poly2tri/python/include/triangulator.pyx
2009-11-11 20:22:27 -05:00

647 lines
19 KiB
Cython

/* Poly2Tri
* Copyright (c) 2009, Mason Green
* http://code.google.com/p/poly2tri/
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
from math import floor
###
### Based on Raimund Seidel's paper "A simple and fast incremental randomized
### algorithm for computing trapezoidal decompositions and for triangulating polygons"
### (Ported from poly2tri)
class Triangulator(object) {
def __init__(points):
# Convex polygon list
self.polygons = []
# Order and randomize the Edges
self.EdgeList = initEdges()
# Initialize trapezoidal map and query structure
self.trapezoidalMap = new TrapezoidalMap
self.bounding_box = trapezoidalMap.bounding_box(EdgeList)
self.queryGraph = QueryGraph(Sink.init(bounding_box))
self.xMonoPoly = []
# The trapezoidal map
self.trapezoidMap = trapezoidalMap.map
# Trapezoid decomposition list
self.trapezoids = []
self.process()
// Build the trapezoidal map and query graph
def process(self):
i = 0
while(i < len(EdgeList)):
s = EdgeList(i)
traps = queryGraph.followEdge(s)
// Remove trapezoids from trapezoidal Map
for j in range(len(traps)):
trapezoidalMap.map -= traps(j)
for j in range(len(traps)):
t = traps(j)
tList = []
containsP = t.contains(s.p)
containsQ = t.contains(s.q)
if containsP and containsQ:
// Case 1
tList = trapezoidalMap.case1(t,s)
queryGraph.case1(t.sink, s, tList)
elif containsP and !containsQ:
// Case 2
tList = trapezoidalMap.case2(t,s)
queryGraph.case2(t.sink, s, tList)
elif !containsP and !containsQ:
// Case 3
tList = trapezoidalMap.case3(t, s)
queryGraph.case3(t.sink, s, tList)
else:
// Case 4
tList = trapezoidalMap.case4(t, s)
queryGraph.case4(t.sink, s, tList)
// Add new trapezoids to map
for k in range(len(tList)):
trapezoidalMap.map += tList[k]
trapezoidalMap.clear
i += 1
for t in trapezoidalMap.map
markOutside(t)
for t in trapezoidalMap.map
if t.inside:
trapezoids.append(t)
t.addPoints()
createMountains()
}
// Monotone polygons - these are monotone mountains
def monoPolies(self):
polies = []
for i in range(len(self.xMonoPoly)):
polies.append(self.xMonoPoly(i).monoPoly)
return polies
// Build a list of x-monotone mountains
private def createMountains {
var i = 0
while(i < EdgeList.size) {
val s = EdgeList(i)
if(s.mPoints.size > 0) {
mountain = MonotoneMountain()
if len(s.mPoints) < 10:
k = insertSort((p1: Point, p2: Point) => p1 < p2)(s.mPoints).toList
else
k = msort((p1: Point, p2: Point) => p1 < p2)(s.mPoints.toList)
points = s.p :: k ::: List(s.q)
for p in points:
mountain.add(p)
mountain.process()
// Extract the triangles into a single list
j = 0
while(j < mountain.triangles.size) {
polygons += mountain.triangles(j)
j += 1
}
xMonoPoly += mountain
}
i += 1
}
}
// Mark the outside trapezoids surrounding the polygon
private def markOutside(t: Trapezoid) {
if(t.top == bounding_box.top || t.bottom == bounding_box.bottom) {
t trimNeighbors
}
}
// Create Edges and connect end points; update edge event pointer
private def initEdges: ArrayBuffer[Edge] = {
var Edges = List[Edge]()
for(i <- 0 until points.size-1)
Edges = new Edge(points(i), points(i+1)) :: Edges
Edges = new Edge(points.first, points.last) :: Edges
orderEdges(Edges)
}
private def orderEdges(Edges: List[Edge]) = {
// Ignore vertical Edges!
val segs = new ArrayBuffer[Edge]
for(s <- Edges) {
val p = shearTransform(s.p)
val q = shearTransform(s.q)
// Point p must be to the left of point q
if(p.x > q.x) {
segs += new Edge(q, p)
} else if(p.x < q.x) {
segs += new Edge(p, q)
}
}
// Randomized triangulation improves performance
// See Seidel's paper, or O'Rourke's book, p. 57
Random.shuffle(segs)
segs
}
// Prevents any two distinct endpoints from lying on a common vertical line, and avoiding
// the degenerate case. See Mark de Berg et al, Chapter 6.3
//val SHEER = 0.0001f
def shearTransform(point: Point) = Point(point.x + 0.0001f * point.y, point.y)
}
// Doubly linked list
class MonotoneMountain {
var tail, head: Point = None
var size = 0
private val convexPoints = new ArrayBuffer[Point]
// Monotone mountain points
val monoPoly = new ArrayBuffer[Point]
// Triangles that constitute the mountain
val triangles = new ArrayBuffer[Array[Point]]
// Convex polygons that constitute the mountain
val convexPolies = new ArrayBuffer[Array[Point]]
// Used to track which side of the line we are on
private var positive = false
// Almost Pi!
private val PI_SLOP = 3.1
// Append a point to the list
def +=(point: Point) {
size match {
case 0 =>
head = point
size += 1
case 1 =>
// Keep repeat points out of the list
if(point ! head) {
tail = point
tail.prev = head
head.next = tail
size += 1
}
case _ =>
// Keep repeat points out of the list
if(point ! tail) {
tail.next = point
point.prev = tail
tail = point
size += 1
}
}
}
// Remove a point from the list
def remove(point: Point) {
val next = point.next
val prev = point.prev
point.prev.next = next
point.next.prev = prev
size -= 1
}
// Partition a x-monotone mountain into triangles O(n)
// See "Computational Geometry in C", 2nd edition, by Joseph O'Rourke, page 52
def process {
// Establish the proper sign
positive = angleSign
// create monotone polygon - for dubug purposes
genMonoPoly
// Initialize internal angles at each nonbase vertex
// Link strictly convex vertices into a list, ignore reflex vertices
var p = head.next
while(p != tail) {
val a = angle(p)
// If the point is almost colinear with it's neighbor, remove it!
if(a >= PI_SLOP || a <= -PI_SLOP)
remove(p)
else
if(convex(p)) convexPoints += p
p = p.next
}
triangulate
}
private def triangulate {
while(!convexPoints.isEmpty) {
val ear = convexPoints.remove(0)
val a = ear.prev
val b = ear
val c = ear.next
val triangle = Array(a, b, c)
triangles += triangle
// Remove ear, update angles and convex list
remove(ear)
if(valid(a)) convexPoints += a
if(valid(c)) convexPoints += c
}
assert(size <= 3, "Triangulation bug, please report")
}
private def valid(p: Point) = (p != head && p != tail && convex(p))
// Create the monotone polygon
private def genMonoPoly {
var p = head
while(p != None) {
monoPoly += p
p = p.next
}
}
private def angle(p: Point) = {
val a = (p.next - p)
val b = (p.prev - p)
Math.atan2(a cross b, a dot b)
}
private def angleSign = {
val a = (head.next - head)
val b = (tail - head)
(Math.atan2(a cross b, a dot b) >= 0)
}
// Determines if the inslide angle is convex or reflex
private def convex(p: Point) = {
if(positive != (angle(p) >= 0)) false
else true
}
}
# Node for a Directed Acyclic graph (DAG)
class Node(object):
def __init__(self, left, right):
self.left = left
self.right = right
if left is not None:
left.parentList.append(self)
if right is not None:
right.parentList.append(self)
parentList = []
def replace(self, node):
for parent in node.parentList:
if(parent.left == node):
parent.left = self
else:
parent.right = self
parentList.append(parent)
# Directed Acyclic graph (DAG)
# See "Computational Geometry", 3rd edition, by Mark de Berg et al, Chapter 6.2
class QueryGraph(var head: Node) {
def locate(s: Edge) = head.locate(s).trapezoid
def followEdge(s: Edge) = {
val trapezoids = new ArrayBuffer[Trapezoid]
trapezoids += locate(s)
var j = 0
while(s.q.x > trapezoids(j).rightPoint.x) {
if(s > trapezoids(j).rightPoint) {
trapezoids += trapezoids(j).upperRight
} else {
trapezoids += trapezoids(j).lowerRight
}
j += 1
}
trapezoids
}
def replace(sink: Sink, node: Node) {
if(sink.parentList.size == 0) {
head = node
} else {
node replace sink
}
}
def case1(sink: Sink, s: Edge, tList: Array[Trapezoid]) {
val yNode = new YNode(s, Sink.init(tList(1)), Sink.init(tList(2)))
val qNode = new XNode(s.q, yNode, Sink.init(tList(3)))
val pNode = new XNode(s.p, Sink.init(tList(0)), qNode)
replace(sink, pNode)
}
def case2(sink: Sink, s: Edge, tList: Array[Trapezoid]) {
val yNode = new YNode(s, Sink.init(tList(1)), Sink.init(tList(2)))
val pNode = new XNode(s.p, Sink.init(tList(0)), yNode)
replace(sink, pNode)
}
def case3(sink: Sink, s: Edge, tList: Array[Trapezoid]) {
val yNode = new YNode(s, Sink.init(tList(0)), Sink.init(tList(1)))
replace(sink, yNode)
}
def case4(sink: Sink, s: Edge, tList: Array[Trapezoid]) {
val yNode = new YNode(s, Sink.init(tList(0)), Sink.init(tList(1)))
val qNode = new XNode(s.q, yNode, Sink.init(tList(2)))
replace(sink, qNode)
}
}
class Sink(Node):
def __new__(cls, trapezoid):
if trapezoid.sink is not None:
return trapezoid.sink
else
return Sink(trapezoid)
def __init__(self, trapezoid):
Node.__init__(self, None, None)
trapezoid.sink = self
def locate(e):
return self
class TrapezoidalMap(object):
map = {}
margin = 50
bcross = None
tcross = None
def clear(self):
self.bcross = None
self.tcross = None
def case1(self, t, e):
trapezoids = (None, None, None, None)
trapezoids.append(Trapezoid(t.leftPoint, e.p, t.top, t.bottom))
trapezoids.append(Trapezoid(e.p, e.q, t.top, e))
trapezoids.append(Trapezoid(e.p, e.q, e, t.bottom))
trapezoids.append(Trapezoid(e.q, t.rightPoint, t.top, t.bottom))
trapezoids[0].updateLeft(t.upperLeft, t.lowerLeft)
trapezoids[1].updateLeftRight(trapezoids[0], None, trapezoids[3], None)
trapezoids[2].updateLeftRight(None, trapezoids[0], None, trapezoids[3])
trapezoids[3].updateRight(t.upperRight, t.lowerRight)
return trapezoids
def case2(self, t, e):
val rp = e.q if e.q.x == t.rightPoint.x else t.rightPoint
trapezoids = (None, None, None)
trapezoids.append(Trapezoid(t.leftPoint, e.p, t.top, t.bottom))
trapezoids.append(Trapezoid(e.p, rp, t.top, e))
trapezoids.append(Trapezoid(e.p, rp, e, t.bottom))
trapezoids[0].updateLeft(t.upperLeft, t.lowerLeft)
trapezoids[1].updateLeftRight(trapezoids[0], None, t.upperRight, None)
trapezoids[2].updateLeftRight(None, trapezoids[0], None, t.lowerRight)
self.bcross = t.bottom
self.tcross = t.top
e.above = trapezoids[1]
e.below = trapezoids[2]
return trapezoids
def case3(self, t, e):
lp = s.p if s.p.x == t.leftPoint.x else t.leftPoint
rp = s.q if s.q.x == t.rightPoint.x else t.rightPoint
trapezoids = (None, None)
if self.tcross is t.top:
trapezoids[0] = t.upperLeft
trapezoids[0].updateRight(t.upperRight, None)
trapezoids[0].rightPoint = rp
else:
trapezoids[0] = Trapezoid(lp, rp, t.top, s)
trapezoids[0].updateLeftRight(t.upperLeft, s.above, t.upperRight, None)
if self.bcross is t.bottom:
trapezoids[1] = t.lowerLeft
trapezoids[1].updateRight(None, t.lowerRight)
trapezoids[1].rightPoint = rp
else:
trapezoids[1] = Trapezoid(lp, rp, s, t.bottom)
trapezoids[1].updateLeftRight(s.below, t.lowerLeft, None, t.lowerRight)
self.bcross = t.bottom
self.tcross = t.top
s.above = trapezoids[0]
s.below = trapezoids[1]
return trapezoids
def case4(self, t, e):
lp = s.p if s.p.x == t.leftPoint.x else t.leftPoint
trapezoids = (None, None, None)
if self.tcross is t.top:
trapezoids[0] = t.upperLeft
trapezoids[0].rightPoint = s.q
else:
trapezoids[0] = Trapezoid(lp, s.q, t.top, s)
trapezoids[0].updateLeft(t.upperLeft, s.above)
if self.bcross is t.bottom:
trapezoids[1] = t.lowerLeft
trapezoids[1].rightPoint = s.q
else:
trapezoids[1] = Trapezoid(lp, s.q, s, t.bottom)
trapezoids[1].updateLeft(s.below, t.lowerLeft)
trapezoids[2] = Trapezoid(s.q, t.rightPoint, t.top, t.bottom)
trapezoids[2].updateLeftRight(trapezoids[0], trapezoids[1], t.upperRight, t.lowerRight)
return trapezoids
def bounding_box(self, edges):
max = edges[0].p + margin
min = edges[0].q - margin
for s in edges:
if s.p.x > max.x: max = Point(s.p.x + margin, max.y)
if s.p.y > max.y: max = Point(max.x, s.p.y + margin)
if s.q.x > max.x: max = Point(s.q.x+margin, max.y)
if s.q.y > max.y: max = Point(max.x, s.q.y+margin)
if s.p.x < min.x: min = Point(s.p.x-margin, min.y)
if s.p.y < min.y: min = Point(min.x, s.p.y-margin)
if s.q.x < min.x: min = Point(s.q.x-margin, min.y)
if s.q.y < min.y: min = Point(min.x, s.q.y-margin)
top = Edge(Point(min.x, max.y), Point(max.x, max.y))
bottom = Edge(Point(min.x, min.y), Point(max.x, min.y))
left = bottom.p
right = top.q
return Trapezoid(left, right, top, bottom)
class XNode(Node):
def __init__(self, point, lchild, rchild):
Node.__init__(self, lChild, rChild)
self.point = point
self.lchild = lchild
self.rchild = rchils
def locate(self, e):
if e.p.x >= self.point.x:
return self.right.locate(e)
else:
return self.left.locate(e)
class YNode(Node):
def __init__(self, edge, lchild, rchild):
Node.__init__(self, lChild, rChild)
self.edge = edge
self.lchild = lchild
self.rchile = rchild
def locate(self, e):
if edge > e.p:
return self.right.locate(e)
elif edge < e.p:
return self.left.locate(e)
else:
if e.slope < self.edge.slope:
return self.right.locate(e)
else:
return self.left.locate(e)
cdef class Point(object):
def __init__(self, x, y):
self.x = x
self.y = y
next = None
prev = None
Edge = None
edges = []
cdef __sub__(self, Point p):
return Point(self.x - p.x, self.y - p.y)
cdef __sub__(self, float f):
return Point(self.x - f, self.y - f)
cdef __add__(self, Point p):
return Point(self.x + p.x, self.y + p.y)
cdef __add__(self, float f):
return Point(self.x + f, self.y + f)
cdef __mul__(self, float f):
return Point(self.x * f, self.y * f)
cdef __div__(self, float a):
return Point(self.x / a, self.y / a)
cdef cross(self, Point p):
return self.x * p.y - self.y * p.x
cdef dot(self, Point p):
return self.x * p.x + self.y * p.y
cdef length(self):
return math.sqrt(self.x * self.x + self.y * self.y)
cdef normalize(self):
return self / length
cdef __lt__(self, Point p):
return self.x < p.x
# Sort along y axis
cdef >(p: Point):
if y < p.y:
return True
elif y > p.y:
return False
else {
if x < p.x:
return True
else
return False
cdef !(p: Point) = !(p.x == x && p.y == y)
cdef clone = Point(x, y)
// Represents a simple polygon's edge
// TODO: Rename this class to Edge?
class Edge(object):
def __init__(self, p, q):
self.p = p
self.q = q
self.above, self.below = None
mPoints = []
self.slope = (q.y - p.y)/(q.x - p.x)
self.b = p.y - (p.x * self.slope)
def __gt__(self, point):
return (floor(point.y) < floor(slope * point.x + b))
def __lt__(self, point):
return (floor(point.y) > floor(slope * point.x + b))
def intersect(self, c, d):
a = self.p
b = self.q
a1 = _signed_area(a, b, d)
a2 = _signed_area(a, b, c)
if a1 != 0 and a2 != 0 and a1 * a2 < 0:
a3 = _signed_area(c, d, a)
a4 = a3 + a2 - a1
if a3 * a4 < 0:
t = a3 / (a3 - a4)
return a + ((b - a) * t)
def _signed_area(self, a, b, c):
return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x)