reflow-oven-control-sw/stm-firmware/ui/shell-uart.c

131 lines
3.5 KiB
C

/* Reflow Oven Controller
*
* Copyright (C) 2021 Mario Hüttel <mario.huettel@gmx.net>
*
* This file is part of the Reflow Oven Controller Project.
*
* The reflow oven controller is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* The Reflow Oven Control Firmware is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the reflow oven controller project.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <reflow-controller/ui/shell-uart.h>
#include <reflow-controller/periph-config/shell-uart-config.h>
#include <stm-periph/stm32-gpio-macros.h>
#include <stm-periph/uart.h>
#include <helper-macros/helper-macros.h>
/**
* @brief TX buffer for the shell's uart
*/
static char shell_uart_tx_buff[4096];
/**
* @brief RX buffer for the shell's uart
*/
static char shell_uart_rx_buff[128];
/**
* @brief The uart instance handling the shellmatta shell.
*/
struct stm_uart shell_uart;
void shell_uart_setup(void)
{
struct stm_uart *uart = &shell_uart;
uart->rx = 1;
uart->tx = 1;
uart->brr_val = SHELL_UART_DEFAULT_BRR_REG_VALUE;
uart->rcc_reg = &SHELL_UART_RCC_REG;
uart->rcc_bit_no = BITMASK_TO_BITNO(SHELL_UART_RCC_MASK);
uart->uart_dev = SHELL_UART_PERIPH;
uart->dma_rx_buff = shell_uart_rx_buff;
uart->dma_tx_buff = shell_uart_tx_buff;
uart->rx_buff_count = sizeof(shell_uart_rx_buff);
uart->tx_buff_count = sizeof(shell_uart_tx_buff);
uart->base_dma_num = 2;
uart->dma_rx_stream = SHELL_UART_RECEIVE_DMA_STREAM;
uart->dma_tx_stream = SHELL_UART_SEND_DMA_STREAM;
uart->dma_rx_trigger_channel = SHELL_UART_RX_DMA_TRIGGER;
uart->dma_tx_trigger_channel = SHELL_UART_TX_DMA_TRIGGER;
uart_init(uart);
NVIC_EnableIRQ(DMA2_Stream7_IRQn);
}
shellmatta_retCode_t shell_uart_write_callback(const char *data, uint32_t len)
{
uart_send_array_with_dma(&shell_uart, data, len);
return SHELLMATTA_OK;
}
int shell_uart_receive_data_with_dma(const char **data, size_t *len)
{
return uart_receive_data_with_dma(&shell_uart, data, len);
}
int32_t shell_uart_reconfig_baud(uint32_t new_baud)
{
uint32_t brr_val_floor;
uint32_t brr_val_remainder;
uint32_t error_permille;
int64_t actual_baud;
/* Calculate the new BRR register value */
brr_val_floor = SHELL_UART_PERIPHERAL_CLOCK / new_baud;
brr_val_remainder = SHELL_UART_PERIPHERAL_CLOCK % new_baud;
/* Round to the nearest value */
if (brr_val_remainder > (new_baud / 2u)) {
brr_val_floor++;
brr_val_remainder = new_baud - brr_val_remainder;
}
actual_baud = (1000U *(int64_t)SHELL_UART_PERIPHERAL_CLOCK) / brr_val_floor;
error_permille = (ABS(actual_baud - 1000U * (int64_t)new_baud)) / (int64_t)new_baud;
if (error_permille < 20u) {
uart_change_brr(&shell_uart, brr_val_floor);
} else {
return -1;
}
return (int32_t)error_permille;
}
uint32_t shell_uart_get_current_baudrate(void)
{
uint32_t brr;
brr = uart_get_brr(&shell_uart);
if (brr == 0)
return 0;
return (SHELL_UART_PERIPHERAL_CLOCK) / brr;
}
/**
* @brief Handles the TX of UART1 (Shellmatta)
*/
void DMA2_Stream7_IRQHandler(void)
{
uint32_t hisr = DMA2->HISR & (0x3F << 22);
DMA2->HIFCR = hisr;
if (hisr & DMA_HISR_TCIF7)
uart_tx_dma_complete_int_callback(&shell_uart);
}