reflow-oven-control-sw/stm-firmware/main.c

355 lines
11 KiB
C

/* Reflow Oven Controller
*
* Copyright (C) 2020 Mario Hüttel <mario.huettel@gmx.net>
*
* This file is part of the Reflow Oven Controller Project.
*
* The reflow oven controller is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* The Reflow Oven Control Firmware is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the reflow oven controller project.
* If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file main.c
* @brief Main file for firmware
*/
#include "reflow-controller/safety/safety-config.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stm32/stm32f4xx.h>
#include <cmsis/core_cm4.h>
#include <setup/system_stm32f4xx.h>
#include <reflow-controller/systick.h>
#include <reflow-controller/adc-meas.h>
#include <reflow-controller/digio.h>
#include <stm-periph/stm32-gpio-macros.h>
#include <stm-periph/rcc-manager.h>
#include <stm-periph/uart.h>
#include <reflow-controller/periph-config/shell-uart-config.h>
#include <reflow-controller/oven-driver.h>
#include <fatfs/ff.h>
#include <reflow-controller/sd.h>
#include <reflow-controller/ui/gui.h>
#include <reflow-controller/ui/shell.h>
#include <reflow-controller/ui/shell-uart.h>
#include <reflow-controller/safety/safety-controller.h>
#include <reflow-controller/settings/settings.h>
#include <reflow-controller/safety/safety-memory.h>
#include <reflow-controller/safety/fault.h>
#include <reflow-controller/updater/updater.h>
#include <reflow-controller/temp-profile/temp-profile-executer.h>
#include <reflow-controller/settings/spi-eeprom.h>
#include <reflow-controller/main-cycle-counter.h>
#include <stm-periph/option-bytes.h>
static void setup_nvic_priorities(void)
{
/* No sub priorities */
NVIC_SetPriorityGrouping(2);
/* Setup Priorities */
NVIC_SetPriority(ADC_IRQn, 2);
/* Measurement ADC DMA */
NVIC_SetPriority(DMA2_Stream0_IRQn, 1);
/* Shelmatta UART TX */
NVIC_SetPriority(DMA2_Stream7_IRQn, 3);
NVIC_SetPriority(DMA2_Stream4_IRQn, 2);
}
FATFS fs;
#define fs_ptr (&fs)
/**
* @brief Configure UART GPIOs
* In case the application is build in debug mode, use the TX/RX Pins on the debug header
* else the Pins on the DIGIO header are configured in the digio module and this function does nothing.
*/
static inline void uart_gpio_config(void)
{
#if defined(DEBUGBUILD) || defined(UART_ON_DEBUG_HEADER)
rcc_manager_enable_clock(&RCC->AHB1ENR, BITMASK_TO_BITNO(SHELL_UART_PORT_RCC_MASK));
SHELL_UART_PORT->MODER &= MODER_DELETE(SHELL_UART_TX_PIN) & MODER_DELETE(SHELL_UART_RX_PIN);
SHELL_UART_PORT->MODER |= ALTFUNC(SHELL_UART_RX_PIN) | ALTFUNC(SHELL_UART_TX_PIN);
SETAF(SHELL_UART_PORT, SHELL_UART_RX_PIN, SHELL_UART_RX_PIN_ALTFUNC);
SETAF(SHELL_UART_PORT, SHELL_UART_TX_PIN, SHELL_UART_TX_PIN_ALTFUNC);
/* Setup Pullup resistor at UART RX */
SHELL_UART_PORT->PUPDR |= PULLUP(SHELL_UART_RX_PIN);
#endif
}
/**
* @brief Process the boot status structure in the safety (backup) RAM
* Depending on the flags set there, this function will:
* - Reboot into the ram code for reflashing
* - Display the PANIC message
* - Display if the flash has been successfully updated
*/
static inline void handle_boot_status(void)
{
struct safety_memory_boot_status status;
int res;
res = safety_memory_get_boot_status(&status);
if (res != 0)
panic_mode();
if (status.reset_from_panic) {
/* We've seen a panic */
gui_root_menu_message_set("!! PANIC !!", "Check error me- mory!");
}
if (status.reboot_to_bootloader) {
status.reboot_to_bootloader = 0UL;
safety_memory_set_boot_status(&status);
led_set(0, 1);
led_set(1, 1);
gui_lcd_write_direct_blocking(0, "Updating...");
start_updater_ram_code();
}
if (status.code_updated) {
status.code_updated = 0x0UL;
safety_memory_set_boot_status(&status);
/* Display notification on GUI */
gui_root_menu_message_set("Firmware updated", "[Press Key]");
}
}
/**
* @brief Read out the option bytes of the STM32 and program them to the desired values.
*
* - This function currently forces the brown out level to Level 3.
*/
static void check_and_program_opt_bytes(void)
{
struct option_bytes opts;
int err;
/** - Read option bytes */
stm_option_bytes_read(&opts);
if (opts.brown_out_level != 0) {
/* Set the brown out level to level 3 => highest brown out limit. */
opts.brown_out_level = 0;
/** - Program the option bytes if brown out level was not set correctly */
err = stm_option_bytes_program(&opts);
/** - If programming failes, enter panic mode */
if (err)
panic_mode();
/** - If programming is successful, reset the system to apply new settings */
NVIC_SystemReset();
}
}
/**
* @brief Setup the system.
*
* This function does all basic initializations of the MCU and its peripherals
*/
static inline void setup_system(void)
{
float tmp;
/** - Read the option bytes and if necessary program them to the desired values */
check_and_program_opt_bytes();
/** - Setup the NVIC priorities of the core peripherals using interrupts */
setup_nvic_priorities();
/** - Init safety controller and safety memory */
safety_controller_init();
/** - Setup the systick module generating the 100us tick fort the GUI and
* the 1ms tick for the global systick timestamp
*/
systick_setup();
/** - Initialize the oven output driver outputting the wavepacket control signal for the SSR and */
oven_driver_init();
/** - Initialize all DIGIO Pins to their default state and pin functions */
digio_init();
/** - Set-up the LED outputs */
led_setup();
/** - Set-up the loudspeaker / beeper output */
loudspeaker_setup();
/** - Initialize the GUI */
gui_init();
/** - Initialize the pins for the uart interface. */
uart_gpio_config();
/** - Set-up the settings module */
settings_setup();
/** - Load the overtemperature limit from eeprom if available. Otherwise the default value will be used */
if (settings_load_overtemp_limit(&tmp) == SETT_LOAD_SUCCESS)
safety_controller_set_overtemp_limit(tmp);
/** - Handle the boot status struct in the safety memory */
handle_boot_status();
/** - Initialize the shell UART */
shell_uart_setup();
/** - Enable the ADC for PT1000 measurement */
adc_pt1000_setup_meas();
/** - Enable the misc CRC config monitor to supervise clock, systick and flash settings */
(void)safety_controller_set_crc_monitor(ERR_CRC_MON_MISC, SAFETY_CRC_MON_MISC_PW);
}
/**
* @brief Handle the input for the shell instance.
*
* This function will check if the RX ring buffer of the UART contains data.
* If so, it will prowvide it to the shellmatta shell.
*
* @param shell_handle Handle to the shellmatta instance
*/
static void handle_shell_uart_input(shellmatta_handle_t shell_handle)
{
int uart_receive_status;
const char *uart_input;
size_t uart_input_len;
/* Handle UART input for shell */
uart_receive_status = shell_uart_receive_data_with_dma(&uart_input, &uart_input_len);
if (uart_receive_status >= 0)
shell_handle_input(shell_handle, uart_input, uart_input_len);
}
/**
* @brief This is the main function containing the initilizations and the cyclic main loop
* @return Don't care. This function will never return. We're on an embedded device...
*/
int main(void)
{
bool cal_active;
float offset;
float sens;
int status;
bool sd_card_mounted = false;
bool sd_old;
shellmatta_handle_t shell_handle;
int menu_wait_request;
uint64_t quarter_sec_timestamp = 0ULL;
enum config_weight worst_safety_flag = SAFETY_FLAG_CONFIG_WEIGHT_NONE;
/** - Setup all the peripherals and external componets like LCD, EEPROM etc. and the safety controller */
setup_system();
/** - Try load the calibration. This will only succeed if there's an EEPROM */
status = settings_load_calibration(&sens, &offset);
if (!status)
adc_pt1000_set_resistance_calibration(offset, sens, true);
/** - Initialize the shellmatta shell */
shell_handle = shell_init(shell_uart_write_callback);
/** - Print motd to shell */
shell_print_motd(shell_handle);
/** - Set the main cycle counter to 0 and activate the core cycle counter if available */
main_and_core_cycle_counter_init();
/** - Do a loop over the following */
while (1) {
/** - If 250 ms have passed since the last time this step was reached, we try to initialize the
* SD card. If the card has been mounted and there is no current resistance calibration,
* it is tried to load it from SD card.
*/
if (systick_ticks_have_passed(quarter_sec_timestamp, 250)) {
led_set(1u, 0);
sd_old = sd_card_mounted;
sd_card_mounted = mount_sd_card_if_avail(fs_ptr);
if (sd_card_mounted && !sd_old) {
adc_pt1000_get_resistance_calibration(NULL, NULL, &cal_active);
if (!cal_active) {
status = settings_load_calibration(&sens, &offset);
if (!status)
adc_pt1000_set_resistance_calibration(offset, sens, true);
}
}
/* Check if any flags are present, that disable the PID controller. Blink
* LED 0 in this case
*/
if (worst_safety_flag >= SAFETY_FLAG_CONFIG_WEIGHT_PID)
led_set(0u, led_get(0u) ? 0 : 1);
else
led_set(0u, 0);
quarter_sec_timestamp = systick_get_global_tick();
}
/** - Handle the GUI */
menu_wait_request = gui_handle();
/** - Handle the uart input for the shell */
handle_shell_uart_input(shell_handle);
/** - Execute current profile step, if a profile is active */
temp_profile_executer_handle();
/** - Handle the safety controller. This must be called! Otherwise a watchdog reset will occur */
worst_safety_flag = safety_controller_handle();
/** - If the Oven PID controller is running, we handle its sample function */
if (oven_pid_get_status() == OVEN_PID_RUNNING)
oven_pid_handle();
/** - Apply the power level of the oven driver */
oven_driver_apply_power_level();
/** - Report the main loop timing to the timing monitor to detect a slowed down main loop */
safety_controller_report_timing(ERR_TIMING_MAIN_LOOP);
/** - If the menu requests a directly following loop run, the main loop will continue.
* Otherwise it will wait for the next interrupt
*/
if (menu_wait_request)
__WFI();
else
__NOP();
/** - Increment the main cycle counter */
main_cycle_counter_inc();
}
return 0;
}
/**
* @brief Callback function for the SDIO driver to wait \p ms milliseconds
* @param ms
* @warning This function relies on the systick and must not be used in interrupt context.
*/
void sdio_wait_ms(uint32_t ms)
{
systick_wait_ms(ms);
}