#include #include #include #include #include #include static float pt1000_offset; static float pt1000_sens_dev; static bool calibration_active; static float filter_alpha; static volatile float pt1000_res_raw_lf; static volatile bool filter_ready; static volatile enum adc_pt1000_error pt1000_error; static volatile uint8_t * volatile streaming_flag_ptr = NULL; static uint32_t filter_startup_cnt; static volatile float adc_pt1000_raw_reading_hf; static volatile uint16_t dma_sample_buffer[ADC_PT1000_DMA_AVG_SAMPLES]; #define ADC_TO_RES(adc) ((float)(adc) / 4096.0f * 2500.0f) static inline void adc_pt1000_stop_sample_frequency_timer() { TIM2->CR1 &= ~TIM_CR1_CEN; rcc_manager_disable_clock(&RCC->APB1ENR, BITMASK_TO_BITNO(RCC_APB1ENR_TIM2EN)); } static inline void adc_pt1000_setup_sample_frequency_timer() { rcc_manager_enable_clock(&RCC->APB1ENR, BITMASK_TO_BITNO(RCC_APB1ENR_TIM2EN)); /* Divide 42 MHz peripheral clock by 42 */ TIM2->PSC = (42UL-1UL); /* Reload value */ TIM2->ARR = ADC_PT1000_SAMPLE_CNT_DELAY; /* Trigger output at update event */ TIM2->CR2 = TIM_CR2_MMS_1; /* Start Timer in downcounting mode with autoreload */ TIM2->CR1 = TIM_CR1_DIR | TIM_CR1_CEN; } static inline void adc_pt1000_disable_adc() { ADC1->CR2 &= ~ADC_CR2_ADON; DMA2_Stream0->CR = 0; rcc_manager_disable_clock(&RCC->APB2ENR, BITMASK_TO_BITNO(RCC_APB2ENR_ADC1EN)); rcc_manager_disable_clock(&RCC->AHB1ENR, BITMASK_TO_BITNO(ADC_PT1000_PORT_RCC_MASK)); } /** * @brief Enable DMA Stream for ADC * * DMA2 Stream 0 is used. It will capture @ref ADC_PT1000_DMA_AVG_SAMPLES measurement values, * delete the two most extreme values * and calculate the avereage over the remaining values. This ensures, that one time errors are * not included in the measurement. * * After that, the moving average filter is fed with the values. * */ static inline void adc_pt1000_enable_dma_stream() { /* Enable peripheral clock for DMA2 */ rcc_manager_enable_clock(&RCC->AHB1ENR, BITMASK_TO_BITNO(RCC_AHB1ENR_DMA2EN)); /* Destination is the DMA sample buffer */ DMA2_Stream0->M0AR = (uint32_t)dma_sample_buffer; /* Source is the ADC data register */ DMA2_Stream0->PAR = (uint32_t)&ADC1->DR; /* Transfer size is ADC_PT1000_DMA_AVG_SAMPLES */ DMA2_Stream0->NDTR = ADC_PT1000_DMA_AVG_SAMPLES; NVIC_EnableIRQ(DMA2_Stream0_IRQn); /* Enable the stream in Peripheral-to-Memory mode with 16 bit data and a circular destination buffer * Enable interrupt generation on transfer complete * * Todo: Maybe use twice as big of a buffer and also use half-fill interrupt in order to prevent overruns */ DMA2_Stream0->CR = DMA_SxCR_PL_1 | DMA_SxCR_MSIZE_0 | DMA_SxCR_PSIZE_0 | DMA_SxCR_MINC | DMA_SxCR_CIRC | DMA_SxCR_TCIE | DMA_SxCR_EN; } static inline void adc_pt1000_disable_dma_stream() { /* Disable the stream */ DMA2_Stream0->CR = 0; /* Disable clock if necessary */ rcc_manager_disable_clock(&RCC->AHB1ENR, BITMASK_TO_BITNO(RCC_AHB1ENR_DMA2EN)); /* Disable interrupt */ NVIC_DisableIRQ(DMA2_Stream0_IRQn); } void adc_pt1000_setup_meas() { rcc_manager_enable_clock(&RCC->APB2ENR, BITMASK_TO_BITNO(RCC_APB2ENR_ADC1EN)); rcc_manager_enable_clock(&RCC->AHB1ENR, BITMASK_TO_BITNO(ADC_PT1000_PORT_RCC_MASK)); ADC_PT1000_PORT->MODER |= ANALOG(ADC_PT1000_PIN); /* Set S&H time for PT1000 ADC channel */ #if ADC_PT1000_CHANNEL < 10 ADC1->SMPR2 |= (7U << (3*ADC_PT1000_CHANNEL)); #else ADC1->SMPR1 |= (7U << (3*(ADC_PT1000_CHANNEL-10))); #endif ADC->CCR |= (0x2<<16); /* Set watchdog limits */ ADC1->HTR = ADC_PT1000_UPPER_WATCHDOG; ADC1->LTR = ADC_PT1000_LOWER_WATCHDOG; /* Set length of sequence to 1 */ ADC1->SQR1 = (0UL<<20); /* Set channel as 1st element in sequence */ ADC1->SQR3 = (ADC_PT1000_CHANNEL<<0); ADC1->CR1 = ADC_CR1_OVRIE | ADC_CR1_AWDEN | ADC_CR1_AWDIE; ADC1->CR2 = ADC_CR2_EXTEN_0 | ADC_CR2_EXTSEL_2 | ADC_CR2_EXTSEL_1 | ADC_CR2_ADON | ADC_CR2_DMA | ADC_CR2_DDS; adc_pt1000_set_moving_average_filter_param(ADC_PT1000_FILTER_WEIGHT); adc_pt1000_set_resistance_calibration(0, 0, false); pt1000_res_raw_lf = 0.0f; NVIC_EnableIRQ(ADC_IRQn); adc_pt1000_enable_dma_stream(); adc_pt1000_setup_sample_frequency_timer(); } void adc_pt1000_set_moving_average_filter_param(float alpha) { filter_alpha = alpha; filter_ready = false; filter_startup_cnt = ADC_FILTER_STARTUP_CYCLES; } void adc_pt1000_set_resistance_calibration(float offset, float sensitivity_deviation, bool active) { pt1000_offset = offset; pt1000_sens_dev = sensitivity_deviation; calibration_active = active; } void adc_pt1000_get_resistance_calibration(float *offset, float *sensitivity_deviation, bool *active) { if (!offset || !sensitivity_deviation || !active) return; *offset = pt1000_offset; *sensitivity_deviation = pt1000_sens_dev; *active = calibration_active; } static inline float adc_pt1000_apply_calibration(float raw_resistance) { if (calibration_active) return pt1000_res_raw_lf * (1.0f + pt1000_sens_dev) + pt1000_offset; else return raw_resistance; } int adc_pt1000_get_current_resistance(float *resistance) { int ret_val = 0; if (!resistance) return -1001; *resistance = adc_pt1000_apply_calibration(pt1000_res_raw_lf); if (adc_pt1000_check_error()) { ret_val = -100; goto return_value; } if (!filter_ready) { ret_val = 2; goto return_value; } return_value: return ret_val; } int adc_pt1000_stream_raw_value_to_memory(uint16_t *adc_array, uint32_t length, volatile uint8_t *flag_to_set) { } void adc_pt1000_convert_raw_value_array_to_resistance(float *resistance_dest, uint16_t *raw_source, uint32_t count) { } enum adc_pt1000_error adc_pt1000_check_error() { return pt1000_error; } void adc_pt1000_clear_error() { pt1000_error = ADC_PT1000_NO_ERR; } void adc_pt1000_disable() { adc_pt1000_disable_adc(); adc_pt1000_stop_sample_frequency_timer(); adc_pt1000_disable_dma_stream(); filter_ready = false; pt1000_res_raw_lf = 0.0f; if (streaming_flag_ptr) { *streaming_flag_ptr = -3; streaming_flag_ptr = NULL; } } static inline __attribute__((optimize("O3"))) void adc_pt1000_filter(float adc_prefiltered_value) { if (!filter_ready && --filter_startup_cnt <= 0) filter_ready = true; pt1000_res_raw_lf = (1.0f-filter_alpha) * pt1000_res_raw_lf + filter_alpha * ADC_TO_RES(adc_prefiltered_value); } static inline __attribute__((optimize("O3"))) float adc_pt1000_dma_avg_pre_filter() { int i; uint32_t sum = 0; uint16_t max_val = 0U; uint16_t min_val = 65535U; uint16_t sample; for (i = 0; i < ADC_PT1000_DMA_AVG_SAMPLES; i++) { sample = dma_sample_buffer[i]; /* Update min and max trackers */ max_val = (sample > max_val ? sample : max_val); min_val = (sample < min_val ? sample : min_val); /* Sum up all values (for average) */ sum += sample; } /* Delete max and min vals from sum */ sum = sum - (uint32_t)max_val - (uint32_t)min_val; /* Divide to get average and return */ return (float)sum / (float)(ADC_PT1000_DMA_AVG_SAMPLES-2); } void ADC_IRQHandler(void) { uint32_t adc1_sr; adc1_sr = ADC1->SR; if (adc1_sr & ADC_SR_OVR) { ADC1->SR &= ~ADC_SR_OVR; pt1000_error |= ADC_PT1000_OVERFLOW; /* Disable ADC in case of overrrun*/ adc_pt1000_disable(); if (streaming_flag_ptr) { *streaming_flag_ptr = -1; streaming_flag_ptr = NULL; } } if (adc1_sr & ADC_SR_AWD) { ADC1->SR &= ~ADC_SR_AWD; pt1000_error |= ADC_PT1000_WATCHDOG_ERROR; } } void DMA2_Stream0_IRQHandler() { uint32_t lisr; float adc_val; lisr = DMA2->LISR; DMA2->LIFCR = lisr; if (lisr & DMA_LISR_TCIF0) { /* Samples Transfered */ adc_val = adc_pt1000_dma_avg_pre_filter(); adc_pt1000_raw_reading_hf = adc_val; /* Call moving average filter */ adc_pt1000_filter(adc_val); } if (lisr & DMA_LISR_TEIF0) { /* Wait for watchdog to kick in */ while(1); } }