1);
|
|
errbound = iccerrboundB * permanent;
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
return det;
|
|
}
|
|
|
|
Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
|
|
Two_Diff_Tail(pa[1], pd[1], ady, adytail);
|
|
Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
|
|
Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
|
|
Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
|
|
Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
|
|
if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0)
|
|
&& (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) {
|
|
return det;
|
|
}
|
|
|
|
errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);
|
|
det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail)
|
|
- (bdy * cdxtail + cdx * bdytail))
|
|
+ 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx))
|
|
+ ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail)
|
|
- (cdy * adxtail + adx * cdytail))
|
|
+ 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx))
|
|
+ ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail)
|
|
- (ady * bdxtail + bdx * adytail))
|
|
+ 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
return det;
|
|
}
|
|
|
|
finnow = fin1;
|
|
finother = fin2;
|
|
|
|
if ((bdxtail != 0.0) || (bdytail != 0.0)
|
|
|| (cdxtail != 0.0) || (cdytail != 0.0)) {
|
|
Square(adx, adxadx1, adxadx0);
|
|
Square(ady, adyady1, adyady0);
|
|
Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);
|
|
aa[3] = aa3;
|
|
}
|
|
if ((cdxtail != 0.0) || (cdytail != 0.0)
|
|
|| (adxtail != 0.0) || (adytail != 0.0)) {
|
|
Square(bdx, bdxbdx1, bdxbdx0);
|
|
Square(bdy, bdybdy1, bdybdy0);
|
|
Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);
|
|
bb[3] = bb3;
|
|
}
|
|
if ((adxtail != 0.0) || (adytail != 0.0)
|
|
|| (bdxtail != 0.0) || (bdytail != 0.0)) {
|
|
Square(cdx, cdxcdx1, cdxcdx0);
|
|
Square(cdy, cdycdy1, cdycdy0);
|
|
Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);
|
|
cc[3] = cc3;
|
|
}
|
|
|
|
if (adxtail != 0.0) {
|
|
axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);
|
|
temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx,
|
|
temp16a);
|
|
|
|
axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);
|
|
temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);
|
|
|
|
axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);
|
|
temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (adytail != 0.0) {
|
|
aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);
|
|
temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady,
|
|
temp16a);
|
|
|
|
aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);
|
|
temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);
|
|
|
|
aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);
|
|
temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (bdxtail != 0.0) {
|
|
bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);
|
|
temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx,
|
|
temp16a);
|
|
|
|
bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);
|
|
temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);
|
|
|
|
bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);
|
|
temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (bdytail != 0.0) {
|
|
bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);
|
|
temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy,
|
|
temp16a);
|
|
|
|
bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);
|
|
temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);
|
|
|
|
bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);
|
|
temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (cdxtail != 0.0) {
|
|
cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);
|
|
temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx,
|
|
temp16a);
|
|
|
|
cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);
|
|
temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);
|
|
|
|
cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);
|
|
temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (cdytail != 0.0) {
|
|
cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);
|
|
temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy,
|
|
temp16a);
|
|
|
|
cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);
|
|
temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);
|
|
|
|
cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);
|
|
temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);
|
|
|
|
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
|
|
if ((adxtail != 0.0) || (adytail != 0.0)) {
|
|
if ((bdxtail != 0.0) || (bdytail != 0.0)
|
|
|| (cdxtail != 0.0) || (cdytail != 0.0)) {
|
|
Two_Product(bdxtail, cdy, ti1, ti0);
|
|
Two_Product(bdx, cdytail, tj1, tj0);
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
negate = -bdy;
|
|
Two_Product(cdxtail, negate, ti1, ti0);
|
|
negate = -bdytail;
|
|
Two_Product(cdx, negate, tj1, tj0);
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
|
|
v[3] = v3;
|
|
bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);
|
|
|
|
Two_Product(bdxtail, cdytail, ti1, ti0);
|
|
Two_Product(cdxtail, bdytail, tj1, tj0);
|
|
Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);
|
|
bctt[3] = bctt3;
|
|
bcttlen = 4;
|
|
} else {
|
|
bct[0] = 0.0;
|
|
bctlen = 1;
|
|
bctt[0] = 0.0;
|
|
bcttlen = 1;
|
|
}
|
|
|
|
if (adxtail != 0.0) {
|
|
temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);
|
|
axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);
|
|
temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx,
|
|
temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (bdytail != 0.0) {
|
|
temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
|
|
temp16a);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
|
|
temp16a, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (cdytail != 0.0) {
|
|
temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
|
|
temp16a);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
|
|
temp16a, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
|
|
temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail,
|
|
temp32a);
|
|
axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);
|
|
temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx,
|
|
temp16a);
|
|
temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail,
|
|
temp16b);
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32b);
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
|
|
temp64, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (adytail != 0.0) {
|
|
temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);
|
|
aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);
|
|
temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady,
|
|
temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
|
|
|
|
temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail,
|
|
temp32a);
|
|
aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);
|
|
temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady,
|
|
temp16a);
|
|
temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail,
|
|
temp16b);
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32b);
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
|
|
temp64, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
if ((bdxtail != 0.0) || (bdytail != 0.0)) {
|
|
if ((cdxtail != 0.0) || (cdytail != 0.0)
|
|
|| (adxtail != 0.0) || (adytail != 0.0)) {
|
|
Two_Product(cdxtail, ady, ti1, ti0);
|
|
Two_Product(cdx, adytail, tj1, tj0);
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
negate = -cdy;
|
|
Two_Product(adxtail, negate, ti1, ti0);
|
|
negate = -cdytail;
|
|
Two_Product(adx, negate, tj1, tj0);
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
|
|
v[3] = v3;
|
|
catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);
|
|
|
|
Two_Product(cdxtail, adytail, ti1, ti0);
|
|
Two_Product(adxtail, cdytail, tj1, tj0);
|
|
Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);
|
|
catt[3] = catt3;
|
|
cattlen = 4;
|
|
} else {
|
|
cat[0] = 0.0;
|
|
catlen = 1;
|
|
catt[0] = 0.0;
|
|
cattlen = 1;
|
|
}
|
|
|
|
if (bdxtail != 0.0) {
|
|
temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);
|
|
bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);
|
|
temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx,
|
|
temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (cdytail != 0.0) {
|
|
temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
|
|
temp16a);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
|
|
temp16a, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (adytail != 0.0) {
|
|
temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
|
|
temp16a);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
|
|
temp16a, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
|
|
temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail,
|
|
temp32a);
|
|
bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);
|
|
temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx,
|
|
temp16a);
|
|
temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail,
|
|
temp16b);
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32b);
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
|
|
temp64, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (bdytail != 0.0) {
|
|
temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);
|
|
bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);
|
|
temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy,
|
|
temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
|
|
|
|
temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail,
|
|
temp32a);
|
|
bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);
|
|
temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy,
|
|
temp16a);
|
|
temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail,
|
|
temp16b);
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32b);
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
|
|
temp64, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
if ((cdxtail != 0.0) || (cdytail != 0.0)) {
|
|
if ((adxtail != 0.0) || (adytail != 0.0)
|
|
|| (bdxtail != 0.0) || (bdytail != 0.0)) {
|
|
Two_Product(adxtail, bdy, ti1, ti0);
|
|
Two_Product(adx, bdytail, tj1, tj0);
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
|
|
u[3] = u3;
|
|
negate = -ady;
|
|
Two_Product(bdxtail, negate, ti1, ti0);
|
|
negate = -adytail;
|
|
Two_Product(bdx, negate, tj1, tj0);
|
|
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
|
|
v[3] = v3;
|
|
abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);
|
|
|
|
Two_Product(adxtail, bdytail, ti1, ti0);
|
|
Two_Product(bdxtail, adytail, tj1, tj0);
|
|
Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);
|
|
abtt[3] = abtt3;
|
|
abttlen = 4;
|
|
} else {
|
|
abt[0] = 0.0;
|
|
abtlen = 1;
|
|
abtt[0] = 0.0;
|
|
abttlen = 1;
|
|
}
|
|
|
|
if (cdxtail != 0.0) {
|
|
temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);
|
|
cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);
|
|
temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx,
|
|
temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
if (adytail != 0.0) {
|
|
temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
|
|
temp16a);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
|
|
temp16a, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (bdytail != 0.0) {
|
|
temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);
|
|
temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
|
|
temp16a);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
|
|
temp16a, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
|
|
temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail,
|
|
temp32a);
|
|
cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);
|
|
temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx,
|
|
temp16a);
|
|
temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail,
|
|
temp16b);
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32b);
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
|
|
temp64, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
if (cdytail != 0.0) {
|
|
temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);
|
|
cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);
|
|
temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy,
|
|
temp32a);
|
|
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp32alen, temp32a, temp48);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
|
|
temp48, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
|
|
|
|
temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail,
|
|
temp32a);
|
|
cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);
|
|
temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy,
|
|
temp16a);
|
|
temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail,
|
|
temp16b);
|
|
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
|
|
temp16blen, temp16b, temp32b);
|
|
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64);
|
|
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
|
|
temp64, finother);
|
|
finswap = finnow; finnow = finother; finother = finswap;
|
|
}
|
|
}
|
|
|
|
return finnow[finlength - 1];
|
|
}
|
|
|
|
REAL incircle(pa, pb, pc, pd)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
REAL *pd;
|
|
{
|
|
REAL adx, bdx, cdx, ady, bdy, cdy;
|
|
REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
|
|
REAL alift, blift, clift;
|
|
REAL det;
|
|
REAL permanent, errbound;
|
|
|
|
adx = pa[0] - pd[0];
|
|
bdx = pb[0] - pd[0];
|
|
cdx = pc[0] - pd[0];
|
|
ady = pa[1] - pd[1];
|
|
bdy = pb[1] - pd[1];
|
|
cdy = pc[1] - pd[1];
|
|
|
|
bdxcdy = bdx * cdy;
|
|
cdxbdy = cdx * bdy;
|
|
alift = adx * adx + ady * ady;
|
|
|
|
cdxady = cdx * ady;
|
|
adxcdy = adx * cdy;
|
|
blift = bdx * bdx + bdy * bdy;
|
|
|
|
adxbdy = adx * bdy;
|
|
bdxady = bdx * ady;
|
|
clift = cdx * cdx + cdy * cdy;
|
|
|
|
det = alift * (bdxcdy - cdxbdy)
|
|
+ blift * (cdxady - adxcdy)
|
|
+ clift * (adxbdy - bdxady);
|
|
|
|
permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift
|
|
+ (Absolute(cdxady) + Absolute(adxcdy)) * blift
|
|
+ (Absolute(adxbdy) + Absolute(bdxady)) * clift;
|
|
errbound = iccerrboundA * permanent;
|
|
if ((det > errbound) || (-det > errbound)) {
|
|
return det;
|
|
}
|
|
|
|
return incircleadapt(pa, pb, pc, pd, permanent);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* */
|
|
/* inspherefast() Approximate 3D insphere test. Nonrobust. */
|
|
/* insphereexact() Exact 3D insphere test. Robust. */
|
|
/* insphereslow() Another exact 3D insphere test. Robust. */
|
|
/* insphere() Adaptive exact 3D insphere test. Robust. */
|
|
/* */
|
|
/* Return a positive value if the point pe lies inside the */
|
|
/* sphere passing through pa, pb, pc, and pd; a negative value */
|
|
/* if it lies outside; and zero if the five points are */
|
|
/* cospherical. The points pa, pb, pc, and pd must be ordered */
|
|
/* so that they have a positive orientation (as defined by */
|
|
/* orient3d()), or the sign of the result will be reversed. */
|
|
/* */
|
|
/* Only the first and last routine should be used; the middle two are for */
|
|
/* timings. */
|
|
/* */
|
|
/* The last three use exact arithmetic to ensure a correct answer. The */
|
|
/* result returned is the determinant of a matrix. In insphere() only, */
|
|
/* this determinant is computed adaptively, in the sense that exact */
|
|
/* arithmetic is used only to the degree it is needed to ensure that the */
|
|
/* returned value has the correct sign. Hence, insphere() is usually quite */
|
|
/* fast, but will run more slowly when the input points are cospherical or */
|
|
/* nearly so. */
|
|
/* */
|
|
/*****************************************************************************/
|
|
|
|
REAL inspherefast(pa, pb, pc, pd, pe)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
REAL *pd;
|
|
REAL *pe;
|
|
{
|
|
REAL aex, bex, cex, dex;
|
|
REAL aey, bey, cey, dey;
|
|
REAL aez, bez, cez, dez;
|
|
REAL alift, blift, clift, dlift;
|
|
REAL ab, bc, cd, da, ac, bd;
|
|
REAL abc, bcd, cda, dab;
|
|
|
|
aex = pa[0] - pe[0];
|
|
bex = pb[0] - pe[0];
|
|
cex = pc[0] - pe[0];
|
|
dex = pd[0] - pe[0];
|
|
aey = pa[1] - pe[1];
|
|
bey = pb[1] - pe[1];
|
|
cey = pc[1] - pe[1];
|
|
dey = pd[1] - pe[1];
|
|
aez = pa[2] - pe[2];
|
|
bez = pb[2] - pe[2];
|
|
cez = pc[2] - pe[2];
|
|
dez = pd[2] - pe[2];
|
|
|
|
ab = aex * bey - bex * aey;
|
|
bc = bex * cey - cex * bey;
|
|
cd = cex * dey - dex * cey;
|
|
da = dex * aey - aex * dey;
|
|
|
|
ac = aex * cey - cex * aey;
|
|
bd = bex * dey - dex * bey;
|
|
|
|
abc = aez * bc - bez * ac + cez * ab;
|
|
bcd = bez * cd - cez * bd + dez * bc;
|
|
cda = cez * da + dez * ac + aez * cd;
|
|
dab = dez * ab + aez * bd + bez * da;
|
|
|
|
alift = aex * aex + aey * aey + aez * aez;
|
|
blift = bex * bex + bey * bey + bez * bez;
|
|
clift = cex * cex + cey * cey + cez * cez;
|
|
dlift = dex * dex + dey * dey + dez * dez;
|
|
|
|
return (dlift * abc - clift * dab) + (blift * cda - alift * bcd);
|
|
}
|
|
|
|
REAL insphereexact(pa, pb, pc, pd, pe)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
REAL *pd;
|
|
REAL *pe;
|
|
{
|
|
INEXACT REAL axby1, bxcy1, cxdy1, dxey1, exay1;
|
|
INEXACT REAL bxay1, cxby1, dxcy1, exdy1, axey1;
|
|
INEXACT REAL axcy1, bxdy1, cxey1, dxay1, exby1;
|
|
INEXACT REAL cxay1, dxby1, excy1, axdy1, bxey1;
|
|
REAL axby0, bxcy0, cxdy0, dxey0, exay0;
|
|
REAL bxay0, cxby0, dxcy0, exdy0, axey0;
|
|
REAL axcy0, bxdy0, cxey0, dxay0, exby0;
|
|
REAL cxay0, dxby0, excy0, axdy0, bxey0;
|
|
REAL ab[4], bc[4], cd[4], de[4], ea[4];
|
|
REAL ac[4], bd[4], ce[4], da[4], eb[4];
|
|
REAL temp8a[8], temp8b[8], temp16[16];
|
|
int temp8alen, temp8blen, temp16len;
|
|
REAL abc[24], bcd[24], cde[24], dea[24], eab[24];
|
|
REAL abd[24], bce[24], cda[24], deb[24], eac[24];
|
|
int abclen, bcdlen, cdelen, dealen, eablen;
|
|
int abdlen, bcelen, cdalen, deblen, eaclen;
|
|
REAL temp48a[48], temp48b[48];
|
|
int temp48alen, temp48blen;
|
|
REAL abcd[96], bcde[96], cdea[96], deab[96], eabc[96];
|
|
int abcdlen, bcdelen, cdealen, deablen, eabclen;
|
|
REAL temp192[192];
|
|
REAL det384x[384], det384y[384], det384z[384];
|
|
int xlen, ylen, zlen;
|
|
REAL detxy[768];
|
|
int xylen;
|
|
REAL adet[1152], bdet[1152], cdet[1152], ddet[1152], edet[1152];
|
|
int alen, blen, clen, dlen, elen;
|
|
REAL abdet[2304], cddet[2304], cdedet[3456];
|
|
int ablen, cdlen;
|
|
REAL deter[5760];
|
|
int deterlen;
|
|
int i;
|
|
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL ahi, alo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
INEXACT REAL _i, _j;
|
|
REAL _0;
|
|
|
|
Two_Product(pa[0], pb[1], axby1, axby0);
|
|
Two_Product(pb[0], pa[1], bxay1, bxay0);
|
|
Two_Two_Diff(axby1, axby0, bxay1, bxay0, ab[3], ab[2], ab[1], ab[0]);
|
|
|
|
Two_Product(pb[0], pc[1], bxcy1, bxcy0);
|
|
Two_Product(pc[0], pb[1], cxby1, cxby0);
|
|
Two_Two_Diff(bxcy1, bxcy0, cxby1, cxby0, bc[3], bc[2], bc[1], bc[0]);
|
|
|
|
Two_Product(pc[0], pd[1], cxdy1, cxdy0);
|
|
Two_Product(pd[0], pc[1], dxcy1, dxcy0);
|
|
Two_Two_Diff(cxdy1, cxdy0, dxcy1, dxcy0, cd[3], cd[2], cd[1], cd[0]);
|
|
|
|
Two_Product(pd[0], pe[1], dxey1, dxey0);
|
|
Two_Product(pe[0], pd[1], exdy1, exdy0);
|
|
Two_Two_Diff(dxey1, dxey0, exdy1, exdy0, de[3], de[2], de[1], de[0]);
|
|
|
|
Two_Product(pe[0], pa[1], exay1, exay0);
|
|
Two_Product(pa[0], pe[1], axey1, axey0);
|
|
Two_Two_Diff(exay1, exay0, axey1, axey0, ea[3], ea[2], ea[1], ea[0]);
|
|
|
|
Two_Product(pa[0], pc[1], axcy1, axcy0);
|
|
Two_Product(pc[0], pa[1], cxay1, cxay0);
|
|
Two_Two_Diff(axcy1, axcy0, cxay1, cxay0, ac[3], ac[2], ac[1], ac[0]);
|
|
|
|
Two_Product(pb[0], pd[1], bxdy1, bxdy0);
|
|
Two_Product(pd[0], pb[1], dxby1, dxby0);
|
|
Two_Two_Diff(bxdy1, bxdy0, dxby1, dxby0, bd[3], bd[2], bd[1], bd[0]);
|
|
|
|
Two_Product(pc[0], pe[1], cxey1, cxey0);
|
|
Two_Product(pe[0], pc[1], excy1, excy0);
|
|
Two_Two_Diff(cxey1, cxey0, excy1, excy0, ce[3], ce[2], ce[1], ce[0]);
|
|
|
|
Two_Product(pd[0], pa[1], dxay1, dxay0);
|
|
Two_Product(pa[0], pd[1], axdy1, axdy0);
|
|
Two_Two_Diff(dxay1, dxay0, axdy1, axdy0, da[3], da[2], da[1], da[0]);
|
|
|
|
Two_Product(pe[0], pb[1], exby1, exby0);
|
|
Two_Product(pb[0], pe[1], bxey1, bxey0);
|
|
Two_Two_Diff(exby1, exby0, bxey1, bxey0, eb[3], eb[2], eb[1], eb[0]);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, bc, pa[2], temp8a);
|
|
temp8blen = scale_expansion_zeroelim(4, ac, -pb[2], temp8b);
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b,
|
|
temp16);
|
|
temp8alen = scale_expansion_zeroelim(4, ab, pc[2], temp8a);
|
|
abclen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16,
|
|
abc);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, cd, pb[2], temp8a);
|
|
temp8blen = scale_expansion_zeroelim(4, bd, -pc[2], temp8b);
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b,
|
|
temp16);
|
|
temp8alen = scale_expansion_zeroelim(4, bc, pd[2], temp8a);
|
|
bcdlen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16,
|
|
bcd);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, de, pc[2], temp8a);
|
|
temp8blen = scale_expansion_zeroelim(4, ce, -pd[2], temp8b);
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b,
|
|
temp16);
|
|
temp8alen = scale_expansion_zeroelim(4, cd, pe[2], temp8a);
|
|
cdelen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16,
|
|
cde);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, ea, pd[2], temp8a);
|
|
temp8blen = scale_expansion_zeroelim(4, da, -pe[2], temp8b);
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b,
|
|
temp16);
|
|
temp8alen = scale_expansion_zeroelim(4, de, pa[2], temp8a);
|
|
dealen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16,
|
|
dea);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, ab, pe[2], temp8a);
|
|
temp8blen = scale_expansion_zeroelim(4, eb, -pa[2], temp8b);
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b,
|
|
temp16);
|
|
temp8alen = scale_expansion_zeroelim(4, ea, pb[2], temp8a);
|
|
eablen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16,
|
|
eab);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, bd, pa[2], temp8a);
|
|
temp8blen = scale_expansion_zeroelim(4, da, pb[2], temp8b);
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b,
|
|
temp16);
|
|
temp8alen = scale_expansion_zeroelim(4, ab, pd[2], temp8a);
|
|
abdlen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16,
|
|
abd);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, ce, pb[2], temp8a);
|
|
temp8blen = scale_expansion_zeroelim(4, eb, pc[2], temp8b);
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b,
|
|
temp16);
|
|
temp8alen = scale_expansion_zeroelim(4, bc, pe[2], temp8a);
|
|
bcelen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16,
|
|
bce);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, da, pc[2], temp8a);
|
|
temp8blen = scale_expansion_zeroelim(4, ac, pd[2], temp8b);
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b,
|
|
temp16);
|
|
temp8alen = scale_expansion_zeroelim(4, cd, pa[2], temp8a);
|
|
cdalen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16,
|
|
cda);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, eb, pd[2], temp8a);
|
|
temp8blen = scale_expansion_zeroelim(4, bd, pe[2], temp8b);
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b,
|
|
temp16);
|
|
temp8alen = scale_expansion_zeroelim(4, de, pb[2], temp8a);
|
|
deblen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16,
|
|
deb);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, ac, pe[2], temp8a);
|
|
temp8blen = scale_expansion_zeroelim(4, ce, pa[2], temp8b);
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp8blen, temp8b,
|
|
temp16);
|
|
temp8alen = scale_expansion_zeroelim(4, ea, pc[2], temp8a);
|
|
eaclen = fast_expansion_sum_zeroelim(temp8alen, temp8a, temp16len, temp16,
|
|
eac);
|
|
|
|
temp48alen = fast_expansion_sum_zeroelim(cdelen, cde, bcelen, bce, temp48a);
|
|
temp48blen = fast_expansion_sum_zeroelim(deblen, deb, bcdlen, bcd, temp48b);
|
|
for (i = 0; i < temp48blen; i++) {
|
|
temp48b[i] = -temp48b[i];
|
|
}
|
|
bcdelen = fast_expansion_sum_zeroelim(temp48alen, temp48a,
|
|
temp48blen, temp48b, bcde);
|
|
xlen = scale_expansion_zeroelim(bcdelen, bcde, pa[0], temp192);
|
|
xlen = scale_expansion_zeroelim(xlen, temp192, pa[0], det384x);
|
|
ylen = scale_expansion_zeroelim(bcdelen, bcde, pa[1], temp192);
|
|
ylen = scale_expansion_zeroelim(ylen, temp192, pa[1], det384y);
|
|
zlen = scale_expansion_zeroelim(bcdelen, bcde, pa[2], temp192);
|
|
zlen = scale_expansion_zeroelim(zlen, temp192, pa[2], det384z);
|
|
xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy);
|
|
alen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, adet);
|
|
|
|
temp48alen = fast_expansion_sum_zeroelim(dealen, dea, cdalen, cda, temp48a);
|
|
temp48blen = fast_expansion_sum_zeroelim(eaclen, eac, cdelen, cde, temp48b);
|
|
for (i = 0; i < temp48blen; i++) {
|
|
temp48b[i] = -temp48b[i];
|
|
}
|
|
cdealen = fast_expansion_sum_zeroelim(temp48alen, temp48a,
|
|
temp48blen, temp48b, cdea);
|
|
xlen = scale_expansion_zeroelim(cdealen, cdea, pb[0], temp192);
|
|
xlen = scale_expansion_zeroelim(xlen, temp192, pb[0], det384x);
|
|
ylen = scale_expansion_zeroelim(cdealen, cdea, pb[1], temp192);
|
|
ylen = scale_expansion_zeroelim(ylen, temp192, pb[1], det384y);
|
|
zlen = scale_expansion_zeroelim(cdealen, cdea, pb[2], temp192);
|
|
zlen = scale_expansion_zeroelim(zlen, temp192, pb[2], det384z);
|
|
xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy);
|
|
blen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, bdet);
|
|
|
|
temp48alen = fast_expansion_sum_zeroelim(eablen, eab, deblen, deb, temp48a);
|
|
temp48blen = fast_expansion_sum_zeroelim(abdlen, abd, dealen, dea, temp48b);
|
|
for (i = 0; i < temp48blen; i++) {
|
|
temp48b[i] = -temp48b[i];
|
|
}
|
|
deablen = fast_expansion_sum_zeroelim(temp48alen, temp48a,
|
|
temp48blen, temp48b, deab);
|
|
xlen = scale_expansion_zeroelim(deablen, deab, pc[0], temp192);
|
|
xlen = scale_expansion_zeroelim(xlen, temp192, pc[0], det384x);
|
|
ylen = scale_expansion_zeroelim(deablen, deab, pc[1], temp192);
|
|
ylen = scale_expansion_zeroelim(ylen, temp192, pc[1], det384y);
|
|
zlen = scale_expansion_zeroelim(deablen, deab, pc[2], temp192);
|
|
zlen = scale_expansion_zeroelim(zlen, temp192, pc[2], det384z);
|
|
xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy);
|
|
clen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, cdet);
|
|
|
|
temp48alen = fast_expansion_sum_zeroelim(abclen, abc, eaclen, eac, temp48a);
|
|
temp48blen = fast_expansion_sum_zeroelim(bcelen, bce, eablen, eab, temp48b);
|
|
for (i = 0; i < temp48blen; i++) {
|
|
temp48b[i] = -temp48b[i];
|
|
}
|
|
eabclen = fast_expansion_sum_zeroelim(temp48alen, temp48a,
|
|
temp48blen, temp48b, eabc);
|
|
xlen = scale_expansion_zeroelim(eabclen, eabc, pd[0], temp192);
|
|
xlen = scale_expansion_zeroelim(xlen, temp192, pd[0], det384x);
|
|
ylen = scale_expansion_zeroelim(eabclen, eabc, pd[1], temp192);
|
|
ylen = scale_expansion_zeroelim(ylen, temp192, pd[1], det384y);
|
|
zlen = scale_expansion_zeroelim(eabclen, eabc, pd[2], temp192);
|
|
zlen = scale_expansion_zeroelim(zlen, temp192, pd[2], det384z);
|
|
xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy);
|
|
dlen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, ddet);
|
|
|
|
temp48alen = fast_expansion_sum_zeroelim(bcdlen, bcd, abdlen, abd, temp48a);
|
|
temp48blen = fast_expansion_sum_zeroelim(cdalen, cda, abclen, abc, temp48b);
|
|
for (i = 0; i < temp48blen; i++) {
|
|
temp48b[i] = -temp48b[i];
|
|
}
|
|
abcdlen = fast_expansion_sum_zeroelim(temp48alen, temp48a,
|
|
temp48blen, temp48b, abcd);
|
|
xlen = scale_expansion_zeroelim(abcdlen, abcd, pe[0], temp192);
|
|
xlen = scale_expansion_zeroelim(xlen, temp192, pe[0], det384x);
|
|
ylen = scale_expansion_zeroelim(abcdlen, abcd, pe[1], temp192);
|
|
ylen = scale_expansion_zeroelim(ylen, temp192, pe[1], det384y);
|
|
zlen = scale_expansion_zeroelim(abcdlen, abcd, pe[2], temp192);
|
|
zlen = scale_expansion_zeroelim(zlen, temp192, pe[2], det384z);
|
|
xylen = fast_expansion_sum_zeroelim(xlen, det384x, ylen, det384y, detxy);
|
|
elen = fast_expansion_sum_zeroelim(xylen, detxy, zlen, det384z, edet);
|
|
|
|
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
|
|
cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet);
|
|
cdelen = fast_expansion_sum_zeroelim(cdlen, cddet, elen, edet, cdedet);
|
|
deterlen = fast_expansion_sum_zeroelim(ablen, abdet, cdelen, cdedet, deter);
|
|
|
|
return deter[deterlen - 1];
|
|
}
|
|
|
|
REAL insphereslow(pa, pb, pc, pd, pe)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
REAL *pd;
|
|
REAL *pe;
|
|
{
|
|
INEXACT REAL aex, bex, cex, dex, aey, bey, cey, dey, aez, bez, cez, dez;
|
|
REAL aextail, bextail, cextail, dextail;
|
|
REAL aeytail, beytail, ceytail, deytail;
|
|
REAL aeztail, beztail, ceztail, deztail;
|
|
REAL negate, negatetail;
|
|
INEXACT REAL axby7, bxcy7, cxdy7, dxay7, axcy7, bxdy7;
|
|
INEXACT REAL bxay7, cxby7, dxcy7, axdy7, cxay7, dxby7;
|
|
REAL axby[8], bxcy[8], cxdy[8], dxay[8], axcy[8], bxdy[8];
|
|
REAL bxay[8], cxby[8], dxcy[8], axdy[8], cxay[8], dxby[8];
|
|
REAL ab[16], bc[16], cd[16], da[16], ac[16], bd[16];
|
|
int ablen, bclen, cdlen, dalen, aclen, bdlen;
|
|
REAL temp32a[32], temp32b[32], temp64a[64], temp64b[64], temp64c[64];
|
|
int temp32alen, temp32blen, temp64alen, temp64blen, temp64clen;
|
|
REAL temp128[128], temp192[192];
|
|
int temp128len, temp192len;
|
|
REAL detx[384], detxx[768], detxt[384], detxxt[768], detxtxt[768];
|
|
int xlen, xxlen, xtlen, xxtlen, xtxtlen;
|
|
REAL x1[1536], x2[2304];
|
|
int x1len, x2len;
|
|
REAL dety[384], detyy[768], detyt[384], detyyt[768], detytyt[768];
|
|
int ylen, yylen, ytlen, yytlen, ytytlen;
|
|
REAL y1[1536], y2[2304];
|
|
int y1len, y2len;
|
|
REAL detz[384], detzz[768], detzt[384], detzzt[768], detztzt[768];
|
|
int zlen, zzlen, ztlen, zztlen, ztztlen;
|
|
REAL z1[1536], z2[2304];
|
|
int z1len, z2len;
|
|
REAL detxy[4608];
|
|
int xylen;
|
|
REAL adet[6912], bdet[6912], cdet[6912], ddet[6912];
|
|
int alen, blen, clen, dlen;
|
|
REAL abdet[13824], cddet[13824], deter[27648];
|
|
int deterlen;
|
|
int i;
|
|
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL a0hi, a0lo, a1hi, a1lo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
INEXACT REAL _i, _j, _k, _l, _m, _n;
|
|
REAL _0, _1, _2;
|
|
|
|
Two_Diff(pa[0], pe[0], aex, aextail);
|
|
Two_Diff(pa[1], pe[1], aey, aeytail);
|
|
Two_Diff(pa[2], pe[2], aez, aeztail);
|
|
Two_Diff(pb[0], pe[0], bex, bextail);
|
|
Two_Diff(pb[1], pe[1], bey, beytail);
|
|
Two_Diff(pb[2], pe[2], bez, beztail);
|
|
Two_Diff(pc[0], pe[0], cex, cextail);
|
|
Two_Diff(pc[1], pe[1], cey, ceytail);
|
|
Two_Diff(pc[2], pe[2], cez, ceztail);
|
|
Two_Diff(pd[0], pe[0], dex, dextail);
|
|
Two_Diff(pd[1], pe[1], dey, deytail);
|
|
Two_Diff(pd[2], pe[2], dez, deztail);
|
|
|
|
Two_Two_Product(aex, aextail, bey, beytail,
|
|
axby7, axby[6], axby[5], axby[4],
|
|
axby[3], axby[2], axby[1], axby[0]);
|
|
axby[7] = axby7;
|
|
negate = -aey;
|
|
negatetail = -aeytail;
|
|
Two_Two_Product(bex, bextail, negate, negatetail,
|
|
bxay7, bxay[6], bxay[5], bxay[4],
|
|
bxay[3], bxay[2], bxay[1], bxay[0]);
|
|
bxay[7] = bxay7;
|
|
ablen = fast_expansion_sum_zeroelim(8, axby, 8, bxay, ab);
|
|
Two_Two_Product(bex, bextail, cey, ceytail,
|
|
bxcy7, bxcy[6], bxcy[5], bxcy[4],
|
|
bxcy[3], bxcy[2], bxcy[1], bxcy[0]);
|
|
bxcy[7] = bxcy7;
|
|
negate = -bey;
|
|
negatetail = -beytail;
|
|
Two_Two_Product(cex, cextail, negate, negatetail,
|
|
cxby7, cxby[6], cxby[5], cxby[4],
|
|
cxby[3], cxby[2], cxby[1], cxby[0]);
|
|
cxby[7] = cxby7;
|
|
bclen = fast_expansion_sum_zeroelim(8, bxcy, 8, cxby, bc);
|
|
Two_Two_Product(cex, cextail, dey, deytail,
|
|
cxdy7, cxdy[6], cxdy[5], cxdy[4],
|
|
cxdy[3], cxdy[2], cxdy[1], cxdy[0]);
|
|
cxdy[7] = cxdy7;
|
|
negate = -cey;
|
|
negatetail = -ceytail;
|
|
Two_Two_Product(dex, dextail, negate, negatetail,
|
|
dxcy7, dxcy[6], dxcy[5], dxcy[4],
|
|
dxcy[3], dxcy[2], dxcy[1], dxcy[0]);
|
|
dxcy[7] = dxcy7;
|
|
cdlen = fast_expansion_sum_zeroelim(8, cxdy, 8, dxcy, cd);
|
|
Two_Two_Product(dex, dextail, aey, aeytail,
|
|
dxay7, dxay[6], dxay[5], dxay[4],
|
|
dxay[3], dxay[2], dxay[1], dxay[0]);
|
|
dxay[7] = dxay7;
|
|
negate = -dey;
|
|
negatetail = -deytail;
|
|
Two_Two_Product(aex, aextail, negate, negatetail,
|
|
axdy7, axdy[6], axdy[5], axdy[4],
|
|
axdy[3], axdy[2], axdy[1], axdy[0]);
|
|
axdy[7] = axdy7;
|
|
dalen = fast_expansion_sum_zeroelim(8, dxay, 8, axdy, da);
|
|
Two_Two_Product(aex, aextail, cey, ceytail,
|
|
axcy7, axcy[6], axcy[5], axcy[4],
|
|
axcy[3], axcy[2], axcy[1], axcy[0]);
|
|
axcy[7] = axcy7;
|
|
negate = -aey;
|
|
negatetail = -aeytail;
|
|
Two_Two_Product(cex, cextail, negate, negatetail,
|
|
cxay7, cxay[6], cxay[5], cxay[4],
|
|
cxay[3], cxay[2], cxay[1], cxay[0]);
|
|
cxay[7] = cxay7;
|
|
aclen = fast_expansion_sum_zeroelim(8, axcy, 8, cxay, ac);
|
|
Two_Two_Product(bex, bextail, dey, deytail,
|
|
bxdy7, bxdy[6], bxdy[5], bxdy[4],
|
|
bxdy[3], bxdy[2], bxdy[1], bxdy[0]);
|
|
bxdy[7] = bxdy7;
|
|
negate = -bey;
|
|
negatetail = -beytail;
|
|
Two_Two_Product(dex, dextail, negate, negatetail,
|
|
dxby7, dxby[6], dxby[5], dxby[4],
|
|
dxby[3], dxby[2], dxby[1], dxby[0]);
|
|
dxby[7] = dxby7;
|
|
bdlen = fast_expansion_sum_zeroelim(8, bxdy, 8, dxby, bd);
|
|
|
|
temp32alen = scale_expansion_zeroelim(cdlen, cd, -bez, temp32a);
|
|
temp32blen = scale_expansion_zeroelim(cdlen, cd, -beztail, temp32b);
|
|
temp64alen = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64a);
|
|
temp32alen = scale_expansion_zeroelim(bdlen, bd, cez, temp32a);
|
|
temp32blen = scale_expansion_zeroelim(bdlen, bd, ceztail, temp32b);
|
|
temp64blen = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64b);
|
|
temp32alen = scale_expansion_zeroelim(bclen, bc, -dez, temp32a);
|
|
temp32blen = scale_expansion_zeroelim(bclen, bc, -deztail, temp32b);
|
|
temp64clen = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64c);
|
|
temp128len = fast_expansion_sum_zeroelim(temp64alen, temp64a,
|
|
temp64blen, temp64b, temp128);
|
|
temp192len = fast_expansion_sum_zeroelim(temp64clen, temp64c,
|
|
temp128len, temp128, temp192);
|
|
xlen = scale_expansion_zeroelim(temp192len, temp192, aex, detx);
|
|
xxlen = scale_expansion_zeroelim(xlen, detx, aex, detxx);
|
|
xtlen = scale_expansion_zeroelim(temp192len, temp192, aextail, detxt);
|
|
xxtlen = scale_expansion_zeroelim(xtlen, detxt, aex, detxxt);
|
|
for (i = 0; i < xxtlen; i++) {
|
|
detxxt[i] *= 2.0;
|
|
}
|
|
xtxtlen = scale_expansion_zeroelim(xtlen, detxt, aextail, detxtxt);
|
|
x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1);
|
|
x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2);
|
|
ylen = scale_expansion_zeroelim(temp192len, temp192, aey, dety);
|
|
yylen = scale_expansion_zeroelim(ylen, dety, aey, detyy);
|
|
ytlen = scale_expansion_zeroelim(temp192len, temp192, aeytail, detyt);
|
|
yytlen = scale_expansion_zeroelim(ytlen, detyt, aey, detyyt);
|
|
for (i = 0; i < yytlen; i++) {
|
|
detyyt[i] *= 2.0;
|
|
}
|
|
ytytlen = scale_expansion_zeroelim(ytlen, detyt, aeytail, detytyt);
|
|
y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1);
|
|
y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2);
|
|
zlen = scale_expansion_zeroelim(temp192len, temp192, aez, detz);
|
|
zzlen = scale_expansion_zeroelim(zlen, detz, aez, detzz);
|
|
ztlen = scale_expansion_zeroelim(temp192len, temp192, aeztail, detzt);
|
|
zztlen = scale_expansion_zeroelim(ztlen, detzt, aez, detzzt);
|
|
for (i = 0; i < zztlen; i++) {
|
|
detzzt[i] *= 2.0;
|
|
}
|
|
ztztlen = scale_expansion_zeroelim(ztlen, detzt, aeztail, detztzt);
|
|
z1len = fast_expansion_sum_zeroelim(zzlen, detzz, zztlen, detzzt, z1);
|
|
z2len = fast_expansion_sum_zeroelim(z1len, z1, ztztlen, detztzt, z2);
|
|
xylen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, detxy);
|
|
alen = fast_expansion_sum_zeroelim(z2len, z2, xylen, detxy, adet);
|
|
|
|
temp32alen = scale_expansion_zeroelim(dalen, da, cez, temp32a);
|
|
temp32blen = scale_expansion_zeroelim(dalen, da, ceztail, temp32b);
|
|
temp64alen = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64a);
|
|
temp32alen = scale_expansion_zeroelim(aclen, ac, dez, temp32a);
|
|
temp32blen = scale_expansion_zeroelim(aclen, ac, deztail, temp32b);
|
|
temp64blen = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64b);
|
|
temp32alen = scale_expansion_zeroelim(cdlen, cd, aez, temp32a);
|
|
temp32blen = scale_expansion_zeroelim(cdlen, cd, aeztail, temp32b);
|
|
temp64clen = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64c);
|
|
temp128len = fast_expansion_sum_zeroelim(temp64alen, temp64a,
|
|
temp64blen, temp64b, temp128);
|
|
temp192len = fast_expansion_sum_zeroelim(temp64clen, temp64c,
|
|
temp128len, temp128, temp192);
|
|
xlen = scale_expansion_zeroelim(temp192len, temp192, bex, detx);
|
|
xxlen = scale_expansion_zeroelim(xlen, detx, bex, detxx);
|
|
xtlen = scale_expansion_zeroelim(temp192len, temp192, bextail, detxt);
|
|
xxtlen = scale_expansion_zeroelim(xtlen, detxt, bex, detxxt);
|
|
for (i = 0; i < xxtlen; i++) {
|
|
detxxt[i] *= 2.0;
|
|
}
|
|
xtxtlen = scale_expansion_zeroelim(xtlen, detxt, bextail, detxtxt);
|
|
x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1);
|
|
x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2);
|
|
ylen = scale_expansion_zeroelim(temp192len, temp192, bey, dety);
|
|
yylen = scale_expansion_zeroelim(ylen, dety, bey, detyy);
|
|
ytlen = scale_expansion_zeroelim(temp192len, temp192, beytail, detyt);
|
|
yytlen = scale_expansion_zeroelim(ytlen, detyt, bey, detyyt);
|
|
for (i = 0; i < yytlen; i++) {
|
|
detyyt[i] *= 2.0;
|
|
}
|
|
ytytlen = scale_expansion_zeroelim(ytlen, detyt, beytail, detytyt);
|
|
y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1);
|
|
y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2);
|
|
zlen = scale_expansion_zeroelim(temp192len, temp192, bez, detz);
|
|
zzlen = scale_expansion_zeroelim(zlen, detz, bez, detzz);
|
|
ztlen = scale_expansion_zeroelim(temp192len, temp192, beztail, detzt);
|
|
zztlen = scale_expansion_zeroelim(ztlen, detzt, bez, detzzt);
|
|
for (i = 0; i < zztlen; i++) {
|
|
detzzt[i] *= 2.0;
|
|
}
|
|
ztztlen = scale_expansion_zeroelim(ztlen, detzt, beztail, detztzt);
|
|
z1len = fast_expansion_sum_zeroelim(zzlen, detzz, zztlen, detzzt, z1);
|
|
z2len = fast_expansion_sum_zeroelim(z1len, z1, ztztlen, detztzt, z2);
|
|
xylen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, detxy);
|
|
blen = fast_expansion_sum_zeroelim(z2len, z2, xylen, detxy, bdet);
|
|
|
|
temp32alen = scale_expansion_zeroelim(ablen, ab, -dez, temp32a);
|
|
temp32blen = scale_expansion_zeroelim(ablen, ab, -deztail, temp32b);
|
|
temp64alen = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64a);
|
|
temp32alen = scale_expansion_zeroelim(bdlen, bd, -aez, temp32a);
|
|
temp32blen = scale_expansion_zeroelim(bdlen, bd, -aeztail, temp32b);
|
|
temp64blen = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64b);
|
|
temp32alen = scale_expansion_zeroelim(dalen, da, -bez, temp32a);
|
|
temp32blen = scale_expansion_zeroelim(dalen, da, -beztail, temp32b);
|
|
temp64clen = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64c);
|
|
temp128len = fast_expansion_sum_zeroelim(temp64alen, temp64a,
|
|
temp64blen, temp64b, temp128);
|
|
temp192len = fast_expansion_sum_zeroelim(temp64clen, temp64c,
|
|
temp128len, temp128, temp192);
|
|
xlen = scale_expansion_zeroelim(temp192len, temp192, cex, detx);
|
|
xxlen = scale_expansion_zeroelim(xlen, detx, cex, detxx);
|
|
xtlen = scale_expansion_zeroelim(temp192len, temp192, cextail, detxt);
|
|
xxtlen = scale_expansion_zeroelim(xtlen, detxt, cex, detxxt);
|
|
for (i = 0; i < xxtlen; i++) {
|
|
detxxt[i] *= 2.0;
|
|
}
|
|
xtxtlen = scale_expansion_zeroelim(xtlen, detxt, cextail, detxtxt);
|
|
x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1);
|
|
x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2);
|
|
ylen = scale_expansion_zeroelim(temp192len, temp192, cey, dety);
|
|
yylen = scale_expansion_zeroelim(ylen, dety, cey, detyy);
|
|
ytlen = scale_expansion_zeroelim(temp192len, temp192, ceytail, detyt);
|
|
yytlen = scale_expansion_zeroelim(ytlen, detyt, cey, detyyt);
|
|
for (i = 0; i < yytlen; i++) {
|
|
detyyt[i] *= 2.0;
|
|
}
|
|
ytytlen = scale_expansion_zeroelim(ytlen, detyt, ceytail, detytyt);
|
|
y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1);
|
|
y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2);
|
|
zlen = scale_expansion_zeroelim(temp192len, temp192, cez, detz);
|
|
zzlen = scale_expansion_zeroelim(zlen, detz, cez, detzz);
|
|
ztlen = scale_expansion_zeroelim(temp192len, temp192, ceztail, detzt);
|
|
zztlen = scale_expansion_zeroelim(ztlen, detzt, cez, detzzt);
|
|
for (i = 0; i < zztlen; i++) {
|
|
detzzt[i] *= 2.0;
|
|
}
|
|
ztztlen = scale_expansion_zeroelim(ztlen, detzt, ceztail, detztzt);
|
|
z1len = fast_expansion_sum_zeroelim(zzlen, detzz, zztlen, detzzt, z1);
|
|
z2len = fast_expansion_sum_zeroelim(z1len, z1, ztztlen, detztzt, z2);
|
|
xylen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, detxy);
|
|
clen = fast_expansion_sum_zeroelim(z2len, z2, xylen, detxy, cdet);
|
|
|
|
temp32alen = scale_expansion_zeroelim(bclen, bc, aez, temp32a);
|
|
temp32blen = scale_expansion_zeroelim(bclen, bc, aeztail, temp32b);
|
|
temp64alen = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64a);
|
|
temp32alen = scale_expansion_zeroelim(aclen, ac, -bez, temp32a);
|
|
temp32blen = scale_expansion_zeroelim(aclen, ac, -beztail, temp32b);
|
|
temp64blen = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64b);
|
|
temp32alen = scale_expansion_zeroelim(ablen, ab, cez, temp32a);
|
|
temp32blen = scale_expansion_zeroelim(ablen, ab, ceztail, temp32b);
|
|
temp64clen = fast_expansion_sum_zeroelim(temp32alen, temp32a,
|
|
temp32blen, temp32b, temp64c);
|
|
temp128len = fast_expansion_sum_zeroelim(temp64alen, temp64a,
|
|
temp64blen, temp64b, temp128);
|
|
temp192len = fast_expansion_sum_zeroelim(temp64clen, temp64c,
|
|
temp128len, temp128, temp192);
|
|
xlen = scale_expansion_zeroelim(temp192len, temp192, dex, detx);
|
|
xxlen = scale_expansion_zeroelim(xlen, detx, dex, detxx);
|
|
xtlen = scale_expansion_zeroelim(temp192len, temp192, dextail, detxt);
|
|
xxtlen = scale_expansion_zeroelim(xtlen, detxt, dex, detxxt);
|
|
for (i = 0; i < xxtlen; i++) {
|
|
detxxt[i] *= 2.0;
|
|
}
|
|
xtxtlen = scale_expansion_zeroelim(xtlen, detxt, dextail, detxtxt);
|
|
x1len = fast_expansion_sum_zeroelim(xxlen, detxx, xxtlen, detxxt, x1);
|
|
x2len = fast_expansion_sum_zeroelim(x1len, x1, xtxtlen, detxtxt, x2);
|
|
ylen = scale_expansion_zeroelim(temp192len, temp192, dey, dety);
|
|
yylen = scale_expansion_zeroelim(ylen, dety, dey, detyy);
|
|
ytlen = scale_expansion_zeroelim(temp192len, temp192, deytail, detyt);
|
|
yytlen = scale_expansion_zeroelim(ytlen, detyt, dey, detyyt);
|
|
for (i = 0; i < yytlen; i++) {
|
|
detyyt[i] *= 2.0;
|
|
}
|
|
ytytlen = scale_expansion_zeroelim(ytlen, detyt, deytail, detytyt);
|
|
y1len = fast_expansion_sum_zeroelim(yylen, detyy, yytlen, detyyt, y1);
|
|
y2len = fast_expansion_sum_zeroelim(y1len, y1, ytytlen, detytyt, y2);
|
|
zlen = scale_expansion_zeroelim(temp192len, temp192, dez, detz);
|
|
zzlen = scale_expansion_zeroelim(zlen, detz, dez, detzz);
|
|
ztlen = scale_expansion_zeroelim(temp192len, temp192, deztail, detzt);
|
|
zztlen = scale_expansion_zeroelim(ztlen, detzt, dez, detzzt);
|
|
for (i = 0; i < zztlen; i++) {
|
|
detzzt[i] *= 2.0;
|
|
}
|
|
ztztlen = scale_expansion_zeroelim(ztlen, detzt, deztail, detztzt);
|
|
z1len = fast_expansion_sum_zeroelim(zzlen, detzz, zztlen, detzzt, z1);
|
|
z2len = fast_expansion_sum_zeroelim(z1len, z1, ztztlen, detztzt, z2);
|
|
xylen = fast_expansion_sum_zeroelim(x2len, x2, y2len, y2, detxy);
|
|
dlen = fast_expansion_sum_zeroelim(z2len, z2, xylen, detxy, ddet);
|
|
|
|
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
|
|
cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet);
|
|
deterlen = fast_expansion_sum_zeroelim(ablen, abdet, cdlen, cddet, deter);
|
|
|
|
return deter[deterlen - 1];
|
|
}
|
|
|
|
REAL insphereadapt(pa, pb, pc, pd, pe, permanent)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
REAL *pd;
|
|
REAL *pe;
|
|
REAL permanent;
|
|
{
|
|
INEXACT REAL aex, bex, cex, dex, aey, bey, cey, dey, aez, bez, cez, dez;
|
|
REAL det, errbound;
|
|
|
|
INEXACT REAL aexbey1, bexaey1, bexcey1, cexbey1;
|
|
INEXACT REAL cexdey1, dexcey1, dexaey1, aexdey1;
|
|
INEXACT REAL aexcey1, cexaey1, bexdey1, dexbey1;
|
|
REAL aexbey0, bexaey0, bexcey0, cexbey0;
|
|
REAL cexdey0, dexcey0, dexaey0, aexdey0;
|
|
REAL aexcey0, cexaey0, bexdey0, dexbey0;
|
|
REAL ab[4], bc[4], cd[4], da[4], ac[4], bd[4];
|
|
INEXACT REAL ab3, bc3, cd3, da3, ac3, bd3;
|
|
REAL abeps, bceps, cdeps, daeps, aceps, bdeps;
|
|
REAL temp8a[8], temp8b[8], temp8c[8], temp16[16], temp24[24], temp48[48];
|
|
int temp8alen, temp8blen, temp8clen, temp16len, temp24len, temp48len;
|
|
REAL xdet[96], ydet[96], zdet[96], xydet[192];
|
|
int xlen, ylen, zlen, xylen;
|
|
REAL adet[288], bdet[288], cdet[288], ddet[288];
|
|
int alen, blen, clen, dlen;
|
|
REAL abdet[576], cddet[576];
|
|
int ablen, cdlen;
|
|
REAL fin1[1152];
|
|
int finlength;
|
|
|
|
REAL aextail, bextail, cextail, dextail;
|
|
REAL aeytail, beytail, ceytail, deytail;
|
|
REAL aeztail, beztail, ceztail, deztail;
|
|
|
|
INEXACT REAL bvirt;
|
|
REAL avirt, bround, around;
|
|
INEXACT REAL c;
|
|
INEXACT REAL abig;
|
|
REAL ahi, alo, bhi, blo;
|
|
REAL err1, err2, err3;
|
|
INEXACT REAL _i, _j;
|
|
REAL _0;
|
|
|
|
aex = (REAL) (pa[0] - pe[0]);
|
|
bex = (REAL) (pb[0] - pe[0]);
|
|
cex = (REAL) (pc[0] - pe[0]);
|
|
dex = (REAL) (pd[0] - pe[0]);
|
|
aey = (REAL) (pa[1] - pe[1]);
|
|
bey = (REAL) (pb[1] - pe[1]);
|
|
cey = (REAL) (pc[1] - pe[1]);
|
|
dey = (REAL) (pd[1] - pe[1]);
|
|
aez = (REAL) (pa[2] - pe[2]);
|
|
bez = (REAL) (pb[2] - pe[2]);
|
|
cez = (REAL) (pc[2] - pe[2]);
|
|
dez = (REAL) (pd[2] - pe[2]);
|
|
|
|
Two_Product(aex, bey, aexbey1, aexbey0);
|
|
Two_Product(bex, aey, bexaey1, bexaey0);
|
|
Two_Two_Diff(aexbey1, aexbey0, bexaey1, bexaey0, ab3, ab[2], ab[1], ab[0]);
|
|
ab[3] = ab3;
|
|
|
|
Two_Product(bex, cey, bexcey1, bexcey0);
|
|
Two_Product(cex, bey, cexbey1, cexbey0);
|
|
Two_Two_Diff(bexcey1, bexcey0, cexbey1, cexbey0, bc3, bc[2], bc[1], bc[0]);
|
|
bc[3] = bc3;
|
|
|
|
Two_Product(cex, dey, cexdey1, cexdey0);
|
|
Two_Product(dex, cey, dexcey1, dexcey0);
|
|
Two_Two_Diff(cexdey1, cexdey0, dexcey1, dexcey0, cd3, cd[2], cd[1], cd[0]);
|
|
cd[3] = cd3;
|
|
|
|
Two_Product(dex, aey, dexaey1, dexaey0);
|
|
Two_Product(aex, dey, aexdey1, aexdey0);
|
|
Two_Two_Diff(dexaey1, dexaey0, aexdey1, aexdey0, da3, da[2], da[1], da[0]);
|
|
da[3] = da3;
|
|
|
|
Two_Product(aex, cey, aexcey1, aexcey0);
|
|
Two_Product(cex, aey, cexaey1, cexaey0);
|
|
Two_Two_Diff(aexcey1, aexcey0, cexaey1, cexaey0, ac3, ac[2], ac[1], ac[0]);
|
|
ac[3] = ac3;
|
|
|
|
Two_Product(bex, dey, bexdey1, bexdey0);
|
|
Two_Product(dex, bey, dexbey1, dexbey0);
|
|
Two_Two_Diff(bexdey1, bexdey0, dexbey1, dexbey0, bd3, bd[2], bd[1], bd[0]);
|
|
bd[3] = bd3;
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, cd, bez, temp8a);
|
|
temp8blen = scale_expansion_zeroelim(4, bd, -cez, temp8b);
|
|
temp8clen = scale_expansion_zeroelim(4, bc, dez, temp8c);
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a,
|
|
temp8blen, temp8b, temp16);
|
|
temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c,
|
|
temp16len, temp16, temp24);
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, aex, temp48);
|
|
xlen = scale_expansion_zeroelim(temp48len, temp48, -aex, xdet);
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, aey, temp48);
|
|
ylen = scale_expansion_zeroelim(temp48len, temp48, -aey, ydet);
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, aez, temp48);
|
|
zlen = scale_expansion_zeroelim(temp48len, temp48, -aez, zdet);
|
|
xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet);
|
|
alen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, adet);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, da, cez, temp8a);
|
|
temp8blen = scale_expansion_zeroelim(4, ac, dez, temp8b);
|
|
temp8clen = scale_expansion_zeroelim(4, cd, aez, temp8c);
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a,
|
|
temp8blen, temp8b, temp16);
|
|
temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c,
|
|
temp16len, temp16, temp24);
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, bex, temp48);
|
|
xlen = scale_expansion_zeroelim(temp48len, temp48, bex, xdet);
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, bey, temp48);
|
|
ylen = scale_expansion_zeroelim(temp48len, temp48, bey, ydet);
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, bez, temp48);
|
|
zlen = scale_expansion_zeroelim(temp48len, temp48, bez, zdet);
|
|
xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet);
|
|
blen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, bdet);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, ab, dez, temp8a);
|
|
temp8blen = scale_expansion_zeroelim(4, bd, aez, temp8b);
|
|
temp8clen = scale_expansion_zeroelim(4, da, bez, temp8c);
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a,
|
|
temp8blen, temp8b, temp16);
|
|
temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c,
|
|
temp16len, temp16, temp24);
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, cex, temp48);
|
|
xlen = scale_expansion_zeroelim(temp48len, temp48, -cex, xdet);
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, cey, temp48);
|
|
ylen = scale_expansion_zeroelim(temp48len, temp48, -cey, ydet);
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, cez, temp48);
|
|
zlen = scale_expansion_zeroelim(temp48len, temp48, -cez, zdet);
|
|
xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet);
|
|
clen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, cdet);
|
|
|
|
temp8alen = scale_expansion_zeroelim(4, bc, aez, temp8a);
|
|
temp8blen = scale_expansion_zeroelim(4, ac, -bez, temp8b);
|
|
temp8clen = scale_expansion_zeroelim(4, ab, cez, temp8c);
|
|
temp16len = fast_expansion_sum_zeroelim(temp8alen, temp8a,
|
|
temp8blen, temp8b, temp16);
|
|
temp24len = fast_expansion_sum_zeroelim(temp8clen, temp8c,
|
|
temp16len, temp16, temp24);
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, dex, temp48);
|
|
xlen = scale_expansion_zeroelim(temp48len, temp48, dex, xdet);
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, dey, temp48);
|
|
ylen = scale_expansion_zeroelim(temp48len, temp48, dey, ydet);
|
|
temp48len = scale_expansion_zeroelim(temp24len, temp24, dez, temp48);
|
|
zlen = scale_expansion_zeroelim(temp48len, temp48, dez, zdet);
|
|
xylen = fast_expansion_sum_zeroelim(xlen, xdet, ylen, ydet, xydet);
|
|
dlen = fast_expansion_sum_zeroelim(xylen, xydet, zlen, zdet, ddet);
|
|
|
|
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
|
|
cdlen = fast_expansion_sum_zeroelim(clen, cdet, dlen, ddet, cddet);
|
|
finlength = fast_expansion_sum_zeroelim(ablen, abdet, cdlen, cddet, fin1);
|
|
|
|
det = estimate(finlength, fin1);
|
|
errbound = isperrboundB * permanent;
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
return det;
|
|
}
|
|
|
|
Two_Diff_Tail(pa[0], pe[0], aex, aextail);
|
|
Two_Diff_Tail(pa[1], pe[1], aey, aeytail);
|
|
Two_Diff_Tail(pa[2], pe[2], aez, aeztail);
|
|
Two_Diff_Tail(pb[0], pe[0], bex, bextail);
|
|
Two_Diff_Tail(pb[1], pe[1], bey, beytail);
|
|
Two_Diff_Tail(pb[2], pe[2], bez, beztail);
|
|
Two_Diff_Tail(pc[0], pe[0], cex, cextail);
|
|
Two_Diff_Tail(pc[1], pe[1], cey, ceytail);
|
|
Two_Diff_Tail(pc[2], pe[2], cez, ceztail);
|
|
Two_Diff_Tail(pd[0], pe[0], dex, dextail);
|
|
Two_Diff_Tail(pd[1], pe[1], dey, deytail);
|
|
Two_Diff_Tail(pd[2], pe[2], dez, deztail);
|
|
if ((aextail == 0.0) && (aeytail == 0.0) && (aeztail == 0.0)
|
|
&& (bextail == 0.0) && (beytail == 0.0) && (beztail == 0.0)
|
|
&& (cextail == 0.0) && (ceytail == 0.0) && (ceztail == 0.0)
|
|
&& (dextail == 0.0) && (deytail == 0.0) && (deztail == 0.0)) {
|
|
return det;
|
|
}
|
|
|
|
errbound = isperrboundC * permanent + resulterrbound * Absolute(det);
|
|
abeps = (aex * beytail + bey * aextail)
|
|
- (aey * bextail + bex * aeytail);
|
|
bceps = (bex * ceytail + cey * bextail)
|
|
- (bey * cextail + cex * beytail);
|
|
cdeps = (cex * deytail + dey * cextail)
|
|
- (cey * dextail + dex * ceytail);
|
|
daeps = (dex * aeytail + aey * dextail)
|
|
- (dey * aextail + aex * deytail);
|
|
aceps = (aex * ceytail + cey * aextail)
|
|
- (aey * cextail + cex * aeytail);
|
|
bdeps = (bex * deytail + dey * bextail)
|
|
- (bey * dextail + dex * beytail);
|
|
det += (((bex * bex + bey * bey + bez * bez)
|
|
* ((cez * daeps + dez * aceps + aez * cdeps)
|
|
+ (ceztail * da3 + deztail * ac3 + aeztail * cd3))
|
|
+ (dex * dex + dey * dey + dez * dez)
|
|
* ((aez * bceps - bez * aceps + cez * abeps)
|
|
+ (aeztail * bc3 - beztail * ac3 + ceztail * ab3)))
|
|
- ((aex * aex + aey * aey + aez * aez)
|
|
* ((bez * cdeps - cez * bdeps + dez * bceps)
|
|
+ (beztail * cd3 - ceztail * bd3 + deztail * bc3))
|
|
+ (cex * cex + cey * cey + cez * cez)
|
|
* ((dez * abeps + aez * bdeps + bez * daeps)
|
|
+ (deztail * ab3 + aeztail * bd3 + beztail * da3))))
|
|
+ 2.0 * (((bex * bextail + bey * beytail + bez * beztail)
|
|
* (cez * da3 + dez * ac3 + aez * cd3)
|
|
+ (dex * dextail + dey * deytail + dez * deztail)
|
|
* (aez * bc3 - bez * ac3 + cez * ab3))
|
|
- ((aex * aextail + aey * aeytail + aez * aeztail)
|
|
* (bez * cd3 - cez * bd3 + dez * bc3)
|
|
+ (cex * cextail + cey * ceytail + cez * ceztail)
|
|
* (dez * ab3 + aez * bd3 + bez * da3)));
|
|
if ((det >= errbound) || (-det >= errbound)) {
|
|
return det;
|
|
}
|
|
|
|
return insphereexact(pa, pb, pc, pd, pe);
|
|
}
|
|
|
|
REAL insphere(pa, pb, pc, pd, pe)
|
|
REAL *pa;
|
|
REAL *pb;
|
|
REAL *pc;
|
|
REAL *pd;
|
|
REAL *pe;
|
|
{
|
|
REAL aex, bex, cex, dex;
|
|
REAL aey, bey, cey, dey;
|
|
REAL aez, bez, cez, dez;
|
|
REAL aexbey, bexaey, bexcey, cexbey, cexdey, dexcey, dexaey, aexdey;
|
|
REAL aexcey, cexaey, bexdey, dexbey;
|
|
REAL alift, blift, clift, dlift;
|
|
REAL ab, bc, cd, da, ac, bd;
|
|
REAL abc, bcd, cda, dab;
|
|
REAL aezplus, bezplus, cezplus, dezplus;
|
|
REAL aexbeyplus, bexaeyplus, bexceyplus, cexbeyplus;
|
|
REAL cexdeyplus, dexceyplus, dexaeyplus, aexdeyplus;
|
|
REAL aexceyplus, cexaeyplus, bexdeyplus, dexbeyplus;
|
|
REAL det;
|
|
REAL permanent, errbound;
|
|
|
|
aex = pa[0] - pe[0];
|
|
bex = pb[0] - pe[0];
|
|
cex = pc[0] - pe[0];
|
|
dex = pd[0] - pe[0];
|
|
aey = pa[1] - pe[1];
|
|
bey = pb[1] - pe[1];
|
|
cey = pc[1] - pe[1];
|
|
dey = pd[1] - pe[1];
|
|
aez = pa[2] - pe[2];
|
|
bez = pb[2] - pe[2];
|
|
cez = pc[2] - pe[2];
|
|
dez = pd[2] - pe[2];
|
|
|
|
aexbey = aex * bey;
|
|
bexaey = bex * aey;
|
|
ab = aexbey - bexaey;
|
|
bexcey = bex * cey;
|
|
cexbey = cex * bey;
|
|
bc = bexcey - cexbey;
|
|
cexdey = cex * dey;
|
|
dexcey = dex * cey;
|
|
cd = cexdey - dexcey;
|
|
dexaey = dex * aey;
|
|
aexdey = aex * dey;
|
|
da = dexaey - aexdey;
|
|
|
|
aexcey = aex * cey;
|
|
cexaey = cex * aey;
|
|
ac = aexcey - cexaey;
|
|
bexdey = bex * dey;
|
|
dexbey = dex * bey;
|
|
bd = bexdey - dexbey;
|
|
|
|
abc = aez * bc - bez * ac + cez * ab;
|
|
bcd = bez * cd - cez * bd + dez * bc;
|
|
cda = cez * da + dez * ac + aez * cd;
|
|
dab = dez * ab + aez * bd + bez * da;
|
|
|
|
alift = aex * aex + aey * aey + aez * aez;
|
|
blift = bex * bex + bey * bey + bez * bez;
|
|
clift = cex * cex + cey * cey + cez * cez;
|
|
dlift = dex * dex + dey * dey + dez * dez;
|
|
|
|
det = (dlift * abc - clift * dab) + (blift * cda - alift * bcd);
|
|
|
|
aezplus = Absolute(aez);
|
|
bezplus = Absolute(bez);
|
|
cezplus = Absolute(cez);
|
|
dezplus = Absolute(dez);
|
|
aexbeyplus = Absolute(aexbey);
|
|
bexaeyplus = Absolute(bexaey);
|
|
bexceyplus = Absolute(bexcey);
|
|
cexbeyplus = Absolute(cexbey);
|
|
cexdeyplus = Absolute(cexdey);
|
|
dexceyplus = Absolute(dexcey);
|
|
dexaeyplus = Absolute(dexaey);
|
|
aexdeyplus = Absolute(aexdey);
|
|
aexceyplus = Absolute(aexcey);
|
|
cexaeyplus = Absolute(cexaey);
|
|
bexdeyplus = Absolute(bexdey);
|
|
dexbeyplus = Absolute(dexbey);
|
|
permanent = ((cexdeyplus + dexceyplus) * bezplus
|
|
+ (dexbeyplus + bexdeyplus) * cezplus
|
|
+ (bexceyplus + cexbeyplus) * dezplus)
|
|
* alift
|
|
+ ((dexaeyplus + aexdeyplus) * cezplus
|
|
+ (aexceyplus + cexaeyplus) * dezplus
|
|
+ (cexdeyplus + dexceyplus) * aezplus)
|
|
* blift
|
|
+ ((aexbeyplus + bexaeyplus) * dezplus
|
|
+ (bexdeyplus + dexbeyplus) * aezplus
|
|
+ (dexaeyplus + aexdeyplus) * bezplus)
|
|
* clift
|
|
+ ((bexceyplus + cexbeyplus) * aezplus
|
|
+ (cexaeyplus + aexceyplus) * bezplus
|
|
+ (aexbeyplus + bexaeyplus) * cezplus)
|
|
* dlift;
|
|
errbound = isperrboundA * permanent;
|
|
if ((det > errbound) || (-det > errbound)) {
|
|
return det;
|
|
}
|
|
|
|
return insphereadapt(pa, pb, pc, pd, pe, permanent);
|
|
}
|