reflow-oven-control-sw/stm-firmware/ui/lcd.c

466 lines
10 KiB
C

/* Reflow Oven Controller
*
* Copyright (C) 2020 Mario Hüttel <mario.huettel@gmx.net>
*
* This file is part of the Reflow Oven Controller Project.
*
* The reflow oven controller is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* The Reflow Oven Control Firmware is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the reflow oven controller project.
* If not, see <http://www.gnu.org/licenses/>.
*/
/* Thanks to
* https://www.mikrocontroller.net/articles/AVR-GCC-Tutorial/LCD-Ansteuerung
* for the basic code construct
*/
#include <stm32/stm32f4xx.h>
#include <reflow-controller/ui/lcd.h>
#include <reflow-controller/systick.h>
#include <stm-periph/clock-enable-manager.h>
#include <stm-periph/stm32-gpio-macros.h>
#include <helper-macros/helper-macros.h>
#include <stdbool.h>
#include <string.h>
static void lcd_port_clear(void)
{
LCD_DPORT->ODR &= ~(LCD_E_MASK);
LCD_DPORT->ODR &= ~(LCD_DATA_MASK | LCD_RS_MASK | LCD_E_MASK);
}
static void lcd_enable(void)
{
LCD_DPORT->ODR |= LCD_E_MASK;
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
//systick_wait_ms(10);
LCD_DPORT->ODR &= ~LCD_E_MASK;
//systick_wait_ms(10);
__ASM("nop");
__ASM("nop");
__ASM("nop");
}
static void lcd_out(uint8_t data)
{
LCD_DPORT->ODR &= ~(LCD_DATA_MASK);
LCD_DPORT->ODR |= (data << LCD_DATA_BIT_OFFSET) & LCD_DATA_MASK;
}
static void lcd_data(uint8_t data)
{
lcd_port_clear();
LCD_DPORT->ODR |= LCD_RS_MASK;
lcd_out((data>>4) & 0xFU);
lcd_enable();
lcd_out(data & 0xFU);
lcd_enable();
systick_wait_ms(1);
}
static void lcd_command(uint8_t data)
{
lcd_port_clear();
lcd_out((data>>4) & 0xFU);
lcd_enable();
lcd_out(data & 0xFU);
lcd_enable();
systick_wait_ms(1);
}
#define LCD_DDADR_LINE1 0x00
#define LCD_DDADR_LINE2 0x40
#define LCD_DDADR_LINE3 0x10
#define LCD_DDADR_LINE4 0x50
// Clear Display -------------- 0b00000001
#define LCD_CLEAR_DISPLAY 0x01
// Cursor Home ---------------- 0b0000001x
#define LCD_CURSOR_HOME 0x02
// Set Entry Mode ------------- 0b000001xx
#define LCD_SET_ENTRY 0x04
#define LCD_ENTRY_DECREASE 0x00
#define LCD_ENTRY_INCREASE 0x02
#define LCD_ENTRY_NOSHIFT 0x00
#define LCD_ENTRY_SHIFT 0x01
// Set Display ---------------- 0b00001xxx
#define LCD_SET_DISPLAY 0x08
#define LCD_DISPLAY_OFF 0x00
#define LCD_DISPLAY_ON 0x04
#define LCD_CURSOR_OFF 0x00
#define LCD_CURSOR_ON 0x02
#define LCD_BLINKING_OFF 0x00
#define LCD_BLINKING_ON 0x01
// Set Shift ------------------ 0b0001xxxx
#define LCD_SET_SHIFT 0x10
#define LCD_CURSOR_MOVE 0x00
#define LCD_DISPLAY_SHIFT 0x08
#define LCD_SHIFT_LEFT 0x00
#define LCD_SHIFT_RIGHT 0x04
// Set Function --------------- 0b001xxxxx
#define LCD_SET_FUNCTION 0x20
#define LCD_FUNCTION_4BIT 0x00
#define LCD_FUNCTION_8BIT 0x10
#define LCD_FUNCTION_1LINE 0x00
#define LCD_FUNCTION_2LINE 0x08
#define LCD_FUNCTION_5X7 0x00
#define LCD_FUNCTION_5X10 0x04
#define LCD_SOFT_RESET 0x30
// Set CG RAM Address --------- 0b01xxxxxx (Character Generator RAM)
#define LCD_SET_CGADR 0x40
#define LCD_GC_CHAR0 0
#define LCD_GC_CHAR1 1
#define LCD_GC_CHAR2 2
#define LCD_GC_CHAR3 3
#define LCD_GC_CHAR4 4
#define LCD_GC_CHAR5 5
#define LCD_GC_CHAR6 6
#define LCD_GC_CHAR7 7
// Set DD RAM Address --------- 0b1xxxxxxx (Display Data RAM)
#define LCD_SET_DDADR 0x80
static char IN_SECTION(.ccm.bss) shadow_display[4][21];
void lcd_clear(void)
{
lcd_command(LCD_CLEAR_DISPLAY);
systick_wait_ms(3);
}
void lcd_home(void)
{
lcd_command(LCD_CURSOR_HOME);
systick_wait_ms(3);
}
static uint8_t lcd_get_set_cursor_cmd(uint8_t x, uint8_t y)
{
uint8_t data;
switch (y) {
case 0:
/* First line */
data = LCD_SET_DDADR + LCD_DDADR_LINE1 + x;
break;
case 1:
/* Second Line */
data = LCD_SET_DDADR + LCD_DDADR_LINE2 + x;
break;
case 2:
/* Third line */
data = LCD_SET_DDADR + LCD_DDADR_LINE3 + x;
break;
case 3:
/* Fourth line */
data = LCD_SET_DDADR + LCD_DDADR_LINE4 + x;
break;
default:
/* In case of wrong line, assume first line */
data = LCD_SET_DDADR + LCD_DDADR_LINE1;
break;
}
return data;
}
void lcd_setcursor(uint8_t x, uint8_t y)
{
uint8_t data;
data = lcd_get_set_cursor_cmd(x, y);
lcd_command(data);
}
void lcd_string(const char *data)
{
while (*data != '\0')
lcd_data((uint8_t)*data++);
}
static void lcd_port_init()
{
LCD_DPORT->MODER &= MODER_DELETE(LCD_E) & MODER_DELETE(LCD_RS) & MODER_DELETE(LCD_DATA_BIT_OFFSET) &
MODER_DELETE(LCD_DATA_BIT_OFFSET + 1) & MODER_DELETE(LCD_DATA_BIT_OFFSET + 2) &
MODER_DELETE(LCD_DATA_BIT_OFFSET + 3);
LCD_DPORT->MODER |= OUTPUT(LCD_E) | OUTPUT(LCD_RS) | OUTPUT(LCD_DATA_BIT_OFFSET) |
OUTPUT(LCD_DATA_BIT_OFFSET + 1) | OUTPUT(LCD_DATA_BIT_OFFSET + 2) |
OUTPUT(LCD_DATA_BIT_OFFSET + 3);
}
static void lcd_clear_shadow_buff()
{
int i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < 21; j++) {
shadow_display[i][j] = 0x0;
}
}
}
void lcd_init(void)
{
int i;
rcc_manager_enable_clock(&RCC->AHB1ENR, BITMASK_TO_BITNO(LCD_RCC_MASK));
lcd_port_init();
lcd_port_clear();
lcd_clear_shadow_buff();
systick_wait_ms(100);
LCD_DPORT->ODR |= (0x3 << LCD_DATA_BIT_OFFSET);
for (i = 0; i < 3; i++) {
lcd_enable();
systick_wait_ms(5);
}
// Set 4 Bit mode
lcd_port_clear();
LCD_DPORT->ODR |= (0x2<<LCD_DATA_BIT_OFFSET);
lcd_enable();
systick_wait_ms(2);
/* 4 Bit mode 2 lines */
lcd_command( LCD_SET_FUNCTION |
LCD_FUNCTION_4BIT |
LCD_FUNCTION_2LINE |
LCD_FUNCTION_5X7 );
/* Display on without cursor */
lcd_command( LCD_SET_DISPLAY |
LCD_DISPLAY_ON |
LCD_CURSOR_OFF |
LCD_BLINKING_OFF);
/* Cursor increment, no scroll */
lcd_command( LCD_SET_ENTRY |
LCD_ENTRY_INCREASE |
LCD_ENTRY_NOSHIFT );
lcd_clear();
}
void lcd_deinit()
{
lcd_port_clear();
rcc_manager_disable_clock(&RCC->AHB1ENR, BITMASK_TO_BITNO(LCD_RCC_MASK));
}
static uint8_t compare_input_to_shadow(const char (*display_buffer)[21])
{
uint8_t ret = 0;
int i, row;
for (row = 0; row < 4; row++) {
for (i = 0; i < 20; i++) {
if (display_buffer[row][i] != shadow_display[row][i]) {
ret |= (1U<<row);
break;
}
}
}
return ret;
}
static void lcd_fsm_enable(bool en)
{
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
if (en)
LCD_DPORT->ODR |= LCD_E_MASK;
else
LCD_DPORT->ODR &= ~LCD_E_MASK;
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
__ASM("nop");
}
static void lcd_fsm_write_command(bool high, uint8_t cmd)
{
lcd_port_clear();
if (high)
lcd_out((cmd >> 4) & 0x0F);
else
lcd_out((cmd) & 0x0F);
}
static void lcd_fsm_write_data(bool high, uint8_t data)
{
LCD_DPORT->ODR |= (1<<LCD_RS);
if (high)
lcd_out((data >> 4) & 0x0F);
else
lcd_out((data) & 0x0F);
}
enum lcd_fsm_ret lcd_fsm_write_buffer(const char (*display_buffer)[21])
{
static bool IN_SECTION(.ccm.data) idle = true;
static uint8_t IN_SECTION(.ccm.bss) rows_to_handle = 0;
static uint32_t IN_SECTION(.ccm.bss) state_cnt;
static uint8_t IN_SECTION(.ccm.bss) row_cnt = 0;
static uint32_t IN_SECTION(.ccm.bss) char_cnt;
static uint32_t IN_SECTION(.ccm.bss) line_len;
static uint64_t IN_SECTION(.ccm.bss) timestamp = 0ULL;
enum lcd_fsm_ret ret;
ret = LCD_FSM_NOP;
if (idle) {
rows_to_handle = compare_input_to_shadow(display_buffer);
memcpy(shadow_display, display_buffer, sizeof(shadow_display));
shadow_display[0][20] = 0;
shadow_display[1][20] = 0;
shadow_display[2][20] = 0;
shadow_display[3][20] = 0;
state_cnt = 0;
row_cnt = 0;
idle = false;
}
if (rows_to_handle == 0) {
idle = true;
return ret;
}
if ((rows_to_handle & (1<<row_cnt))) {
switch (state_cnt) {
case 0:
lcd_fsm_write_command(true, lcd_get_set_cursor_cmd(0, row_cnt));
line_len = strlen(&shadow_display[row_cnt][0]);
char_cnt = 0;
lcd_fsm_enable(true);
ret = LCD_FSM_WAIT_CALL;
state_cnt++;
break;
case 1:
lcd_fsm_enable(false);
ret = LCD_FSM_WAIT_CALL;
state_cnt++;
break;
case 2:
lcd_fsm_write_command(false, lcd_get_set_cursor_cmd(0, row_cnt));
lcd_fsm_enable(true);
ret = LCD_FSM_WAIT_CALL;
state_cnt++;
break;
case 3:
lcd_fsm_enable(false);
ret = LCD_FSM_WAIT_CALL;
timestamp = systick_get_global_tick();
state_cnt++;
break;
case 4:
if (!systick_ticks_have_passed(timestamp, 4)) {
ret = LCD_FSM_WAIT_CALL;
} else {
ret = LCD_FSM_CALL_AGAIN;
state_cnt++;
}
break;
case 5:
lcd_fsm_write_data(true, (char_cnt >= line_len) ? ' ' : shadow_display[row_cnt][char_cnt]);
lcd_fsm_enable(true);
ret = LCD_FSM_CALL_AGAIN;
state_cnt++;
break;
case 6:
lcd_fsm_enable(false);
ret = LCD_FSM_WAIT_CALL;
state_cnt++;
break;
case 7:
lcd_fsm_write_data(false, (char_cnt >= line_len) ? ' ' : shadow_display[row_cnt][char_cnt]);
lcd_fsm_enable(true);
ret = LCD_FSM_CALL_AGAIN;
state_cnt++;
break;
case 8:
lcd_fsm_enable(false);
ret = LCD_FSM_WAIT_CALL;
char_cnt++;
if (char_cnt < LCD_CHAR_WIDTH) {
state_cnt = 5;
} else {
state_cnt = 0;
rows_to_handle &= (uint8_t)~(1U<<row_cnt);
if (row_cnt < 3) {
row_cnt++;
} else {
idle = true;
row_cnt = 0;
}
}
break;
default:
ret = LCD_FSM_NOP;
idle = true;
rows_to_handle = 0U;
break;
}
} else {
if (row_cnt < 3) {
row_cnt++;
ret = LCD_FSM_CALL_AGAIN;
} else {
row_cnt = 0;
ret = LCD_FSM_NOP;
}
}
return ret;
}