655 lines
20 KiB
C
655 lines
20 KiB
C
/*
|
|
****************************************************************************
|
|
* Copyright (C) 2015 Bosch Sensortec GmbH
|
|
*
|
|
* File : bme680_calculations.c
|
|
*
|
|
* Date : 2016/06/10
|
|
*
|
|
* Revision: 2.0.0
|
|
*
|
|
* Usage: Sensor Driver for BME680 sensor
|
|
*
|
|
****************************************************************************
|
|
* \Section Disclaimer
|
|
* License:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of the copyright holder nor the names of the
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER
|
|
* OR CONTRIBUTORS BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
|
|
*
|
|
* The information provided is believed to be accurate and reliable.
|
|
* The copyright holder assumes no responsibility
|
|
* for the consequences of use
|
|
* of such information nor for any infringement of patents or
|
|
* other rights of third parties which may result from its use.
|
|
* No license is granted by implication or otherwise under any patent or
|
|
* patent rights of the copyright holder.
|
|
**************************************************************************/
|
|
/*! \file bme680_calculations.c
|
|
\brief BME680 Sensor Driver calculation source File */
|
|
|
|
/***************************************************************************
|
|
Header files
|
|
****************************************************************************/
|
|
#include "bme680_calculations.h"
|
|
|
|
|
|
/***************************************************************************
|
|
Macros, Enums, Constants
|
|
****************************************************************************/
|
|
|
|
|
|
/***************************************************************************
|
|
File globals, typedefs
|
|
****************************************************************************/
|
|
|
|
|
|
/***************************************************************************
|
|
Function definitions
|
|
****************************************************************************/
|
|
/* bme680.c */
|
|
#ifdef FIXED_POINT_COMPENSATION
|
|
/*!
|
|
* @brief This function is used to convert uncompensated gas data to
|
|
* compensated gas data using compensation formula(integer version)
|
|
*
|
|
* @param gas_adc_u16: The value of gas resistance calculated
|
|
* using temperature
|
|
* @param gas_range_u8: The value of gas range form register value
|
|
* @param bme680: structure pointer.
|
|
*
|
|
* @return calculated compensated gas from compensation formula
|
|
* @retval compensated gas data
|
|
*
|
|
*
|
|
*/
|
|
s32 bme680_calculate_gas_int32(u16 gas_adc_u16, u8 gas_range_u8,
|
|
struct bme680_t *bme680)
|
|
{
|
|
s8 range_switching_error_val = BME680_INIT_VALUE;
|
|
s64 var1 = BME680_INIT_VALUE;
|
|
s64 var2 = BME680_INIT_VALUE;
|
|
s32 gas_res = BME680_INIT_VALUE;
|
|
|
|
|
|
|
|
const u64 lookup_k1_range[BME680_GAS_RANGE_RL_LENGTH] = {
|
|
2147483647UL, 2147483647UL, 2147483647UL, 2147483647UL, 2147483647UL,
|
|
2126008810UL, 2147483647UL, 2130303777UL, 2147483647UL, 2147483647UL,
|
|
2143188679UL, 2136746228UL, 2147483647UL, 2126008810UL, 2147483647UL,
|
|
2147483647UL};
|
|
|
|
const u64 lookup_k2_range[BME680_GAS_RANGE_RL_LENGTH] = {
|
|
4096000000UL, 2048000000UL, 1024000000UL, 512000000UL,
|
|
255744255UL, 127110228UL, 64000000UL, 32258064UL, 16016016UL,
|
|
8000000UL, 4000000UL, 2000000UL, 1000000UL, 500000UL, 250000UL,
|
|
125000UL};
|
|
|
|
|
|
|
|
range_switching_error_val =
|
|
bme680->cal_param.range_switching_error;
|
|
|
|
|
|
var1 = (s64)((1340 + (5 * (s64)range_switching_error_val)) *
|
|
((s64)lookup_k1_range[gas_range_u8])) >> 16;
|
|
var2 = (s64)((s64)gas_adc_u16 << 15) - (s64)(1 << 24) + var1;
|
|
#ifndef __KERNEL__
|
|
gas_res = (s32)(((((s64)lookup_k2_range[gas_range_u8] *
|
|
(s64)var1) >> 9) + (var2 >> 1)) / var2);
|
|
#else
|
|
gas_res = (s32)(div64_s64(((((s64)lookup_k2_range[gas_range_u8] *
|
|
(s64)var1) >> 9) + (var2 >> 1)), var2));
|
|
#endif
|
|
return gas_res;
|
|
}
|
|
/*!
|
|
* @brief This function is used to convert the uncompensated
|
|
* temperature data to compensated temperature data using
|
|
* compensation formula(integer version)
|
|
* @note Returns the value in 0.01 degree Centigrade
|
|
* Output value of "5123" equals 51.23 DegC.
|
|
*
|
|
*
|
|
*
|
|
* @param v_uncomp_temperature_u32 : value of uncompensated temperature
|
|
* @param bme680: structure pointer.
|
|
*
|
|
* @return Returns the compensated temperature data
|
|
*
|
|
*/
|
|
s32 bme680_compensate_temperature_int32(u32 v_uncomp_temperature_u32,
|
|
struct bme680_t *bme680)
|
|
{
|
|
s32 var1 = BME680_INIT_VALUE;
|
|
s32 var2 = BME680_INIT_VALUE;
|
|
s32 var3 = BME680_INIT_VALUE;
|
|
s32 temp_comp = BME680_INIT_VALUE;
|
|
|
|
var1 = ((s32)v_uncomp_temperature_u32 >> 3) -
|
|
((s32)bme680->cal_param.par_T1 << 1);
|
|
var2 = (var1 * (s32)bme680->cal_param.par_T2) >> 11;
|
|
var3 = ((((var1 >> 1) * (var1 >> 1)) >> 12) *
|
|
((s32)bme680->cal_param.par_T3 << 4)) >> 14;
|
|
bme680->cal_param.t_fine = var2 + var3;
|
|
temp_comp = ((bme680->cal_param.t_fine * 5) + 128) >> 8;
|
|
|
|
return temp_comp;
|
|
|
|
}
|
|
|
|
/*!
|
|
* @brief This function is used to convert the uncompensated
|
|
* humidity data to compensated humidity data using
|
|
* compensation formula(integer version)
|
|
*
|
|
* @note Returns the value in %rH as unsigned 32bit integer
|
|
* in Q22.10 format(22 integer 10 fractional bits).
|
|
* @note An output value of 42313
|
|
* represents 42313 / 1024 = 41.321 %rH
|
|
*
|
|
*
|
|
*
|
|
* @param v_uncomp_humidity_u32: value of uncompensated humidity
|
|
* @param bme680: structure pointer.
|
|
*
|
|
* @return Return the compensated humidity data
|
|
*
|
|
*/
|
|
s32 bme680_compensate_humidity_int32(u32 v_uncomp_humidity_u32,
|
|
struct bme680_t *bme680)
|
|
{
|
|
s32 temp_scaled = BME680_INIT_VALUE;
|
|
s32 var1 = BME680_INIT_VALUE;
|
|
s32 var2 = BME680_INIT_VALUE;
|
|
s32 var3 = BME680_INIT_VALUE;
|
|
s32 var4 = BME680_INIT_VALUE;
|
|
s32 var5 = BME680_INIT_VALUE;
|
|
s32 var6 = BME680_INIT_VALUE;
|
|
s32 humidity_comp = BME680_INIT_VALUE;
|
|
|
|
temp_scaled = (((s32)bme680->cal_param.t_fine * 5) + 128) >> 8;
|
|
var1 = (s32)v_uncomp_humidity_u32 -
|
|
((s32)((s32)bme680->cal_param.par_H1 << 4)) -
|
|
(((temp_scaled * (s32)bme680->cal_param.par_H3) /
|
|
((s32)100)) >> 1);
|
|
|
|
var2 = ((s32)bme680->cal_param.par_H2 *
|
|
(((temp_scaled * (s32)bme680->cal_param.par_H4) /
|
|
((s32)100)) + (((temp_scaled *
|
|
((temp_scaled * (s32)bme680->cal_param.par_H5) /
|
|
((s32)100))) >> 6) / ((s32)100)) + (s32)(1 << 14))) >> 10;
|
|
|
|
var3 = var1 * var2;
|
|
|
|
var4 = ((((s32)bme680->cal_param.par_H6) << 7) +
|
|
((temp_scaled * (s32)bme680->cal_param.par_H7) /
|
|
((s32)100))) >> 4;
|
|
|
|
var5 = ((var3 >> 14) * (var3 >> 14)) >> 10;
|
|
var6 = (var4 * var5) >> 1;
|
|
|
|
humidity_comp = (var3 + var6) >> 12;
|
|
if (humidity_comp > BME680_MAX_HUMIDITY_VALUE)
|
|
humidity_comp = BME680_MAX_HUMIDITY_VALUE;
|
|
else if (humidity_comp < BME680_MIN_HUMIDITY_VALUE)
|
|
humidity_comp = BME680_MIN_HUMIDITY_VALUE;
|
|
|
|
return humidity_comp;
|
|
}
|
|
|
|
|
|
/*!
|
|
* @brief This function is used to convert the uncompensated
|
|
* pressure data to compensated pressure data data using
|
|
* compensation formula(integer version)
|
|
*
|
|
* @note Returns the value in Pascal(Pa)
|
|
* Output value of "96386" equals 96386 Pa =
|
|
* 963.86 hPa = 963.86 millibar
|
|
*
|
|
*
|
|
*
|
|
* @param v_uncomp_pressure_u32 : value of uncompensated pressure
|
|
* @param bme680: structure pointer.
|
|
*
|
|
* @return Return the compensated pressure data
|
|
*
|
|
*/
|
|
s32 bme680_compensate_pressure_int32(u32 v_uncomp_pressure_u32,
|
|
struct bme680_t *bme680)
|
|
{
|
|
s32 var1 = BME680_INIT_VALUE;
|
|
s32 var2 = BME680_INIT_VALUE;
|
|
s32 var3 = BME680_INIT_VALUE;
|
|
s32 var4 = BME680_INIT_VALUE;
|
|
s32 pressure_comp = BME680_INIT_VALUE;
|
|
|
|
var1 = (((s32)bme680->cal_param.t_fine) >> 1) - 64000;
|
|
var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) *
|
|
(s32)bme680->cal_param.par_P6) >> 2;
|
|
var2 = var2 + ((var1 * (s32)bme680->cal_param.par_P5) << 1);
|
|
var2 = (var2 >> 2) + ((s32)bme680->cal_param.par_P4 << 16);
|
|
var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) *
|
|
((s32)bme680->cal_param.par_P3 << 5)) >> 3) +
|
|
(((s32)bme680->cal_param.par_P2 * var1) >> 1);
|
|
var1 = var1 >> 18;
|
|
var1 = ((32768 + var1) * (s32)bme680->cal_param.par_P1) >> 15;
|
|
pressure_comp = 1048576 - v_uncomp_pressure_u32;
|
|
pressure_comp = (s32)((pressure_comp - (var2 >> 12)) * ((u32)3125));
|
|
var4 = (1 << 31);
|
|
if (pressure_comp >= var4)
|
|
pressure_comp = ((pressure_comp / (u32)var1) << 1);
|
|
else
|
|
pressure_comp = ((pressure_comp << 1) / (u32)var1);
|
|
var1 = ((s32)bme680->cal_param.par_P9 * (s32)(((pressure_comp >> 3) *
|
|
(pressure_comp >> 3)) >> 13)) >> 12;
|
|
var2 = ((s32)(pressure_comp >> 2) *
|
|
(s32)bme680->cal_param.par_P8) >> 13;
|
|
var3 = ((s32)(pressure_comp >> 8) * (s32)(pressure_comp >> 8) *
|
|
(s32)(pressure_comp >> 8) *
|
|
(s32)bme680->cal_param.par_P10) >> 17;
|
|
|
|
pressure_comp = (s32)(pressure_comp) + ((var1 + var2 + var3 +
|
|
((s32)bme680->cal_param.par_P7 << 7)) >> 4);
|
|
|
|
return pressure_comp;
|
|
}
|
|
/*!
|
|
* @brief This function is used to convert temperature to resistance
|
|
* using the integer compensation formula
|
|
*
|
|
* @param heater_temp_u16: The value of heater temperature
|
|
* @param ambient_temp_s16: The value of ambient temperature
|
|
* @param bme680: structure pointer.
|
|
*
|
|
* @return calculated resistance from temperature
|
|
*
|
|
*
|
|
*
|
|
*/
|
|
u8 bme680_convert_temperature_to_resistance_int32(u16 heater_temp_u16,
|
|
s16 ambient_temp_s16, struct bme680_t *bme680)
|
|
{
|
|
s32 var1 = BME680_INIT_VALUE;
|
|
s32 var2 = BME680_INIT_VALUE;
|
|
s32 var3 = BME680_INIT_VALUE;
|
|
s32 var4 = BME680_INIT_VALUE;
|
|
s32 var5 = BME680_INIT_VALUE;
|
|
s32 res_heat_x100 = BME680_INIT_VALUE;
|
|
u8 res_heat = BME680_INIT_VALUE;
|
|
|
|
|
|
if ((heater_temp_u16 >= BME680_GAS_PROFILE_TEMPERATURE_MIN)
|
|
&& (heater_temp_u16 <= BME680_GAS_PROFILE_TEMPERATURE_MAX)) {
|
|
|
|
var1 = (((s32)ambient_temp_s16 *
|
|
bme680->cal_param.par_GH3) / 10) << 8;
|
|
var2 = (bme680->cal_param.par_GH1 + 784) *
|
|
(((((bme680->cal_param.par_GH2 + 154009) *
|
|
heater_temp_u16 * 5) / 100) + 3276800) / 10);
|
|
var3 = var1 + (var2 >> 1);
|
|
var4 = (var3 / (bme680->cal_param.res_heat_range + 4));
|
|
|
|
var5 = (131 * bme680->cal_param.res_heat_val) + 65536;
|
|
|
|
res_heat_x100 = (s32)(((var4 / var5) - 250) * 34);
|
|
res_heat = (u8) ((res_heat_x100 + 50) / 100);
|
|
|
|
}
|
|
return res_heat;
|
|
}
|
|
/*!
|
|
* @brief Reads actual humidity from uncompensated humidity
|
|
* @note Returns the value in %rH as unsigned 16bit integer
|
|
* @note An output value of 42313
|
|
* represents 42313/512 = 82.643 %rH
|
|
*
|
|
*
|
|
*
|
|
* @param v_uncomp_humidity_u32: value of uncompensated humidity
|
|
* @param bme680: structure pointer.
|
|
*
|
|
* @return Return the actual relative humidity output as u16
|
|
*
|
|
*/
|
|
u16 bme680_compensate_H_int32_sixteen_bit_output(u32 v_uncomp_humidity_u32,
|
|
struct bme680_t *bme680)
|
|
{
|
|
u32 v_x1_u32 = BME680_INIT_VALUE;
|
|
u16 v_x2_u32 = BME680_INIT_VALUE;
|
|
|
|
v_x1_u32 = (u32) bme680_compensate_humidity_int32(
|
|
v_uncomp_humidity_u32, bme680);
|
|
v_x2_u32 = (u16)(v_x1_u32 >> 1);
|
|
return v_x2_u32;
|
|
}
|
|
|
|
/*!
|
|
* @brief Reads actual temperature from uncompensated temperature
|
|
* @note Returns the value with 500LSB/DegC centred around 24 DegC
|
|
* output value of "5123" equals(5123/500)+24 = 34.246DegC
|
|
*
|
|
*
|
|
* @param v_uncomp_temperature_u32: value of uncompensated temperature
|
|
* @param bme680: structure pointer.
|
|
*
|
|
*
|
|
* @return Return the actual temperature as s16 output
|
|
*
|
|
*/
|
|
s16 bme680_compensate_T_int32_sixteen_bit_output(u32 v_uncomp_temperature_u32,
|
|
struct bme680_t *bme680)
|
|
{
|
|
s16 temperature = BME680_INIT_VALUE;
|
|
|
|
bme680_compensate_temperature_int32(v_uncomp_temperature_u32, bme680);
|
|
temperature = (s16)((((
|
|
bme680->cal_param.t_fine - 122880) * 25) + 128) >> 8);
|
|
|
|
return temperature;
|
|
}
|
|
|
|
/*!
|
|
* @brief Reads actual pressure from uncompensated pressure
|
|
* @note Returns the value in Pa.
|
|
* @note Output value of "12337434"
|
|
* @note represents 12337434 / 128 = 96386.2 Pa = 963.862 hPa
|
|
*
|
|
*
|
|
*
|
|
* @param v_uncomp_pressure_u32 : value of uncompensated pressure
|
|
* @param bme680: structure pointer.
|
|
*
|
|
* @return the actual pressure in u32
|
|
*
|
|
*/
|
|
u32 bme680_compensate_P_int32_twentyfour_bit_output(u32 v_uncomp_pressure_u32,
|
|
struct bme680_t *bme680)
|
|
{
|
|
u32 pressure = BME680_INIT_VALUE;
|
|
|
|
pressure = (u32)bme680_compensate_pressure_int32(
|
|
v_uncomp_pressure_u32, bme680);
|
|
pressure = (u32)(pressure >> 1);
|
|
return pressure;
|
|
}
|
|
#else
|
|
/*!
|
|
* @brief This function is used to convert uncompensated gas data to
|
|
* compensated gas data using compensation formula
|
|
*
|
|
* @param gas_adc_u16: The value of gas resistance calculated
|
|
* using temperature
|
|
* @param gas_range_u8: The value of gas range form register value
|
|
* @param bme680: structure pointer.
|
|
*
|
|
* @return calculated compensated gas from compensation formula
|
|
* @retval compensated gas
|
|
*
|
|
*
|
|
*/
|
|
|
|
double bme680_compensate_gas_double(u16 gas_adc_u16, u8 gas_range_u8,
|
|
struct bme680_t *bme680)
|
|
{
|
|
double gas_res_d = BME680_INIT_VALUE;
|
|
|
|
|
|
#ifdef HEATER_C1_ENABLE
|
|
|
|
const double lookup_k1_range[BME680_GAS_RANGE_RL_LENGTH] = {
|
|
0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -0.8,
|
|
0.0, 0.0, -0.2, -0.5, 0.0, -1.0, 0.0, 0.0};
|
|
const double lookup_k2_range[BME680_GAS_RANGE_RL_LENGTH] = {
|
|
0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.0, -0.8,
|
|
-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
|
|
s8 range_switching_error_val = BME680_INIT_VALUE;
|
|
double var1 = BME680_INIT_VALUE;
|
|
double var2 = BME680_INIT_VALUE;
|
|
double var3 = BME680_INIT_VALUE;
|
|
|
|
|
|
|
|
range_switching_error_val =
|
|
bme680->cal_param.range_switching_error;
|
|
|
|
|
|
var1 = (1340.0 + (5.0 * range_switching_error_val));
|
|
var2 = (var1) * (1.0 + lookup_k1_range[gas_range_u8]/100.0);
|
|
var3 = 1.0 + (lookup_k2_range[gas_range_u8]/100.0);
|
|
|
|
gas_res_d = 1.0 / (double)(var3 * (0.000000125) *
|
|
(double)(1 << gas_range_u8)
|
|
* (((((double)gas_adc_u16) - 512.00)/var2) + 1.0));
|
|
|
|
#else
|
|
gas_res_d = 1.0 / ((0.000000125) * (double)(1 << gas_range_u8) *
|
|
((((double)(gas_adc_u16) - 512.00) / 1365.3333) + 1.0));
|
|
#endif
|
|
return gas_res_d;
|
|
}
|
|
|
|
|
|
/*!
|
|
* @brief This function is used to convert the uncompensated
|
|
* humidity data to compensated humidity data data using
|
|
* compensation formula
|
|
* @note returns the value in relative humidity (%rH)
|
|
* @note Output value of "42.12" equals 42.12 %rH
|
|
*
|
|
* @param uncom_humidity_u16 : value of uncompensated humidity
|
|
* @param comp_temperature : value of compensated temperature
|
|
* @param bme680: structure pointer.
|
|
*
|
|
*
|
|
* @return Return the compensated humidity data in floating point
|
|
*
|
|
*/
|
|
double bme680_compensate_humidity_double(u16 uncom_humidity_u16,
|
|
double comp_temperature, struct bme680_t *bme680)
|
|
{
|
|
double humidity_comp = BME680_INIT_VALUE;
|
|
double var1 = BME680_INIT_VALUE;
|
|
double var2 = BME680_INIT_VALUE;
|
|
double var3 = BME680_INIT_VALUE;
|
|
double var4 = BME680_INIT_VALUE;
|
|
|
|
var1 = (double)((double)uncom_humidity_u16) - (((double)
|
|
bme680->cal_param.par_H1 * 16.0) +
|
|
(((double)bme680->cal_param.par_H3 / 2.0)
|
|
* comp_temperature));
|
|
|
|
var2 = var1 * ((double)(
|
|
((double) bme680->cal_param.par_H2 / 262144.0)
|
|
*(1.0 + (((double)bme680->cal_param.par_H4 / 16384.0)
|
|
* comp_temperature) + (((double)bme680->cal_param.par_H5
|
|
/ 1048576.0) * comp_temperature
|
|
* comp_temperature))));
|
|
var3 = (double) bme680->cal_param.par_H6 / 16384.0;
|
|
var4 = (double) bme680->cal_param.par_H7 / 2097152.0;
|
|
|
|
humidity_comp = var2 +
|
|
((var3 + (var4 * comp_temperature)) * var2 * var2);
|
|
if (humidity_comp > BME680_MAX_HUMIDITY_VALUE)
|
|
humidity_comp = BME680_MAX_HUMIDITY_VALUE;
|
|
else if (humidity_comp < BME680_MIN_HUMIDITY_VALUE)
|
|
humidity_comp = BME680_MIN_HUMIDITY_VALUE;
|
|
return humidity_comp;
|
|
}
|
|
|
|
/*!
|
|
* @brief This function is used to convert the uncompensated
|
|
* pressure data to compensated data using compensation formula
|
|
* @note Returns pressure in Pa as double.
|
|
* @note Output value of "96386.2"
|
|
* equals 96386.2 Pa = 963.862 hPa.
|
|
*
|
|
*
|
|
* @param uncom_pressure_u32 : value of uncompensated pressure
|
|
* @param bme680: structure pointer.
|
|
*
|
|
* @return Return the compensated pressure data in floating point
|
|
*
|
|
*/
|
|
double bme680_compensate_pressure_double(u32 uncom_pressure_u32,
|
|
struct bme680_t *bme680)
|
|
{
|
|
double data1_d = BME680_INIT_VALUE;
|
|
double data2_d = BME680_INIT_VALUE;
|
|
double data3_d = BME680_INIT_VALUE;
|
|
double pressure_comp = BME680_INIT_VALUE;
|
|
|
|
data1_d = (((double)bme680->cal_param.t_fine / 2.0) - 64000.0);
|
|
data2_d = data1_d * data1_d * (((double)bme680->cal_param.par_P6) /
|
|
(131072.0));
|
|
data2_d = data2_d + (data1_d * ((double)bme680->cal_param.par_P5) *
|
|
2.0);
|
|
data2_d = (data2_d / 4.0) + (((double)bme680->cal_param.par_P4) *
|
|
65536.0);
|
|
data1_d = (((((double)bme680->cal_param.par_P3 * data1_d
|
|
* data1_d) / 16384.0) + ((double)bme680->cal_param.par_P2
|
|
* data1_d)) / 524288.0);
|
|
data1_d = ((1.0 + (data1_d / 32768.0)) *
|
|
((double)bme680->cal_param.par_P1));
|
|
pressure_comp = (1048576.0 - ((double)uncom_pressure_u32));
|
|
/* Avoid exception caused by division by zero */
|
|
if ((int)data1_d != BME680_INIT_VALUE) {
|
|
pressure_comp = (((pressure_comp - (data2_d
|
|
/ 4096.0)) * 6250.0) / data1_d);
|
|
data1_d = (((double)bme680->cal_param.par_P9) *
|
|
pressure_comp * pressure_comp) / 2147483648.0;
|
|
data2_d = pressure_comp * (((double)bme680->cal_param.par_P8)
|
|
/ 32768.0);
|
|
data3_d = ((pressure_comp / 256.0) * (pressure_comp / 256.0) *
|
|
(pressure_comp / 256.0) *
|
|
(bme680->cal_param.par_P10 / 131072.0));
|
|
pressure_comp = (pressure_comp + (data1_d + data2_d + data3_d +
|
|
((double)bme680->cal_param.par_P7 * 128.0)) / 16.0);
|
|
return pressure_comp;
|
|
|
|
} else {
|
|
return BME680_INIT_VALUE;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
/*!
|
|
* @brief This function used to convert temperature data
|
|
* to uncompensated temperature data using compensation formula
|
|
* @note returns the value in Degree centigrade
|
|
* @note Output value of "51.23" equals 51.23 DegC.
|
|
*
|
|
* @param uncom_temperature_u32 : value of uncompensated temperature
|
|
* @param bme680: structure pointer.
|
|
*
|
|
* @return Return the actual temperature in floating point
|
|
*
|
|
*/
|
|
double bme680_compensate_temperature_double(u32 uncom_temperature_u32,
|
|
struct bme680_t *bme680)
|
|
{
|
|
double data1_d = BME680_INIT_VALUE;
|
|
double data2_d = BME680_INIT_VALUE;
|
|
double temperature = BME680_INIT_VALUE;
|
|
/* calculate x1 data */
|
|
data1_d = ((((double)uncom_temperature_u32 / 16384.0)
|
|
- ((double)bme680->cal_param.par_T1 / 1024.0))
|
|
* ((double)bme680->cal_param.par_T2));
|
|
/* calculate x2 data */
|
|
data2_d = (((((double)uncom_temperature_u32 / 131072.0) -
|
|
((double)bme680->cal_param.par_T1 / 8192.0)) *
|
|
(((double)uncom_temperature_u32 / 131072.0) -
|
|
((double)bme680->cal_param.par_T1 / 8192.0))) *
|
|
((double)bme680->cal_param.par_T3 * 16.0));
|
|
/* t fine value*/
|
|
bme680->cal_param.t_fine = (s32)(data1_d + data2_d);
|
|
/* compensated temperature data*/
|
|
temperature = ((data1_d + data2_d) /
|
|
5120.0);
|
|
|
|
|
|
return temperature;
|
|
}
|
|
|
|
|
|
/*!
|
|
* @brief This function is used to convert temperature to resistance
|
|
* using the compensation formula
|
|
*
|
|
* @param heater_temp_u16: The value of heater temperature
|
|
* @param ambient_temp_s16: The value of ambient temperature
|
|
* @param bme680: structure pointer.
|
|
*
|
|
* @return calculated resistance from temperature
|
|
*
|
|
*
|
|
*
|
|
*/
|
|
double bme680_convert_temperature_to_resistance_double(u16 heater_temp_u16,
|
|
s16 ambient_temp_s16, struct bme680_t *bme680)
|
|
{
|
|
double var1 = BME680_INIT_VALUE;
|
|
double var2 = BME680_INIT_VALUE;
|
|
double var3 = BME680_INIT_VALUE;
|
|
double var4 = BME680_INIT_VALUE;
|
|
double var5 = BME680_INIT_VALUE;
|
|
double res_heat = BME680_INIT_VALUE;
|
|
|
|
if ((heater_temp_u16 >= BME680_GAS_PROFILE_TEMPERATURE_MIN)
|
|
&& (heater_temp_u16 <= BME680_GAS_PROFILE_TEMPERATURE_MAX)) {
|
|
#ifdef HEATER_C1_ENABLE
|
|
var1 = (((double)bme680->cal_param.par_GH1 / (16.0)) + 49.0);
|
|
var2 = ((((double)bme680->cal_param.par_GH2
|
|
/(32768.0)) * (0.0005)) + 0.00235);
|
|
#endif
|
|
var3 = ((double)bme680->cal_param.par_GH3 / (1024.0));
|
|
var4 = (var1 * (1.0 + (var2 * (double)heater_temp_u16)));
|
|
var5 = (var4 + (var3 * (double)ambient_temp_s16));
|
|
|
|
#ifdef HEATER_C1_ENABLE
|
|
res_heat = (u8)(3.4 * ((var5 *
|
|
(4 / (4 + (double)bme680->cal_param.res_heat_range)) *
|
|
(1/(1 + ((double)bme680->cal_param.res_heat_val
|
|
* 0.002)))) - 25));
|
|
#else
|
|
res_heat = (((var5 * (4.0 /
|
|
(4.0 + (double)bme680->cal_param.res_heat_range)))
|
|
- 25.0) * 3.4);
|
|
#endif
|
|
|
|
}
|
|
return (u8)res_heat;
|
|
}
|
|
|
|
#endif
|
|
/* bme680.c */
|