Add sha 256 library and adapt license sections in documentation
This commit is contained in:
46
stm-firmware/updater/ram-code/3rd-party/sha256/LICENSE.md
vendored
Normal file
46
stm-firmware/updater/ram-code/3rd-party/sha256/LICENSE.md
vendored
Normal file
@@ -0,0 +1,46 @@
|
||||
# Licensing Information
|
||||
|
||||
Except as otherwise noted (below and/or in individual files), this project is
|
||||
licensed under the [Unlicense](#the-unlicense)
|
||||
(https://opensource.org/licenses/unlicense) or the [Zero Clause BSD
|
||||
license](#zero-clause-bsd-license) (https://opensource.org/licenses/0bsd), at
|
||||
your option.
|
||||
|
||||
## The Unlicense
|
||||
|
||||
This is free and unencumbered software released into the public domain.
|
||||
|
||||
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
|
||||
software, either in source code form or as a compiled binary, for any purpose,
|
||||
commercial or non-commercial, and by any means.
|
||||
|
||||
In jurisdictions that recognize copyright laws, the author or authors of this
|
||||
software dedicate any and all copyright interest in the software to the public
|
||||
domain. We make this dedication for the benefit of the public at large and to
|
||||
the detriment of our heirs and successors. We intend this dedication to be an
|
||||
overt act of relinquishment in perpetuity of all present and future rights to
|
||||
this software under copyright law.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||||
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
||||
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
For more information, please refer to <http://unlicense.org>
|
||||
|
||||
## Zero Clause BSD License
|
||||
|
||||
© 2021 Alain Mosnier
|
||||
|
||||
Permission to use, copy, modify, and/or distribute this software for any
|
||||
purpose with or without fee is hereby granted.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
|
||||
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
|
||||
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
|
||||
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
|
||||
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
|
||||
PERFORMANCE OF THIS SOFTWARE.
|
134
stm-firmware/updater/ram-code/3rd-party/sha256/README.md
vendored
Normal file
134
stm-firmware/updater/ram-code/3rd-party/sha256/README.md
vendored
Normal file
@@ -0,0 +1,134 @@
|
||||
# sha-2 [](https://travis-ci.com/amosnier/sha-2)
|
||||
|
||||
## Disclaimer
|
||||
The SHA256 implementation used in thsi project is taken from https://github.com/amosnier/sha-2. Check the appropriate license file.
|
||||
|
||||
## Contents
|
||||
|
||||
SHA-2 algorithm implementations.
|
||||
|
||||
At the moment, only SHA-256 is implemented.
|
||||
|
||||
## NEW: streaming API
|
||||
|
||||
In response to [an enhancement
|
||||
request](https://github.com/amosnier/sha-2/issues/9), a new streaming
|
||||
API has been created.
|
||||
|
||||
The following code is a silly but complete example:
|
||||
|
||||
```C
|
||||
struct Sha_256 sha_256;
|
||||
uint8_t hash[32];
|
||||
sha_256_init(&sha_256, hash);
|
||||
sha_256_write(&sha_256, "ab", strlen("ab"));
|
||||
sha_256_write(&sha_256, "c", strlen("c"));
|
||||
sha_256_close(&sha_256);
|
||||
```
|
||||
|
||||
That is the equivalent of the (of course still supported) legacy way:
|
||||
|
||||
```C
|
||||
uint8_t hash[32];
|
||||
calc_sha_256(hash, "abc", strlen("abc"));
|
||||
```
|
||||
|
||||
See [header file](https://github.com/amosnier/sha-2/blob/master/sha-256.h)
|
||||
for more information.
|
||||
|
||||
Since the streaming API is a generalization of the non-streaming one,
|
||||
the latter has been ported to the former, without measurable performance
|
||||
impact. However, [a legacy
|
||||
branch](https://github.com/amosnier/sha-2/tree/legacy) has been created
|
||||
in order to make the legacy implementation easily available. If you can
|
||||
measure a significant difference between the two, please post an issue.
|
||||
|
||||
## Design criteria
|
||||
|
||||
- Easy to test, include in any project, compile and link.
|
||||
|
||||
- ANSI C with as little specific C99 as possible (e.g. extended
|
||||
integer types are used, but not bool).
|
||||
|
||||
- Portable. Makes no assumptions on the target system's endianess or
|
||||
word size.
|
||||
|
||||
- The SHA-256 implementation is a straightforward implementation of
|
||||
the algorithm specified on
|
||||
[Wikipedia](https://en.wikipedia.org/wiki/SHA-2).
|
||||
|
||||
## Notes
|
||||
|
||||
The Makefile is as minimal as possible. No effort was put into making
|
||||
it general. Its purpose is mainly to ease testing for the developer's
|
||||
host machine. The actual implementation is however extremely easy to
|
||||
include in any project, may it use GNU make or any other build tool.
|
||||
|
||||
## Code review
|
||||
|
||||
This code has been reviewed at [Stack Exchange CODE
|
||||
REVIEW](https://codereview.stackexchange.com/questions/182812/self-contained-sha-256-implementation-in-c),
|
||||
and the implementation has been improved accordingly.
|
||||
|
||||
## Testing
|
||||
|
||||
Testing is continuously performed on Travis CI (see above).
|
||||
|
||||
Apart from that, the implementation has been successfully tested on an x86-64 machine
|
||||
under Linux as well as on a 16-bit DSP. On the x86-64 machine, all the
|
||||
available NIST test vectors where successfully tested ([SHA-256
|
||||
examples](https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/SHA256.pdf)
|
||||
and [SHA-2 Additional
|
||||
examples](https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/SHA2_Additional.pdf),
|
||||
plus a few others).
|
||||
|
||||
In particular:
|
||||
|
||||
```
|
||||
Input Message: "abc"
|
||||
Message Digest is BA7816BF 8F01CFEA 414140DE 5DAE2223 B00361A3 96177A9C B410FF61 F20015AD
|
||||
```
|
||||
|
||||
```
|
||||
Input Message: "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
|
||||
Message Digest is 248D6A61 D20638B8 E5C02693 0C3E6039 A33CE459 64FF2167 F6ECEDD4 19DB06C1
|
||||
```
|
||||
|
||||
```
|
||||
SHA-256 Test Data
|
||||
#1) 1 byte 0xbd
|
||||
68325720 aabd7c82 f30f554b 313d0570 c95accbb 7dc4b5aa e11204c0 8ffe732b
|
||||
#2) 4 bytes 0xc98c8e55
|
||||
7abc22c0 ae5af26c e93dbb94 433a0e0b 2e119d01 4f8e7f65 bd56c61c cccd9504
|
||||
#3) 55 bytes of zeros
|
||||
02779466 cdec1638 11d07881 5c633f21 90141308 1449002f 24aa3e80 f0b88ef7
|
||||
#4) 56 bytes of zeros
|
||||
d4817aa5 497628e7 c77e6b60 6107042b bba31308 88c5f47a 375e6179 be789fbb
|
||||
#5) 57 bytes of zeros
|
||||
65a16cb7 861335d5 ace3c607 18b5052e 44660726 da4cd13b b745381b 235a1785
|
||||
#6) 64 bytes of zeros
|
||||
f5a5fd42 d16a2030 2798ef6e d309979b 43003d23 20d9f0e8 ea9831a9 2759fb4b
|
||||
#7) 1000 bytes of zeros
|
||||
541b3e9d aa09b20b f85fa273 e5cbd3e8 0185aa4e c298e765 db87742b 70138a53
|
||||
#8) 1000 bytes of 0x41 ‘A’
|
||||
c2e68682 3489ced2 017f6059 b8b23931 8b6364f6 dcd835d0 a519105a 1eadd6e4
|
||||
#9) 1005 bytes of 0x55 ‘U’
|
||||
f4d62dde c0f3dd90 ea1380fa 16a5ff8d c4c54b21 740650f2 4afc4120 903552b0
|
||||
#10) 1000000 bytes of zeros
|
||||
d29751f2 649b32ff 572b5e0a 9f541ea6 60a50f94 ff0beedf b0b692b9 24cc8025
|
||||
#11) 0x20000000 (536870912) bytes of 0x5a ‘Z’
|
||||
15a1868c 12cc5395 1e182344 277447cd 0979536b adcc512a d24c67e9 b2d4f3dd
|
||||
#12) 0x41000000 (1090519040) bytes of zeros
|
||||
461c19a9 3bd4344f 9215f5ec 64357090 342bc66b 15a14831 7d276e31 cbc20b53
|
||||
#13) 0x6000003e (1610612798) bytes of 0x42 ‘B’
|
||||
c23ce8a7 895f4b21 ec0daf37 920ac0a2 62a22004 5a03eb2d fed48ef9 b05aabea
|
||||
```
|
||||
|
||||
## License
|
||||
|
||||
This repository is made available under a permissive license. See
|
||||
[LICENSE FILE](LICENSE.md).
|
||||
|
||||
## Reference implementation
|
||||
|
||||
I had missed that when I made this implementation but [RFC 6234, chapter 8](https://tools.ietf.org/html/rfc6234#section-8) actually includes a reference implementation in C that is (at least in ambition) broader in scope than this one. I have however neither compiled nor tested it.
|
226
stm-firmware/updater/ram-code/3rd-party/sha256/sha-256.c
vendored
Normal file
226
stm-firmware/updater/ram-code/3rd-party/sha256/sha-256.c
vendored
Normal file
@@ -0,0 +1,226 @@
|
||||
#include "sha-256.h"
|
||||
|
||||
#define TOTAL_LEN_LEN 8
|
||||
|
||||
/*
|
||||
* ABOUT bool: this file does not use bool in order to be as pre-C99 compatible as possible.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Comments from pseudo-code at https://en.wikipedia.org/wiki/SHA-2 are reproduced here.
|
||||
* When useful for clarification, portions of the pseudo-code are reproduced here too.
|
||||
*/
|
||||
|
||||
/*
|
||||
* @brief Rotate a 32-bit value by a number of bits to the right.
|
||||
* @param value The value to be rotated.
|
||||
* @param count The number of bits to rotate by.
|
||||
* @return The rotated value.
|
||||
*/
|
||||
static inline uint32_t right_rot(uint32_t value, unsigned int count)
|
||||
{
|
||||
/*
|
||||
* Defined behaviour in standard C for all count where 0 < count < 32, which is what we need here.
|
||||
*/
|
||||
return value >> count | value << (32 - count);
|
||||
}
|
||||
|
||||
/*
|
||||
* @brief Update a hash value under calculation with a new chunk of data.
|
||||
* @param h Pointer to the first hash item, of a total of eight.
|
||||
* @param p Pointer to the chunk data, which has a standard length.
|
||||
*
|
||||
* @note This is the SHA-256 work horse.
|
||||
*/
|
||||
static inline void consume_chunk(uint32_t *h, const uint8_t *p)
|
||||
{
|
||||
unsigned i, j;
|
||||
uint32_t ah[8];
|
||||
|
||||
/* Initialize working variables to current hash value: */
|
||||
for (i = 0; i < 8; i++)
|
||||
ah[i] = h[i];
|
||||
|
||||
/*
|
||||
* The w-array is really w[64], but since we only need 16 of them at a time, we save stack by
|
||||
* calculating 16 at a time.
|
||||
*
|
||||
* This optimization was not there initially and the rest of the comments about w[64] are kept in their
|
||||
* initial state.
|
||||
*/
|
||||
|
||||
/*
|
||||
* create a 64-entry message schedule array w[0..63] of 32-bit words (The initial values in w[0..63]
|
||||
* don't matter, so many implementations zero them here) copy chunk into first 16 words w[0..15] of the
|
||||
* message schedule array
|
||||
*/
|
||||
uint32_t w[16];
|
||||
|
||||
/* Compression function main loop: */
|
||||
for (i = 0; i < 4; i++) {
|
||||
for (j = 0; j < 16; j++) {
|
||||
if (i == 0) {
|
||||
w[j] =
|
||||
(uint32_t)p[0] << 24 | (uint32_t)p[1] << 16 | (uint32_t)p[2] << 8 | (uint32_t)p[3];
|
||||
p += 4;
|
||||
} else {
|
||||
/* Extend the first 16 words into the remaining 48 words w[16..63] of the
|
||||
* message schedule array: */
|
||||
const uint32_t s0 = right_rot(w[(j + 1) & 0xf], 7) ^ right_rot(w[(j + 1) & 0xf], 18) ^
|
||||
(w[(j + 1) & 0xf] >> 3);
|
||||
const uint32_t s1 = right_rot(w[(j + 14) & 0xf], 17) ^
|
||||
right_rot(w[(j + 14) & 0xf], 19) ^ (w[(j + 14) & 0xf] >> 10);
|
||||
w[j] = w[j] + s0 + w[(j + 9) & 0xf] + s1;
|
||||
}
|
||||
const uint32_t s1 = right_rot(ah[4], 6) ^ right_rot(ah[4], 11) ^ right_rot(ah[4], 25);
|
||||
const uint32_t ch = (ah[4] & ah[5]) ^ (~ah[4] & ah[6]);
|
||||
|
||||
/*
|
||||
* Initialize array of round constants:
|
||||
* (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
|
||||
*/
|
||||
static const uint32_t k[] = {
|
||||
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4,
|
||||
0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe,
|
||||
0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f,
|
||||
0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
||||
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc,
|
||||
0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
|
||||
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116,
|
||||
0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
||||
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7,
|
||||
0xc67178f2};
|
||||
|
||||
const uint32_t temp1 = ah[7] + s1 + ch + k[i << 4 | j] + w[j];
|
||||
const uint32_t s0 = right_rot(ah[0], 2) ^ right_rot(ah[0], 13) ^ right_rot(ah[0], 22);
|
||||
const uint32_t maj = (ah[0] & ah[1]) ^ (ah[0] & ah[2]) ^ (ah[1] & ah[2]);
|
||||
const uint32_t temp2 = s0 + maj;
|
||||
|
||||
ah[7] = ah[6];
|
||||
ah[6] = ah[5];
|
||||
ah[5] = ah[4];
|
||||
ah[4] = ah[3] + temp1;
|
||||
ah[3] = ah[2];
|
||||
ah[2] = ah[1];
|
||||
ah[1] = ah[0];
|
||||
ah[0] = temp1 + temp2;
|
||||
}
|
||||
}
|
||||
|
||||
/* Add the compressed chunk to the current hash value: */
|
||||
for (i = 0; i < 8; i++)
|
||||
h[i] += ah[i];
|
||||
}
|
||||
|
||||
/*
|
||||
* Public functions. See header file for documentation.
|
||||
*/
|
||||
|
||||
void sha_256_init(struct Sha_256 *sha_256, uint8_t hash[SIZE_OF_SHA_256_HASH])
|
||||
{
|
||||
sha_256->hash = hash;
|
||||
sha_256->chunk_pos = sha_256->chunk;
|
||||
sha_256->space_left = SIZE_OF_SHA_256_CHUNK;
|
||||
sha_256->total_len = 0;
|
||||
/*
|
||||
* Initialize hash values (first 32 bits of the fractional parts of the square roots of the first 8 primes
|
||||
* 2..19):
|
||||
*/
|
||||
sha_256->h[0] = 0x6a09e667;
|
||||
sha_256->h[1] = 0xbb67ae85;
|
||||
sha_256->h[2] = 0x3c6ef372;
|
||||
sha_256->h[3] = 0xa54ff53a;
|
||||
sha_256->h[4] = 0x510e527f;
|
||||
sha_256->h[5] = 0x9b05688c;
|
||||
sha_256->h[6] = 0x1f83d9ab;
|
||||
sha_256->h[7] = 0x5be0cd19;
|
||||
}
|
||||
|
||||
void sha_256_write(struct Sha_256 *sha_256, const void *data, size_t len)
|
||||
{
|
||||
sha_256->total_len += len;
|
||||
|
||||
const uint8_t *p = data;
|
||||
|
||||
while (len > 0) {
|
||||
/*
|
||||
* If the input chunks have sizes that are multiples of the calculation chunk size, no copies are
|
||||
* necessary. We operate directly on the input data instead.
|
||||
*/
|
||||
if (sha_256->space_left == SIZE_OF_SHA_256_CHUNK && len >= SIZE_OF_SHA_256_CHUNK) {
|
||||
consume_chunk(sha_256->h, p);
|
||||
len -= SIZE_OF_SHA_256_CHUNK;
|
||||
p += SIZE_OF_SHA_256_CHUNK;
|
||||
continue;
|
||||
}
|
||||
/* General case, no particular optimization. */
|
||||
const size_t consumed_len = len < sha_256->space_left ? len : sha_256->space_left;
|
||||
memcpy(sha_256->chunk_pos, p, consumed_len);
|
||||
sha_256->space_left -= consumed_len;
|
||||
len -= consumed_len;
|
||||
p += consumed_len;
|
||||
if (sha_256->space_left == 0) {
|
||||
consume_chunk(sha_256->h, sha_256->chunk);
|
||||
sha_256->chunk_pos = sha_256->chunk;
|
||||
sha_256->space_left = SIZE_OF_SHA_256_CHUNK;
|
||||
} else {
|
||||
sha_256->chunk_pos += consumed_len;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t *sha_256_close(struct Sha_256 *sha_256)
|
||||
{
|
||||
uint8_t *pos = sha_256->chunk_pos;
|
||||
size_t space_left = sha_256->space_left;
|
||||
uint32_t *const h = sha_256->h;
|
||||
|
||||
/*
|
||||
* The current chunk cannot be full. Otherwise, it would already have be consumed. I.e. there is space left for
|
||||
* at least one byte. The next step in the calculation is to add a single one-bit to the data.
|
||||
*/
|
||||
*pos++ = 0x80;
|
||||
--space_left;
|
||||
|
||||
/*
|
||||
* Now, the last step is to add the total data length at the end of the last chunk, and zero padding before
|
||||
* that. But we do not necessarily have enough space left. If not, we pad the current chunk with zeroes, and add
|
||||
* an extra chunk at the end.
|
||||
*/
|
||||
if (space_left < TOTAL_LEN_LEN) {
|
||||
memset(pos, 0x00, space_left);
|
||||
consume_chunk(h, sha_256->chunk);
|
||||
pos = sha_256->chunk;
|
||||
space_left = SIZE_OF_SHA_256_CHUNK;
|
||||
}
|
||||
const size_t left = space_left - TOTAL_LEN_LEN;
|
||||
memset(pos, 0x00, left);
|
||||
pos += left;
|
||||
size_t len = sha_256->total_len;
|
||||
pos[7] = (uint8_t)(len << 3);
|
||||
len >>= 5;
|
||||
int i;
|
||||
for (i = 6; i >= 0; --i) {
|
||||
pos[i] = (uint8_t)len;
|
||||
len >>= 8;
|
||||
}
|
||||
consume_chunk(h, sha_256->chunk);
|
||||
/* Produce the final hash value (big-endian): */
|
||||
int j;
|
||||
uint8_t *const hash = sha_256->hash;
|
||||
for (i = 0, j = 0; i < 8; i++) {
|
||||
hash[j++] = (uint8_t)(h[i] >> 24);
|
||||
hash[j++] = (uint8_t)(h[i] >> 16);
|
||||
hash[j++] = (uint8_t)(h[i] >> 8);
|
||||
hash[j++] = (uint8_t)h[i];
|
||||
}
|
||||
return sha_256->hash;
|
||||
}
|
||||
|
||||
void calc_sha_256(uint8_t hash[SIZE_OF_SHA_256_HASH], const void *input, size_t len)
|
||||
{
|
||||
struct Sha_256 sha_256;
|
||||
sha_256_init(&sha_256, hash);
|
||||
sha_256_write(&sha_256, input, len);
|
||||
(void)sha_256_close(&sha_256);
|
||||
}
|
103
stm-firmware/updater/ram-code/3rd-party/sha256/sha-256.h
vendored
Normal file
103
stm-firmware/updater/ram-code/3rd-party/sha256/sha-256.h
vendored
Normal file
@@ -0,0 +1,103 @@
|
||||
#ifndef SHA_256_H
|
||||
#define SHA_256_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*
|
||||
* @brief Size of the SHA-256 sum. This times eight is 256 bits.
|
||||
*/
|
||||
#define SIZE_OF_SHA_256_HASH 32
|
||||
|
||||
/*
|
||||
* @brief Size of the chunks used for the calculations.
|
||||
*
|
||||
* @note This should mostly be ignored by the user, although when using the streaming API, it has an impact for
|
||||
* performance. Add chunks whose size is a multiple of this, and you will avoid a lot of superfluous copying in RAM!
|
||||
*/
|
||||
#define SIZE_OF_SHA_256_CHUNK 64
|
||||
|
||||
/*
|
||||
* @brief The opaque SHA-256 type, that should be instantiated when using the streaming API.
|
||||
*
|
||||
* @note Although the details are exposed here, in order to make instantiation easy, you should refrain from directly
|
||||
* accessing the fields, as they may change in the future.
|
||||
*/
|
||||
struct Sha_256 {
|
||||
uint8_t *hash;
|
||||
uint8_t chunk[SIZE_OF_SHA_256_CHUNK];
|
||||
uint8_t *chunk_pos;
|
||||
size_t space_left;
|
||||
size_t total_len;
|
||||
uint32_t h[8];
|
||||
};
|
||||
|
||||
/*
|
||||
* @brief The simple SHA-256 calculation function.
|
||||
* @param hash Hash array, where the result is delivered.
|
||||
* @param input Pointer to the data the hash shall be calculated on.
|
||||
* @param len Length of the input data, in byte.
|
||||
*
|
||||
* @note If all of the data you are calculating the hash value on is available in a contiguous buffer in memory, this is
|
||||
* the function you should use.
|
||||
*
|
||||
* @note If either of the passed pointers is NULL, the results are unpredictable.
|
||||
*/
|
||||
void calc_sha_256(uint8_t hash[SIZE_OF_SHA_256_HASH], const void *input, size_t len);
|
||||
|
||||
/*
|
||||
* @brief Initialize a SHA-256 streaming calculation.
|
||||
* @param sha_256 A pointer to a SHA-256 structure.
|
||||
* @param hash Hash array, where the result will be delivered.
|
||||
*
|
||||
* @note If all of the data you are calculating the hash value on is not available in a contiguous buffer in memory, this is
|
||||
* where you should start. Instantiate a SHA-256 structure, for instance by simply declaring it locally, make your hash
|
||||
* buffer available, and invoke this function. Once a SHA-256 hash has been calculated (see further below) a SHA-256
|
||||
* structure can be initialized again for the next calculation.
|
||||
*
|
||||
* @note If either of the passed pointers is NULL, the results are unpredictable.
|
||||
*/
|
||||
void sha_256_init(struct Sha_256 *sha_256, uint8_t hash[SIZE_OF_SHA_256_HASH]);
|
||||
|
||||
/*
|
||||
* @brief Stream more input data for an on-going SHA-256 calculation.
|
||||
* @param sha_256 A pointer to a previously initialized SHA-256 structure.
|
||||
* @param data Pointer to the data to be added to the calculation.
|
||||
* @param len Length of the data to add, in byte.
|
||||
*
|
||||
* @note This function may be invoked an arbitrary number of times between initialization and closing, but the maximum
|
||||
* data length is limited by the SHA-256 algorithm: the total number of bits (i.e. the total number of bytes times
|
||||
* eight) must be representable by a 64-bit unsigned integer. While that is not a practical limitation, the results are
|
||||
* unpredictable if that limit is exceeded.
|
||||
*
|
||||
* @note This function may be invoked on empty data (zero length), although that obviously will not add any data.
|
||||
*
|
||||
* @note If either of the passed pointers is NULL, the results are unpredictable.
|
||||
*/
|
||||
void sha_256_write(struct Sha_256 *sha_256, const void *data, size_t len);
|
||||
|
||||
/*
|
||||
* @brief Conclude a SHA-256 streaming calculation, making the hash value available.
|
||||
* @param sha_256 A pointer to a previously initialized SHA-256 structure.
|
||||
* @return Pointer to the hash array, where the result is delivered.
|
||||
*
|
||||
* @note After this function has been invoked, the result is available in the hash buffer that initially was provided. A
|
||||
* pointer to the hash value is returned for convenience, but you should feel free to ignore it: it is simply a pointer
|
||||
* to the first byte of your initially provided hash array.
|
||||
*
|
||||
* @note If the passed pointer is NULL, the results are unpredictable.
|
||||
*
|
||||
* @note Invoking this function for a calculation with no data (the writing function has never been invoked, or it only
|
||||
* has been invoked with empty data) is legal. It will calculate the SHA-256 value of the empty string.
|
||||
*/
|
||||
uint8_t *sha_256_close(struct Sha_256 *sha_256);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
Reference in New Issue
Block a user