Add jupyter notebook with analysis
This commit is contained in:
parent
a19b8788ca
commit
51a4533786
2
measurement-data/.gitattributes
vendored
Normal file
2
measurement-data/.gitattributes
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
*.ipynb filter=nbstripout
|
||||
*.ipynb diff=ipynb
|
1
measurement-data/.gitignore
vendored
Normal file
1
measurement-data/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
.ipynb_checkpoints/*
|
168
measurement-data/Analog Measurement Analysis.ipynb
Normal file
168
measurement-data/Analog Measurement Analysis.ipynb
Normal file
@ -0,0 +1,168 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from IPython.core.display import display, HTML\n",
|
||||
"display(HTML(\"<style>.container { width:100% !important; }</style>\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Read in Measurements"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"constant_sampling = pd.read_csv(r'1000OhmSampling.csv')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Calculation Function for $\\vartheta(R_{PT1000})$\n",
|
||||
"$\\vartheta(R_{PT1000}) = \\frac{-\\alpha R_0 + \\sqrt{\\alpha^2R_0^2 - 4\\beta R_0 \\left(R_0 - R_{PT1000}\\right)}}{2\\beta R_0}$\n",
|
||||
"\n",
|
||||
"with\n",
|
||||
"* $\\alpha = 3.9083 \\cdot 10^{-3}$\n",
|
||||
"* $\\beta = -5.7750 \\cdot 10^{-7}$\n",
|
||||
"* $R_0 = 1000~\\Omega$"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"R_zero = 1000.0\n",
|
||||
"A = 3.9083E-3\n",
|
||||
"B = -5.7750E-7\n",
|
||||
"\n",
|
||||
"def calc_temp(resistance):\n",
|
||||
" temp = (-R_zero * A + np.sqrt(R_zero*R_zero * A * A - 4* R_zero * B * (R_zero - resistance)))/(2*R_zero*B)\n",
|
||||
" return temp"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Description of ADC Value"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(constant_sampling['adc_results.pa2_raw'].describe())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"--------------------\n",
|
||||
"# Calculate Temperature from Resistance Value"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"constant_sampling['temp_calculated'] = constant_sampling.apply(lambda row: calc_temp(row['ext_lf_corr']) , axis=1)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Histograms -- Starting from Index 100"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(28,6))\n",
|
||||
"signal_list = [('adc_results.pa2_raw', 25), ('ext_lf_corr', 25), ('temp_calculated', 25)]\n",
|
||||
"for ax,sig in zip(axes, signal_list):\n",
|
||||
" n, bins, patches = ax.hist(constant_sampling[sig[0]][100:], 25, density=1)\n",
|
||||
" mu = np.mean(constant_sampling[sig[0]][100:])\n",
|
||||
" sigma = np.std(constant_sampling[sig[0]][100:])\n",
|
||||
" y = ((1 / (np.sqrt(2 * np.pi) * sigma)) * np.exp(-0.5 * (1 / sigma * (bins - mu))**2))\n",
|
||||
" ax.plot(bins, y)\n",
|
||||
" ax.set_title('Histogram and Standard Deviation of '+sig[0])\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Startup of Moving Average Filter with $\\alpha' = 0.005$"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(28,6), sharex=True)\n",
|
||||
"data = constant_sampling['ext_lf_corr'][:20]\n",
|
||||
"ax[0].plot(constant_sampling['Time'][:20], data)\n",
|
||||
"ax[1].plot(constant_sampling['Time'][:20], constant_sampling['temp_calculated'][:20])\n",
|
||||
"plt.show()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
Loading…
Reference in New Issue
Block a user