ADC PT1000 Measurement progress

This commit is contained in:
Mario Hüttel 2020-02-02 20:24:44 +01:00
parent 8af10dd52c
commit 850d84140e
3 changed files with 186 additions and 117 deletions

View File

@ -1,30 +1,98 @@
#include <adc-meas.h> #include <adc-meas.h>
#include <stm32f4xx.h> #include <stm32f4xx.h>
#include <core_cm4.h>
#include <stm32-gpio-macros.h> #include <stm32-gpio-macros.h>
#include <stdlib.h>
static float pt1000_offset; static float pt1000_offset;
static float pt1000_sens_dev; static float pt1000_sens_dev;
static bool calibration_active; static bool calibration_active;
static float filter_alpha; static float filter_alpha;
static float pt1000_adc_raw_lf; static volatile float pt1000_res_raw_lf;
static bool streaming_active; static volatile bool streaming_active;
static volatile bool filter_ready; static volatile bool filter_ready;
static volatile enum adc_p1000_error pt1000_error; static volatile enum adc_pt1000_error pt1000_error;
static volatile uint8_t *dma_flag_ptr = NULL;
static uint32_t filter_startup_cnt;
#define ADC_TO_RES(adc) ((float)(adc) / 4096.0f * 2500.0f) #define ADC_TO_RES(adc) ((float)(adc) / 4096.0f * 2500.0f)
static inline void adc_pt1000_stop_sample_frequency_timer()
{
TIM2->CR1 &= ~TIM_CR1_CEN;
RCC->APB1ENR &= ~RCC_APB1ENR_TIM2EN;
}
static inline void adc_pt1000_setup_sample_frequency_timer()
{
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
/* Divide 42 MHz peripheral clock by 42 */
TIM2->PSC = (42UL-1UL);
/* Reload value */
TIM2->ARR = ADC_PT1000_SAMPLE_CNT_DELAY;
/* Trigger output at update event */
TIM2->CR2 = TIM_CR2_MMS_1;
/* Start Timer in downcounting mode with autoreload */
TIM2->CR1 = TIM_CR1_DIR | TIM_CR1_CEN;
}
static inline void adc_pt1000_disable_adc()
{
ADC1->CR2 &= ~ADC_CR2_ADON;
DMA2_Stream0->CR = 0;
RCC->APB2ENR &= ~RCC_APB2ENR_ADC1EN;
}
void adc_pt1000_setup_meas() void adc_pt1000_setup_meas()
{ {
RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; RCC->APB2ENR |= RCC_APB2ENR_ADC1EN;
RCC->AHB1ENR |= ADC_PT1000_PORT_RCC_MASK; RCC->AHB1ENR |= ADC_PT1000_PORT_RCC_MASK;
ADC_PT1000_PORT->MODER |= ANALOG(ADC_PT1000_PIN); ADC_PT1000_PORT->MODER |= ANALOG(ADC_PT1000_PIN);
/* Set S&H time for PT1000 ADC channel */
#if ADC_PT1000_CHANNEL < 10
ADC1->SMPR2 |= (7U << (3*ADC_PT1000_CHANNEL));
#else
ADC1->SMPR1 |= (7U << (3*(ADC_PT1000_CHANNEL-10)));
#endif
ADC->CCR |= (0x2<<16);
/* Set watchdog limits */
ADC1->HTR = ADC_PT1000_UPPER_WATCHDOG;
ADC1->LTR = ADC_PT1000_LOWER_WATCHDOG;
/* Set length of sequence to 1 */
ADC1->SQR1 = (0UL<<20);
/* Set channel as 1st element in sequence */
ADC1->SQR3 = (ADC_PT1000_CHANNEL<<0);
ADC1->CR1 = ADC_CR1_OVRIE | ADC_CR1_AWDEN | ADC_CR1_EOCIE;
ADC1->CR2 = ADC_CR2_EXTEN_0 | ADC_CR2_EXTSEL_2 | ADC_CR2_EXTSEL_1 | ADC_CR2_ADON;
adc_pt1000_set_moving_average_filter_param(ADC_PT1000_FILTER_WEIGHT);
adc_pt1000_set_resistance_calibration(0, 0, false);
streaming_active = false;
pt1000_res_raw_lf = 0.0f;
NVIC_EnableIRQ(ADC_IRQn);
RCC->AHB1ENR |= RCC_AHB1ENR_DMA2EN;
adc_pt1000_setup_sample_frequency_timer();
} }
void adc_pt1000_set_moving_average_filter_param(float alpha) void adc_pt1000_set_moving_average_filter_param(float alpha)
{ {
filter_alpha = alpha; filter_alpha = alpha;
filter_ready = false;
filter_startup_cnt = ADC_FILTER_STARTUP_CYCLES;
} }
void adc_pt1000_set_resistance_calibration(float offset, float sensitivity_deviation, bool active) void adc_pt1000_set_resistance_calibration(float offset, float sensitivity_deviation, bool active)
@ -44,6 +112,15 @@ void adc_pt1000_get_resistance_calibration(float *offset, float *sensitivity_dev
*active = calibration_active; *active = calibration_active;
} }
static inline float adc_pt1000_apply_calibration(float raw_resistance)
{
if (calibration_active)
return pt1000_res_raw_lf * (1.0f + pt1000_sens_dev) + pt1000_offset;
else
return raw_resistance;
}
int adc_pt1000_get_current_resistance(float *resistance) int adc_pt1000_get_current_resistance(float *resistance)
{ {
int ret_val = 0; int ret_val = 0;
@ -51,24 +128,22 @@ int adc_pt1000_get_current_resistance(float *resistance)
if (!resistance) if (!resistance)
return -1001; return -1001;
if (calibration_active) *resistance = adc_pt1000_apply_calibration(pt1000_res_raw_lf);
*resistance = ADC_TO_RES(pt1000_adc_raw_lf) * (1 + pt1000_sens_dev) + pt1000_offset;
else
*resistance = ADC_TO_RES(pt1000_adc_raw_lf);
if (adc_pt1000_check_error()) { if (adc_pt1000_check_error()) {
ret_val = -100; ret_val = -100;
goto return_value; goto return_value;
} }
if (!filter_ready) {
ret_val = 2;
goto return_value;
}
if (streaming_active) { if (streaming_active) {
ret_val = 1; ret_val = 1;
goto return_value; goto return_value;
} }
if (!filter_ready)
{
ret_val = 2;
}
return_value: return_value:
return ret_val; return ret_val;
@ -76,7 +151,44 @@ return_value:
int adc_pt1000_stream_raw_value_to_memory(uint16_t *adc_array, uint32_t length, volatile uint8_t *flag_to_set) int adc_pt1000_stream_raw_value_to_memory(uint16_t *adc_array, uint32_t length, volatile uint8_t *flag_to_set)
{ {
static volatile uint8_t alt_flag;
int ret_val = 0;
if (!(ADC1->CR2 & ADC_CR2_ADON))
return -1;
if (!adc_array || !length)
return -1000;
if (flag_to_set)
dma_flag_ptr = flag_to_set;
else
dma_flag_ptr = &alt_flag;
*dma_flag_ptr = 0;
streaming_active = true;
ADC1->CR2 &= ~ADC_CR2_ADON;
DMA2_Stream0->CR &= ~DMA_SxCR_EN;
DMA2_Stream0->M0AR = (uint32_t)adc_array;
DMA2_Stream0->PAR = (uint32_t)&ADC1->DR;
DMA2_Stream0->CR = DMA_SxCR_PL_1 | DMA_SxCR_MSIZE_0 | DMA_SxCR_PSIZE_0 | DMA_SxCR_MINC | DMA_SxCR_TCIE;
DMA2_Stream0->NDTR = length;
NVIC_EnableIRQ(DMA2_Stream0_IRQn);
DMA2_Stream0->CR |= DMA_SxCR_EN;
ADC1->CR2 |= ADC_CR2_ADON | ADC_CR2_DMA;
if (!flag_to_set) {
while(!alt_flag);
if (alt_flag < 0)
ret_val = -alt_flag;
}
return ret_val;
} }
void adc_pt1000_convert_raw_value_array_to_resistance(float *resistance_dest, uint16_t *raw_source, uint32_t count) void adc_pt1000_convert_raw_value_array_to_resistance(float *resistance_dest, uint16_t *raw_source, uint32_t count)
@ -84,7 +196,7 @@ void adc_pt1000_convert_raw_value_array_to_resistance(float *resistance_dest, ui
} }
enum adc_p1000_error adc_pt1000_check_error() enum adc_pt1000_error adc_pt1000_check_error()
{ {
return pt1000_error; return pt1000_error;
} }
@ -94,9 +206,20 @@ void adc_pt1000_clear_error()
pt1000_error = ADC_PT1000_NO_ERR; pt1000_error = ADC_PT1000_NO_ERR;
} }
static void adc_pt1000_filter(uint16_t adc_value) void adc_pt1000_disable()
{ {
pt1000_adc_raw_lf = (1-filter_alpha) * pt1000_adc_raw_lf + filter_alpha * (float)adc_value; adc_pt1000_disable_adc();
adc_pt1000_stop_sample_frequency_timer();
filter_ready = false;
pt1000_res_raw_lf = 0.0f;
}
static inline __attribute__((optimize("O3"))) void adc_pt1000_filter(uint16_t adc_value)
{
if (!filter_ready && --filter_startup_cnt <= 0)
filter_ready = true;
pt1000_res_raw_lf = (1-filter_alpha) * pt1000_res_raw_lf + filter_alpha * ADC_TO_RES((float)adc_value);
} }
void ADC_IRQHandler(void) void ADC_IRQHandler(void)
@ -111,13 +234,38 @@ void ADC_IRQHandler(void)
if (adc1_sr & ADC_SR_OVR) { if (adc1_sr & ADC_SR_OVR) {
ADC1->SR &= ~ADC_SR_OVR; ADC1->SR &= ~ADC_SR_OVR;
pt1000_error = ADC_PT1000_OVERFLOW; pt1000_error |= ADC_PT1000_OVERFLOW;
/* Disable ADC in case of overrrun*/ /* Disable ADC in case of overrrun*/
ADC1->CR2 &= ADC_CR2_ADON; adc_pt1000_disable();
if (streaming_active) {
streaming_active = false;
*dma_flag_ptr = -1;
}
} }
if (adc1_sr & ADC_SR_AWD) { if (adc1_sr & ADC_SR_AWD) {
ADC1->SR &= ~ADC_SR_AWD; ADC1->SR &= ~ADC_SR_AWD;
pt1000_error = ADC_PT1000_WATCHDOG_ERROR; pt1000_error |= ADC_PT1000_WATCHDOG_ERROR;
} }
} }
void DMA2_Stream0_IRQHandler()
{
uint32_t lisr;
lisr = DMA2->LISR;
DMA2->LIFCR = lisr;
if (lisr & DMA_LISR_TCIF0) {
*dma_flag_ptr = 1;
ADC1->CR2 &= ~ADC_CR2_DMA;
streaming_active = false;
}
if (lisr & DMA_LISR_TEIF0) {
*dma_flag_ptr = -2;
ADC1->CR2 &= ~ADC_CR2_DMA;
streaming_active = false;
}
}

View File

@ -19,7 +19,9 @@
#define ADC_PT1000_PIN 2 #define ADC_PT1000_PIN 2
#define ADC_FILTER_STARTUP_CYCLES 200 #define ADC_FILTER_STARTUP_CYCLES 800
#define ADC_PT1000_SAMPLE_CNT_DELAY 2000
/** /**
* @brief Lower value for valid input range for PT1000 measurement * @brief Lower value for valid input range for PT1000 measurement
@ -35,7 +37,7 @@
*/ */
#define ADC_PT1000_UPPER_WATCHDOG 4000 #define ADC_PT1000_UPPER_WATCHDOG 4000
enum adc_p1000_error {ADC_PT1000_NO_ERR= 0, ADC_PT1000_WATCHDOG_ERROR=-1, ADC_PT1000_OVERFLOW=2}; enum adc_pt1000_error {ADC_PT1000_NO_ERR= 0, ADC_PT1000_WATCHDOG_ERROR=(1UL<<0), ADC_PT1000_OVERFLOW=(1UL<<1)};
/** /**
* @brief This function sets up the ADC measurement fo the external PT1000 temperature sensor * @brief This function sets up the ADC measurement fo the external PT1000 temperature sensor
@ -86,8 +88,7 @@ void adc_pt1000_get_resistance_calibration(float *offset, float *sensitivity_dev
* If the reistance calibration is enabled, this function applies the calculations of the raw reistance reading and * If the reistance calibration is enabled, this function applies the calculations of the raw reistance reading and
* returns the corrected value. * returns the corrected value.
* *
* If an ADC error is set, the status is negative. If the ADC is in streaming mode, the reistance reading is disabled and * If an ADC error is set, the status is negative. The status is 2 during the first measurements with a given filter setting. Technically, the resistance value is
* the status is 1. The status is 2 during the first measurements with a given filter setting. Technically, the resistance value is
* correct but the filter is not stable yet. * correct but the filter is not stable yet.
* Use adc_pt1000_check_error to check the error and reinitialize the ADC. * Use adc_pt1000_check_error to check the error and reinitialize the ADC.
* *
@ -102,7 +103,6 @@ int adc_pt1000_get_current_resistance(float *resistance);
* *
* Streaming is done using DMA2 Stream0. * Streaming is done using DMA2 Stream0.
* This function is used for gathering fullspeed sampling data for external interfaces or calibration * This function is used for gathering fullspeed sampling data for external interfaces or calibration
* During streaming, the adc_pt1000_get_current_resistance() function will return an error
* *
* @param adc_array Array to stream data to * @param adc_array Array to stream data to
* @param length Amount of data points to be measured * @param length Amount of data points to be measured
@ -118,8 +118,10 @@ void adc_pt1000_convert_raw_value_array_to_resistance(float *resistance_dest, ui
* *
* In case of an error, it may be necessary to call adc_pt1000_setup_meas() again in order to recover from the error * In case of an error, it may be necessary to call adc_pt1000_setup_meas() again in order to recover from the error
*/ */
enum adc_p1000_error adc_pt1000_check_error(); enum adc_pt1000_error adc_pt1000_check_error();
void adc_pt1000_clear_error(); void adc_pt1000_clear_error();
void adc_pt1000_disable();
#endif // __ADCMEAS_H__ #endif // __ADCMEAS_H__

View File

@ -7,120 +7,39 @@
#include <stm32f4xx.h> #include <stm32f4xx.h>
#include <systick.h> #include <systick.h>
//#include <arm_math.h> //#include <arm_math.h>
#include <stm32-gpio-macros.h>
#include <system_stm32f4xx.h> #include <system_stm32f4xx.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#include <adc-meas.h> #include <adc-meas.h>
#define OUTPUT(pin) (0b01 << (pin * 2)) static void setup_nvic_priorities()
#define ANALOG(pin) (0x03 << (pin * 2))
struct adc_conversions {
uint16_t pa2_raw;
uint16_t ref_raw;
uint16_t temp_raw;
uint16_t vbat_raw;
};
static volatile struct adc_conversions adc_results;
volatile uint64_t sample_count = 0;
volatile uint8_t new_data = 0;
void DMA2_Stream0_IRQHandler()
{ {
uint32_t lisr; /* No sub priorities */
NVIC_SetPriorityGrouping(2);
lisr = DMA2->LISR; /* Setup Priorities */
DMA2->LIFCR = lisr; NVIC_SetPriority(ADC_IRQn, 1);
NVIC_SetPriority(DMA2_Stream0_IRQn, 2);
if (lisr & DMA_LISR_TCIF0) {
if (new_data)
new_data = 2;
new_data = 1;
sample_count++;
GPIOB->ODR ^= (1<<3);
}
}
void setup_dma(void *dest, size_t size)
{
RCC->AHB1ENR |= RCC_AHB1ENR_DMA2EN;
DMA2_Stream0->M0AR = (uint32_t)dest;
DMA2_Stream0->PAR = (uint32_t)&ADC1->DR;
DMA2_Stream0->CR = DMA_SxCR_PL_1 | DMA_SxCR_MSIZE_0 | DMA_SxCR_PSIZE_0 | DMA_SxCR_MINC |
DMA_SxCR_CIRC | DMA_SxCR_TCIE;
DMA2_Stream0->NDTR = size;
NVIC_EnableIRQ(DMA2_Stream0_IRQn);
DMA2_Stream0->CR |= DMA_SxCR_EN;
new_data = 0;
}
float ext_lf_corr;
float temp_lf_corr;
float ref_lf;
float vdd_calculated = 3.3f;
float vbat_lf_corr;
static void setup_timers(void)
{
} }
static float pt1000_value;
static volatile int pt1000_value_status;
int main() { int main() {
struct adc_conversions working;
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN;
RCC->APB2ENR |= RCC_APB2ENR_ADC1EN;
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN; RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN;
__DSB(); __DSB();
GPIOB->MODER = OUTPUT(2) | OUTPUT(3); GPIOB->MODER = OUTPUT(2) | OUTPUT(3);
GPIOA->MODER |= ANALOG(2);
GPIOB->ODR |= (1<<2); GPIOB->ODR |= (1<<2);
ADC1->SMPR2 = (7U<<(3*2)); setup_nvic_priorities();
ADC1->SMPR1 = (7U<<18) | (7U<<21) | (7U<<24);
ADC1->SQR1 = (2<<20);
ADC1->SQR3 = (2<<0) | (16<<(5*2)) | (17<<(5*1));
ADC->CCR |= (0x2<<16) | ADC_CCR_TSVREFE;
ADC1->CR1 = ADC_CR1_SCAN;
ADC1->CR2 = ADC_CR2_ADON | ADC_CR2_CONT | ADC_CR2_DMA | ADC_CR2_DDS;
//while(1);
systick_setup(); systick_setup();
setup_dma(&adc_results, 3); //setup_dma(&adc_results, 3);
adc_pt1000_setup_meas(); adc_pt1000_setup_meas();
ADC1->CR2 |= ADC_CR2_SWSTART;
while(1) { while(1) {
if (!new_data) { pt1000_value_status = adc_pt1000_get_current_resistance(&pt1000_value);
continue;
}
memcpy(&working, &adc_results, sizeof(adc_results));
new_data = 0;
//ref_lf = 0.995f * ref_lf + 0.005f * (float)working.ref_raw;
//vdd_calculated = ((1.21f * 4096)/ ref_lf);
//temp_lf_corr = 0.99f * temp_lf_corr + 0.01 * (float)working.temp_raw * vdd_calculated / 2.495f;
ext_lf_corr = 0.995f * ext_lf_corr + 0.005f * (float)working.pa2_raw / 4096 * 2500.0f; // * vdd_calculated / 2.495f;
//vbat_lf_corr = 0.99 * vbat_lf_corr + 0.01 * (float)working.vbat_raw / 4096 * vdd_calculated * 2.0f;
} }
} }