stm32f4-sdio/fatfs/shimatta_sdio_driver/shimatta_sdio.c
2018-11-09 00:29:03 +01:00

643 lines
16 KiB
C

/*
* shimatta_sdio-driver.c
*
* Created on: Apr 30, 2015
* Mario Hüttel
*/
#include "shimatta_sdio.h"
#include "shimatta_sdio_config.h"
#include <cmsis/core_cm4.h>
#include <stm32f4xx.h>
extern void SDIO_wait_ms(unsigned int i);
#define SETAF(PORT,PIN,AF) PORT->AFR[(PIN < 8 ? 0 : 1)] |= AF << ((PIN < 8 ? PIN : (PIN - 8)) * 4)
#define READCTRL ((BLOCKSIZE << 4) | SDIO_DCTRL_DMAEN)
#define DMAP2M (DMA_SxCR_CHSEL_2 | DMA_SxCR_PBURST_0 | DMA_SxCR_MBURST_0 | DMA_SxCR_MSIZE_1 | DMA_SxCR_PSIZE_1 | DMA_SxCR_MINC | DMA_SxCR_PFCTRL)
#define DMAM2P (DMA_SxCR_CHSEL_2 | DMA_SxCR_PBURST_0 | DMA_SxCR_MBURST_0 | DMA_SxCR_MSIZE_1 | DMA_SxCR_PSIZE_1 | DMA_SxCR_MINC | DMA_SxCR_PFCTRL | DMA_SxCR_DIR_0)
#define SHORT_ANS 1
#define LONG_ANS 3
#define NO_ANS 0
#define CCRCFAIL 1
#define CTIMEOUT 2
#define CNOTEXPETED 3
/* OCR Register Masks */
#define OCS_CCS (1<<30)
#define OCS_BUSY (1<<31)
typedef enum {ACMD41_RESP_INIT = 0, ACMD41_RESP_ERR, ACMD41_RESP_SDSC, ACMD41_RESP_SDXC} ACMD41_RESP_t;
typedef enum {CMD8_RESP_TIMEOUT = 0, CMD8_VOLTAGE_ACCEPTED, CMD8_VOLTAGE_DENIED} CMD8_RESP_t;
typedef uint8_t CID_t;
void SDIO_init_hw();
int SDIO_send_cmd(uint8_t CMD, uint32_t arg, uint8_t expectedAns);
int SDIO_get_response(uint8_t expectedCMD, uint8_t typeOfAns, uint32_t* responseBuffer);
void SDIO_wait_cmd_sent(void);
ACMD41_RESP_t SDIO_init_card_ACMD41(uint8_t HCS);
int SDIO_switch_appmode_CMD55(void);
int SDIO_send_all_send_cid_CMD2(void);
int SDIO_send_relative_address_CMD3(uint16_t* rca);
int SDIO_send_go_idle_CMD0(void);
CMD8_RESP_t SDIO_send_iface_condition_CMD8(void);
int SDIO_send_block_length_CMD16(uint32_t blocklen);
int SDIO_send_bus_width_ACMD6(uint8_t bus_width);
int SDIO_send_csd_CMD9(uint16_t rca, uint32_t *responsebuffer);
int SDIO_send_select_card_CMD7(uint16_t rca);
int SDIO_check_status_register_CMD13(uint16_t rca, uint32_t *status);
void SDIO_init_detect_pins(void);
int checkNotInserted(void); // Returns 0 if inserted!
int checkWriteProtection(void); // returns 0 if write protected
void switchPrescaler(uint8_t clkdiv);
int SDIO_send_write_block_CMD24(uint32_t addr);
int SDIO_send_read_block_CMD17(uint32_t addr);
int SDIO_get_sector_count(uint16_t rca, uint32_t *sector_count);
//BYTE rxtxbuffer[1<<BLOCKSIZE]; //Data RX and TX Buffer not needed anymore. thanks to DMA
SDInfo_t card_info; // = {.type = CARD_NONE};
DSTATUS SDIO_status(){
DSTATUS returnval = 0;
if (checkNotInserted()) {
returnval |= STA_NODISK;
}
if (card_info.type == CARD_NONE) {
returnval |= STA_NOINIT;
}
if (checkWriteProtection()) {
returnval |= STA_PROTECT;
}
return returnval;
}
volatile uint32_t debug;
volatile uint32_t debug_timeout;
volatile int debug_acmd = 0;
DSTATUS SDIO_initialize(){
int timeout = 0x3000;
int i;
CMD8_RESP_t res8;
ACMD41_RESP_t resa41;
uint8_t hcs_flag = 0;
card_info.rca = 0;
card_info.type = CARD_NONE;
card_type_t detected_card = CARD_NONE;
SDIO_init_hw();
SDIO_wait_ms(2);
SDIO_init_detect_pins();
if (checkNotInserted()) {
return STA_NOINIT | STA_NODISK;
}
debug=0;
SDIO_send_go_idle_CMD0();
SDIO_wait_ms(2);
res8 = SDIO_send_iface_condition_CMD8();
switch (res8) {
case CMD8_VOLTAGE_ACCEPTED: // SDV2 Card
hcs_flag = 1;
break;
case CMD8_VOLTAGE_DENIED: // should not happen
return STA_NOINIT;
break;
case CMD8_RESP_TIMEOUT: // SDV1 Card
hcs_flag=0;
break;
default:
return STA_NOINIT;
break;
}
debug++;
debug_timeout=timeout;
do {
//SDIO_wait_ms(2);
resa41 = SDIO_init_card_ACMD41(hcs_flag);
} while((resa41 == ACMD41_RESP_INIT) && (--timeout > 0));
debug++;
debug_acmd = resa41;
debug_timeout= timeout;
switch (resa41) {
case ACMD41_RESP_SDSC:
detected_card = (hcs_flag ? SD_V2_SC : SD_V1);
break;
case ACMD41_RESP_SDXC:
detected_card = SD_V2_HC;
break;
default:
return STA_NOINIT;
break;
}
debug++;
if (SDIO_send_all_send_cid_CMD2())
return STA_NOINIT;
if (SDIO_send_relative_address_CMD3(&card_info.rca))
return STA_NOINIT;
if (SDIO_get_sector_count(card_info.rca, &card_info.sector_count))
return STA_NOINIT;
if (SDIO_send_select_card_CMD7(card_info.rca))
return STA_NOINIT;
if (SDIO_send_block_length_CMD16((uint32_t)(1<<BLOCKSIZE)))
return STA_NOINIT;
if (SDIO_send_bus_width_ACMD6(BUSWIDTH))
return STA_NOINIT;
switchPrescaler(WORKCLK);
card_info.type = detected_card;
if (checkWriteProtection()) {
return STA_PROTECT;
} else
return 0;
}
uint32_t debug_addr, debug_count;
//uint32_t __attribute__ ((aligned (16))) buffer_sdio[512/4];
DRESULT SDIO_disk_read(BYTE *buff, DWORD sector, UINT count){
uint32_t addr;
uint32_t sdio_status;
uint32_t fifo;
uint32_t counter;
debug_addr = sector;
debug_count = count;
addr = (card_info.type == SD_V2_HC ? (sector) : (sector*512));
for (; count > 0; count--) {
/* configure read DMA */
// DMA2->LIFCR = 0xffffffff;
// DMA2->HIFCR = 0xffffffff;
// DMASTREAM->NDTR = 0;
// DMASTREAM->FCR = DMA_SxFCR_FTH_0 | DMA_SxFCR_FTH_1 | DMA_SxFCR_DMDIS;
// DMASTREAM->M0AR = (uint32_t)(buff);
// DMASTREAM->PAR = (uint32_t)&(SDIO->FIFO);
// DMASTREAM->CR = DMAP2M | DMA_SxCR_PL_1 | DMA_SxCR_PL_1;
// DMASTREAM->CR |= DMA_SxCR_EN;
SDIO->DLEN = (1 << BLOCKSIZE);
/* Init Transfer */
if (SDIO_send_read_block_CMD17(addr)) {
return RES_ERROR;
}
SDIO->ICR = SDIO_ICR_CCRCFAILC | SDIO_ICR_DCRCFAILC | SDIO_ICR_CTIMEOUTC | SDIO_ICR_DTIMEOUTC |
SDIO_ICR_TXUNDERRC | SDIO_ICR_RXOVERRC | SDIO_ICR_CMDRENDC | SDIO_ICR_CMDSENTC | SDIO_ICR_DATAENDC |
SDIO_ICR_STBITERRC | SDIO_ICR_DBCKENDC | SDIO_ICR_SDIOITC | SDIO_ICR_CEATAENDC;
SDIO->DCTRL = (BLOCKSIZE<<4) | SDIO_DCTRL_DTDIR | SDIO_DCTRL_DMAEN | SDIO_DCTRL_DTEN;
debug=0;
counter = 0;
while (counter < (1<<(BLOCKSIZE-2)) || !(SDIO->STA & (SDIO_STA_DBCKEND | SDIO_STA_DATAEND))) { // TODO: Handle errors
if (SDIO->STA & (SDIO_STA_DCRCFAIL | SDIO_STA_DTIMEOUT | SDIO_STA_STBITERR))
{
return RES_ERROR;
}
if (SDIO->STA & SDIO_STA_RXDAVL) {
counter++;
fifo = SDIO->FIFO;
*(buff++) = (BYTE)(fifo & 0xFF);
fifo >>= 8;
*(buff++) = (BYTE)(fifo & 0xFF);
fifo >>= 8;
*(buff++) = (BYTE)(fifo & 0xFF);
fifo >>= 8;
*(buff++) = (BYTE)(fifo & 0xFF);
}
}
if (SDIO->STA & SDIO_STA_DCRCFAIL) return RES_ERROR;
//while(DMASTREAM->CR & DMA_SxCR_EN);
while(1) {
__DSB();
__DMB();
sdio_status = SDIO->STA;
if (sdio_status & SDIO_STA_DCRCFAIL) {
return RES_ERROR;
}
if (sdio_status & SDIO_STA_DTIMEOUT) {
return RES_ERROR;
}
if (sdio_status & SDIO_STA_DATAEND) {
if (!(sdio_status & SDIO_STA_RXACT)) {
break;
}
}
}
if (card_info.type == SD_V2_HC) {
addr++;
} else {
addr += (1<<BLOCKSIZE);
}
}
return RES_OK;
}
DRESULT SDIO_disk_write(const BYTE *buff, DWORD sector, UINT count){
return RES_ERROR;
}
DRESULT SDIO_disk_ioctl(BYTE cmd, void* buff){
DRESULT res = RES_OK;
switch(cmd) {
case GET_BLOCK_SIZE:
*((DWORD*)buff) = (DWORD)0x01;
break;
case GET_SECTOR_SIZE:
*((WORD*)buff) = (WORD)(1<<BLOCKSIZE);
break;
case GET_SECTOR_COUNT:
if (card_info.type != CARD_NONE) {
*((DWORD*)buff) = (DWORD)card_info.sector_count;
} else {
res = RES_ERROR;
}
break;
case CTRL_SYNC:
res = RES_OK;
//No cache
//Nothing to do
break;
default:
res = RES_PARERR;
break;
}
return res;
}
DWORD __attribute__((weak)) get_fattime(){
return (1<<16) | (1<<24); // return Jan. 1st 1980 00:00:00
}
void SDIO_init_hw(){
//Init Clocks
RCC->AHB1ENR |= PORTCLKMASK | RCC_AHB1ENR_DMA2EN;
RCC->APB2ENR |= RCC_APB2ENR_SDIOEN;
//Init Alternate Functions
CLKPORT->MODER |= (2<<CLKPIN*2);
D0PORT->MODER |= (2<<D0PIN*2);
D0PORT->PUPDR |= (1<<D0PIN*2);
CMDPORT->MODER |= (2<<CMDPIN*2);
CMDPORT->PUPDR |= (1<<CMDPIN*2);
#if BUSWIDTH==4
D1PORT->MODER |= (2<<D1PIN*2);
D1PORT->PUPDR |= (1<<D1PIN*2);
D2PORT->MODER |= (2<<D2PIN*2);
D2PORT->PUPDR |= (1<<D2PIN*2);
D3PORT->MODER |= (2<<D3PIN*2);
D3PORT->PUPDR |= (1<<D3PIN*2);
#endif
//CLKPORT->AFR[(CLKPIN < 8 ? 0 : 1)] |= ALTFUNC << ((CLKPIN < 8 ? CLKPIN : (CLKPIN - 8)) * 4);
SETAF(CLKPORT, CLKPIN, ALTFUNC);
SETAF(CMDPORT, CMDPIN, ALTFUNC);
SETAF(D0PORT, D0PIN, ALTFUNC);
#if BUSWIDTH==4
SETAF(D1PORT, D1PIN, ALTFUNC);
SETAF(D2PORT, D2PIN, ALTFUNC);
SETAF(D3PORT, D3PIN, ALTFUNC);
#endif
//Init Module
//Set CLK Control Register
SDIO->CLKCR = (HW_FLOW<<14) | ((BUSWIDTH == 4 ? 1 : 0)<<11) | SDIO_CLKCR_CLKEN |
(INITCLK & SDIO_CLKCR_CLKDIV);
//Set Data Timeout
SDIO->DTIMER = DTIMEOUT;
//Set Data Parameters
//SDIO->DCTRL = (BLOCKSIZE << 4) | SDIO_DCTRL_DMAEN;
//Set Power Register: Power up Card CLK
SDIO->POWER = SDIO_POWER_PWRCTRL_0 | SDIO_POWER_PWRCTRL_1;
}
void switchPrescaler(uint8_t clkdiv) {
uint32_t reg;
reg = SDIO->CLKCR;
reg &= ~SDIO_CLKCR_CLKDIV; // Clear prescaler
reg |= (SDIO_CLKCR_CLKDIV & clkdiv); // Set bits
SDIO->CLKCR = reg;
}
int SDIO_send_bus_width_ACMD6(uint8_t bus_width) {
uint32_t response;
int retry = 0x20;
StatusConv_t status;
int ret;
if (SDIO_switch_appmode_CMD55()) return -1;
do {
SDIO_send_cmd(0x6, (bus_width == 4 ? 0x2 : 0x0), SHORT_ANS);
if (!(ret = SDIO_get_response(0x6, SHORT_ANS, &response))) {
status.value = response;
return 0;
}
} while(--retry > 0);
return ret;
}
//Send Command
//Clear respone Flags
//->CRC Fail, complete response, Timeout
int SDIO_send_cmd(uint8_t CMD, uint32_t arg, uint8_t expectedAns){
//Clear Flags
SDIO->ICR = SDIO_ICR_CCRCFAILC | SDIO_ICR_CMDRENDC | SDIO_ICR_CTIMEOUTC | SDIO_ICR_CMDSENTC;
//Send command
SDIO->ARG = arg;
SDIO->CMD = (CMD & SDIO_CMD_CMDINDEX) | SDIO_CMD_CPSMEN | /*SDIO_CMD_WAITPEND |*/ ((expectedAns << 6) & SDIO_CMD_WAITRESP);
return 0;
}
int SDIO_send_write_block_CMD24(uint32_t addr) {
return -1;
}
int SDIO_send_read_block_CMD17(uint32_t addr) {
uint32_t response;
SDIO_send_cmd(17, addr, SHORT_ANS);
return SDIO_get_response(17, SHORT_ANS, &response);
}
void SDIO_wait_cmd_sent() {
while (!(SDIO->STA & SDIO_STA_CMDSENT));
SDIO->ICR |= SDIO_ICR_CMDSENTC;
}
int /*__attribute__((noinline)) __attribute__((optimize("O0")))*/ SDIO_get_response(uint8_t expectedCMD, uint8_t typeOfAns, uint32_t *responseBuffer) {
uint32_t sdio_status;
/* Wait until command isn't active anymore */
while (SDIO->STA & SDIO_STA_CMDACT);
//Wait for error or success
while (1) {
sdio_status = SDIO->STA;
if (sdio_status & SDIO_STA_CMDREND) break; //Correct Respone Received
if ((sdio_status & SDIO_STA_CMDSENT) && (typeOfAns == NO_ANS)) break; // No response required
//Exclude ACMD41 and CMD2 from valid CRC check
if ((sdio_status & SDIO_STA_CCRCFAIL)) {
if(expectedCMD == 0xff) {
break;
} else {
return -CCRCFAIL;
}
}
if (sdio_status & SDIO_STA_CTIMEOUT)
return -CTIMEOUT;
}
//Valid Respone Received
if (((SDIO->RESPCMD & SDIO_RESPCMD_RESPCMD) != expectedCMD) && (expectedCMD != 0xff))
return -CNOTEXPETED; //Not the expected respose
//If case of a correct Response
*(responseBuffer++) = SDIO->RESP1;
//Long response.
if (typeOfAns == LONG_ANS) {
*(responseBuffer++) = SDIO->RESP2;
*(responseBuffer++) = SDIO->RESP3;
*(responseBuffer++) = SDIO->RESP4;
}
return 0;
}
int SDIO_switch_appmode_CMD55(){
int retry = 0x20;
StatusConv_t converter;
uint32_t response;
do {
//Execute Command and check for valid response
SDIO_send_cmd(55, (card_info.rca<<16)&0xFFFF0000, SHORT_ANS);
if (!SDIO_get_response(55, SHORT_ANS, &response))
{
//Response valid. Check if Card has accepted switch to application command mode
converter.value = response;
if (converter.statusstruct.APP_CMD == 1)
return 0;
}
}while(--retry > 0);
return -1;
}
ACMD41_RESP_t SDIO_init_card_ACMD41(uint8_t HCS){
uint32_t response;
int retry = 0x20;
if (SDIO_switch_appmode_CMD55()) return ACMD41_RESP_ERR;
do {
SDIO_send_cmd(41, (HCS ? (1<<30) : 0) | (1<<28) | (1<<20) |(1<<21)|(1<<22) |(1<<23)|(1<<19), SHORT_ANS);
if (!SDIO_get_response(0xFF, SHORT_ANS, &response)) {
if (response & OCS_BUSY) { // Card is ready... Who knows why this bit is called busy...
if (response & OCS_CCS) {
return ACMD41_RESP_SDXC;
} else {
return ACMD41_RESP_SDSC;
}
} else {
return ACMD41_RESP_INIT;
}
}
}while(--retry > 0);
return ACMD41_RESP_ERR;
}
int SDIO_send_all_send_cid_CMD2() {
uint32_t response[4];
int ret;
int retry = 0x20;
do {
SDIO_send_cmd(2, 0, LONG_ANS);
if (!(ret = SDIO_get_response(0xFF, LONG_ANS, response))) return 0;
}while(retry-- > 0);
return ret;
}
int SDIO_send_relative_address_CMD3(uint16_t* rca) {
uint32_t response;
int retry = 0x20;
do {
SDIO_send_cmd(3, 0, SHORT_ANS);
if (!SDIO_get_response(3, SHORT_ANS, &response)) {
// TODO: Do some *optional* checking
*rca = ((response & 0xFFFF0000) >> 16);
return 0;
}
}while(retry-- > 0);
return -1;
}
int SDIO_send_go_idle_CMD0() {
SDIO_send_cmd(0, 0x0, NO_ANS);
SDIO_wait_cmd_sent();
return 0;
}
CMD8_RESP_t SDIO_send_iface_condition_CMD8() {
uint32_t response;
int res = 0;
int retry = 0x20;
do {
SDIO_send_cmd(8, 0x1CC, SHORT_ANS); // 3.3V supply requesR
res = SDIO_get_response(8, SHORT_ANS, &response);
if (res == 0) {
if (response & 0x100)
return CMD8_VOLTAGE_ACCEPTED;
else
return CMD8_VOLTAGE_DENIED;
}
}while(retry-- > 0);
return CMD8_RESP_TIMEOUT;
}
/**
* @brief initDetectandProtectionPins
*/
void SDIO_init_detect_pins() {
#if SDIO_ENABLE_WRITEPROT==1
WRITEPROT_PORT->PUPDR |= ((WRITEPROT_PULLUP ? 1 : 0)<<WRITEPROT_PIN*2);
#endif /* SDIO_ENABLE_WRITEPROT */
#if SDIO_ENABLE_INS==1
INS_PORT->PUPDR |= ((INS_PULLUP? 1 : 0)<<INS_PIN*2);
#endif /* SDIO_ENABLE_INS */
__DSB();
}
/**
* @brief checkNotInserted
* @return return 0 if card is inserted, else 1
*/
int checkNotInserted() {
#if SDIO_ENABLE_INS
return ((INS_PORT->IDR & INS_PIN) == (INS_ACTIVE_LEVEL<<INS_PIN) ? 0 : 1);
#else
return 0; // Assume Card is inserted
#endif
}
int SDIO_send_block_length_CMD16(uint32_t blocklen) {
int timeout = 0x20;
int res;
uint32_t response;
do {
SDIO_send_cmd(16, blocklen, SHORT_ANS);
if (!(res = SDIO_get_response(16, SHORT_ANS, &response))) {
return 0;
}
}while(--timeout > 0);
return res;
}
int SDIO_send_select_card_CMD7(uint16_t rca) {
int timeout = 0x20;
uint32_t response;
StatusConv_t status;
int res;
/* Send CMD7. Selects card */
do {
SDIO_send_cmd(7, (rca<<16)&0xFFFF0000, SHORT_ANS);
if (!(res = SDIO_get_response(7, SHORT_ANS, &response))) {
break;
}
} while(--timeout > 0);
/* Check, if card in in TRANS state */
if (SDIO_check_status_register_CMD13(rca, &(status.value)))
res = -1;
if (status.statusstruct.CURRENT_STATE != CURRENT_STATE_TRAN)
res = -2;
return res;
}
int SDIO_check_status_register_CMD13(uint16_t rca, uint32_t *status) {
int timeout = 0x20;
uint32_t response;
int res;
do {
SDIO_send_cmd(13, (rca<<16)&0xFFFF0000, SHORT_ANS);
if (!(res = SDIO_get_response(13, SHORT_ANS, &response))) {
*status = response;
break;
}
} while(--timeout > 0);
return res;
}
int SDIO_get_sector_count(uint16_t rca, uint32_t *sector_count) {
uint32_t csd[4];
int res;
uint32_t size, mult, read_len, csd_rev;
if ((res = SDIO_send_csd_CMD9(rca, csd))) {
return -1;
}
csd_rev = ((csd[0] >> 30) & (0x3));
if (csd_rev == 0) { // SD v1 Card
size = ((csd[1] & 0x3FF) <<2) | (((csd[2]) & ((1<<31) | (1<<30)))>>30);
mult = ((csd[2] & ((1<<17)|(1<<16)|(1<<15)))>>15);
read_len = (1<<((csd[1] & ((1<<19)|(1<<18)|(1<<17)|(1<<16)))>>16));
*sector_count = (((size +1)*(1<<(mult+2))*read_len) >> BLOCKSIZE);
} else if (csd_rev == 1) { // SD v2 Card
size = (((csd[1] & 0x3F)<<16) | ((csd[2] & 0xFFFF0000) >> 16));
*sector_count = (size << (19-BLOCKSIZE));
}
return 0;
}
int SDIO_send_csd_CMD9(uint16_t rca, uint32_t *responsebuffer) {
int timeout = 0x20;
int res;
do {
SDIO_send_cmd(9, (rca<<16)&0xFFFF0000, LONG_ANS);
if (!(res = SDIO_get_response(0xFF, LONG_ANS, responsebuffer))) {
break;
}
} while(--timeout > 0);
return res;
}
/**
* @brief checkWriteProtection
* @return 0 if card is writable.
*/
int checkWriteProtection() {
#if SDIO_ENABLE_WRITEPROT
return ((WRITEPROT_PORT->IDR & WRITEPROT_PIN) == (WRITEPROT_ACTIVE_LEVEL<<WRITEPROT_PIN) ? 1 : 0);
#else
return 0; // Assume Card is not write protected
#endif
}