reflow-oven-control-sw/stm-firmware/adc-meas.c

429 lines
12 KiB
C

/* Reflow Oven Controller
*
* Copyright (C) 2020 Mario Hüttel <mario.huettel@gmx.net>
*
* This file is part of the Reflow Oven Controller Project.
*
* The reflow oven controller is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* The Reflow Oven Control Firmware is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the reflow oven controller project.
* If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file adc-meas.c
* @brief Implementation of the PT1000 measurement ADC and filtering functions
*/
#include <reflow-controller/adc-meas.h>
#include <stm32/stm32f4xx.h>
#include <cmsis/core_cm4.h>
#include <stm-periph/stm32-gpio-macros.h>
#include <stdlib.h>
#include <helper-macros/helper-macros.h>
#include <stm-periph/rcc-manager.h>
#include <reflow-controller/safety/safety-controller.h>
static float IN_SECTION(.ccm.bss) pt1000_offset;
static float IN_SECTION(.ccm.bss) pt1000_sens_dev;
static bool IN_SECTION(.ccm.bss) calibration_active;
static float IN_SECTION(.ccm.bss) filter_alpha;
/**
* @brief Filtered PT1000 resistance value.
* @note This value is not yet calibrated.
* Use @ref adc_pt1000_get_current_resistance to get this value with calibration.
*/
static volatile float IN_SECTION(.ccm.bss) pt1000_res_raw_lf;
static volatile int * volatile streaming_flag_ptr;
static volatile float IN_SECTION(.ccm.bss) adc_pt1000_raw_reading_hf;
static volatile uint16_t dma_sample_buffer[ADC_PT1000_DMA_AVG_SAMPLES];
static volatile uint32_t IN_SECTION(.ccm.bss) adc_watchdog_counter;
volatile float * volatile stream_buffer;
volatile uint32_t stream_count;
volatile uint32_t stream_pos;
static inline void adc_pt1000_stop_sample_frequency_timer(void)
{
TIM2->CR1 &= ~TIM_CR1_CEN;
rcc_manager_disable_clock(&RCC->APB1ENR, BITMASK_TO_BITNO(RCC_APB1ENR_TIM2EN));
}
static inline void adc_pt1000_setup_sample_frequency_timer(void)
{
rcc_manager_enable_clock(&RCC->APB1ENR, BITMASK_TO_BITNO(RCC_APB1ENR_TIM2EN));
/* Divide 2*42 MHz peripheral clock by 42 */
TIM2->PSC = (84UL-1UL);
/* Reload value */
TIM2->ARR = ADC_PT1000_SAMPLE_CNT_DELAY;
/* Trigger output at update event */
TIM2->CR2 = TIM_CR2_MMS_1;
/* Start Timer in downcounting mode with autoreload */
TIM2->CR1 = TIM_CR1_DIR | TIM_CR1_CEN;
}
static inline void adc_pt1000_disable_adc(void)
{
ADC_PT1000_PERIPH->CR2 &= ~ADC_CR2_ADON;
DMA2_Stream0->CR = 0;
safety_controller_set_crc_monitor(ERR_CRC_MON_MEAS_ADC, SAFETY_CRC_MON_MEAS_ADC_PW);
safety_controller_report_error_with_key(ERR_FLAG_MEAS_ADC_OFF, MEAS_ADC_SAFETY_FLAG_KEY);
safety_controller_enable_timing_mon(ERR_TIMING_MEAS_ADC, false);
rcc_manager_disable_clock(&RCC->APB2ENR, BITMASK_TO_BITNO(RCC_APB2ENR_ADC3EN));
rcc_manager_disable_clock(&RCC->AHB1ENR, BITMASK_TO_BITNO(ADC_PT1000_PORT_RCC_MASK));
}
/**
* @brief Enable DMA Stream for ADC
*
* DMA2 Stream 0 is used. It will capture @ref ADC_PT1000_DMA_AVG_SAMPLES measurement values,
* delete the two most extreme values
* and calculate the avereage over the remaining values. This ensures, that one time errors are
* not included in the measurement.
*
* After that, the moving average filter is fed with the values.
*
*/
static inline void adc_pt1000_enable_dma_stream(void)
{
/* Enable peripheral clock for DMA2 */
rcc_manager_enable_clock(&RCC->AHB1ENR, BITMASK_TO_BITNO(RCC_AHB1ENR_DMA2EN));
/* Destination is the DMA sample buffer */
DMA2_Stream0->M0AR = (uint32_t)dma_sample_buffer;
/* Source is the ADC data register */
DMA2_Stream0->PAR = (uint32_t)&ADC_PT1000_PERIPH->DR;
/* Transfer size is ADC_PT1000_DMA_AVG_SAMPLES */
DMA2_Stream0->NDTR = ADC_PT1000_DMA_AVG_SAMPLES;
NVIC_EnableIRQ(DMA2_Stream0_IRQn);
/* Enable the stream in Peripheral-to-Memory mode with 16 bit data and a circular destination buffer
* Enable interrupt generation on transfer complete
*
* Todo: Maybe use twice as big of a buffer and also use half-fill interrupt in order to prevent overruns
*/
DMA2_Stream0->CR = DMA_SxCR_PL_1 | DMA_SxCR_MSIZE_0 | DMA_SxCR_PSIZE_0 | DMA_SxCR_MINC |
DMA_SxCR_CIRC | DMA_SxCR_TCIE | DMA_SxCR_TEIE | DMA_SxCR_EN | ((ADC_PT1000_CHANNEL & 0x7)<<25);
}
static inline void adc_pt1000_disable_dma_stream(void)
{
/* Disable the stream */
DMA2_Stream0->CR = 0;
/* Disable clock if necessary */
rcc_manager_disable_clock(&RCC->AHB1ENR, BITMASK_TO_BITNO(RCC_AHB1ENR_DMA2EN));
/* Disable interrupt */
NVIC_DisableIRQ(DMA2_Stream0_IRQn);
}
void adc_pt1000_setup_meas(void)
{
rcc_manager_enable_clock(&RCC->APB2ENR, BITMASK_TO_BITNO(RCC_APB2ENR_ADC3EN));
rcc_manager_enable_clock(&RCC->AHB1ENR, BITMASK_TO_BITNO(ADC_PT1000_PORT_RCC_MASK));
ADC_PT1000_PORT->MODER |= ANALOG(ADC_PT1000_PIN);
/* Set S&H time for PT1000 ADC channel */
#if ADC_PT1000_CHANNEL < 10
ADC_PT1000_PERIPH->SMPR2 |= (7U << (3*ADC_PT1000_CHANNEL));
#else
ADC_PT1000_PERIPH->SMPR1 |= (7U << (3*(ADC_PT1000_CHANNEL-10)));
#endif
ADC->CCR |= (0x3<<16);
/* Set watchdog limits */
ADC_PT1000_PERIPH->HTR = ADC_PT1000_UPPER_WATCHDOG;
ADC_PT1000_PERIPH->LTR = ADC_PT1000_LOWER_WATCHDOG;
/* Set length of sequence to 1 */
ADC_PT1000_PERIPH->SQR1 = (0UL<<20);
/* Set channel as 1st element in sequence */
ADC_PT1000_PERIPH->SQR3 = (ADC_PT1000_CHANNEL<<0);
ADC_PT1000_PERIPH->CR1 = ADC_CR1_OVRIE | ADC_CR1_AWDEN | ADC_CR1_AWDIE;
ADC_PT1000_PERIPH->CR2 = ADC_CR2_EXTEN_0 | ADC_CR2_EXTSEL_2 | ADC_CR2_EXTSEL_1 |
ADC_CR2_ADON | ADC_CR2_DMA | ADC_CR2_DDS;
adc_pt1000_set_moving_average_filter_param(ADC_PT1000_FILTER_WEIGHT);
adc_pt1000_set_resistance_calibration(0, 0, false);
pt1000_res_raw_lf = 0.0f;
NVIC_EnableIRQ(ADC_IRQn);
adc_pt1000_enable_dma_stream();
adc_pt1000_setup_sample_frequency_timer();
safety_controller_ack_flag_with_key(ERR_FLAG_MEAS_ADC_OFF, MEAS_ADC_SAFETY_FLAG_KEY);
streaming_flag_ptr = NULL;
adc_watchdog_counter = 0UL;
stream_buffer = NULL;
safety_controller_set_crc_monitor(ERR_CRC_MON_MEAS_ADC, SAFETY_CRC_MON_MEAS_ADC_PW);
}
void adc_pt1000_set_moving_average_filter_param(float alpha)
{
filter_alpha = alpha;
safety_controller_report_error_with_key(ERR_FLAG_MEAS_ADC_UNSTABLE, MEAS_ADC_SAFETY_FLAG_KEY);
}
void adc_pt1000_set_resistance_calibration(float offset, float sensitivity_deviation, bool active)
{
pt1000_offset = offset;
pt1000_sens_dev = sensitivity_deviation;
calibration_active = active;
if (!calibration_active)
safety_controller_report_error_with_key(ERR_FLAG_UNCAL, MEAS_ADC_SAFETY_FLAG_KEY);
else
safety_controller_ack_flag_with_key(ERR_FLAG_UNCAL, MEAS_ADC_SAFETY_FLAG_KEY);
}
void adc_pt1000_get_resistance_calibration(float *offset, float *sensitivity_deviation, bool *active)
{
if (offset)
*offset = pt1000_offset;
if (sensitivity_deviation)
*sensitivity_deviation = pt1000_sens_dev;
if (active)
*active = calibration_active;
}
static inline float adc_pt1000_apply_calibration(float raw_resistance)
{
if (calibration_active)
return (raw_resistance - pt1000_offset) * (1.0f + pt1000_sens_dev);
else
return raw_resistance;
}
int adc_pt1000_get_current_resistance(float *resistance)
{
int ret_val = 0;
bool flag = true;
if (!resistance)
return -1001;
*resistance = adc_pt1000_apply_calibration(pt1000_res_raw_lf);
if (safety_controller_get_flags_by_mask(ERR_FLAG_MEAS_ADC_OFF | ERR_FLAG_MEAS_ADC_OVERFLOW |
ERR_FLAG_MEAS_ADC_WATCHDOG | ERR_FLAG_TIMING_MEAS_ADC)) {
ret_val = -100;
goto return_value;
}
(void)safety_controller_get_flag(ERR_FLAG_MEAS_ADC_UNSTABLE, &flag, false);
if (flag) {
ret_val = 2;
goto return_value;
}
return_value:
return ret_val;
}
int adc_pt1000_stream_raw_value_to_memory(volatile float *adc_array, uint32_t length, volatile int *flag_to_set)
{
int ret = 0;
if (!flag_to_set)
return -1;
stream_buffer = adc_array;
stream_count = length;
stream_pos = 0U;
if (adc_array) {
*flag_to_set = 0;
streaming_flag_ptr = flag_to_set;
} else {
ret = -2;
}
return ret;
}
void adc_pt1000_convert_raw_value_array_to_resistance(float *resistance_dest, float *raw_source, uint32_t count)
{
uint32_t i;
if (!resistance_dest)
resistance_dest = raw_source;
if (!raw_source || !count)
return;
for (i = 0; i < count; i++)
resistance_dest[i] = ADC_TO_RES(raw_source[i]);
}
void adc_pt1000_disable(void)
{
adc_pt1000_disable_adc();
adc_pt1000_stop_sample_frequency_timer();
adc_pt1000_disable_dma_stream();
pt1000_res_raw_lf = 0.0f;
safety_controller_report_error_with_key(ERR_FLAG_MEAS_ADC_OFF, MEAS_ADC_SAFETY_FLAG_KEY);
safety_controller_report_error_with_key(ERR_FLAG_MEAS_ADC_UNSTABLE, MEAS_ADC_SAFETY_FLAG_KEY);
if (streaming_flag_ptr) {
*streaming_flag_ptr = -3;
streaming_flag_ptr = NULL;
}
}
static inline __attribute__((optimize("O3"))) void adc_pt1000_filter(float adc_prefiltered_value)
{
float alpha;
float res;
static uint8_t old_state = 0;
static uint32_t stable_sample_counter = 0;
res = ADC_TO_RES(adc_prefiltered_value);
if (ABS(res - pt1000_res_raw_lf) >= ADC_PT1000_FILTER_UNSTABLE_DIFF) {
stable_sample_counter = 0;
alpha = ADC_PT1000_FILTER_WEIGHT_FAST;
if (old_state != 1) {
safety_controller_report_error_with_key(ERR_FLAG_MEAS_ADC_UNSTABLE,
MEAS_ADC_SAFETY_FLAG_KEY);
old_state = 1;
}
} else {
alpha = filter_alpha;
if (old_state != 2) {
stable_sample_counter++;
if (stable_sample_counter >= ADC_PT1000_FILTER_STABLE_SAMPLE_COUNT) {
safety_controller_ack_flag_with_key(ERR_FLAG_MEAS_ADC_UNSTABLE,
MEAS_ADC_SAFETY_FLAG_KEY);
old_state = 2;
}
}
}
pt1000_res_raw_lf = (1.0f - alpha) * pt1000_res_raw_lf +
alpha * res;
safety_controller_report_timing(ERR_TIMING_MEAS_ADC);
}
static inline __attribute__((optimize("O3"))) float adc_pt1000_dma_avg_pre_filter(void)
{
unsigned int i;
uint32_t sum = 0;
uint16_t max_val = 0U;
uint16_t min_val = 65535U;
uint16_t sample;
for (i = 0; i < ADC_PT1000_DMA_AVG_SAMPLES; i++) {
sample = dma_sample_buffer[i];
/* Update min and max trackers */
max_val = (sample > max_val ? sample : max_val);
min_val = (sample < min_val ? sample : min_val);
/* Sum up all values (for average) */
sum += sample;
}
/* Delete max and min vals from sum */
sum = sum - (uint32_t)max_val - (uint32_t)min_val;
/* Divide to get average and return */
return (float)sum / (float)(ADC_PT1000_DMA_AVG_SAMPLES-2);
}
void ADC_IRQHandler(void)
{
uint32_t adc1_sr;
adc1_sr = ADC_PT1000_PERIPH->SR;
if (adc1_sr & ADC_SR_OVR) {
ADC_PT1000_PERIPH->SR &= ~ADC_SR_OVR;
safety_controller_report_error(ERR_FLAG_MEAS_ADC_OVERFLOW);
/* Disable ADC in case of overrrun*/
adc_pt1000_disable();
}
if (adc1_sr & ADC_SR_AWD) {
ADC_PT1000_PERIPH->SR &= ~ADC_SR_AWD;
adc_watchdog_counter++;
if (adc_watchdog_counter >= ADC_PT1000_WATCHDOG_SAMPLE_COUNT)
safety_controller_report_error(ERR_FLAG_MEAS_ADC_WATCHDOG);
}
}
static void append_stream_buffer(float val)
{
if (!stream_buffer || !streaming_flag_ptr)
return;
if (stream_pos < stream_count)
stream_buffer[stream_pos++] = val;
if (stream_pos >= stream_count) {
*streaming_flag_ptr = 1;
streaming_flag_ptr = NULL;
}
}
void DMA2_Stream0_IRQHandler(void)
{
uint32_t lisr;
float adc_val;
lisr = DMA2->LISR & (0x3F);
DMA2->LIFCR = lisr;
if (lisr & DMA_LISR_TCIF0) {
/* Samples transferred */
adc_val = adc_pt1000_dma_avg_pre_filter();
adc_pt1000_raw_reading_hf = adc_val;
if (streaming_flag_ptr)
append_stream_buffer(adc_val);
if (adc_watchdog_counter > 0UL)
adc_watchdog_counter--;
/* Call moving average filter */
adc_pt1000_filter(adc_val);
}
if (lisr & DMA_LISR_TEIF0)
adc_pt1000_disable();
}