Compare commits

...

8 Commits

8 changed files with 805 additions and 519 deletions

View File

@@ -28,8 +28,6 @@ DSTATUS disk_status (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
int result;
switch (pdrv) {
case DEV_SD:
@@ -48,9 +46,6 @@ DSTATUS disk_initialize (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
int result;
switch (pdrv) {
case DEV_SD:
return sdio_initialize();
@@ -71,9 +66,6 @@ DRESULT disk_read (
UINT count /* Number of sectors to read */
)
{
DRESULT res;
int result;
switch (pdrv) {
case DEV_SD:
return sdio_disk_read(buff, sector, count);
@@ -96,12 +88,9 @@ DRESULT disk_write (
UINT count /* Number of sectors to write */
)
{
DRESULT res;
int result;
switch (pdrv) {
case DEV_SD:
return SDIO_disk_write(buff, sector, count);
return sdio_disk_write(buff, sector, count);
}
return RES_PARERR;
@@ -120,9 +109,6 @@ DRESULT disk_ioctl (
void *buff /* Buffer to send/receive control data */
)
{
DRESULT res;
int result;
switch (pdrv) {
case DEV_SD:
return sdio_disk_ioctl(cmd, buff);

View File

@@ -1,22 +1,21 @@
/*
* shimatta_sdio-driver.c
*
* Created on: Apr 30, 2015
* Mario Hüttel
*/
#include "shimatta_sdio.h"
#include "shimatta_sdio_config.h"
#include <cmsis/core_cm4.h>
#include <stm32f4xx.h>
#include <string.h>
#include <stdbool.h>
#ifndef CONCAT
#define CONCAT(x,y) x##y
#define XCONCAT(x,y) CONCAT(x,y)
#endif
extern void sdio_wait_ms(unsigned int i);
#define SETAF(PORT,PIN,AF) PORT->AFR[(PIN < 8 ? 0 : 1)] |= AF << ((PIN < 8 ? PIN : (PIN - 8)) * 4)
#define READCTRL ((BLOCKSIZE << 4) | SDIO_DCTRL_DMAEN)
#define DMAP2M (DMA_SxCR_CHSEL_2 | DMA_SxCR_PBURST_0 | DMA_SxCR_MBURST_0 | DMA_SxCR_MSIZE_1 | DMA_SxCR_PSIZE_1 | DMA_SxCR_MINC | DMA_SxCR_PFCTRL)
#define DMAM2P (DMA_SxCR_CHSEL_2 | DMA_SxCR_PBURST_0 | DMA_SxCR_MBURST_0 | DMA_SxCR_MSIZE_1 | DMA_SxCR_PSIZE_1 | DMA_SxCR_MINC | DMA_SxCR_PFCTRL | DMA_SxCR_DIR_0)
#define DMAP2M (DMA_SxCR_CHSEL_2 | DMA_SxCR_PBURST_0 | /*DMA_SxCR_MBURST_0 |*/ DMA_SxCR_MSIZE_1 | DMA_SxCR_PSIZE_1 | DMA_SxCR_MINC | DMA_SxCR_PFCTRL)
#define DMAM2P (DMA_SxCR_CHSEL_2 | DMA_SxCR_PBURST_0 | /*DMA_SxCR_MBURST_0 |*/ DMA_SxCR_MSIZE_1 | DMA_SxCR_PSIZE_1 | DMA_SxCR_MINC | DMA_SxCR_PFCTRL | DMA_SxCR_DIR_0)
#define SHORT_ANS 1
#define LONG_ANS 3
#define NO_ANS 0
@@ -33,37 +32,14 @@ enum acmd41_ret {ACMD41_RESP_INIT = 0, ACMD41_RESP_ERR, ACMD41_RESP_SDSC, ACMD41
enum cmd8_ret {CMD8_RESP_TIMEOUT = 0, CMD8_VOLTAGE_ACCEPTED, CMD8_VOLTAGE_DENIED};
typedef uint8_t CID_t;
/*
void SDIO_init_hw();
int SDIO_send_cmd(uint8_t CMD, uint32_t arg, uint8_t expectedAns);
int SDIO_get_response(uint8_t expectedCMD, uint8_t typeOfAns, uint32_t* responseBuffer);
void SDIO_wait_cmd_sent(void);
ACMD41_RESP_t SDIO_init_card_ACMD41(uint8_t HCS);
int SDIO_switch_appmode_CMD55(void);
int SDIO_send_all_send_cid_CMD2(void);
int SDIO_send_relative_address_CMD3(uint16_t* rca);
int SDIO_send_go_idle_CMD0(void);
CMD8_RESP_t SDIO_send_iface_condition_CMD8(void);
int SDIO_send_block_length_CMD16(uint32_t blocklen);
int SDIO_send_bus_width_ACMD6(uint8_t bus_width);
int SDIO_send_csd_CMD9(uint16_t rca, uint32_t *responsebuffer);
int SDIO_send_select_card_CMD7(uint16_t rca);
int SDIO_check_status_register_CMD13(uint16_t rca, uint32_t *status);
void SDIO_init_detect_pins(void);
int checkNotInserted(void); // Returns 0 if inserted!
int checkWriteProtection(void); // returns 0 if write protected
void switchPrescaler(uint8_t clkdiv);
int SDIO_send_write_block_CMD24(uint32_t addr);
int SDIO_send_read_block_CMD17(uint32_t addr);
int SDIO_get_sector_count(uint16_t rca, uint32_t *sector_count);
*/
//BYTE rxtxbuffer[1<<BLOCKSIZE]; //Data RX and TX Buffer not needed anymore. thanks to DMA
static struct sd_info card_info; // = {.type = CARD_NONE};
#if USE_DMA
static volatile char aligned_sector_buff_one[1<<BLOCKSIZE];
static volatile char aligned_sector_buff_two[1<<BLOCKSIZE];
static volatile char *aligned_sector_buffs[2] = {aligned_sector_buff_one, aligned_sector_buff_two};
#endif
/**
* @brief checkNotInserted
* @return return 0 if card is inserted, else 1
@@ -94,12 +70,12 @@ static void sdio_wait_cmd_sent()
SDIO->ICR |= SDIO_ICR_CMDSENTC;
}
static int sdio_send_cmd(uint8_t CMD, uint32_t arg, uint8_t expectedAns){
//Clear Flags
static int sdio_send_cmd(uint8_t cmd, uint32_t arg, uint8_t expected_ans){
/* Clear Flags */
SDIO->ICR = SDIO_ICR_CCRCFAILC | SDIO_ICR_CMDRENDC | SDIO_ICR_CTIMEOUTC | SDIO_ICR_CMDSENTC;
//Send command
/* Send command */
SDIO->ARG = arg;
SDIO->CMD = (CMD & SDIO_CMD_CMDINDEX) | SDIO_CMD_CPSMEN | /*SDIO_CMD_WAITPEND |*/ ((expectedAns << 6) & SDIO_CMD_WAITRESP);
SDIO->CMD = (cmd & SDIO_CMD_CMDINDEX) | SDIO_CMD_CPSMEN | ((expected_ans << 6) & SDIO_CMD_WAITRESP);
return 0;
}
@@ -113,13 +89,6 @@ static int sdio_get_response(uint8_t expected_command, uint8_t type_of_answer, u
while (1) {
sdio_status = SDIO->STA;
/* Check if a valid response was received */
if (sdio_status & SDIO_STA_CMDREND)
break;
if ((sdio_status & SDIO_STA_CMDSENT) && (type_of_answer == NO_ANS))
break; // No response required
/* Exclude ACMD41 and CMD2 from valid CRC check */
if ((sdio_status & SDIO_STA_CCRCFAIL)) {
if(expected_command == 0xff) {
@@ -131,13 +100,23 @@ static int sdio_get_response(uint8_t expected_command, uint8_t type_of_answer, u
if (sdio_status & SDIO_STA_CTIMEOUT)
return -CTIMEOUT;
/* Check if a valid response was received */
if (sdio_status & SDIO_STA_CMDREND)
break;
if ((sdio_status & SDIO_STA_CMDSENT) && (type_of_answer == NO_ANS))
break; // No response required
}
//Valid Respone Received
/* Valid Respone Received */
if (((SDIO->RESPCMD & SDIO_RESPCMD_RESPCMD) != expected_command) && (expected_command != 0xff))
return -CNOTEXPETED; //Not the expected respose
/* If case of a correct Response */
*(response_buffer++) = SDIO->RESP1;
/* Long response */
if (type_of_answer == LONG_ANS) {
*(response_buffer++) = SDIO->RESP2;
@@ -148,18 +127,22 @@ static int sdio_get_response(uint8_t expected_command, uint8_t type_of_answer, u
return 0;
}
/**
* @brief Switch the card to application mode. It now accepts ACMDXX commands
* @return 0 if successfuls
*/
static int sdio_switch_appmode_cmd55()
{
int retry = 0x20;
union sdio_status_conv converter;
uint32_t response;
do {
//Execute Command and check for valid response
/* Execute Command and check for valid response */
sdio_send_cmd(55, (card_info.rca<<16)&0xFFFF0000, SHORT_ANS);
if (!sdio_get_response(55, SHORT_ANS, &response))
{
//Response valid. Check if Card has accepted switch to application command mode
/* Response valid. Check if Card has accepted switch to application command mode */
converter.value = response;
if (converter.statusstruct.APP_CMD == 1)
return 0;
@@ -172,11 +155,14 @@ static int sdio_switch_appmode_cmd55()
enum acmd41_ret sdio_init_card_acmd41(uint8_t HCS){
uint32_t response;
int retry = 0x20;
if (sdio_switch_appmode_cmd55()) return ACMD41_RESP_ERR;
if (sdio_switch_appmode_cmd55())
return ACMD41_RESP_ERR;
do {
sdio_send_cmd(41, (HCS ? (1<<30) : 0) | (1<<28) | (1<<20) |(1<<21)|(1<<22) |(1<<23)|(1<<19), SHORT_ANS);
if (!sdio_get_response(0xFF, SHORT_ANS, &response)) {
if (response & OCS_BUSY) { // Card is ready... Who knows why this bit is called busy...
if (response & OCS_BUSY) {
/* Card is ready... Who knows why this bit is called busy */
if (response & OCS_CCS) {
return ACMD41_RESP_SDXC;
} else {
@@ -191,26 +177,31 @@ enum acmd41_ret sdio_init_card_acmd41(uint8_t HCS){
return ACMD41_RESP_ERR;
}
static int sdio_send_csd_cmd9(uint16_t rca, uint32_t *responsebuffer) {
static int sdio_send_csd_cmd9(uint16_t rca, uint32_t *response_buffer) {
int timeout = 0x20;
int res;
do {
sdio_send_cmd(9, (rca<<16)&0xFFFF0000, LONG_ANS);
if (!(res = sdio_get_response(0xFF, LONG_ANS, responsebuffer))) {
res = sdio_get_response(0xFF, LONG_ANS, response_buffer);
if (!res)
break;
}
} while (--timeout > 0);
return res;
}
static void sdio_write_buffer(uint32_t dlen, uint32_t blklen, uint8_t *buff)
/**
* @brief Send data buffer to SD card
* @param dlen Data length. Must be a multiple of 4 bytes
* @param blklen Log2 of block length (9 in case of 512 byte block)
* @param buff Buffer to send
* @return -1 in case of error like underrun
*/
static int __attribute__((optimize("O3"))) sdio_write_buffer(uint32_t dlen, uint32_t log_blklen, const unsigned char *buff)
{
int count;
int byte_count;
int byte_max;
uint32_t fifo;
uint32_t count;
uint32_t fifo_buff[8];
SDIO->DLEN = dlen;
@@ -218,35 +209,52 @@ static void sdio_write_buffer(uint32_t dlen, uint32_t blklen, uint8_t *buff)
SDIO->ICR = SDIO_ICR_CCRCFAILC | SDIO_ICR_DCRCFAILC | SDIO_ICR_CTIMEOUTC | SDIO_ICR_DTIMEOUTC |
SDIO_ICR_TXUNDERRC | SDIO_ICR_RXOVERRC | SDIO_ICR_CMDRENDC | SDIO_ICR_CMDSENTC | SDIO_ICR_DATAENDC |
SDIO_ICR_STBITERRC | SDIO_ICR_DBCKENDC | SDIO_ICR_SDIOITC | SDIO_ICR_CEATAENDC;
SDIO->DCTRL = (blklen<<4) | SDIO_DCTRL_DTEN;
SDIO->DCTRL = (log_blklen<<4) | SDIO_DCTRL_DTEN;
for (count = 0; count < dlen; count += 4) {
fifo = 0;
if ((dlen - count) < 4)
byte_max = dlen - count;
else
byte_max = 4;
for (byte_count = 0; byte_count < byte_max; byte_count++)
{
fifo >>= 8;
fifo |= (((uint32_t)*(buff++)) << 24) & 0xFF000000;
while (dlen >= 32) {
memcpy(fifo_buff, buff, 32);
/* Wait for 8 data words to be available */
while (!(SDIO->STA & SDIO_STA_TXFIFOHE));
for (count = 0; count < 8; count++) {
SDIO->FIFO = fifo_buff[count];
}
dlen -= 32;
buff += 32;
}
while (SDIO->STA & SDIO_STA_TXFIFOF);
SDIO->FIFO = fifo;
if (dlen) {
memcpy(fifo_buff, buff, dlen);
while (!(SDIO->STA & SDIO_STA_TXFIFOHE));
for (count = 0; count < (dlen / 4); count++) {
SDIO->FIFO = fifo_buff[count];
}
}
/* Wait for TX to complete */
while (SDIO->STA & SDIO_STA_TXACT);
if (SDIO->STA & SDIO_STA_TXUNDERR)
return -1;
else
return 0;
}
static int sdio_send_write_block_cmd24(uint32_t addr)
{
return -1;
uint32_t response;
sdio_send_cmd(24, addr, SHORT_ANS);
return sdio_get_response(24, SHORT_ANS, &response);
}
static int sdio_send_stop_cmd12()
{
uint32_t response;
sdio_send_cmd(12, 0UL, SHORT_ANS);
return sdio_get_response(12, SHORT_ANS, &response);
}
static int sdio_check_status_register_cmd13(uint16_t rca, uint32_t *status)
@@ -254,6 +262,7 @@ static int sdio_check_status_register_cmd13(uint16_t rca, uint32_t *status)
int timeout = 0x20;
uint32_t response;
int res;
do {
sdio_send_cmd(13, (rca<<16)&0xFFFF0000, SHORT_ANS);
if (!(res = sdio_get_response(13, SHORT_ANS, &response))) {
@@ -269,15 +278,14 @@ static int sdio_send_bus_width_acmd6(uint8_t bus_width)
{
uint32_t response;
int retry = 0x20;
union sdio_status_conv status;
int ret;
if (sdio_switch_appmode_cmd55()) return -1;
do {
sdio_send_cmd(0x6, (bus_width == 4 ? 0x2 : 0x0), SHORT_ANS);
if (!(ret = sdio_get_response(0x6, SHORT_ANS, &response))) {
status.value = response;
ret = sdio_get_response(0x6, SHORT_ANS, &response);
if (!ret)
return 0;
}
} while (--retry > 0);
@@ -297,12 +305,14 @@ static int sdio_get_sector_count(uint16_t rca, uint32_t *sector_count)
csd_rev = ((csd[0] >> 30) & (0x3));
if (csd_rev == 0) { // SD v1 Card
if (csd_rev == 0) {
/* SD v1 Card */
size = ((csd[1] & 0x3FF) <<2) | (((csd[2]) & ((1<<31) | (1<<30)))>>30);
mult = ((csd[2] & ((1<<17)|(1<<16)|(1<<15)))>>15);
read_len = (1<<((csd[1] & ((1<<19)|(1<<18)|(1<<17)|(1<<16)))>>16));
*sector_count = (((size +1)*(1<<(mult+2))*read_len) >> BLOCKSIZE);
} else if (csd_rev == 1) { // SD v2 Card
} else if (csd_rev == 1) {
/* SD v2 Card */
size = (((csd[1] & 0x3F)<<16) | ((csd[2] & 0xFFFF0000) >> 16));
*sector_count = (size << (19-BLOCKSIZE));
}
@@ -310,6 +320,10 @@ static int sdio_get_sector_count(uint16_t rca, uint32_t *sector_count)
return 0;
}
/**
* @brief Switch the SDIo prescaler
* @param Prescaler value
*/
static void sdio_switch_prescaler(uint8_t clkdiv)
{
uint32_t reg;
@@ -384,9 +398,21 @@ static void sdio_init_hw()
static int sdio_send_read_block_cmd17(uint32_t addr)
{
uint32_t response;
int ret;
sdio_send_cmd(17, addr, SHORT_ANS);
return sdio_get_response(17, SHORT_ANS, &response);
ret = sdio_get_response(17, SHORT_ANS, &response);
return ret;
}
static int sdio_send_read_multiple_blocks_cmd18(uint32_t addr)
{
uint32_t response;
int ret;
sdio_send_cmd(18, addr, SHORT_ANS);
ret = sdio_get_response(18, SHORT_ANS, &response);
return ret;
}
static int sdio_send_all_send_cid_cmd2()
@@ -394,16 +420,21 @@ static int sdio_send_all_send_cid_cmd2()
uint32_t response[4];
int ret;
int retry = 0x20;
do {
sdio_send_cmd(2, 0, LONG_ANS);
if (!(ret = sdio_get_response(0xFF, LONG_ANS, response))) return 0;
if (!(ret = sdio_get_response(0xFF, LONG_ANS, response)))
return 0;
} while (retry-- > 0);
return ret;
}
static int sdio_send_relative_address_cmd3(uint16_t* rca) {
static int sdio_send_relative_address_cmd3(uint16_t* rca)
{
uint32_t response;
int retry = 0x20;
do {
sdio_send_cmd(3, 0, SHORT_ANS);
if (!sdio_get_response(3, SHORT_ANS, &response)) {
@@ -421,10 +452,12 @@ static int sdio_send_go_idle_cmd0() {
return 0;
}
static enum cmd8_ret sdio_send_iface_condition_cmd8() {
static enum cmd8_ret sdio_send_iface_condition_cmd8()
{
uint32_t response;
int res = 0;
int retry = 0x20;
do {
sdio_send_cmd(8, 0x1CC, SHORT_ANS); // 3.3V supply requesR
res = sdio_get_response(8, SHORT_ANS, &response);
@@ -476,24 +509,281 @@ static int sdio_send_select_card_cmd7(uint16_t rca) {
return res;
}
static void sdio_dma_clear_flags()
{
#if USE_DMA
/* Configure read DMA */
#if DMASTREAM_NO > 3
DMA2->HIFCR |= XCONCAT(DMA_HIFCR_CFEIF, DMASTREAM_NO) |
XCONCAT(DMA_HIFCR_CHTIF, DMASTREAM_NO) |
XCONCAT(DMA_HIFCR_CTCIF, DMASTREAM_NO) |
XCONCAT(DMA_HIFCR_CTEIF, DMASTREAM_NO) |
XCONCAT(DMA_HIFCR_CDMEIF, DMASTREAM_NO);
#else
DMA2->LIFCR |= XCONCAT(DMA_HIFCR_CFEIF, DMASTREAM_NO) |
XCONCAT(DMA_HIFCR_CHTIF, DMASTREAM_NO) |
XCONCAT(DMA_HIFCR_CTCIF, DMASTREAM_NO) |
XCONCAT(DMA_HIFCR_CTEIF, DMASTREAM_NO) |
XCONCAT(DMA_HIFCR_CDMEIF, DMASTREAM_NO);
#endif
#endif
}
static void sdio_dma_disable()
{
DMASTREAM->CR = 0x0UL;
}
static void sdio_data_transfer_disable()
{
SDIO->DCTRL = 0;
}
static int sdio_dma_check_error()
{
uint32_t status_reg;
#if DMASTREAM_NO > 3
status_reg = DMA2->HISR;
if (status_reg & XCONCAT(DMA_HISR_TEIF, DMASTREAM_NO))
return -1;
else
return 0;
#else
status_reg = DMA2->LISR;
if (status_reg & XCONCAT(DMA_LISR_TEIF, DMASTREAM_NO))
return -1;
else
return 0;
#endif
}
static int sdio_wait_for_dma_transfer(bool read)
{
uint32_t sdio_sta_reg;
while (1) {
sdio_sta_reg = SDIO->STA;
if (sdio_sta_reg & SDIO_STA_DCRCFAIL) {
sdio_dma_disable();
return -2;
}
if (sdio_sta_reg & SDIO_STA_DTIMEOUT) {
sdio_dma_disable();
return -1;
}
/* Handle FIFO over- / underruns */
if (read) {
if (sdio_sta_reg & SDIO_STA_RXOVERR)
return -3;
} else {
if (sdio_sta_reg & SDIO_STA_TXUNDERR)
return -3;
}
/* Data transferred */
if (sdio_sta_reg & SDIO_STA_DATAEND) {
break;
}
}
/* Wait for DMA to finish copying */
while(DMASTREAM->CR & DMA_SxCR_EN);
if (sdio_dma_check_error())
return -4;
return 0;
}
static void sdio_config_rx_dma(volatile void *buff)
{
sdio_dma_clear_flags();
DMASTREAM->NDTR = 0;
DMASTREAM->FCR = DMA_SxFCR_FTH_0 | DMA_SxFCR_FTH_1 | DMA_SxFCR_DMDIS;
DMASTREAM->M0AR = (uint32_t)(buff);
DMASTREAM->PAR = (uint32_t)&(SDIO->FIFO);
DMASTREAM->CR = DMAP2M | DMA_SxCR_PL_1 | DMA_SxCR_PL_1;
DMASTREAM->CR |= DMA_SxCR_EN;
}
static void sdio_config_sdio_data_tran(uint32_t byte_len, bool read, bool dma)
{
SDIO->DLEN = byte_len;
SDIO->DTIMER = DTIMEOUT;
SDIO->ICR = SDIO_ICR_CCRCFAILC | SDIO_ICR_DCRCFAILC | SDIO_ICR_CTIMEOUTC | SDIO_ICR_DTIMEOUTC |
SDIO_ICR_TXUNDERRC | SDIO_ICR_RXOVERRC | SDIO_ICR_CMDRENDC | SDIO_ICR_CMDSENTC |
SDIO_ICR_DATAENDC |
SDIO_ICR_STBITERRC | SDIO_ICR_DBCKENDC | SDIO_ICR_SDIOITC | SDIO_ICR_CEATAENDC;
SDIO->DCTRL = (BLOCKSIZE<<4) | (read ? SDIO_DCTRL_DTDIR : 0) | (dma ? SDIO_DCTRL_DMAEN : 0) | SDIO_DCTRL_DTEN;
}
#if USE_DMA
static int sdio_read_blocks_dma(uint32_t block_count, uint32_t sector_addr, void *dest_buffer)
{
uint32_t addr;
int status;
bool use_unaligned_workaround = false;
uint32_t buff_id = 0;
uint32_t count = 0;
char *ins_ptr;
if ((uint32_t)dest_buffer & 0x3UL)
use_unaligned_workaround = true;
else
use_unaligned_workaround = false;
if (card_info.type == SD_V2_HC)
addr = sector_addr;
else
addr = sector_addr * (1U<<BLOCKSIZE);
if (use_unaligned_workaround) {
while (count < block_count) {
sdio_config_rx_dma(aligned_sector_buffs[buff_id]);
sdio_config_sdio_data_tran(1UL<<BLOCKSIZE, true, true);
/* Init Transfer */
if (sdio_send_read_block_cmd17(addr)) {
sdio_dma_disable();
sdio_data_transfer_disable();
return -1;
}
/* Copy the old buffer */
if (count >= 1) {
ins_ptr = &((char *)dest_buffer)[(count - 1) * (1UL<<BLOCKSIZE)];
memcpy(ins_ptr, (const void *)aligned_sector_buffs[buff_id ^ 1UL], (1UL<<BLOCKSIZE));
}
/* Switch to incative buffer */
buff_id ^= 1;
count++;
addr += ((card_info.type == SD_V2_HC) ? 1 : (1UL<<BLOCKSIZE));
status = sdio_wait_for_dma_transfer(true);
if (status) {
/* Handle error */
return status;
}
}
/* Copy the last transfer */
ins_ptr = &((char *)dest_buffer)[(count - 1) * (1U<<BLOCKSIZE)];
memcpy(ins_ptr, (const void *)aligned_sector_buffs[buff_id ^ 1U], (1U<<BLOCKSIZE));
} else {
/* Do pure DMA transfer. This is also able to handle multi-sector reads */
sdio_config_rx_dma(dest_buffer);
sdio_config_sdio_data_tran(block_count * (1UL<<BLOCKSIZE), true, true);
/* Send multi-block read cmd in case of multiple blocks */
if (block_count > 1)
status = sdio_send_read_multiple_blocks_cmd18(addr);
else
status = sdio_send_read_block_cmd17(addr);
if (status) {
sdio_dma_disable();
sdio_data_transfer_disable();
return -1;
}
status = sdio_wait_for_dma_transfer(true);
if (status)
return -1;
if (block_count > 1)
sdio_send_stop_cmd12();
}
return 0;
}
#else
static int sdio_read_blocks_polling(uint32_t block_count, uint32_t sector_addr, void *dest_buffer)
{
uint32_t sdio_sta_reg;
uint32_t fifo_read;
uint32_t addr;
char *ptr;
int ret_val;
int status;
ptr = (char *)dest_buffer;
addr = (card_info.type == SD_V2_HC ? sector_addr : sector_addr * (1UL<<BLOCKSIZE));
sdio_config_sdio_data_tran(block_count * (1UL<<BLOCKSIZE), true, false);
if (block_count > 1)
status = sdio_send_read_multiple_blocks_cmd18(addr);
else
status = sdio_send_read_block_cmd17(addr);
if (status) {
ret_val = -1;
goto return_val;
}
while (1) {
sdio_sta_reg = SDIO->STA;
if (sdio_sta_reg & SDIO_STA_RXDAVL) {
fifo_read = SDIO->FIFO;
memcpy(ptr, &fifo_read, sizeof(uint32_t));
}
if (sdio_sta_reg & SDIO_STA_RXOVERR ||
sdio_sta_reg & SDIO_STA_DCRCFAIL ||
sdio_sta_reg & SDIO_STA_DTIMEOUT) {
sdio_data_transfer_disable();
ret_val = -3;
goto stop_transmission;
}
if (sdio_sta_reg & SDIO_STA_DATAEND && sdio_sta_reg & SDIO_STA_DBCKEND) {
ret_val = 0;
break;
}
}
stop_transmission:
if (block_count > 1)
sdio_send_stop_cmd12();
return_val:
return ret_val;
}
#endif /* USE_DMA */
DSTATUS sdio_status()
{
DSTATUS returnval = 0;
if (sdio_check_inserted()) {
if (sdio_check_inserted())
returnval |= STA_NODISK;
}
if (card_info.type == CARD_NONE) {
if (card_info.type == CARD_NONE)
returnval |= STA_NOINIT;
}
if (sdio_check_write_protection()) {
if (sdio_check_write_protection())
returnval |= STA_PROTECT;
}
return returnval;
}
DRESULT sdio_disk_ioctl(BYTE cmd, void* buff){
DRESULT res = RES_OK;
switch(cmd) {
case GET_BLOCK_SIZE:
*((DWORD*)buff) = (DWORD)0x01;
@@ -510,13 +800,12 @@ DRESULT sdio_disk_ioctl(BYTE cmd, void* buff){
break;
case CTRL_SYNC:
res = RES_OK;
//No cache
//Nothing to do
break;
default:
res = RES_PARERR;
break;
}
return res;
}
@@ -542,7 +831,9 @@ DSTATUS sdio_initialize(){
}
sdio_send_go_idle_cmd0();
sdio_wait_ms(2);
res8 = sdio_send_iface_condition_cmd8();
switch (res8) {
case CMD8_VOLTAGE_ACCEPTED: // SDV2 Card
@@ -589,9 +880,6 @@ DSTATUS sdio_initialize(){
if (sdio_send_block_length_cmd16((uint32_t)(1<<BLOCKSIZE)))
return STA_NOINIT;
//sdio_unlock_card();
if (sdio_send_bus_width_acmd6(BUSWIDTH))
return STA_NOINIT;
@@ -606,84 +894,33 @@ DSTATUS sdio_initialize(){
}
DRESULT sdio_disk_read(BYTE *buff, DWORD sector, UINT count){
uint32_t addr;
uint32_t sdio_status;
uint32_t fifo;
uint32_t counter;
int status;
union sdio_status_conv card_status;
addr = (card_info.type == SD_V2_HC ? (sector) : (sector*512));
for (; count > 0; count--) {
if (!buff || !count)
return RES_PARERR;
/* configure read DMA */
// DMA2->LIFCR = 0xffffffff;
// DMA2->HIFCR = 0xffffffff;
// DMASTREAM->NDTR = 0;
// DMASTREAM->FCR = DMA_SxFCR_FTH_0 | DMA_SxFCR_FTH_1 | DMA_SxFCR_DMDIS;
// DMASTREAM->M0AR = (uint32_t)(buff);
// DMASTREAM->PAR = (uint32_t)&(SDIO->FIFO);
// DMASTREAM->CR = DMAP2M | DMA_SxCR_PL_1 | DMA_SxCR_PL_1;
// DMASTREAM->CR |= DMA_SxCR_EN;
do {
sdio_check_status_register_cmd13(card_info.rca, &card_status.value);
} while (card_status.statusstruct.CURRENT_STATE == CURRENT_STATE_PRG);
SDIO->DLEN = (1 << BLOCKSIZE);
/* Init Transfer */
if (sdio_send_read_block_cmd17(addr)) {
return RES_ERROR;
}
SDIO->ICR = SDIO_ICR_CCRCFAILC | SDIO_ICR_DCRCFAILC | SDIO_ICR_CTIMEOUTC | SDIO_ICR_DTIMEOUTC |
SDIO_ICR_TXUNDERRC | SDIO_ICR_RXOVERRC | SDIO_ICR_CMDRENDC | SDIO_ICR_CMDSENTC | SDIO_ICR_DATAENDC |
SDIO_ICR_STBITERRC | SDIO_ICR_DBCKENDC | SDIO_ICR_SDIOITC | SDIO_ICR_CEATAENDC;
SDIO->DCTRL = (BLOCKSIZE<<4) | SDIO_DCTRL_DTDIR | /*SDIO_DCTRL_DMAEN |*/ SDIO_DCTRL_DTEN;
counter = 0;
while (counter < (1<<(BLOCKSIZE-2)) || !(SDIO->STA & (SDIO_STA_DBCKEND | SDIO_STA_DATAEND))) { // TODO: Handle errors
if (SDIO->STA & (SDIO_STA_DCRCFAIL | SDIO_STA_DTIMEOUT | SDIO_STA_STBITERR))
{
if (card_status.statusstruct.CURRENT_STATE != CURRENT_STATE_TRAN) {
status = sdio_send_select_card_cmd7(card_info.rca);
if (status)
return RES_ERROR;
}
if (SDIO->STA & SDIO_STA_RXDAVL) {
counter++;
fifo = SDIO->FIFO;
*(buff++) = (BYTE)(fifo & 0xFF);
fifo >>= 8;
*(buff++) = (BYTE)(fifo & 0xFF);
fifo >>= 8;
*(buff++) = (BYTE)(fifo & 0xFF);
fifo >>= 8;
*(buff++) = (BYTE)(fifo & 0xFF);
}
}
if (SDIO->STA & SDIO_STA_DCRCFAIL) return RES_ERROR;
//while(DMASTREAM->CR & DMA_SxCR_EN);
while(1) {
__DSB();
__DMB();
sdio_status = SDIO->STA;
if (sdio_status & SDIO_STA_DCRCFAIL) {
#if USE_DMA
status = sdio_read_blocks_dma(count, sector, buff);
if (status)
return RES_ERROR;
}
if (sdio_status & SDIO_STA_DTIMEOUT) {
#else
status = sdio_read_blocks_polling(count, sector, buff);
if (status)
return RES_ERROR;
}
if (sdio_status & SDIO_STA_DATAEND) {
if (!(sdio_status & SDIO_STA_RXACT)) {
break;
}
}
}
#endif /* USE_DMA */
if (card_info.type == SD_V2_HC) {
addr++;
} else {
addr += (1<<BLOCKSIZE);
}
}
return RES_OK;
}
@@ -697,5 +934,33 @@ DRESULT sdio_disk_read(BYTE *buff, DWORD sector, UINT count){
*/
DRESULT sdio_disk_write(const BYTE *buff, DWORD sector, UINT count)
{
uint32_t addr;
union sdio_status_conv status;
uint32_t buff_offset = 0;
int ret;
if (sdio_check_write_protection())
return RES_WRPRT;
addr = (card_info.type == SD_V2_HC ? (sector) : (sector * 512));
while (count) {
do {
sdio_check_status_register_cmd13(card_info.rca, &status.value);
} while (status.statusstruct.READY_FOR_DATA != 1);
ret = sdio_send_write_block_cmd24(addr);
if (ret)
return RES_ERROR;
ret = sdio_write_buffer(512, 9, &buff[buff_offset]);
if (ret)
return RES_ERROR;
buff_offset += 512;
addr += (card_info.type == SD_V2_HC ? 1 : 512);
count--;
}
return RES_OK;
}

View File

@@ -14,13 +14,16 @@
//Initial Transfer CLK (ca. 400kHz)
#define INITCLK 130 //120
//Working CLK (Maximum)
#define WORKCLK 50 //0
#define WORKCLK 2 //0
//Data Timeout in CLK Cycles
#define DTIMEOUT 0x3000 //150
#define DTIMEOUT 0x8000 //150
//DMA Stream used for TX and RX DMA2 Stream 3 or 6 possible
// Currently not used due to possible misalignment of the data buffer.
//#define DMASTREAM DMA2_Stream6
#define USE_DMA 1
#define DMASTREAM DMA2_Stream6
#define DMASTREAM_NO 6
/* Port Definitions */

View File

@@ -8,7 +8,7 @@
/ Function Configurations
/---------------------------------------------------------------------------*/
#define FF_FS_READONLY 1
#define FF_FS_READONLY 0
/* This option switches read-only configuration. (0:Read/Write or 1:Read-only)
/ Read-only configuration removes writing API functions, f_write(), f_sync(),
/ f_unlink(), f_mkdir(), f_chmod(), f_rename(), f_truncate(), f_getfree()

32
main.c
View File

@@ -22,10 +22,16 @@ volatile uint32_t sdio_wait;
int initreq = 0xFF;
int main() {
char buff[1024];
//const char *write_string = "This is a write test. Okay... Writing seems to work. Let's close the file\n";
char buff[8192*6];
int main()
{
int i;
char *name;
FILINFO fno;
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN;
__DSB();
GPIOA->MODER |= OUTPUT(6) | OUTPUT(7);
@@ -39,20 +45,20 @@ int main() {
initreq = f_mount(&SDfs, "0:/", 1);
while(initreq);
initreq = f_opendir(&root, "/");
for (i = 0; i < 8192*6; i++)
buff[i] = 'A';
initreq = f_open(&file, "foo.txt", FA_OPEN_APPEND | FA_WRITE);
if (initreq == FR_OK) {
if (!f_readdir(&root, &fno))
{
name = fno.fname;
initreq = f_open(&file, name, FA_READ);
if (initreq == FR_OK) {
f_gets(buff, sizeof(buff), &file);
printf("%s:\r\n%s\r\n",name, buff);
f_close(&file);
for (i = 0; i < 100; i++) {
initreq = f_write(&file, buff, 8192*6, NULL);
if (initreq) {
initreq++;
}
}
initreq = f_close(&file);
}
}
}
//fflush(stdout);
while(1);

8
program-device.gdb Normal file
View File

@@ -0,0 +1,8 @@
target extended-remote :2331
monitor speed 4000
monitor reset
load
monitor reset
kill
quit

18
program-device.sh Executable file
View File

@@ -0,0 +1,18 @@
#!/bin/bash
JLinkGDBServer -if SWD -device STM32F407VE &
sleep 2
# Check if GDB server is still running
gdbpid=`pidof JLinkGDBServer`
if [[ $gdbpid == "" ]]; then
echo ""
echo "GDB Server not running! Check target connection."
exit
fi
arm-none-eabi-gdb -x program-device.gdb stm32f4sdio.elf
sleep 2
kill $gdbpid

View File

@@ -152,7 +152,7 @@ SECTIONS
/* Uninitialized data section */
. = ALIGN(4);
.bss :
.bss (NOLOAD):
{
/* This is used by the startup in order to initialize the .bss secion */
_sbss = .; /* define a global symbol at bss start */
@@ -167,7 +167,7 @@ SECTIONS
} >RAM
/* User_heap_stack section, used to check that there is enough RAM left */
._user_heap_stack :
._user_heap_stack (NOLOAD):
{
. = ALIGN(4);
PROVIDE (heap_low = .); /* for _sbrk */