reflow-oven-control-sw/stm-firmware/calibration.c

330 lines
9.5 KiB
C

/* Reflow Oven Controller
*
* Copyright (C) 2020 Mario Hüttel <mario.huettel@gmx.net>
*
* This file is part of the Reflow Oven Controller Project.
*
* The reflow oven controller is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* The Reflow Oven Control Firmware is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the reflow oven controller project.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <reflow-controller/calibration.h>
#include <reflow-controller/adc-meas.h>
#include <stm-periph/uart.h>
#include <helper-macros/helper-macros.h>
#include <stdlib.h>
#include <float.h>
#include <reflow-controller/safety/safety-controller.h>
enum calibration_shell_state {CAL_START = 0, CAL_WAIT_RES1, CAL_MEAS_RES1, CAL_WAIT_RES2, CAL_MEAS_RES2};
void calibration_calculate(float low_measured, float low_setpoint, float high_measured, float high_setpoint,
float *sens_deviation, float *offset)
{
if (!sens_deviation || !offset)
return;
float delta_y;
float delta_x;
float sens_corr_mult;
delta_y = high_measured - low_measured;
delta_x = high_setpoint - low_setpoint;
sens_corr_mult = delta_x / delta_y;
*sens_deviation = sens_corr_mult - 1.0f;
*offset = (high_setpoint * low_measured - low_setpoint * high_measured) / (high_setpoint - low_setpoint);
}
float *calibration_acquire_data_start(uint32_t count, volatile int *flag)
{
int status;
float *stream_mem;
if (!count)
return NULL;
stream_mem = (float *)calloc(count, sizeof(float));
if (!stream_mem)
return stream_mem;
*flag = 0;
status = adc_pt1000_stream_raw_value_to_memory(stream_mem, count, flag);
if (status)
goto free_mem;
return stream_mem;
free_mem:
free(stream_mem);
return NULL;
}
static float calculate_mean(float *values, uint32_t count)
{
uint32_t loop_cnt = (count + 7) / 8;
uint32_t remainder = count % 8;
float sum = 0;
switch (remainder) {
case 0: do { sum += *values++; /* FALLTHRU */
case 7: sum += *values++; /* FALLTHRU */
case 6: sum += *values++; /* FALLTHRU */
case 5: sum += *values++; /* FALLTHRU */
case 4: sum += *values++; /* FALLTHRU */
case 3: sum += *values++; /* FALLTHRU */
case 2: sum += *values++; /* FALLTHRU */
case 1: sum += *values++;
} while (--loop_cnt > 0);
}
return sum / (float)count;
}
static float calculate_standard_deviation(float *values, uint32_t count, float mean)
{
uint32_t loop_cnt = (count + 7) / 8;
uint32_t remainder = count % 8;
float sum = 0;
float res;
switch (remainder) {
case 0: do {
sum += (*values - mean) * (*values - mean);
values++;
/* FALLTHRU */
case 7: sum += (*values - mean) * (*values - mean);
values++;
/* FALLTHRU */
case 6: sum += (*values - mean) * (*values - mean);
values++;
/* FALLTHRU */
case 5: sum += (*values - mean) * (*values - mean);
values++;
/* FALLTHRU */
case 4: sum += (*values - mean) * (*values - mean);
values++;
/* FALLTHRU */
case 3: sum += (*values - mean) * (*values - mean);
values++;
/* FALLTHRU */
case 2: sum += (*values - mean) * (*values - mean);
values++;
/* FALLTHRU */
case 1: sum += (*values - mean) * (*values - mean);
values++;
/* FALLTHRU */
} while (--loop_cnt > 0);
}
sum /= (float)count;
/* Compute the square root using the FPU.
* The constraint 't' tells GCC to use a floating point register
*/
__asm__ __volatile__("vsqrt.f32 %0, %1" : "=t"(res) : "t"(sum));
return res;
}
static int calibration_poll_data_acquisition(float *mem_array, uint32_t count, volatile int *flag, float *mu, float *std_dev)
{
int ret_val = 0;
if (!flag || !mem_array || !mu || !std_dev)
return -1000;
if (*flag == 0) {
/* Continue polling */
return 1;
}
if (*flag != 1) {
/* Error */
ret_val = -1;
goto ret_free_mem;
}
/* Convert the stream memory to Ohm readings */
adc_pt1000_convert_raw_value_array_to_resistance(NULL, mem_array, count);
/* Do not compute std-deviation. Too imprecise */
*mu = calculate_mean(mem_array, count);
*std_dev = calculate_standard_deviation(mem_array, count, *mu);
ret_free_mem:
free(mem_array);
return ret_val;
}
shellmatta_retCode_t calibration_sequence_shell_cmd(shellmatta_handle_t shell, const char *arg, uint32_t len)
{
(void)arg;
(void)len;
bool error_occured;
const enum safety_flag meas_adc_err_mask = ERR_FLAG_MEAS_ADC_OFF | ERR_FLAG_MEAS_ADC_WATCHDOG;
/* This stores the current state of the calibration process */
static enum calibration_shell_state cal_state = CAL_START;
shellmatta_retCode_t ret_val = SHELLMATTA_BUSY;
uint32_t i;
int res;
static float mu = 0.0f, mu2 = 0.0f, dev = 0.0f, dev2 = 0.0f;
float sens_dev, offset;
static float *data_buffer = NULL;
static volatile int flag;
char *stdin_data;
uint32_t stdin_len;
bool cal_active;
switch (cal_state) {
case CAL_START:
/* Clear errors of PT1000 reading */
safety_controller_ack_flag(ERR_FLAG_MEAS_ADC_WATCHDOG);
safety_controller_ack_flag(ERR_FLAG_OVERTEMP);
adc_pt1000_get_resistance_calibration(&offset, &sens_dev, &cal_active);
if (cal_active) {
shellmatta_printf(shell, "Already calibrated.\r\n\tOffset: %f\r\n\tSens: %f\r\n", offset, sens_dev);
shellmatta_printf(shell, "Press CTRL-C to abort new calibration.\r\n");
}
shellmatta_printf(shell, "Starting calibration: Insert 1000 Ohm calibration resistor and press ENTER\r\n");
cal_state = CAL_WAIT_RES1;
ret_val = SHELLMATTA_CONTINUE;
break;
case CAL_WAIT_RES1:
cal_state = CAL_WAIT_RES1;
ret_val = SHELLMATTA_CONTINUE;
shellmatta_read(shell, &stdin_data, &stdin_len);
if (stdin_len > 0) {
for (i = 0; i < stdin_len; i++) {
if (stdin_data[i] == '\r') {
cal_state = CAL_MEAS_RES1;
ret_val = SHELLMATTA_BUSY;
shellmatta_printf(shell, "Measurement...\r\n");
safety_controller_ack_flag(ERR_FLAG_MEAS_ADC_WATCHDOG);
safety_controller_ack_flag(ERR_FLAG_OVERTEMP);
data_buffer = calibration_acquire_data_start(512UL, &flag);
break;
} else if (stdin_data[i] == '\x03') {
cal_state = CAL_START;
}
}
}
break;
case CAL_MEAS_RES1:
if (!data_buffer) {
shellmatta_printf(shell, "Data acquisition failed!\r\n");
ret_val = SHELLMATTA_OK;
cal_state = CAL_START;
break;
}
res = calibration_poll_data_acquisition(data_buffer, 512UL, &flag, &mu, &dev);
/* Stay in this state until the measurements are finished */
if (res == 1) {
ret_val = SHELLMATTA_BUSY;
cal_state = CAL_MEAS_RES1;
} else if (res == 0) {
shellmatta_printf(shell, "R=%.2f, Std-Dev: %.2f\r\n", mu, dev);
error_occured = safety_controller_get_flags_by_mask(meas_adc_err_mask);
if (error_occured) {
shellmatta_printf(shell, "Error in resistance measurement");
ret_val = SHELLMATTA_OK;
cal_state = CAL_START;
} else {
ret_val = SHELLMATTA_CONTINUE;
shellmatta_printf(shell, "Insert 2000 Ohm calibration resistor and press ENTER\r\n");
cal_state = CAL_WAIT_RES2;
}
} else {
shellmatta_printf(shell, "Error in resistance measurement");
ret_val = SHELLMATTA_OK;
cal_state = CAL_START;
}
break;
case CAL_WAIT_RES2:
cal_state = CAL_WAIT_RES2;
ret_val = SHELLMATTA_CONTINUE;
shellmatta_read(shell, &stdin_data, &stdin_len);
if (stdin_len > 0) {
for (i = 0; i < stdin_len; i++) {
if (stdin_data[i] == '\r') {
cal_state = CAL_MEAS_RES2;
ret_val = SHELLMATTA_BUSY;
shellmatta_printf(shell, "Measurement...\r\n");
safety_controller_ack_flag(ERR_FLAG_MEAS_ADC_WATCHDOG);
safety_controller_ack_flag(ERR_FLAG_OVERTEMP);
data_buffer = calibration_acquire_data_start(512UL, &flag);
break;
} else if (stdin_data[i] == '\x03') {
cal_state = CAL_START;
}
}
}
break;
case CAL_MEAS_RES2:
if (!data_buffer) {
shellmatta_printf(shell, "Data acquisition failed!\r\n");
ret_val = SHELLMATTA_OK;
cal_state = CAL_START;
break;
}
res = calibration_poll_data_acquisition(data_buffer, 512UL, &flag, &mu2, &dev2);
/* Stay in this state until the measurements are finished */
if (res == 1) {
ret_val = SHELLMATTA_BUSY;
cal_state = CAL_MEAS_RES2;
} else if (res == 0) {
shellmatta_printf(shell, "R=%.2f, Std-Dev: %.2f\r\n", mu2, dev2);
error_occured = safety_controller_get_flags_by_mask(meas_adc_err_mask);
if (error_occured) {
shellmatta_printf(shell, "Error in resistance measurement");
ret_val = SHELLMATTA_OK;
cal_state = CAL_START;
} else {
ret_val = SHELLMATTA_OK;
cal_state = CAL_START;
if (dev > CALIBRATION_MAX_NOISE_OHM ||
dev2 > CALIBRATION_MAX_NOISE_OHM) {
shellmatta_printf(shell, "Calibration failed! Too much noise. Check your hardware.\r\n");
break;
}
shellmatta_printf(shell, "Calibartion finished successfully!\r\n");
/* Calculate calibration */
calibration_calculate(mu, 1000.0f, mu2, 2000.0f, &sens_dev, &offset);
shellmatta_printf(shell, "\r\n\tSENS_DEVIATION: %.4f\r\n\tOFFSET_CORR: %.2f\r\n", sens_dev, offset);
adc_pt1000_set_resistance_calibration(offset, sens_dev, true);
}
} else {
shellmatta_printf(shell, "Error in resistance measurement");
ret_val = SHELLMATTA_OK;
cal_state = CAL_START;
}
break;
default:
shellmatta_printf(shell, "Undefined state reached in calibration. Aborting\r\n");
cal_state = CAL_START;
ret_val = SHELLMATTA_OK;
break;
}
return ret_val;
}