mirror of
https://github.com/jhasse/poly2tri.git
synced 2024-11-19 12:06:09 +01:00
158 lines
6.2 KiB
Cython
158 lines
6.2 KiB
Cython
##
|
|
## Ported from PolyDeomp by Mark Bayazit
|
|
## http://mnbayazit.com/406/bayazit
|
|
##
|
|
from sys import float_info
|
|
|
|
cdef extern from 'predicates.h':
|
|
double orient2d(double *pa, double *pb, double *pc)
|
|
|
|
def make_ccw(list poly):
|
|
cdef int br = 0
|
|
# find bottom right point
|
|
for i from 1 <= i < len(poly):
|
|
if poly[i][1] < poly[br][1] or (poly[i][1] == poly[br][1] and poly[i][0] > poly[br][0]):
|
|
br = i
|
|
# reverse poly if clockwise
|
|
if not left(at(poly, br - 1), at(poly, br), at(poly, br + 1)):
|
|
poly.reverse()
|
|
|
|
cpdef list decompose_poly(list poly, list polys):
|
|
|
|
cdef list upperInt = [], lowerInt = [], p = [], closestVert = []
|
|
cdef float upperDist, lowerDist, d, closestDist
|
|
cdef int upper_index, lower_index, closest_index
|
|
cdef list lower_poly = [], upper_poly = []
|
|
|
|
for i from 0 <= i < len(poly):
|
|
if is_reflex(poly, i):
|
|
upperDist = lowerDist = float_info.max
|
|
for j from 0 <= j < len(poly):
|
|
if left(at(poly, i - 1), at(poly, i), at(poly, j)) and rightOn(at(poly, i - 1), at(poly, i), at(poly, j - 1)):
|
|
# if line intersects with an edge
|
|
# find the point of intersection
|
|
p = intersection(at(poly, i - 1), at(poly, i), at(poly, j), at(poly, j - 1))
|
|
if right(at(poly, i + 1), at(poly, i), p):
|
|
# make sure it's inside the poly
|
|
d = sqdist(poly[i], p)
|
|
if d < lowerDist:
|
|
# keep only the closest intersection
|
|
lowerDist = d
|
|
lowerInt = p
|
|
lower_index = j
|
|
if left(at(poly, i + 1), at(poly, i), at(poly, j + 1)) and rightOn(at(poly, i + 1), at(poly, i), at(poly, j)):
|
|
p = intersection(at(poly, i + 1), at(poly, i), at(poly, j), at(poly, j + 1))
|
|
if left(at(poly, i - 1), at(poly, i), p):
|
|
d = sqdist(poly[i], p)
|
|
if d < upperDist:
|
|
upperDist = d
|
|
upperInt = p
|
|
upper_index = j
|
|
|
|
# if there are no vertices to connect to, choose a point in the middle
|
|
if lower_index == (upper_index + 1) % len(poly):
|
|
p[0] = (lowerInt[0] + upperInt[0]) * 0.5
|
|
p[1] = (lowerInt[1] + upperInt[1]) * 0.5
|
|
|
|
if i < upper_index:
|
|
lower_poly.extend(poly[i:upper_index+1])
|
|
lower_poly.append(p)
|
|
upper_poly.append(p)
|
|
if lower_index != 0:
|
|
upper_poly.extend(poly[lower_index:])
|
|
upper_poly.extend(poly[:i+1])
|
|
else:
|
|
if i != 0:
|
|
lower_poly.extend(poly[i:])
|
|
lower_poly.extend(poly[:upper_index+1])
|
|
lower_poly.append(p)
|
|
upper_poly.append(p)
|
|
upper_poly.extend(poly[lower_index:i+1])
|
|
else:
|
|
|
|
# connect to the closest point within the triangle
|
|
|
|
if lower_index > upper_index:
|
|
upper_index += len(poly)
|
|
|
|
closestDist = float_info.max
|
|
for j from lower_index <= j <= upper_index:
|
|
if leftOn(at(poly, i - 1), at(poly, i), at(poly, j)) and rightOn(at(poly, i + 1), at(poly, i), at(poly, j)):
|
|
d = sqdist(at(poly, i), at(poly, j))
|
|
if d < closestDist:
|
|
closestDist = d
|
|
closestVert = at(poly, j)
|
|
closest_index = j % len(poly)
|
|
|
|
if i < closest_index:
|
|
lower_poly.extend(poly[i:closest_index+1])
|
|
if closest_index != 0:
|
|
upper_poly.extend(poly[closest_index:])
|
|
upper_poly.extend(poly[:i+1])
|
|
else:
|
|
if i != 0:
|
|
lower_poly.extend(poly[i:])
|
|
lower_poly.extend(poly[:closest_index+1])
|
|
upper_poly.extend(poly[closest_index:i+1])
|
|
|
|
# solve smallest poly first
|
|
if len(lower_poly) < len(upper_poly):
|
|
decompose_poly(lower_poly, polys)
|
|
decompose_poly(upper_poly, polys)
|
|
else:
|
|
decompose_poly(upper_poly, polys)
|
|
decompose_poly(lower_poly, polys)
|
|
return
|
|
|
|
polys.append(poly)
|
|
|
|
cdef list intersection(list p1, list p2, list q1, list q2):
|
|
cdef double pqx, pqy, bax, bay, t
|
|
pqx = p1[0] - p2[0]
|
|
pqy = p1[1] - p2[1]
|
|
t = pqy*(q1[0]-p2[0]) - pqx*(q1[1]-p2[1])
|
|
t /= pqx*(q2[1]-q1[1]) - pqy*(q2[0]-q1[0])
|
|
bax = t*(q2[0]-q1[0]) + q1[0]
|
|
bay = t*(q2[1]-q1[1]) + q1[1]
|
|
return [bax, bay]
|
|
|
|
cdef bool eq(float a, float b):
|
|
return abs(a - b) <= 1e-8
|
|
|
|
cdef list at(list v, int i):
|
|
return v[i%len(v)]
|
|
|
|
cdef float area(list a, list b, list c):
|
|
return (((b[0] - a[0])*(c[1] - a[1]))-((c[0] - a[0])*(b[1] - a[1])))
|
|
|
|
cdef bool left(list a, list b, list c):
|
|
cdef double *x = [a[0], a[1]]
|
|
cdef double *y = [b[0], b[1]]
|
|
cdef double *z = [c[0], c[1]]
|
|
return orient2d(x, y, z) > 0.0
|
|
|
|
cdef bool leftOn(list a, list b, list c):
|
|
cdef double *x = [a[0], a[1]]
|
|
cdef double *y = [b[0], b[1]]
|
|
cdef double *z = [c[0], c[1]]
|
|
return orient2d(x, y, z) >= 0.0
|
|
|
|
cdef bool right(list a, list b, list c):
|
|
cdef double *x = [a[0], a[1]]
|
|
cdef double *y = [b[0], b[1]]
|
|
cdef double *z = [c[0], c[1]]
|
|
return orient2d(x, y, z) < 0.0
|
|
|
|
cdef bool rightOn(list a, list b, list c):
|
|
cdef double *x = [a[0], a[1]]
|
|
cdef double *y = [b[0], b[1]]
|
|
cdef double *z = [c[0], c[1]]
|
|
return orient2d(x, y, z) <= 0.0
|
|
|
|
cdef float sqdist(list a, list b):
|
|
cdef float dx = b[0] - a[0]
|
|
cdef float dy = b[1] - a[1]
|
|
return dx * dx + dy * dy
|
|
|
|
cdef bool is_reflex(list poly, int i):
|
|
return right(at(poly, i - 1), at(poly, i), at(poly, i + 1)) |