reflow-oven-control-sw/stm-firmware/settings/spi-eeprom.c

229 lines
5.9 KiB
C

/* Reflow Oven Controller
*
* Copyright (C) 2021 Mario Hüttel <mario.huettel@gmx.net>
*
* This file is part of the Reflow Oven Controller Project.
*
* The reflow oven controller is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* The Reflow Oven Control Firmware is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the reflow oven controller project.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <reflow-controller/settings/spi-eeprom.h>
#include <stm-periph/spi.h>
#include <reflow-controller/periph-config/spi-eeprom-hwcfg.h>
#include <stm-periph/rcc-manager.h>
#include <stm-periph/stm32-gpio-macros.h>
#include <stddef.h>
#define EEPROM_SIZE 0x200
#define EEPROM_PAGE_SIZE 16
#define EEPROM_STATUS_REG_WIP (0x1U)
#define EEPROM_STATUS_REG_WEL (0x1U << 1)
#define EEPROM_STATUS_REG_BP0 (0x1U << 2)
#define EEPROM_STATUS_REG_BP1 (0x1U << 3)
#define EEPROM_CMD_READ_STATUS 0x05
#define EEPROM_CMD_WRITE_STATUS 0x01
#define EEPROM_CMD_READ_DATA 0x3
#define EEPROM_CMD_WRITE_DATA 0x2
#define EEPROM_CMD_WREN 0x6
#define EEPROM_CMD_WRDI 0x4
static stm_spi_handle eeprom_spi_handle;
static void eeprom_cs_activate(void)
{
SPI_EEPROM_SPI_PORT->ODR &= ~(1<<SPI_EEPROM_CS_PIN);
}
static void eeprom_cs_deactivate(void)
{
SPI_EEPROM_SPI_PORT->ODR |= (1<<SPI_EEPROM_CS_PIN);
}
int spi_eeprom_init()
{
static struct stm_spi_dev spi_dev;
struct stm_spi_settings settings;
rcc_manager_enable_clock(&SPI_EEPROM_SPI_PORT_RCC_REG, BITMASK_TO_BITNO(SPI_EEPROM_SPI_PORT_RCC_MASK));
SPI_EEPROM_SPI_PORT->MODER &= MODER_DELETE(SPI_EEPROM_CS_PIN) & MODER_DELETE(SPI_EEPROM_MISO_PIN) &
MODER_DELETE(SPI_EEPROM_MOSI_PIN) & MODER_DELETE(SPI_EEPROM_SCK_PIN);
SPI_EEPROM_SPI_PORT->MODER |= ALTFUNC(SPI_EEPROM_MISO_PIN) | ALTFUNC(SPI_EEPROM_SCK_PIN) | ALTFUNC(SPI_EEPROM_MOSI_PIN);
SPI_EEPROM_SPI_PORT->MODER |= OUTPUT(SPI_EEPROM_CS_PIN);
SETAF(SPI_EEPROM_SPI_PORT, SPI_EEPROM_MISO_PIN, SPI_EEPROM_SPI_ALTFUNC_NO);
SETAF(SPI_EEPROM_SPI_PORT, SPI_EEPROM_MOSI_PIN, SPI_EEPROM_SPI_ALTFUNC_NO);
SETAF(SPI_EEPROM_SPI_PORT, SPI_EEPROM_SCK_PIN, SPI_EEPROM_SPI_ALTFUNC_NO);
eeprom_cs_deactivate();
settings.cpha = false;
settings.cpol = false;
settings.cs_activate = eeprom_cs_activate;
settings.cs_deactivate = eeprom_cs_deactivate;
settings.master = true;
settings.msb_first = true;
settings.prescaler = SPI_PRSC_DIV16;
eeprom_spi_handle = spi_init(&spi_dev, SPI1, &settings);
if (eeprom_spi_handle)
return 0;
else
return -1;
}
void spi_eeprom_deinit()
{
spi_deinit(eeprom_spi_handle);
SPI_EEPROM_SPI_PORT->MODER &= MODER_DELETE(SPI_EEPROM_CS_PIN) & MODER_DELETE(SPI_EEPROM_MISO_PIN) &
MODER_DELETE(SPI_EEPROM_MOSI_PIN) & MODER_DELETE(SPI_EEPROM_SCK_PIN);
rcc_manager_disable_clock(&SPI_EEPROM_SPI_PORT_RCC_REG, BITMASK_TO_BITNO(SPI_EEPROM_SPI_PORT_RCC_MASK));
}
uint8_t spi_eeprom_read_status_reg(void)
{
uint8_t buff[2] = {0x05, 0x00};
(void)spi_transfer(eeprom_spi_handle, buff, buff, 2, true);
return buff[1];
}
static void spi_eeprom_set_write_enable_latch(bool status)
{
uint8_t cmd;
if (status)
cmd = EEPROM_CMD_WREN;
else
cmd = EEPROM_CMD_WRDI;
(void)spi_transfer(eeprom_spi_handle, &cmd, NULL, 1, true);
}
int spi_eeprom_read(uint32_t addr, uint8_t *rx_buff, uint32_t count)
{
int ret = 0;
int retry = 250;
uint8_t status_reg;
uint8_t cmd[2];
if (!rx_buff || !count)
return -1000;
if (addr >= EEPROM_SIZE)
return -1001;
do {
status_reg = spi_eeprom_read_status_reg();
} while ((status_reg & EEPROM_STATUS_REG_WIP) && retry--);
if (status_reg & EEPROM_STATUS_REG_WIP)
return -1;
cmd[0] = EEPROM_CMD_READ_DATA;
if (addr & (1<<8))
cmd[0] |= (1U<<3);
cmd[1] = (uint8_t)(addr & 0xFF);
eeprom_cs_activate();
spi_transfer(eeprom_spi_handle, cmd, NULL, 2, false);
spi_transfer(eeprom_spi_handle, NULL, rx_buff, count, false);
eeprom_cs_deactivate();
return ret;
}
bool spi_eeprom_write_in_progress(void)
{
uint8_t status_reg;
status_reg = spi_eeprom_read_status_reg();
if (status_reg & EEPROM_STATUS_REG_WIP)
return true;
else
return false;
}
static void spi_eeprom_do_write_page(uint32_t addr, const uint8_t *data, uint8_t len)
{
uint8_t cmd[2];
/* Wait for the previous write to finish */
while (spi_eeprom_write_in_progress());
/* Set the write enable latch */
spi_eeprom_set_write_enable_latch(true);
cmd[0] = EEPROM_CMD_WRITE_DATA | ((addr & (1<<8)) ? (1<<4) : 0);
cmd[1] = (uint8_t)(addr & 0xFF);
eeprom_cs_activate();
spi_transfer(eeprom_spi_handle, cmd, NULL, 2, false);
spi_transfer(eeprom_spi_handle, data, NULL, len, false);
eeprom_cs_deactivate();
}
int spi_eeprom_write(uint32_t addr, const uint8_t *data, uint32_t count)
{
const uint8_t *ptr = data;
uint32_t transfer_len;
if (!data || !count)
return -1000;
if (addr >= EEPROM_SIZE)
return -1001;
while (count > 0) {
/* Calculate size for current page transfer */
transfer_len = EEPROM_PAGE_SIZE - (addr % EEPROM_PAGE_SIZE);
if (transfer_len > count)
transfer_len = count;
spi_eeprom_do_write_page(addr, ptr, transfer_len);
count -= transfer_len;
addr += transfer_len;
ptr += transfer_len;
}
return 0;
}
bool spi_eeprom_check_connected(void)
{
uint8_t status_reg;
/* Try to set write enable latch */
spi_eeprom_set_write_enable_latch(true);
/* Read back status register */
status_reg = spi_eeprom_read_status_reg();
if (!(status_reg & EEPROM_STATUS_REG_WEL))
return false;
/* Clear the latch */
spi_eeprom_set_write_enable_latch(false);
/* Read back status register */
status_reg = spi_eeprom_read_status_reg();
if ((status_reg & EEPROM_STATUS_REG_WEL))
return false;
return true;
}