Merge branch 'dev' into ui

This commit is contained in:
Mario Hüttel 2020-05-11 21:59:25 +02:00
commit 6c013d5aa3
5 changed files with 212 additions and 104 deletions

View File

@ -27,7 +27,7 @@
#include <stdlib.h> #include <stdlib.h>
#include <float.h> #include <float.h>
extern struct stm_uart shell_uart; enum calibration_shell_state {CAL_START = 0, CAL_WAIT_RES1, CAL_MEAS_RES1, CAL_WAIT_RES2, CAL_MEAS_RES2};
void calibration_calculate(float low_measured, float low_setpoint, float high_measured, float high_setpoint, void calibration_calculate(float low_measured, float low_setpoint, float high_measured, float high_setpoint,
float *sens_deviation, float *sens_corrected_offset) float *sens_deviation, float *sens_corrected_offset)
@ -50,124 +50,217 @@ void calibration_calculate(float low_measured, float low_setpoint, float high_me
int calibration_acquire_data(float *mu, float *max_dev, uint32_t count) float *calibration_acquire_data_start(uint32_t count, volatile int *flag)
{ {
int status; int status;
float *stream_mem; float *stream_mem;
float min_val = FLT_MAX;
float max_val = -FLT_MAX;
uint32_t i;
int ret_val = 0;
static volatile int flag = 0; if (!count)
return NULL;
if (!mu || !max_dev || !count)
return -1000;
stream_mem = (float *)calloc(count, sizeof(float)); stream_mem = (float *)calloc(count, sizeof(float));
if (!stream_mem) if (!stream_mem)
return -2; return stream_mem;
status = adc_pt1000_stream_raw_value_to_memory(stream_mem, count, &flag); *flag = 0;
status = adc_pt1000_stream_raw_value_to_memory(stream_mem, count, flag);
if (status) if (status)
return status; goto free_mem;
/* Wait for data to be transferred */
while (flag == 0);
if (flag != 1) { return stream_mem;
free_mem:
free(stream_mem);
return NULL;
}
static int calibration_poll_data_acquisition(float *mem_array, uint32_t count, volatile int *flag, float *mu, float *max_dev)
{
int ret_val = 0;
float min_val = FLT_MAX;
float max_val = -FLT_MAX;
uint32_t i;
if (!flag || !mem_array || !mu || !max_dev)
return -1000;
if (*flag == 0) {
/* Continue polling */
return 1;
}
if (*flag != 1) {
/* Error */ /* Error */
ret_val = -1; ret_val = -1;
goto ret_free_mem; goto ret_free_mem;
} }
/* Convert the stream memory to Ohm readings */ /* Convert the stream memory to Ohm readings */
adc_pt1000_convert_raw_value_array_to_resistance(NULL, stream_mem, count); adc_pt1000_convert_raw_value_array_to_resistance(NULL, mem_array, count);
/* Do not compute std-deviation. Too imprecise /* Do not compute std-deviation. Too imprecise
* arm_std_f32(stream_mem, count, sigma); * arm_std_f32(stream_mem, count, sigma);
*/ */
arm_mean_f32(stream_mem, count, mu); arm_mean_f32(mem_array, count, mu);
/* Find min and max values of array */ /* Find min and max values of array */
for (i = 0U; i < count; i++) { for (i = 0U; i < count; i++) {
min_val = MIN(min_val, stream_mem[i]); min_val = MIN(min_val, mem_array[i]);
max_val = MAX(max_val, stream_mem[i]); max_val = MAX(max_val, mem_array[i]);
} }
/* Compute maximum deviation range */ /* Compute maximum deviation range */
*max_dev = max_val - min_val; *max_dev = max_val - min_val;
ret_free_mem: ret_free_mem:
free(stream_mem); free(mem_array);
return ret_val; return ret_val;
} }
static void wait_for_uart_enter() shellmatta_retCode_t calibration_sequence_shell_cmd(shellmatta_handle_t shell, const char *arg, uint32_t len)
{ {
int enter_received = 0; (void)arg;
const char *recv_data; (void)len;
size_t recv_len;
size_t iter;
int uart_recv_status;
do { /* This stores the current state of the calibration process */
uart_recv_status = uart_receive_data_with_dma(&shell_uart, &recv_data, &recv_len); static enum calibration_shell_state cal_state = CAL_START;
if (uart_recv_status >= 1) { shellmatta_retCode_t ret_val = SHELLMATTA_BUSY;
for (iter = 0; iter < recv_len; iter++) { uint32_t i;
if (recv_data[iter] == '\n' || recv_data[iter] == '\r') int res;
enter_received = 1;
static float mu = 0.0f, mu2 = 0.0f, dev = 0.0f, dev2 = 0.0f;
float sens_dev, offset;
static float *data_buffer = NULL;
static volatile int flag;
char *stdin_data;
uint32_t stdin_len;
switch (cal_state) {
case CAL_START:
/* Clear errors of PT1000 reading */
adc_pt1000_clear_error();
shellmatta_printf(shell, "Starting calibration: Insert 1000 Ohm calibration resistor and press ENTER\r\n");
cal_state = CAL_WAIT_RES1;
ret_val = SHELLMATTA_CONTINUE;
break;
case CAL_WAIT_RES1:
cal_state = CAL_WAIT_RES1;
ret_val = SHELLMATTA_CONTINUE;
shellmatta_read(shell, &stdin_data, &stdin_len);
if (stdin_len > 0) {
for (i = 0; i < stdin_len; i++) {
if (stdin_data[i] == '\r') {
cal_state = CAL_MEAS_RES1;
ret_val = SHELLMATTA_BUSY;
shellmatta_printf(shell, "Measurement...\r\n");
adc_pt1000_clear_error();
data_buffer = calibration_acquire_data_start(512UL, &flag);
break;
} else if (stdin_data[i] == '\x03') {
cal_state = CAL_START;
}
} }
} }
} while (enter_received == 0);
} break;
case CAL_MEAS_RES1:
int calibration_sequence_shell_cmd(shellmatta_handle_t shell) if (!data_buffer) {
{ shellmatta_printf(shell, "Data acquisition failed!\r\n");
float mu, mu2, dev, dev2; ret_val = SHELLMATTA_OK;
float sens_dev, offset; cal_state = CAL_START;
break;
/* Clear errors of PT1000 reading */ }
adc_pt1000_clear_error();
res = calibration_poll_data_acquisition(data_buffer, 512UL, &flag, &mu, &dev);
shellmatta_printf(shell, "Starting calibration: Insert 1000 Ohm calibration resistor and press ENTER\r\n"); /* Stay in this state until the measurements are finished */
wait_for_uart_enter(); if (res == 1) {
shellmatta_printf(shell, "Measurement...\r\n"); ret_val = SHELLMATTA_BUSY;
cal_state = CAL_MEAS_RES1;
/* Clear errors of PT1000 reading */ } else if (res == 0) {
adc_pt1000_clear_error(); shellmatta_printf(shell, "R=%.2f, Noise peak-peak: %.2f\r\n", mu, dev);
calibration_acquire_data(&mu, &dev, 512UL); if (adc_pt1000_check_error() != ADC_PT1000_NO_ERR) {
shellmatta_printf(shell, "R=%.2f, Noise peak-peak: %.2f\r\n", mu, dev); shellmatta_printf(shell, "Error in resistance measurement: %d", adc_pt1000_check_error());
if (adc_pt1000_check_error() != ADC_PT1000_NO_ERR) { ret_val = SHELLMATTA_OK;
shellmatta_printf(shell, "Error in resistance measurement: %d", adc_pt1000_check_error()); cal_state = CAL_START;
return -1; } else {
} ret_val = SHELLMATTA_CONTINUE;
shellmatta_printf(shell, "Insert 2000 Ohm calibration resistor and press ENTER\r\n");
/* Measure 2nd calibration point */ cal_state = CAL_WAIT_RES2;
shellmatta_printf(shell, "Insert 2000 Ohm calibration resistor and press ENTER\r\n"); }
wait_for_uart_enter(); } else {
shellmatta_printf(shell, "Measurement...\r\n"); shellmatta_printf(shell, "Error in resistance measurement: %d", adc_pt1000_check_error());
ret_val = SHELLMATTA_OK;
/* Clear errors of PT1000 reading */ cal_state = CAL_START;
adc_pt1000_clear_error(); }
calibration_acquire_data(&mu2, &dev2, 512UL); break;
shellmatta_printf(shell, "R=%.2f, Noise peak-peak: %.2f\r\n", mu2, dev2); case CAL_WAIT_RES2:
if (adc_pt1000_check_error() != ADC_PT1000_NO_ERR) { cal_state = CAL_WAIT_RES2;
shellmatta_printf(shell, "Error in resistance measurement: %d", adc_pt1000_check_error()); ret_val = SHELLMATTA_CONTINUE;
return -2; shellmatta_read(shell, &stdin_data, &stdin_len);
} if (stdin_len > 0) {
for (i = 0; i < stdin_len; i++) {
/* Check noise values */ if (stdin_data[i] == '\r') {
if (dev > CALIBRATION_MAX_PEAK_PEAK_NOISE_OHM || dev2 > CALIBRATION_MAX_PEAK_PEAK_NOISE_OHM) { cal_state = CAL_MEAS_RES2;
shellmatta_printf(shell, "Calibration failed! Too much noise. Check your hardware.\r\n"); ret_val = SHELLMATTA_BUSY;
return -3; shellmatta_printf(shell, "Measurement...\r\n");
} adc_pt1000_clear_error();
data_buffer = calibration_acquire_data_start(512UL, &flag);
/* Calculate calibration */ break;
calibration_calculate(mu, 1000.0f, mu2, 2000.0f, &sens_dev, &offset); } else if (stdin_data[i] == '\x03') {
cal_state = CAL_START;
shellmatta_printf(shell, "Calibration done:\r\n\tSENS_DEVIATION: %.4f\r\n\tOFFSET_CORR: %.2f\r\n", sens_dev, offset); }
adc_pt1000_set_resistance_calibration(offset, sens_dev, true); }
}
return 0;
break;
case CAL_MEAS_RES2:
if (!data_buffer) {
shellmatta_printf(shell, "Data acquisition failed!\r\n");
ret_val = SHELLMATTA_OK;
cal_state = CAL_START;
break;
}
res = calibration_poll_data_acquisition(data_buffer, 512UL, &flag, &mu2, &dev2);
/* Stay in this state until the measurements are finished */
if (res == 1) {
ret_val = SHELLMATTA_BUSY;
cal_state = CAL_MEAS_RES2;
} else if (res == 0) {
shellmatta_printf(shell, "R=%.2f, Noise peak-peak: %.2f\r\n", mu2, dev2);
if (adc_pt1000_check_error() != ADC_PT1000_NO_ERR) {
shellmatta_printf(shell, "Error in resistance measurement: %d", adc_pt1000_check_error());
ret_val = SHELLMATTA_OK;
cal_state = CAL_START;
} else {
ret_val = SHELLMATTA_OK;
cal_state = CAL_START;
if (dev > CALIBRATION_MAX_PEAK_PEAK_NOISE_OHM ||
dev2 > CALIBRATION_MAX_PEAK_PEAK_NOISE_OHM) {
shellmatta_printf(shell, "Calibration failed! Too much noise. Check your hardware.\r\n");
break;
}
shellmatta_printf(shell, "Calibartion finished successfully!\r\n");
/* Calculate calibration */
calibration_calculate(mu, 1000.0f, mu2, 2000.0f, &sens_dev, &offset);
shellmatta_printf(shell, "\r\n\tSENS_DEVIATION: %.4f\r\n\tOFFSET_CORR: %.2f\r\n", sens_dev, offset);
adc_pt1000_set_resistance_calibration(offset, sens_dev, true);
}
} else {
shellmatta_printf(shell, "Error in resistance measurement: %d", adc_pt1000_check_error());
ret_val = SHELLMATTA_OK;
cal_state = CAL_START;
}
break;
default:
shellmatta_printf(shell, "Undefined state reached in calibration. Aborting\r\n");
cal_state = CAL_START;
ret_val = SHELLMATTA_OK;
break;
}
return ret_val;
} }

View File

@ -29,8 +29,8 @@
void calibration_calculate(float low_measured, float low_setpoint, float high_measured, float high_setpoint, void calibration_calculate(float low_measured, float low_setpoint, float high_measured, float high_setpoint,
float *sens_deviation, float *sens_corrected_offset); float *sens_deviation, float *sens_corrected_offset);
int calibration_acquire_data(float *mu, float *max_dev, uint32_t count); float *calibration_acquire_data_start(uint32_t count, volatile int *flag);
int calibration_sequence_shell_cmd(shellmatta_handle_t shell); shellmatta_retCode_t calibration_sequence_shell_cmd(shellmatta_handle_t shell, const char *arg, uint32_t len);
#endif /* __CALIBRATION_H__ */ #endif /* __CALIBRATION_H__ */

View File

@ -25,6 +25,7 @@
#define PUPDR_DELETE(pin) ~(0x3U << ((pin) * 2)) #define PUPDR_DELETE(pin) ~(0x3U << ((pin) * 2))
#define OUTPUT(pin) (0x01U << ((pin) * 2)) #define OUTPUT(pin) (0x01U << ((pin) * 2))
#define PULLUP(pin) (0x1U << ((pin)* 2)) #define PULLUP(pin) (0x1U << ((pin)* 2))
#define PULLDOWN(pin) (0x2U << ((pin)* 2))
#define ALTFUNC(pin) ((0x2) << ((pin) * 2)) #define ALTFUNC(pin) ((0x2) << ((pin) * 2))
#define PINMASK(pin) ((0x3) << ((pin) * 2)) #define PINMASK(pin) ((0x3) << ((pin) * 2))
#define SETAF(PORT,PIN,AF) PORT->AFR[((PIN) < 8 ? 0 : 1)] |= (AF) << (((PIN) < 8 ? (PIN) : ((PIN) - 8)) * 4) #define SETAF(PORT,PIN,AF) PORT->AFR[((PIN) < 8 ? 0 : 1)] |= (AF) << (((PIN) < 8 ? (PIN) : ((PIN) - 8)) * 4)

View File

@ -73,6 +73,11 @@ FATFS *fs_ptr = &fs;
static inline void uart_gpio_config() static inline void uart_gpio_config()
{ {
/*
* In case the application is build in debug mode, use the TX/RX Pins on the debug header
* else the Pins on the DIGIO header are configured in the digio module
*/
#ifdef DEBUGBUILD #ifdef DEBUGBUILD
rcc_manager_enable_clock(&RCC->AHB1ENR, BITMASK_TO_BITNO(SHELL_UART_PORT_RCC_MASK)); rcc_manager_enable_clock(&RCC->AHB1ENR, BITMASK_TO_BITNO(SHELL_UART_PORT_RCC_MASK));
SHELL_UART_PORT->MODER &= MODER_DELETE(SHELL_UART_TX_PIN) & MODER_DELETE(SHELL_UART_RX_PIN); SHELL_UART_PORT->MODER &= MODER_DELETE(SHELL_UART_TX_PIN) & MODER_DELETE(SHELL_UART_RX_PIN);
@ -151,7 +156,15 @@ static inline int32_t handle_pid_controller(struct pid_controller *pid, float ta
return pid_out; return pid_out;
} }
const char *oven_controller_hello_world = "Hello world :)\n"; static void setup_unused_pins()
{
int i;
rcc_manager_enable_clock(&RCC->AHB1ENR, BITMASK_TO_BITNO(RCC_AHB1ENR_GPIOEEN));
GPIOE->MODER = 0UL;
for (i = 0; i < 16; i++)
GPIOE->PUPDR |= PULLDOWN(i);
}
static inline void setup_system() static inline void setup_system()
{ {
@ -169,16 +182,26 @@ static inline void setup_system()
uart_gpio_config(); uart_gpio_config();
setup_sell_uart(&shell_uart); setup_sell_uart(&shell_uart);
setup_unused_pins();
}
static void handle_shell_uart_input(shellmatta_handle_t shell_handle)
{
int uart_receive_status;
const char *uart_input;
size_t uart_input_len;
/* Handle uart input for shell */
uart_receive_status = uart_receive_data_with_dma(&shell_uart, &uart_input, &uart_input_len);
if (uart_receive_status >= 0)
shell_handle_input(shell_handle, uart_input, uart_input_len);
} }
int main() int main()
{ {
bool sd_card_mounted = false; bool sd_card_mounted = false;
FIL test_file;
const char *uart_input;
size_t uart_input_len;
shellmatta_handle_t shell_handle; shellmatta_handle_t shell_handle;
int uart_receive_status;
uint64_t pid_timestamp = 0ULL; uint64_t pid_timestamp = 0ULL;
bool pid_controller_active = false; bool pid_controller_active = false;
@ -194,13 +217,6 @@ int main()
shell_handle = shell_init(write_shell_callback); shell_handle = shell_init(write_shell_callback);
shell_print_motd(shell_handle); shell_print_motd(shell_handle);
if (f_mount(fs_ptr, "0:/", 1) == FR_OK) {
sd_card_mounted = true;
f_open(&test_file, "hello-world.txt", FA_OPEN_APPEND | FA_WRITE);
f_write(&test_file, oven_controller_hello_world, strlen(oven_controller_hello_world), NULL);
f_close(&test_file);
}
pid_init(&pid, 0.1, 0.1, 4.0, 0.0, 100.0, 40.0); pid_init(&pid, 0.1, 0.1, 4.0, 0.0, 100.0, 40.0);
pid_zero(&pid); pid_zero(&pid);
@ -219,6 +235,8 @@ int main()
/* Blink red led in case of temp error */ /* Blink red led in case of temp error */
if (pt1000_value_status < 0) if (pt1000_value_status < 0)
led_set(0, !led_get(0)); led_set(0, !led_get(0));
else
led_set(0, 0);
} }
/* Handle error in case PID controller should be active, but temperature measurement failed */ /* Handle error in case PID controller should be active, but temperature measurement failed */
@ -243,10 +261,7 @@ int main()
snprintf(&disp[1][0], 17, "Rotary: %u", (unsigned int)rot); snprintf(&disp[1][0], 17, "Rotary: %u", (unsigned int)rot);
snprintf(&disp[2][0], 17, "Button: %s", (button == BUTTON_SHORT ? "SHORT" : (button == BUTTON_LONG ? "LONG" : ""))); snprintf(&disp[2][0], 17, "Button: %s", (button == BUTTON_SHORT ? "SHORT" : (button == BUTTON_LONG ? "LONG" : "")));
/* Handle uart input for shell */ handle_shell_uart_input(shell_handle);
uart_receive_status = uart_receive_data_with_dma(&shell_uart, &uart_input, &uart_input_len);
if (uart_receive_status >= 0)
shell_handle_input(shell_handle, uart_input, uart_input_len);
if (systick_ticks_have_passed(display_timestamp, 2) || lcd_ret == LCD_FSM_CALL_AGAIN) { if (systick_ticks_have_passed(display_timestamp, 2) || lcd_ret == LCD_FSM_CALL_AGAIN) {
lcd_ret = lcd_fsm_write_buffer(disp); lcd_ret = lcd_fsm_write_buffer(disp);

View File

@ -200,8 +200,7 @@ static shellmatta_retCode_t shell_cmd_cal(const shellmatta_handle_t handle,
(void)arguments; (void)arguments;
(void)length; (void)length;
calibration_sequence_shell_cmd(handle); return calibration_sequence_shell_cmd(handle, arguments, length);
return SHELLMATTA_OK;
} }
static shellmatta_retCode_t shell_meminfo(const shellmatta_handle_t handle, static shellmatta_retCode_t shell_meminfo(const shellmatta_handle_t handle,