diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..9226a25
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,7 @@
+project.elf
+*.o
+*.map
+
+*.user
+*.user*
+*.user.*
diff --git a/Makefile b/Makefile
new file mode 100644
index 0000000..1a6c15b
--- /dev/null
+++ b/Makefile
@@ -0,0 +1,86 @@
+################################Shimatta Makefile####################################
+#CPU:		STM32F746ZGT
+#Compiler:	arm-none-eabi
+#####################################################################################
+#Add Files and Folders below#########################################################
+CFILES 	= main.c syscalls/syscalls.c setup/system_init.c startup/startup_stm32f746.c
+ASFILES =
+INCLUDEPATH = -Iinclude
+
+
+target	= project
+LIBRARYPATH = -Lstartup -Ldsp
+LIBRARIES = -larm_cortexM7lfsp_math
+
+DEFINES = -DSTM32F746xx -DSTM32F7XX -DARM_MATH_CM7
+mapfile = memmap
+
+##Custom Files###
+
+#TODO
+
+
+###################################################################################
+CC=arm-none-eabi-gcc
+OBJCOPY=arm-none-eabi-objcopy
+OBJDUMP=arm-none-eabi-objdump
+SIZE=arm-none-eabi-size
+
+LFLAGS = -mlittle-endian -mthumb -mcpu=cortex-m7 -mthumb-interwork 
+LFLAGS += -mfloat-abi=hard -mfpu=fpv5-sp-d16 --disable-newlib-supplied-syscalls -nostartfiles
+LFLAGS += -Tstm32f746zgt-axim.ld -Wl,-Map=$(mapfile).map -Wl,--gc-sections
+
+CFLAGS = -c -fmessage-length=0 -mlittle-endian -mthumb -mcpu=cortex-m7 -mthumb-interwork
+CFLAGS += -mfloat-abi=hard -mfpu=fpv5-sp-d16 -nostartfiles -Wall
+
+####################################################################################
+
+OBJ = $(CFILES:%.c=%.c.o)
+ASOBJ = $(ASFILES:%.S=%.S.o)
+
+default: $(target).elf
+
+
+
+
+%.bin: %.elf
+	$(OBJCOPY) -O binary $^ $@
+%.hex: %.elf
+	$(OBJCOPY) -O ihex $^ $@
+
+
+#Linking
+$(target).elf: $(OBJ) $(ASOBJ)
+	$(CC) $(LFLAGS) $(LIBRARYPATH) -o $@ $^ $(LIBRARIES)
+	$(SIZE) $@	
+
+#Compiling
+%.c.o: %.c
+	$(CC) $(CFLAGS) $(INCLUDEPATH) $(DEFINES) -o $@ $<
+	
+%.S.o: %.S
+	$(CC) $(CFLAGS) $(INCLUDEPATH) $(DEFINES) -o $@ $<
+
+.PHONY: qtproject clean mrproper objcopy disassemble
+
+disassemble: $(target).elf
+	$(OBJDUMP) -D -s $< > $(target).lss
+
+objcopy: $(target).bin $(target).hex
+
+mrproper:
+	rm -f $(target).pro
+
+clean:
+	rm -f $(target).elf $(target).bin $(target).hex $(OBJ) $(ASOBJ) $(mapfile).map $(target).lss
+qtproject:
+	echo -e "TEMPLATE = app\nCONFIG -= console app_bundle qt" > $(target).pro
+	echo -e "SOURCES += $(CFILES) $(ASFILES)" >> $(target).pro
+	echo -ne "INCLUDEPATH += " >> $(target).pro
+	echo "$(INCLUDEPATH)" | sed "s!-I!./!g" >> $(target).pro
+	echo -ne "HEADERS += " >> $(target).pro
+	find -name "*.h" | tr "\\n" " " >> $(target).pro
+	echo -ne "\nDEFINES += " >> $(target).pro
+	echo "$(DEFINES)" | sed "s/-D//g" >> $(target).pro
+
+
diff --git a/dsp/libarm_cortexM7lfsp_math.a b/dsp/libarm_cortexM7lfsp_math.a
new file mode 100644
index 0000000..0f4894e
Binary files /dev/null and b/dsp/libarm_cortexM7lfsp_math.a differ
diff --git a/include/arm_math.h b/include/arm_math.h
new file mode 100644
index 0000000..580cbbd
--- /dev/null
+++ b/include/arm_math.h
@@ -0,0 +1,7154 @@
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2015 ARM Limited. All rights reserved.
+*
+* $Date:        20. October 2015
+* $Revision:    V1.4.5 b
+*
+* Project:      CMSIS DSP Library
+* Title:        arm_math.h
+*
+* Description:  Public header file for CMSIS DSP Library
+*
+* Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+*   - Redistributions of source code must retain the above copyright
+*     notice, this list of conditions and the following disclaimer.
+*   - Redistributions in binary form must reproduce the above copyright
+*     notice, this list of conditions and the following disclaimer in
+*     the documentation and/or other materials provided with the
+*     distribution.
+*   - Neither the name of ARM LIMITED nor the names of its contributors
+*     may be used to endorse or promote products derived from this
+*     software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+ * -------------------------------------------------------------------- */
+
+/**
+   \mainpage CMSIS DSP Software Library
+   *
+   * Introduction
+   * ------------
+   *
+   * This user manual describes the CMSIS DSP software library,
+   * a suite of common signal processing functions for use on Cortex-M processor based devices.
+   *
+   * The library is divided into a number of functions each covering a specific category:
+   * - Basic math functions
+   * - Fast math functions
+   * - Complex math functions
+   * - Filters
+   * - Matrix functions
+   * - Transforms
+   * - Motor control functions
+   * - Statistical functions
+   * - Support functions
+   * - Interpolation functions
+   *
+   * The library has separate functions for operating on 8-bit integers, 16-bit integers,
+   * 32-bit integer and 32-bit floating-point values.
+   *
+   * Using the Library
+   * ------------
+   *
+   * The library installer contains prebuilt versions of the libraries in the Lib folder.
+   * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
+   * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
+   * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
+   * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
+   * - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
+   * - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
+   * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
+   * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
+   * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
+   * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
+   * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
+   * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
+   * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
+   * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
+   *
+   * The library functions are declared in the public file arm_math.h which is placed in the Include folder.
+   * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
+   * public header file  arm_math.h for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
+   * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or  ARM_MATH_CM3 or
+   * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
+   *
+   * Examples
+   * --------
+   *
+   * The library ships with a number of examples which demonstrate how to use the library functions.
+   *
+   * Toolchain Support
+   * ------------
+   *
+   * The library has been developed and tested with MDK-ARM version 5.14.0.0
+   * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
+   *
+   * Building the Library
+   * ------------
+   *
+   * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the CMSIS\\DSP_Lib\\Source\\ARM folder.
+   * - arm_cortexM_math.uvprojx
+   *
+   *
+   * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
+   *
+   * Pre-processor Macros
+   * ------------
+   *
+   * Each library project have differant pre-processor macros.
+   *
+   * - UNALIGNED_SUPPORT_DISABLE:
+   *
+   * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
+   *
+   * - ARM_MATH_BIG_ENDIAN:
+   *
+   * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
+   *
+   * - ARM_MATH_MATRIX_CHECK:
+   *
+   * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
+   *
+   * - ARM_MATH_ROUNDING:
+   *
+   * Define macro ARM_MATH_ROUNDING for rounding on support functions
+   *
+   * - ARM_MATH_CMx:
+   *
+   * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
+   * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
+   * ARM_MATH_CM7 for building the library on cortex-M7.
+   *
+   * - __FPU_PRESENT:
+   *
+   * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
+   *
+   * 
+ *     typedef struct
+ *     {
+ *       uint16_t numRows;     // number of rows of the matrix.
+ *       uint16_t numCols;     // number of columns of the matrix.
+ *       float32_t *pData;     // points to the data of the matrix.
+ *     } arm_matrix_instance_f32;
+ * 
+ * There are similar definitions for Q15 and Q31 data types.
+ *
+ * The structure specifies the size of the matrix and then points to
+ * an array of data.  The array is of size numRows X numCols
+ * and the values are arranged in row order.  That is, the
+ * matrix element (i, j) is stored at:
+ * + * pData[i*numCols + j] + *+ * + * \par Init Functions + * There is an associated initialization function for each type of matrix + * data structure. + * The initialization function sets the values of the internal structure fields. + * Refer to the function
arm_mat_init_f32(), arm_mat_init_q31()
+ * and arm_mat_init_q15() for floating-point, Q31 and Q15 types,  respectively.
+ *
+ * \par
+ * Use of the initialization function is optional. However, if initialization function is used
+ * then the instance structure cannot be placed into a const data section.
+ * To place the instance structure in a const data
+ * section, manually initialize the data structure.  For example:
+ * + *+ * wherearm_matrix_instance_f32 S = {nRows, nColumns, pData};+ *arm_matrix_instance_q31 S = {nRows, nColumns, pData};+ *arm_matrix_instance_q15 S = {nRows, nColumns, pData};+ *
nRows specifies the number of rows, nColumns
+ * specifies the number of columns, and pData points to the
+ * data array.
+ *
+ * \par Size Checking
+ * By default all of the matrix functions perform size checking on the input and
+ * output matrices.  For example, the matrix addition function verifies that the
+ * two input matrices and the output matrix all have the same number of rows and
+ * columns.  If the size check fails the functions return:
+ * + * ARM_MATH_SIZE_MISMATCH + *+ * Otherwise the functions return + *
+ * ARM_MATH_SUCCESS + *+ * There is some overhead associated with this matrix size checking. + * The matrix size checking is enabled via the \#define + *
+ * ARM_MATH_MATRIX_CHECK + *+ * within the library project settings. By default this macro is defined + * and size checking is enabled. By changing the project settings and + * undefining this macro size checking is eliminated and the functions + * run a bit faster. With size checking disabled the functions always + * return
ARM_MATH_SUCCESS.
+ */
+
+/**
+ * @defgroup groupTransforms Transform Functions
+ */
+
+/**
+ * @defgroup groupController Controller Functions
+ */
+
+/**
+ * @defgroup groupStats Statistics Functions
+ */
+/**
+ * @defgroup groupSupport Support Functions
+ */
+
+/**
+ * @defgroup groupInterpolation Interpolation Functions
+ * These functions perform 1- and 2-dimensional interpolation of data.
+ * Linear interpolation is used for 1-dimensional data and
+ * bilinear interpolation is used for 2-dimensional data.
+ */
+
+/**
+ * @defgroup groupExamples Examples
+ */
+#ifndef _ARM_MATH_H
+#define _ARM_MATH_H
+
+/* ignore some GCC warnings */
+#if defined ( __GNUC__ )
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wsign-conversion"
+#pragma GCC diagnostic ignored "-Wconversion"
+#pragma GCC diagnostic ignored "-Wunused-parameter"
+#endif
+
+#define __CMSIS_GENERIC         /* disable NVIC and Systick functions */
+
+#if defined(ARM_MATH_CM7)
+  #include "core_cm7.h"
+#elif defined (ARM_MATH_CM4)
+  #include "core_cm4.h"
+#elif defined (ARM_MATH_CM3)
+  #include "core_cm3.h"
+#elif defined (ARM_MATH_CM0)
+  #include "core_cm0.h"
+  #define ARM_MATH_CM0_FAMILY
+#elif defined (ARM_MATH_CM0PLUS)
+  #include "core_cm0plus.h"
+  #define ARM_MATH_CM0_FAMILY
+#else
+  #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
+#endif
+
+#undef  __CMSIS_GENERIC         /* enable NVIC and Systick functions */
+#include "string.h"
+#include "math.h"
+#ifdef   __cplusplus
+extern "C"
+{
+#endif
+
+
+  /**
+   * @brief Macros required for reciprocal calculation in Normalized LMS
+   */
+
+#define DELTA_Q31          (0x100)
+#define DELTA_Q15          0x5
+#define INDEX_MASK         0x0000003F
+#ifndef PI
+#define PI                 3.14159265358979f
+#endif
+
+  /**
+   * @brief Macros required for SINE and COSINE Fast math approximations
+   */
+
+#define FAST_MATH_TABLE_SIZE  512
+#define FAST_MATH_Q31_SHIFT   (32 - 10)
+#define FAST_MATH_Q15_SHIFT   (16 - 10)
+#define CONTROLLER_Q31_SHIFT  (32 - 9)
+#define TABLE_SIZE  256
+#define TABLE_SPACING_Q31     0x400000
+#define TABLE_SPACING_Q15     0x80
+
+  /**
+   * @brief Macros required for SINE and COSINE Controller functions
+   */
+  /* 1.31(q31) Fixed value of 2/360 */
+  /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
+#define INPUT_SPACING         0xB60B61
+
+  /**
+   * @brief Macro for Unaligned Support
+   */
+#ifndef UNALIGNED_SUPPORT_DISABLE
+    #define ALIGN4
+#else
+  #if defined  (__GNUC__)
+    #define ALIGN4 __attribute__((aligned(4)))
+  #else
+    #define ALIGN4 __align(4)
+  #endif
+#endif   /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+  /**
+   * @brief Error status returned by some functions in the library.
+   */
+
+  typedef enum
+  {
+    ARM_MATH_SUCCESS = 0,                /**< No error */
+    ARM_MATH_ARGUMENT_ERROR = -1,        /**< One or more arguments are incorrect */
+    ARM_MATH_LENGTH_ERROR = -2,          /**< Length of data buffer is incorrect */
+    ARM_MATH_SIZE_MISMATCH = -3,         /**< Size of matrices is not compatible with the operation. */
+    ARM_MATH_NANINF = -4,                /**< Not-a-number (NaN) or infinity is generated */
+    ARM_MATH_SINGULAR = -5,              /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
+    ARM_MATH_TEST_FAILURE = -6           /**< Test Failed  */
+  } arm_status;
+
+  /**
+   * @brief 8-bit fractional data type in 1.7 format.
+   */
+  typedef int8_t q7_t;
+
+  /**
+   * @brief 16-bit fractional data type in 1.15 format.
+   */
+  typedef int16_t q15_t;
+
+  /**
+   * @brief 32-bit fractional data type in 1.31 format.
+   */
+  typedef int32_t q31_t;
+
+  /**
+   * @brief 64-bit fractional data type in 1.63 format.
+   */
+  typedef int64_t q63_t;
+
+  /**
+   * @brief 32-bit floating-point type definition.
+   */
+  typedef float float32_t;
+
+  /**
+   * @brief 64-bit floating-point type definition.
+   */
+  typedef double float64_t;
+
+  /**
+   * @brief definition to read/write two 16 bit values.
+   */
+#if defined __CC_ARM
+  #define __SIMD32_TYPE int32_t __packed
+  #define CMSIS_UNUSED __attribute__((unused))
+
+#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
+  #define __SIMD32_TYPE int32_t
+  #define CMSIS_UNUSED __attribute__((unused))
+
+#elif defined __GNUC__
+  #define __SIMD32_TYPE int32_t
+  #define CMSIS_UNUSED __attribute__((unused))
+
+#elif defined __ICCARM__
+  #define __SIMD32_TYPE int32_t __packed
+  #define CMSIS_UNUSED
+
+#elif defined __CSMC__
+  #define __SIMD32_TYPE int32_t
+  #define CMSIS_UNUSED
+
+#elif defined __TASKING__
+  #define __SIMD32_TYPE __unaligned int32_t
+  #define CMSIS_UNUSED
+
+#else
+  #error Unknown compiler
+#endif
+
+#define __SIMD32(addr)        (*(__SIMD32_TYPE **) & (addr))
+#define __SIMD32_CONST(addr)  ((__SIMD32_TYPE *)(addr))
+#define _SIMD32_OFFSET(addr)  (*(__SIMD32_TYPE *)  (addr))
+#define __SIMD64(addr)        (*(int64_t **) & (addr))
+
+#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
+  /**
+   * @brief definition to pack two 16 bit values.
+   */
+#define __PKHBT(ARG1, ARG2, ARG3)      ( (((int32_t)(ARG1) <<  0) & (int32_t)0x0000FFFF) | \
+                                         (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000)  )
+#define __PKHTB(ARG1, ARG2, ARG3)      ( (((int32_t)(ARG1) <<  0) & (int32_t)0xFFFF0000) | \
+                                         (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF)  )
+
+#endif
+
+
+   /**
+   * @brief definition to pack four 8 bit values.
+   */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) <<  0) & (int32_t)0x000000FF) | \
+                                (((int32_t)(v1) <<  8) & (int32_t)0x0000FF00) | \
+                                (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
+                                (((int32_t)(v3) << 24) & (int32_t)0xFF000000)  )
+#else
+
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) <<  0) & (int32_t)0x000000FF) | \
+                                (((int32_t)(v2) <<  8) & (int32_t)0x0000FF00) | \
+                                (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
+                                (((int32_t)(v0) << 24) & (int32_t)0xFF000000)  )
+
+#endif
+
+
+  /**
+   * @brief Clips Q63 to Q31 values.
+   */
+  static __INLINE q31_t clip_q63_to_q31(
+  q63_t x)
+  {
+    return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+      ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
+  }
+
+  /**
+   * @brief Clips Q63 to Q15 values.
+   */
+  static __INLINE q15_t clip_q63_to_q15(
+  q63_t x)
+  {
+    return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+      ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
+  }
+
+  /**
+   * @brief Clips Q31 to Q7 values.
+   */
+  static __INLINE q7_t clip_q31_to_q7(
+  q31_t x)
+  {
+    return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
+      ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
+  }
+
+  /**
+   * @brief Clips Q31 to Q15 values.
+   */
+  static __INLINE q15_t clip_q31_to_q15(
+  q31_t x)
+  {
+    return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
+      ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
+  }
+
+  /**
+   * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
+   */
+
+  static __INLINE q63_t mult32x64(
+  q63_t x,
+  q31_t y)
+  {
+    return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
+            (((q63_t) (x >> 32) * y)));
+  }
+
+/*
+  #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM   )
+  #define __CLZ __clz
+  #endif
+ */
+/* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */
+#if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__))  )
+  static __INLINE uint32_t __CLZ(
+  q31_t data);
+
+  static __INLINE uint32_t __CLZ(
+  q31_t data)
+  {
+    uint32_t count = 0;
+    uint32_t mask = 0x80000000;
+
+    while((data & mask) == 0)
+    {
+      count += 1u;
+      mask = mask >> 1u;
+    }
+
+    return (count);
+  }
+#endif
+
+  /**
+   * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
+   */
+
+  static __INLINE uint32_t arm_recip_q31(
+  q31_t in,
+  q31_t * dst,
+  q31_t * pRecipTable)
+  {
+    q31_t out;
+    uint32_t tempVal;
+    uint32_t index, i;
+    uint32_t signBits;
+
+    if(in > 0)
+    {
+      signBits = ((uint32_t) (__CLZ( in) - 1));
+    }
+    else
+    {
+      signBits = ((uint32_t) (__CLZ(-in) - 1));
+    }
+
+    /* Convert input sample to 1.31 format */
+    in = (in << signBits);
+
+    /* calculation of index for initial approximated Val */
+    index = (uint32_t)(in >> 24);
+    index = (index & INDEX_MASK);
+
+    /* 1.31 with exp 1 */
+    out = pRecipTable[index];
+
+    /* calculation of reciprocal value */
+    /* running approximation for two iterations */
+    for (i = 0u; i < 2u; i++)
+    {
+      tempVal = (uint32_t) (((q63_t) in * out) >> 31);
+      tempVal = 0x7FFFFFFFu - tempVal;
+      /*      1.31 with exp 1 */
+      /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
+      out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
+    }
+
+    /* write output */
+    *dst = out;
+
+    /* return num of signbits of out = 1/in value */
+    return (signBits + 1u);
+  }
+
+
+  /**
+   * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
+   */
+  static __INLINE uint32_t arm_recip_q15(
+  q15_t in,
+  q15_t * dst,
+  q15_t * pRecipTable)
+  {
+    q15_t out = 0;
+    uint32_t tempVal = 0;
+    uint32_t index = 0, i = 0;
+    uint32_t signBits = 0;
+
+    if(in > 0)
+    {
+      signBits = ((uint32_t)(__CLZ( in) - 17));
+    }
+    else
+    {
+      signBits = ((uint32_t)(__CLZ(-in) - 17));
+    }
+
+    /* Convert input sample to 1.15 format */
+    in = (in << signBits);
+
+    /* calculation of index for initial approximated Val */
+    index = (uint32_t)(in >>  8);
+    index = (index & INDEX_MASK);
+
+    /*      1.15 with exp 1  */
+    out = pRecipTable[index];
+
+    /* calculation of reciprocal value */
+    /* running approximation for two iterations */
+    for (i = 0u; i < 2u; i++)
+    {
+      tempVal = (uint32_t) (((q31_t) in * out) >> 15);
+      tempVal = 0x7FFFu - tempVal;
+      /*      1.15 with exp 1 */
+      out = (q15_t) (((q31_t) out * tempVal) >> 14);
+      /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
+    }
+
+    /* write output */
+    *dst = out;
+
+    /* return num of signbits of out = 1/in value */
+    return (signBits + 1);
+  }
+
+
+  /*
+   * @brief C custom defined intrinisic function for only M0 processors
+   */
+#if defined(ARM_MATH_CM0_FAMILY)
+  static __INLINE q31_t __SSAT(
+  q31_t x,
+  uint32_t y)
+  {
+    int32_t posMax, negMin;
+    uint32_t i;
+
+    posMax = 1;
+    for (i = 0; i < (y - 1); i++)
+    {
+      posMax = posMax * 2;
+    }
+
+    if(x > 0)
+    {
+      posMax = (posMax - 1);
+
+      if(x > posMax)
+      {
+        x = posMax;
+      }
+    }
+    else
+    {
+      negMin = -posMax;
+
+      if(x < negMin)
+      {
+        x = negMin;
+      }
+    }
+    return (x);
+  }
+#endif /* end of ARM_MATH_CM0_FAMILY */
+
+
+  /*
+   * @brief C custom defined intrinsic function for M3 and M0 processors
+   */
+#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
+
+  /*
+   * @brief C custom defined QADD8 for M3 and M0 processors
+   */
+  static __INLINE uint32_t __QADD8(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s, t, u;
+
+    r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
+    s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
+    t = __SSAT(((((q31_t)x <<  8) >> 24) + (((q31_t)y <<  8) >> 24)), 8) & (int32_t)0x000000FF;
+    u = __SSAT(((((q31_t)x      ) >> 24) + (((q31_t)y      ) >> 24)), 8) & (int32_t)0x000000FF;
+
+    return ((uint32_t)((u << 24) | (t << 16) | (s <<  8) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined QSUB8 for M3 and M0 processors
+   */
+  static __INLINE uint32_t __QSUB8(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s, t, u;
+
+    r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
+    s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
+    t = __SSAT(((((q31_t)x <<  8) >> 24) - (((q31_t)y <<  8) >> 24)), 8) & (int32_t)0x000000FF;
+    u = __SSAT(((((q31_t)x      ) >> 24) - (((q31_t)y      ) >> 24)), 8) & (int32_t)0x000000FF;
+
+    return ((uint32_t)((u << 24) | (t << 16) | (s <<  8) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined QADD16 for M3 and M0 processors
+   */
+  static __INLINE uint32_t __QADD16(
+  uint32_t x,
+  uint32_t y)
+  {
+/*  q31_t r,     s;  without initialisation 'arm_offset_q15 test' fails  but 'intrinsic' tests pass! for armCC */
+    q31_t r = 0, s = 0;
+
+    r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+    s = __SSAT(((((q31_t)x      ) >> 16) + (((q31_t)y      ) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+    return ((uint32_t)((s << 16) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined SHADD16 for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SHADD16(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s;
+
+    r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+    s = (((((q31_t)x      ) >> 16) + (((q31_t)y      ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+    return ((uint32_t)((s << 16) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined QSUB16 for M3 and M0 processors
+   */
+  static __INLINE uint32_t __QSUB16(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s;
+
+    r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+    s = __SSAT(((((q31_t)x      ) >> 16) - (((q31_t)y      ) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+    return ((uint32_t)((s << 16) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined SHSUB16 for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SHSUB16(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s;
+
+    r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+    s = (((((q31_t)x      ) >> 16) - (((q31_t)y      ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+    return ((uint32_t)((s << 16) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined QASX for M3 and M0 processors
+   */
+  static __INLINE uint32_t __QASX(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s;
+
+    r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y      ) >> 16)), 16) & (int32_t)0x0000FFFF;
+    s = __SSAT(((((q31_t)x      ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+    return ((uint32_t)((s << 16) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined SHASX for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SHASX(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s;
+
+    r = (((((q31_t)x << 16) >> 16) - (((q31_t)y      ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+    s = (((((q31_t)x      ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+    return ((uint32_t)((s << 16) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined QSAX for M3 and M0 processors
+   */
+  static __INLINE uint32_t __QSAX(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s;
+
+    r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y      ) >> 16)), 16) & (int32_t)0x0000FFFF;
+    s = __SSAT(((((q31_t)x      ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+    return ((uint32_t)((s << 16) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined SHSAX for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SHSAX(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s;
+
+    r = (((((q31_t)x << 16) >> 16) + (((q31_t)y      ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+    s = (((((q31_t)x      ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+    return ((uint32_t)((s << 16) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined SMUSDX for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SMUSDX(
+  uint32_t x,
+  uint32_t y)
+  {
+    return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y      ) >> 16)) -
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y << 16) >> 16))   ));
+  }
+
+  /*
+   * @brief C custom defined SMUADX for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SMUADX(
+  uint32_t x,
+  uint32_t y)
+  {
+    return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y      ) >> 16)) +
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y << 16) >> 16))   ));
+  }
+
+
+  /*
+   * @brief C custom defined QADD for M3 and M0 processors
+   */
+  static __INLINE int32_t __QADD(
+  int32_t x,
+  int32_t y)
+  {
+    return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
+  }
+
+
+  /*
+   * @brief C custom defined QSUB for M3 and M0 processors
+   */
+  static __INLINE int32_t __QSUB(
+  int32_t x,
+  int32_t y)
+  {
+    return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
+  }
+
+
+  /*
+   * @brief C custom defined SMLAD for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SMLAD(
+  uint32_t x,
+  uint32_t y,
+  uint32_t sum)
+  {
+    return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y      ) >> 16)) +
+                       ( ((q31_t)sum    )                                  )   ));
+  }
+
+
+  /*
+   * @brief C custom defined SMLADX for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SMLADX(
+  uint32_t x,
+  uint32_t y,
+  uint32_t sum)
+  {
+    return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y      ) >> 16)) +
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y << 16) >> 16)) +
+                       ( ((q31_t)sum    )                                  )   ));
+  }
+
+
+  /*
+   * @brief C custom defined SMLSDX for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SMLSDX(
+  uint32_t x,
+  uint32_t y,
+  uint32_t sum)
+  {
+    return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y      ) >> 16)) -
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y << 16) >> 16)) +
+                       ( ((q31_t)sum    )                                  )   ));
+  }
+
+
+  /*
+   * @brief C custom defined SMLALD for M3 and M0 processors
+   */
+  static __INLINE uint64_t __SMLALD(
+  uint32_t x,
+  uint32_t y,
+  uint64_t sum)
+  {
+/*  return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
+    return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y      ) >> 16)) +
+                       ( ((q63_t)sum    )                                  )   ));
+  }
+
+
+  /*
+   * @brief C custom defined SMLALDX for M3 and M0 processors
+   */
+  static __INLINE uint64_t __SMLALDX(
+  uint32_t x,
+  uint32_t y,
+  uint64_t sum)
+  {
+/*  return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
+    return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y      ) >> 16)) +
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y << 16) >> 16)) +
+                       ( ((q63_t)sum    )                                  )   ));
+  }
+
+
+  /*
+   * @brief C custom defined SMUAD for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SMUAD(
+  uint32_t x,
+  uint32_t y)
+  {
+    return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y      ) >> 16))   ));
+  }
+
+
+  /*
+   * @brief C custom defined SMUSD for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SMUSD(
+  uint32_t x,
+  uint32_t y)
+  {
+    return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y      ) >> 16))   ));
+  }
+
+
+  /*
+   * @brief C custom defined SXTB16 for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SXTB16(
+  uint32_t x)
+  {
+    return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
+                       ((((q31_t)x <<  8) >>  8) & (q31_t)0xFFFF0000)  ));
+  }
+
+#endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
+
+
+  /**
+   * @brief Instance structure for the Q7 FIR filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;        /**< number of filter coefficients in the filter. */
+    q7_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+    q7_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/
+  } arm_fir_instance_q7;
+
+  /**
+   * @brief Instance structure for the Q15 FIR filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;         /**< number of filter coefficients in the filter. */
+    q15_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+    q15_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/
+  } arm_fir_instance_q15;
+
+  /**
+   * @brief Instance structure for the Q31 FIR filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;         /**< number of filter coefficients in the filter. */
+    q31_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+    q31_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps. */
+  } arm_fir_instance_q31;
+
+  /**
+   * @brief Instance structure for the floating-point FIR filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;     /**< number of filter coefficients in the filter. */
+    float32_t *pState;    /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+    float32_t *pCoeffs;   /**< points to the coefficient array. The array is of length numTaps. */
+  } arm_fir_instance_f32;
+
+
+  /**
+   * @brief Processing function for the Q7 FIR filter.
+   * @param[in]  S          points to an instance of the Q7 FIR filter structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_fir_q7(
+  const arm_fir_instance_q7 * S,
+  q7_t * pSrc,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q7 FIR filter.
+   * @param[in,out] S          points to an instance of the Q7 FIR structure.
+   * @param[in]     numTaps    Number of filter coefficients in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     blockSize  number of samples that are processed.
+   */
+  void arm_fir_init_q7(
+  arm_fir_instance_q7 * S,
+  uint16_t numTaps,
+  q7_t * pCoeffs,
+  q7_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the Q15 FIR filter.
+   * @param[in]  S          points to an instance of the Q15 FIR structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_fir_q15(
+  const arm_fir_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
+   * @param[in]  S          points to an instance of the Q15 FIR filter structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_fir_fast_q15(
+  const arm_fir_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q15 FIR filter.
+   * @param[in,out] S          points to an instance of the Q15 FIR filter structure.
+   * @param[in]     numTaps    Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     blockSize  number of samples that are processed at a time.
+   * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
+   * numTaps is not a supported value.
+   */
+  arm_status arm_fir_init_q15(
+  arm_fir_instance_q15 * S,
+  uint16_t numTaps,
+  q15_t * pCoeffs,
+  q15_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the Q31 FIR filter.
+   * @param[in]  S          points to an instance of the Q31 FIR filter structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_fir_q31(
+  const arm_fir_instance_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
+   * @param[in]  S          points to an instance of the Q31 FIR structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_fir_fast_q31(
+  const arm_fir_instance_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q31 FIR filter.
+   * @param[in,out] S          points to an instance of the Q31 FIR structure.
+   * @param[in]     numTaps    Number of filter coefficients in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     blockSize  number of samples that are processed at a time.
+   */
+  void arm_fir_init_q31(
+  arm_fir_instance_q31 * S,
+  uint16_t numTaps,
+  q31_t * pCoeffs,
+  q31_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the floating-point FIR filter.
+   * @param[in]  S          points to an instance of the floating-point FIR structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_fir_f32(
+  const arm_fir_instance_f32 * S,
+  float32_t * pSrc,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the floating-point FIR filter.
+   * @param[in,out] S          points to an instance of the floating-point FIR filter structure.
+   * @param[in]     numTaps    Number of filter coefficients in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     blockSize  number of samples that are processed at a time.
+   */
+  void arm_fir_init_f32(
+  arm_fir_instance_f32 * S,
+  uint16_t numTaps,
+  float32_t * pCoeffs,
+  float32_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Instance structure for the Q15 Biquad cascade filter.
+   */
+  typedef struct
+  {
+    int8_t numStages;        /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
+    q15_t *pState;           /**< Points to the array of state coefficients.  The array is of length 4*numStages. */
+    q15_t *pCoeffs;          /**< Points to the array of coefficients.  The array is of length 5*numStages. */
+    int8_t postShift;        /**< Additional shift, in bits, applied to each output sample. */
+  } arm_biquad_casd_df1_inst_q15;
+
+  /**
+   * @brief Instance structure for the Q31 Biquad cascade filter.
+   */
+  typedef struct
+  {
+    uint32_t numStages;      /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
+    q31_t *pState;           /**< Points to the array of state coefficients.  The array is of length 4*numStages. */
+    q31_t *pCoeffs;          /**< Points to the array of coefficients.  The array is of length 5*numStages. */
+    uint8_t postShift;       /**< Additional shift, in bits, applied to each output sample. */
+  } arm_biquad_casd_df1_inst_q31;
+
+  /**
+   * @brief Instance structure for the floating-point Biquad cascade filter.
+   */
+  typedef struct
+  {
+    uint32_t numStages;      /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
+    float32_t *pState;       /**< Points to the array of state coefficients.  The array is of length 4*numStages. */
+    float32_t *pCoeffs;      /**< Points to the array of coefficients.  The array is of length 5*numStages. */
+  } arm_biquad_casd_df1_inst_f32;
+
+
+  /**
+   * @brief Processing function for the Q15 Biquad cascade filter.
+   * @param[in]  S          points to an instance of the Q15 Biquad cascade structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_biquad_cascade_df1_q15(
+  const arm_biquad_casd_df1_inst_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q15 Biquad cascade filter.
+   * @param[in,out] S          points to an instance of the Q15 Biquad cascade structure.
+   * @param[in]     numStages  number of 2nd order stages in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     postShift  Shift to be applied to the output. Varies according to the coefficients format
+   */
+  void arm_biquad_cascade_df1_init_q15(
+  arm_biquad_casd_df1_inst_q15 * S,
+  uint8_t numStages,
+  q15_t * pCoeffs,
+  q15_t * pState,
+  int8_t postShift);
+
+
+  /**
+   * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+   * @param[in]  S          points to an instance of the Q15 Biquad cascade structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_biquad_cascade_df1_fast_q15(
+  const arm_biquad_casd_df1_inst_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the Q31 Biquad cascade filter
+   * @param[in]  S          points to an instance of the Q31 Biquad cascade structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_biquad_cascade_df1_q31(
+  const arm_biquad_casd_df1_inst_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+   * @param[in]  S          points to an instance of the Q31 Biquad cascade structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_biquad_cascade_df1_fast_q31(
+  const arm_biquad_casd_df1_inst_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q31 Biquad cascade filter.
+   * @param[in,out] S          points to an instance of the Q31 Biquad cascade structure.
+   * @param[in]     numStages  number of 2nd order stages in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     postShift  Shift to be applied to the output. Varies according to the coefficients format
+   */
+  void arm_biquad_cascade_df1_init_q31(
+  arm_biquad_casd_df1_inst_q31 * S,
+  uint8_t numStages,
+  q31_t * pCoeffs,
+  q31_t * pState,
+  int8_t postShift);
+
+
+  /**
+   * @brief Processing function for the floating-point Biquad cascade filter.
+   * @param[in]  S          points to an instance of the floating-point Biquad cascade structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_biquad_cascade_df1_f32(
+  const arm_biquad_casd_df1_inst_f32 * S,
+  float32_t * pSrc,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the floating-point Biquad cascade filter.
+   * @param[in,out] S          points to an instance of the floating-point Biquad cascade structure.
+   * @param[in]     numStages  number of 2nd order stages in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   */
+  void arm_biquad_cascade_df1_init_f32(
+  arm_biquad_casd_df1_inst_f32 * S,
+  uint8_t numStages,
+  float32_t * pCoeffs,
+  float32_t * pState);
+
+
+  /**
+   * @brief Instance structure for the floating-point matrix structure.
+   */
+  typedef struct
+  {
+    uint16_t numRows;     /**< number of rows of the matrix.     */
+    uint16_t numCols;     /**< number of columns of the matrix.  */
+    float32_t *pData;     /**< points to the data of the matrix. */
+  } arm_matrix_instance_f32;
+
+
+  /**
+   * @brief Instance structure for the floating-point matrix structure.
+   */
+  typedef struct
+  {
+    uint16_t numRows;     /**< number of rows of the matrix.     */
+    uint16_t numCols;     /**< number of columns of the matrix.  */
+    float64_t *pData;     /**< points to the data of the matrix. */
+  } arm_matrix_instance_f64;
+
+  /**
+   * @brief Instance structure for the Q15 matrix structure.
+   */
+  typedef struct
+  {
+    uint16_t numRows;     /**< number of rows of the matrix.     */
+    uint16_t numCols;     /**< number of columns of the matrix.  */
+    q15_t *pData;         /**< points to the data of the matrix. */
+  } arm_matrix_instance_q15;
+
+  /**
+   * @brief Instance structure for the Q31 matrix structure.
+   */
+  typedef struct
+  {
+    uint16_t numRows;     /**< number of rows of the matrix.     */
+    uint16_t numCols;     /**< number of columns of the matrix.  */
+    q31_t *pData;         /**< points to the data of the matrix. */
+  } arm_matrix_instance_q31;
+
+
+  /**
+   * @brief Floating-point matrix addition.
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_add_f32(
+  const arm_matrix_instance_f32 * pSrcA,
+  const arm_matrix_instance_f32 * pSrcB,
+  arm_matrix_instance_f32 * pDst);
+
+
+  /**
+   * @brief Q15 matrix addition.
+   * @param[in]   pSrcA  points to the first input matrix structure
+   * @param[in]   pSrcB  points to the second input matrix structure
+   * @param[out]  pDst   points to output matrix structure
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_add_q15(
+  const arm_matrix_instance_q15 * pSrcA,
+  const arm_matrix_instance_q15 * pSrcB,
+  arm_matrix_instance_q15 * pDst);
+
+
+  /**
+   * @brief Q31 matrix addition.
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_add_q31(
+  const arm_matrix_instance_q31 * pSrcA,
+  const arm_matrix_instance_q31 * pSrcB,
+  arm_matrix_instance_q31 * pDst);
+
+
+  /**
+   * @brief Floating-point, complex, matrix multiplication.
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_cmplx_mult_f32(
+  const arm_matrix_instance_f32 * pSrcA,
+  const arm_matrix_instance_f32 * pSrcB,
+  arm_matrix_instance_f32 * pDst);
+
+
+  /**
+   * @brief Q15, complex,  matrix multiplication.
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_cmplx_mult_q15(
+  const arm_matrix_instance_q15 * pSrcA,
+  const arm_matrix_instance_q15 * pSrcB,
+  arm_matrix_instance_q15 * pDst,
+  q15_t * pScratch);
+
+
+  /**
+   * @brief Q31, complex, matrix multiplication.
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_cmplx_mult_q31(
+  const arm_matrix_instance_q31 * pSrcA,
+  const arm_matrix_instance_q31 * pSrcB,
+  arm_matrix_instance_q31 * pDst);
+
+
+  /**
+   * @brief Floating-point matrix transpose.
+   * @param[in]  pSrc  points to the input matrix
+   * @param[out] pDst  points to the output matrix
+   * @return    The function returns either  ARM_MATH_SIZE_MISMATCH
+   * or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_trans_f32(
+  const arm_matrix_instance_f32 * pSrc,
+  arm_matrix_instance_f32 * pDst);
+
+
+  /**
+   * @brief Q15 matrix transpose.
+   * @param[in]  pSrc  points to the input matrix
+   * @param[out] pDst  points to the output matrix
+   * @return    The function returns either  ARM_MATH_SIZE_MISMATCH
+   * or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_trans_q15(
+  const arm_matrix_instance_q15 * pSrc,
+  arm_matrix_instance_q15 * pDst);
+
+
+  /**
+   * @brief Q31 matrix transpose.
+   * @param[in]  pSrc  points to the input matrix
+   * @param[out] pDst  points to the output matrix
+   * @return    The function returns either  ARM_MATH_SIZE_MISMATCH
+   * or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_trans_q31(
+  const arm_matrix_instance_q31 * pSrc,
+  arm_matrix_instance_q31 * pDst);
+
+
+  /**
+   * @brief Floating-point matrix multiplication
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_mult_f32(
+  const arm_matrix_instance_f32 * pSrcA,
+  const arm_matrix_instance_f32 * pSrcB,
+  arm_matrix_instance_f32 * pDst);
+
+
+  /**
+   * @brief Q15 matrix multiplication
+   * @param[in]  pSrcA   points to the first input matrix structure
+   * @param[in]  pSrcB   points to the second input matrix structure
+   * @param[out] pDst    points to output matrix structure
+   * @param[in]  pState  points to the array for storing intermediate results
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_mult_q15(
+  const arm_matrix_instance_q15 * pSrcA,
+  const arm_matrix_instance_q15 * pSrcB,
+  arm_matrix_instance_q15 * pDst,
+  q15_t * pState);
+
+
+  /**
+   * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+   * @param[in]  pSrcA   points to the first input matrix structure
+   * @param[in]  pSrcB   points to the second input matrix structure
+   * @param[out] pDst    points to output matrix structure
+   * @param[in]  pState  points to the array for storing intermediate results
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_mult_fast_q15(
+  const arm_matrix_instance_q15 * pSrcA,
+  const arm_matrix_instance_q15 * pSrcB,
+  arm_matrix_instance_q15 * pDst,
+  q15_t * pState);
+
+
+  /**
+   * @brief Q31 matrix multiplication
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_mult_q31(
+  const arm_matrix_instance_q31 * pSrcA,
+  const arm_matrix_instance_q31 * pSrcB,
+  arm_matrix_instance_q31 * pDst);
+
+
+  /**
+   * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_mult_fast_q31(
+  const arm_matrix_instance_q31 * pSrcA,
+  const arm_matrix_instance_q31 * pSrcB,
+  arm_matrix_instance_q31 * pDst);
+
+
+  /**
+   * @brief Floating-point matrix subtraction
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_sub_f32(
+  const arm_matrix_instance_f32 * pSrcA,
+  const arm_matrix_instance_f32 * pSrcB,
+  arm_matrix_instance_f32 * pDst);
+
+
+  /**
+   * @brief Q15 matrix subtraction
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_sub_q15(
+  const arm_matrix_instance_q15 * pSrcA,
+  const arm_matrix_instance_q15 * pSrcB,
+  arm_matrix_instance_q15 * pDst);
+
+
+  /**
+   * @brief Q31 matrix subtraction
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_sub_q31(
+  const arm_matrix_instance_q31 * pSrcA,
+  const arm_matrix_instance_q31 * pSrcB,
+  arm_matrix_instance_q31 * pDst);
+
+
+  /**
+   * @brief Floating-point matrix scaling.
+   * @param[in]  pSrc   points to the input matrix
+   * @param[in]  scale  scale factor
+   * @param[out] pDst   points to the output matrix
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_scale_f32(
+  const arm_matrix_instance_f32 * pSrc,
+  float32_t scale,
+  arm_matrix_instance_f32 * pDst);
+
+
+  /**
+   * @brief Q15 matrix scaling.
+   * @param[in]  pSrc        points to input matrix
+   * @param[in]  scaleFract  fractional portion of the scale factor
+   * @param[in]  shift       number of bits to shift the result by
+   * @param[out] pDst        points to output matrix
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_scale_q15(
+  const arm_matrix_instance_q15 * pSrc,
+  q15_t scaleFract,
+  int32_t shift,
+  arm_matrix_instance_q15 * pDst);
+
+
+  /**
+   * @brief Q31 matrix scaling.
+   * @param[in]  pSrc        points to input matrix
+   * @param[in]  scaleFract  fractional portion of the scale factor
+   * @param[in]  shift       number of bits to shift the result by
+   * @param[out] pDst        points to output matrix structure
+   * @return     The function returns either
+   * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+   */
+  arm_status arm_mat_scale_q31(
+  const arm_matrix_instance_q31 * pSrc,
+  q31_t scaleFract,
+  int32_t shift,
+  arm_matrix_instance_q31 * pDst);
+
+
+  /**
+   * @brief  Q31 matrix initialization.
+   * @param[in,out] S         points to an instance of the floating-point matrix structure.
+   * @param[in]     nRows     number of rows in the matrix.
+   * @param[in]     nColumns  number of columns in the matrix.
+   * @param[in]     pData     points to the matrix data array.
+   */
+  void arm_mat_init_q31(
+  arm_matrix_instance_q31 * S,
+  uint16_t nRows,
+  uint16_t nColumns,
+  q31_t * pData);
+
+
+  /**
+   * @brief  Q15 matrix initialization.
+   * @param[in,out] S         points to an instance of the floating-point matrix structure.
+   * @param[in]     nRows     number of rows in the matrix.
+   * @param[in]     nColumns  number of columns in the matrix.
+   * @param[in]     pData     points to the matrix data array.
+   */
+  void arm_mat_init_q15(
+  arm_matrix_instance_q15 * S,
+  uint16_t nRows,
+  uint16_t nColumns,
+  q15_t * pData);
+
+
+  /**
+   * @brief  Floating-point matrix initialization.
+   * @param[in,out] S         points to an instance of the floating-point matrix structure.
+   * @param[in]     nRows     number of rows in the matrix.
+   * @param[in]     nColumns  number of columns in the matrix.
+   * @param[in]     pData     points to the matrix data array.
+   */
+  void arm_mat_init_f32(
+  arm_matrix_instance_f32 * S,
+  uint16_t nRows,
+  uint16_t nColumns,
+  float32_t * pData);
+
+
+
+  /**
+   * @brief Instance structure for the Q15 PID Control.
+   */
+  typedef struct
+  {
+    q15_t A0;           /**< The derived gain, A0 = Kp + Ki + Kd . */
+#ifdef ARM_MATH_CM0_FAMILY
+    q15_t A1;
+    q15_t A2;
+#else
+    q31_t A1;           /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
+#endif
+    q15_t state[3];     /**< The state array of length 3. */
+    q15_t Kp;           /**< The proportional gain. */
+    q15_t Ki;           /**< The integral gain. */
+    q15_t Kd;           /**< The derivative gain. */
+  } arm_pid_instance_q15;
+
+  /**
+   * @brief Instance structure for the Q31 PID Control.
+   */
+  typedef struct
+  {
+    q31_t A0;            /**< The derived gain, A0 = Kp + Ki + Kd . */
+    q31_t A1;            /**< The derived gain, A1 = -Kp - 2Kd. */
+    q31_t A2;            /**< The derived gain, A2 = Kd . */
+    q31_t state[3];      /**< The state array of length 3. */
+    q31_t Kp;            /**< The proportional gain. */
+    q31_t Ki;            /**< The integral gain. */
+    q31_t Kd;            /**< The derivative gain. */
+  } arm_pid_instance_q31;
+
+  /**
+   * @brief Instance structure for the floating-point PID Control.
+   */
+  typedef struct
+  {
+    float32_t A0;          /**< The derived gain, A0 = Kp + Ki + Kd . */
+    float32_t A1;          /**< The derived gain, A1 = -Kp - 2Kd. */
+    float32_t A2;          /**< The derived gain, A2 = Kd . */
+    float32_t state[3];    /**< The state array of length 3. */
+    float32_t Kp;          /**< The proportional gain. */
+    float32_t Ki;          /**< The integral gain. */
+    float32_t Kd;          /**< The derivative gain. */
+  } arm_pid_instance_f32;
+
+
+
+  /**
+   * @brief  Initialization function for the floating-point PID Control.
+   * @param[in,out] S               points to an instance of the PID structure.
+   * @param[in]     resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state.
+   */
+  void arm_pid_init_f32(
+  arm_pid_instance_f32 * S,
+  int32_t resetStateFlag);
+
+
+  /**
+   * @brief  Reset function for the floating-point PID Control.
+   * @param[in,out] S  is an instance of the floating-point PID Control structure
+   */
+  void arm_pid_reset_f32(
+  arm_pid_instance_f32 * S);
+
+
+  /**
+   * @brief  Initialization function for the Q31 PID Control.
+   * @param[in,out] S               points to an instance of the Q15 PID structure.
+   * @param[in]     resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state.
+   */
+  void arm_pid_init_q31(
+  arm_pid_instance_q31 * S,
+  int32_t resetStateFlag);
+
+
+  /**
+   * @brief  Reset function for the Q31 PID Control.
+   * @param[in,out] S   points to an instance of the Q31 PID Control structure
+   */
+
+  void arm_pid_reset_q31(
+  arm_pid_instance_q31 * S);
+
+
+  /**
+   * @brief  Initialization function for the Q15 PID Control.
+   * @param[in,out] S               points to an instance of the Q15 PID structure.
+   * @param[in]     resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state.
+   */
+  void arm_pid_init_q15(
+  arm_pid_instance_q15 * S,
+  int32_t resetStateFlag);
+
+
+  /**
+   * @brief  Reset function for the Q15 PID Control.
+   * @param[in,out] S  points to an instance of the q15 PID Control structure
+   */
+  void arm_pid_reset_q15(
+  arm_pid_instance_q15 * S);
+
+
+  /**
+   * @brief Instance structure for the floating-point Linear Interpolate function.
+   */
+  typedef struct
+  {
+    uint32_t nValues;           /**< nValues */
+    float32_t x1;               /**< x1 */
+    float32_t xSpacing;         /**< xSpacing */
+    float32_t *pYData;          /**< pointer to the table of Y values */
+  } arm_linear_interp_instance_f32;
+
+  /**
+   * @brief Instance structure for the floating-point bilinear interpolation function.
+   */
+  typedef struct
+  {
+    uint16_t numRows;   /**< number of rows in the data table. */
+    uint16_t numCols;   /**< number of columns in the data table. */
+    float32_t *pData;   /**< points to the data table. */
+  } arm_bilinear_interp_instance_f32;
+
+   /**
+   * @brief Instance structure for the Q31 bilinear interpolation function.
+   */
+  typedef struct
+  {
+    uint16_t numRows;   /**< number of rows in the data table. */
+    uint16_t numCols;   /**< number of columns in the data table. */
+    q31_t *pData;       /**< points to the data table. */
+  } arm_bilinear_interp_instance_q31;
+
+   /**
+   * @brief Instance structure for the Q15 bilinear interpolation function.
+   */
+  typedef struct
+  {
+    uint16_t numRows;   /**< number of rows in the data table. */
+    uint16_t numCols;   /**< number of columns in the data table. */
+    q15_t *pData;       /**< points to the data table. */
+  } arm_bilinear_interp_instance_q15;
+
+   /**
+   * @brief Instance structure for the Q15 bilinear interpolation function.
+   */
+  typedef struct
+  {
+    uint16_t numRows;   /**< number of rows in the data table. */
+    uint16_t numCols;   /**< number of columns in the data table. */
+    q7_t *pData;        /**< points to the data table. */
+  } arm_bilinear_interp_instance_q7;
+
+
+  /**
+   * @brief Q7 vector multiplication.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_mult_q7(
+  q7_t * pSrcA,
+  q7_t * pSrcB,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Q15 vector multiplication.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_mult_q15(
+  q15_t * pSrcA,
+  q15_t * pSrcB,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Q31 vector multiplication.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_mult_q31(
+  q31_t * pSrcA,
+  q31_t * pSrcB,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Floating-point vector multiplication.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_mult_f32(
+  float32_t * pSrcA,
+  float32_t * pSrcB,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Instance structure for the Q15 CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                 /**< length of the FFT. */
+    uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+    uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+    q15_t *pTwiddle;                 /**< points to the Sin twiddle factor table. */
+    uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
+    uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+  } arm_cfft_radix2_instance_q15;
+
+/* Deprecated */
+  arm_status arm_cfft_radix2_init_q15(
+  arm_cfft_radix2_instance_q15 * S,
+  uint16_t fftLen,
+  uint8_t ifftFlag,
+  uint8_t bitReverseFlag);
+
+/* Deprecated */
+  void arm_cfft_radix2_q15(
+  const arm_cfft_radix2_instance_q15 * S,
+  q15_t * pSrc);
+
+
+  /**
+   * @brief Instance structure for the Q15 CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                 /**< length of the FFT. */
+    uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+    uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+    q15_t *pTwiddle;                 /**< points to the twiddle factor table. */
+    uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
+    uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+  } arm_cfft_radix4_instance_q15;
+
+/* Deprecated */
+  arm_status arm_cfft_radix4_init_q15(
+  arm_cfft_radix4_instance_q15 * S,
+  uint16_t fftLen,
+  uint8_t ifftFlag,
+  uint8_t bitReverseFlag);
+
+/* Deprecated */
+  void arm_cfft_radix4_q15(
+  const arm_cfft_radix4_instance_q15 * S,
+  q15_t * pSrc);
+
+  /**
+   * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                 /**< length of the FFT. */
+    uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+    uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+    q31_t *pTwiddle;                 /**< points to the Twiddle factor table. */
+    uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
+    uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+  } arm_cfft_radix2_instance_q31;
+
+/* Deprecated */
+  arm_status arm_cfft_radix2_init_q31(
+  arm_cfft_radix2_instance_q31 * S,
+  uint16_t fftLen,
+  uint8_t ifftFlag,
+  uint8_t bitReverseFlag);
+
+/* Deprecated */
+  void arm_cfft_radix2_q31(
+  const arm_cfft_radix2_instance_q31 * S,
+  q31_t * pSrc);
+
+  /**
+   * @brief Instance structure for the Q31 CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                 /**< length of the FFT. */
+    uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+    uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+    q31_t *pTwiddle;                 /**< points to the twiddle factor table. */
+    uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
+    uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+  } arm_cfft_radix4_instance_q31;
+
+/* Deprecated */
+  void arm_cfft_radix4_q31(
+  const arm_cfft_radix4_instance_q31 * S,
+  q31_t * pSrc);
+
+/* Deprecated */
+  arm_status arm_cfft_radix4_init_q31(
+  arm_cfft_radix4_instance_q31 * S,
+  uint16_t fftLen,
+  uint8_t ifftFlag,
+  uint8_t bitReverseFlag);
+
+  /**
+   * @brief Instance structure for the floating-point CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                   /**< length of the FFT. */
+    uint8_t ifftFlag;                  /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+    uint8_t bitReverseFlag;            /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+    float32_t *pTwiddle;               /**< points to the Twiddle factor table. */
+    uint16_t *pBitRevTable;            /**< points to the bit reversal table. */
+    uint16_t twidCoefModifier;         /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    uint16_t bitRevFactor;             /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+    float32_t onebyfftLen;             /**< value of 1/fftLen. */
+  } arm_cfft_radix2_instance_f32;
+
+/* Deprecated */
+  arm_status arm_cfft_radix2_init_f32(
+  arm_cfft_radix2_instance_f32 * S,
+  uint16_t fftLen,
+  uint8_t ifftFlag,
+  uint8_t bitReverseFlag);
+
+/* Deprecated */
+  void arm_cfft_radix2_f32(
+  const arm_cfft_radix2_instance_f32 * S,
+  float32_t * pSrc);
+
+  /**
+   * @brief Instance structure for the floating-point CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                   /**< length of the FFT. */
+    uint8_t ifftFlag;                  /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+    uint8_t bitReverseFlag;            /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+    float32_t *pTwiddle;               /**< points to the Twiddle factor table. */
+    uint16_t *pBitRevTable;            /**< points to the bit reversal table. */
+    uint16_t twidCoefModifier;         /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    uint16_t bitRevFactor;             /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+    float32_t onebyfftLen;             /**< value of 1/fftLen. */
+  } arm_cfft_radix4_instance_f32;
+
+/* Deprecated */
+  arm_status arm_cfft_radix4_init_f32(
+  arm_cfft_radix4_instance_f32 * S,
+  uint16_t fftLen,
+  uint8_t ifftFlag,
+  uint8_t bitReverseFlag);
+
+/* Deprecated */
+  void arm_cfft_radix4_f32(
+  const arm_cfft_radix4_instance_f32 * S,
+  float32_t * pSrc);
+
+  /**
+   * @brief Instance structure for the fixed-point CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                   /**< length of the FFT. */
+    const q15_t *pTwiddle;             /**< points to the Twiddle factor table. */
+    const uint16_t *pBitRevTable;      /**< points to the bit reversal table. */
+    uint16_t bitRevLength;             /**< bit reversal table length. */
+  } arm_cfft_instance_q15;
+
+void arm_cfft_q15(
+    const arm_cfft_instance_q15 * S,
+    q15_t * p1,
+    uint8_t ifftFlag,
+    uint8_t bitReverseFlag);
+
+  /**
+   * @brief Instance structure for the fixed-point CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                   /**< length of the FFT. */
+    const q31_t *pTwiddle;             /**< points to the Twiddle factor table. */
+    const uint16_t *pBitRevTable;      /**< points to the bit reversal table. */
+    uint16_t bitRevLength;             /**< bit reversal table length. */
+  } arm_cfft_instance_q31;
+
+void arm_cfft_q31(
+    const arm_cfft_instance_q31 * S,
+    q31_t * p1,
+    uint8_t ifftFlag,
+    uint8_t bitReverseFlag);
+
+  /**
+   * @brief Instance structure for the floating-point CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                   /**< length of the FFT. */
+    const float32_t *pTwiddle;         /**< points to the Twiddle factor table. */
+    const uint16_t *pBitRevTable;      /**< points to the bit reversal table. */
+    uint16_t bitRevLength;             /**< bit reversal table length. */
+  } arm_cfft_instance_f32;
+
+  void arm_cfft_f32(
+  const arm_cfft_instance_f32 * S,
+  float32_t * p1,
+  uint8_t ifftFlag,
+  uint8_t bitReverseFlag);
+
+  /**
+   * @brief Instance structure for the Q15 RFFT/RIFFT function.
+   */
+  typedef struct
+  {
+    uint32_t fftLenReal;                      /**< length of the real FFT. */
+    uint8_t ifftFlagR;                        /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+    uint8_t bitReverseFlagR;                  /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+    uint32_t twidCoefRModifier;               /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    q15_t *pTwiddleAReal;                     /**< points to the real twiddle factor table. */
+    q15_t *pTwiddleBReal;                     /**< points to the imag twiddle factor table. */
+    const arm_cfft_instance_q15 *pCfft;       /**< points to the complex FFT instance. */
+  } arm_rfft_instance_q15;
+
+  arm_status arm_rfft_init_q15(
+  arm_rfft_instance_q15 * S,
+  uint32_t fftLenReal,
+  uint32_t ifftFlagR,
+  uint32_t bitReverseFlag);
+
+  void arm_rfft_q15(
+  const arm_rfft_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst);
+
+  /**
+   * @brief Instance structure for the Q31 RFFT/RIFFT function.
+   */
+  typedef struct
+  {
+    uint32_t fftLenReal;                        /**< length of the real FFT. */
+    uint8_t ifftFlagR;                          /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+    uint8_t bitReverseFlagR;                    /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+    uint32_t twidCoefRModifier;                 /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    q31_t *pTwiddleAReal;                       /**< points to the real twiddle factor table. */
+    q31_t *pTwiddleBReal;                       /**< points to the imag twiddle factor table. */
+    const arm_cfft_instance_q31 *pCfft;         /**< points to the complex FFT instance. */
+  } arm_rfft_instance_q31;
+
+  arm_status arm_rfft_init_q31(
+  arm_rfft_instance_q31 * S,
+  uint32_t fftLenReal,
+  uint32_t ifftFlagR,
+  uint32_t bitReverseFlag);
+
+  void arm_rfft_q31(
+  const arm_rfft_instance_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst);
+
+  /**
+   * @brief Instance structure for the floating-point RFFT/RIFFT function.
+   */
+  typedef struct
+  {
+    uint32_t fftLenReal;                        /**< length of the real FFT. */
+    uint16_t fftLenBy2;                         /**< length of the complex FFT. */
+    uint8_t ifftFlagR;                          /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+    uint8_t bitReverseFlagR;                    /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+    uint32_t twidCoefRModifier;                     /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    float32_t *pTwiddleAReal;                   /**< points to the real twiddle factor table. */
+    float32_t *pTwiddleBReal;                   /**< points to the imag twiddle factor table. */
+    arm_cfft_radix4_instance_f32 *pCfft;        /**< points to the complex FFT instance. */
+  } arm_rfft_instance_f32;
+
+  arm_status arm_rfft_init_f32(
+  arm_rfft_instance_f32 * S,
+  arm_cfft_radix4_instance_f32 * S_CFFT,
+  uint32_t fftLenReal,
+  uint32_t ifftFlagR,
+  uint32_t bitReverseFlag);
+
+  void arm_rfft_f32(
+  const arm_rfft_instance_f32 * S,
+  float32_t * pSrc,
+  float32_t * pDst);
+
+  /**
+   * @brief Instance structure for the floating-point RFFT/RIFFT function.
+   */
+typedef struct
+  {
+    arm_cfft_instance_f32 Sint;      /**< Internal CFFT structure. */
+    uint16_t fftLenRFFT;             /**< length of the real sequence */
+    float32_t * pTwiddleRFFT;        /**< Twiddle factors real stage  */
+  } arm_rfft_fast_instance_f32 ;
+
+arm_status arm_rfft_fast_init_f32 (
+   arm_rfft_fast_instance_f32 * S,
+   uint16_t fftLen);
+
+void arm_rfft_fast_f32(
+  arm_rfft_fast_instance_f32 * S,
+  float32_t * p, float32_t * pOut,
+  uint8_t ifftFlag);
+
+  /**
+   * @brief Instance structure for the floating-point DCT4/IDCT4 function.
+   */
+  typedef struct
+  {
+    uint16_t N;                          /**< length of the DCT4. */
+    uint16_t Nby2;                       /**< half of the length of the DCT4. */
+    float32_t normalize;                 /**< normalizing factor. */
+    float32_t *pTwiddle;                 /**< points to the twiddle factor table. */
+    float32_t *pCosFactor;               /**< points to the cosFactor table. */
+    arm_rfft_instance_f32 *pRfft;        /**< points to the real FFT instance. */
+    arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+  } arm_dct4_instance_f32;
+
+
+  /**
+   * @brief  Initialization function for the floating-point DCT4/IDCT4.
+   * @param[in,out] S          points to an instance of floating-point DCT4/IDCT4 structure.
+   * @param[in]     S_RFFT     points to an instance of floating-point RFFT/RIFFT structure.
+   * @param[in]     S_CFFT     points to an instance of floating-point CFFT/CIFFT structure.
+   * @param[in]     N          length of the DCT4.
+   * @param[in]     Nby2       half of the length of the DCT4.
+   * @param[in]     normalize  normalizing factor.
+   * @return      arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLenReal is not a supported transform length.
+   */
+  arm_status arm_dct4_init_f32(
+  arm_dct4_instance_f32 * S,
+  arm_rfft_instance_f32 * S_RFFT,
+  arm_cfft_radix4_instance_f32 * S_CFFT,
+  uint16_t N,
+  uint16_t Nby2,
+  float32_t normalize);
+
+
+  /**
+   * @brief Processing function for the floating-point DCT4/IDCT4.
+   * @param[in]     S              points to an instance of the floating-point DCT4/IDCT4 structure.
+   * @param[in]     pState         points to state buffer.
+   * @param[in,out] pInlineBuffer  points to the in-place input and output buffer.
+   */
+  void arm_dct4_f32(
+  const arm_dct4_instance_f32 * S,
+  float32_t * pState,
+  float32_t * pInlineBuffer);
+
+
+  /**
+   * @brief Instance structure for the Q31 DCT4/IDCT4 function.
+   */
+  typedef struct
+  {
+    uint16_t N;                          /**< length of the DCT4. */
+    uint16_t Nby2;                       /**< half of the length of the DCT4. */
+    q31_t normalize;                     /**< normalizing factor. */
+    q31_t *pTwiddle;                     /**< points to the twiddle factor table. */
+    q31_t *pCosFactor;                   /**< points to the cosFactor table. */
+    arm_rfft_instance_q31 *pRfft;        /**< points to the real FFT instance. */
+    arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+  } arm_dct4_instance_q31;
+
+
+  /**
+   * @brief  Initialization function for the Q31 DCT4/IDCT4.
+   * @param[in,out] S          points to an instance of Q31 DCT4/IDCT4 structure.
+   * @param[in]     S_RFFT     points to an instance of Q31 RFFT/RIFFT structure
+   * @param[in]     S_CFFT     points to an instance of Q31 CFFT/CIFFT structure
+   * @param[in]     N          length of the DCT4.
+   * @param[in]     Nby2       half of the length of the DCT4.
+   * @param[in]     normalize  normalizing factor.
+   * @return      arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N is not a supported transform length.
+   */
+  arm_status arm_dct4_init_q31(
+  arm_dct4_instance_q31 * S,
+  arm_rfft_instance_q31 * S_RFFT,
+  arm_cfft_radix4_instance_q31 * S_CFFT,
+  uint16_t N,
+  uint16_t Nby2,
+  q31_t normalize);
+
+
+  /**
+   * @brief Processing function for the Q31 DCT4/IDCT4.
+   * @param[in]     S              points to an instance of the Q31 DCT4 structure.
+   * @param[in]     pState         points to state buffer.
+   * @param[in,out] pInlineBuffer  points to the in-place input and output buffer.
+   */
+  void arm_dct4_q31(
+  const arm_dct4_instance_q31 * S,
+  q31_t * pState,
+  q31_t * pInlineBuffer);
+
+
+  /**
+   * @brief Instance structure for the Q15 DCT4/IDCT4 function.
+   */
+  typedef struct
+  {
+    uint16_t N;                          /**< length of the DCT4. */
+    uint16_t Nby2;                       /**< half of the length of the DCT4. */
+    q15_t normalize;                     /**< normalizing factor. */
+    q15_t *pTwiddle;                     /**< points to the twiddle factor table. */
+    q15_t *pCosFactor;                   /**< points to the cosFactor table. */
+    arm_rfft_instance_q15 *pRfft;        /**< points to the real FFT instance. */
+    arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+  } arm_dct4_instance_q15;
+
+
+  /**
+   * @brief  Initialization function for the Q15 DCT4/IDCT4.
+   * @param[in,out] S          points to an instance of Q15 DCT4/IDCT4 structure.
+   * @param[in]     S_RFFT     points to an instance of Q15 RFFT/RIFFT structure.
+   * @param[in]     S_CFFT     points to an instance of Q15 CFFT/CIFFT structure.
+   * @param[in]     N          length of the DCT4.
+   * @param[in]     Nby2       half of the length of the DCT4.
+   * @param[in]     normalize  normalizing factor.
+   * @return      arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N is not a supported transform length.
+   */
+  arm_status arm_dct4_init_q15(
+  arm_dct4_instance_q15 * S,
+  arm_rfft_instance_q15 * S_RFFT,
+  arm_cfft_radix4_instance_q15 * S_CFFT,
+  uint16_t N,
+  uint16_t Nby2,
+  q15_t normalize);
+
+
+  /**
+   * @brief Processing function for the Q15 DCT4/IDCT4.
+   * @param[in]     S              points to an instance of the Q15 DCT4 structure.
+   * @param[in]     pState         points to state buffer.
+   * @param[in,out] pInlineBuffer  points to the in-place input and output buffer.
+   */
+  void arm_dct4_q15(
+  const arm_dct4_instance_q15 * S,
+  q15_t * pState,
+  q15_t * pInlineBuffer);
+
+
+  /**
+   * @brief Floating-point vector addition.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_add_f32(
+  float32_t * pSrcA,
+  float32_t * pSrcB,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Q7 vector addition.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_add_q7(
+  q7_t * pSrcA,
+  q7_t * pSrcB,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Q15 vector addition.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_add_q15(
+  q15_t * pSrcA,
+  q15_t * pSrcB,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Q31 vector addition.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_add_q31(
+  q31_t * pSrcA,
+  q31_t * pSrcB,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Floating-point vector subtraction.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_sub_f32(
+  float32_t * pSrcA,
+  float32_t * pSrcB,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Q7 vector subtraction.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_sub_q7(
+  q7_t * pSrcA,
+  q7_t * pSrcB,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Q15 vector subtraction.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_sub_q15(
+  q15_t * pSrcA,
+  q15_t * pSrcB,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Q31 vector subtraction.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_sub_q31(
+  q31_t * pSrcA,
+  q31_t * pSrcB,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Multiplies a floating-point vector by a scalar.
+   * @param[in]  pSrc       points to the input vector
+   * @param[in]  scale      scale factor to be applied
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in the vector
+   */
+  void arm_scale_f32(
+  float32_t * pSrc,
+  float32_t scale,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Multiplies a Q7 vector by a scalar.
+   * @param[in]  pSrc        points to the input vector
+   * @param[in]  scaleFract  fractional portion of the scale value
+   * @param[in]  shift       number of bits to shift the result by
+   * @param[out] pDst        points to the output vector
+   * @param[in]  blockSize   number of samples in the vector
+   */
+  void arm_scale_q7(
+  q7_t * pSrc,
+  q7_t scaleFract,
+  int8_t shift,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Multiplies a Q15 vector by a scalar.
+   * @param[in]  pSrc        points to the input vector
+   * @param[in]  scaleFract  fractional portion of the scale value
+   * @param[in]  shift       number of bits to shift the result by
+   * @param[out] pDst        points to the output vector
+   * @param[in]  blockSize   number of samples in the vector
+   */
+  void arm_scale_q15(
+  q15_t * pSrc,
+  q15_t scaleFract,
+  int8_t shift,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Multiplies a Q31 vector by a scalar.
+   * @param[in]  pSrc        points to the input vector
+   * @param[in]  scaleFract  fractional portion of the scale value
+   * @param[in]  shift       number of bits to shift the result by
+   * @param[out] pDst        points to the output vector
+   * @param[in]  blockSize   number of samples in the vector
+   */
+  void arm_scale_q31(
+  q31_t * pSrc,
+  q31_t scaleFract,
+  int8_t shift,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Q7 vector absolute value.
+   * @param[in]  pSrc       points to the input buffer
+   * @param[out] pDst       points to the output buffer
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_abs_q7(
+  q7_t * pSrc,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Floating-point vector absolute value.
+   * @param[in]  pSrc       points to the input buffer
+   * @param[out] pDst       points to the output buffer
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_abs_f32(
+  float32_t * pSrc,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Q15 vector absolute value.
+   * @param[in]  pSrc       points to the input buffer
+   * @param[out] pDst       points to the output buffer
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_abs_q15(
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Q31 vector absolute value.
+   * @param[in]  pSrc       points to the input buffer
+   * @param[out] pDst       points to the output buffer
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_abs_q31(
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Dot product of floating-point vectors.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[in]  blockSize  number of samples in each vector
+   * @param[out] result     output result returned here
+   */
+  void arm_dot_prod_f32(
+  float32_t * pSrcA,
+  float32_t * pSrcB,
+  uint32_t blockSize,
+  float32_t * result);
+
+
+  /**
+   * @brief Dot product of Q7 vectors.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[in]  blockSize  number of samples in each vector
+   * @param[out] result     output result returned here
+   */
+  void arm_dot_prod_q7(
+  q7_t * pSrcA,
+  q7_t * pSrcB,
+  uint32_t blockSize,
+  q31_t * result);
+
+
+  /**
+   * @brief Dot product of Q15 vectors.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[in]  blockSize  number of samples in each vector
+   * @param[out] result     output result returned here
+   */
+  void arm_dot_prod_q15(
+  q15_t * pSrcA,
+  q15_t * pSrcB,
+  uint32_t blockSize,
+  q63_t * result);
+
+
+  /**
+   * @brief Dot product of Q31 vectors.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[in]  blockSize  number of samples in each vector
+   * @param[out] result     output result returned here
+   */
+  void arm_dot_prod_q31(
+  q31_t * pSrcA,
+  q31_t * pSrcB,
+  uint32_t blockSize,
+  q63_t * result);
+
+
+  /**
+   * @brief  Shifts the elements of a Q7 vector a specified number of bits.
+   * @param[in]  pSrc       points to the input vector
+   * @param[in]  shiftBits  number of bits to shift.  A positive value shifts left; a negative value shifts right.
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in the vector
+   */
+  void arm_shift_q7(
+  q7_t * pSrc,
+  int8_t shiftBits,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Shifts the elements of a Q15 vector a specified number of bits.
+   * @param[in]  pSrc       points to the input vector
+   * @param[in]  shiftBits  number of bits to shift.  A positive value shifts left; a negative value shifts right.
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in the vector
+   */
+  void arm_shift_q15(
+  q15_t * pSrc,
+  int8_t shiftBits,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Shifts the elements of a Q31 vector a specified number of bits.
+   * @param[in]  pSrc       points to the input vector
+   * @param[in]  shiftBits  number of bits to shift.  A positive value shifts left; a negative value shifts right.
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in the vector
+   */
+  void arm_shift_q31(
+  q31_t * pSrc,
+  int8_t shiftBits,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Adds a constant offset to a floating-point vector.
+   * @param[in]  pSrc       points to the input vector
+   * @param[in]  offset     is the offset to be added
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in the vector
+   */
+  void arm_offset_f32(
+  float32_t * pSrc,
+  float32_t offset,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Adds a constant offset to a Q7 vector.
+   * @param[in]  pSrc       points to the input vector
+   * @param[in]  offset     is the offset to be added
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in the vector
+   */
+  void arm_offset_q7(
+  q7_t * pSrc,
+  q7_t offset,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Adds a constant offset to a Q15 vector.
+   * @param[in]  pSrc       points to the input vector
+   * @param[in]  offset     is the offset to be added
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in the vector
+   */
+  void arm_offset_q15(
+  q15_t * pSrc,
+  q15_t offset,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Adds a constant offset to a Q31 vector.
+   * @param[in]  pSrc       points to the input vector
+   * @param[in]  offset     is the offset to be added
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in the vector
+   */
+  void arm_offset_q31(
+  q31_t * pSrc,
+  q31_t offset,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Negates the elements of a floating-point vector.
+   * @param[in]  pSrc       points to the input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in the vector
+   */
+  void arm_negate_f32(
+  float32_t * pSrc,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Negates the elements of a Q7 vector.
+   * @param[in]  pSrc       points to the input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in the vector
+   */
+  void arm_negate_q7(
+  q7_t * pSrc,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Negates the elements of a Q15 vector.
+   * @param[in]  pSrc       points to the input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in the vector
+   */
+  void arm_negate_q15(
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Negates the elements of a Q31 vector.
+   * @param[in]  pSrc       points to the input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in the vector
+   */
+  void arm_negate_q31(
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Copies the elements of a floating-point vector.
+   * @param[in]  pSrc       input pointer
+   * @param[out] pDst       output pointer
+   * @param[in]  blockSize  number of samples to process
+   */
+  void arm_copy_f32(
+  float32_t * pSrc,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Copies the elements of a Q7 vector.
+   * @param[in]  pSrc       input pointer
+   * @param[out] pDst       output pointer
+   * @param[in]  blockSize  number of samples to process
+   */
+  void arm_copy_q7(
+  q7_t * pSrc,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Copies the elements of a Q15 vector.
+   * @param[in]  pSrc       input pointer
+   * @param[out] pDst       output pointer
+   * @param[in]  blockSize  number of samples to process
+   */
+  void arm_copy_q15(
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Copies the elements of a Q31 vector.
+   * @param[in]  pSrc       input pointer
+   * @param[out] pDst       output pointer
+   * @param[in]  blockSize  number of samples to process
+   */
+  void arm_copy_q31(
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Fills a constant value into a floating-point vector.
+   * @param[in]  value      input value to be filled
+   * @param[out] pDst       output pointer
+   * @param[in]  blockSize  number of samples to process
+   */
+  void arm_fill_f32(
+  float32_t value,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Fills a constant value into a Q7 vector.
+   * @param[in]  value      input value to be filled
+   * @param[out] pDst       output pointer
+   * @param[in]  blockSize  number of samples to process
+   */
+  void arm_fill_q7(
+  q7_t value,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Fills a constant value into a Q15 vector.
+   * @param[in]  value      input value to be filled
+   * @param[out] pDst       output pointer
+   * @param[in]  blockSize  number of samples to process
+   */
+  void arm_fill_q15(
+  q15_t value,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Fills a constant value into a Q31 vector.
+   * @param[in]  value      input value to be filled
+   * @param[out] pDst       output pointer
+   * @param[in]  blockSize  number of samples to process
+   */
+  void arm_fill_q31(
+  q31_t value,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+/**
+ * @brief Convolution of floating-point sequences.
+ * @param[in]  pSrcA    points to the first input sequence.
+ * @param[in]  srcALen  length of the first input sequence.
+ * @param[in]  pSrcB    points to the second input sequence.
+ * @param[in]  srcBLen  length of the second input sequence.
+ * @param[out] pDst     points to the location where the output result is written.  Length srcALen+srcBLen-1.
+ */
+  void arm_conv_f32(
+  float32_t * pSrcA,
+  uint32_t srcALen,
+  float32_t * pSrcB,
+  uint32_t srcBLen,
+  float32_t * pDst);
+
+
+  /**
+   * @brief Convolution of Q15 sequences.
+   * @param[in]  pSrcA      points to the first input sequence.
+   * @param[in]  srcALen    length of the first input sequence.
+   * @param[in]  pSrcB      points to the second input sequence.
+   * @param[in]  srcBLen    length of the second input sequence.
+   * @param[out] pDst       points to the block of output data  Length srcALen+srcBLen-1.
+   * @param[in]  pScratch1  points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+   * @param[in]  pScratch2  points to scratch buffer of size min(srcALen, srcBLen).
+   */
+  void arm_conv_opt_q15(
+  q15_t * pSrcA,
+  uint32_t srcALen,
+  q15_t * pSrcB,
+  uint32_t srcBLen,
+  q15_t * pDst,
+  q15_t * pScratch1,
+  q15_t * pScratch2);
+
+
+/**
+ * @brief Convolution of Q15 sequences.
+ * @param[in]  pSrcA    points to the first input sequence.
+ * @param[in]  srcALen  length of the first input sequence.
+ * @param[in]  pSrcB    points to the second input sequence.
+ * @param[in]  srcBLen  length of the second input sequence.
+ * @param[out] pDst     points to the location where the output result is written.  Length srcALen+srcBLen-1.
+ */
+  void arm_conv_q15(
+  q15_t * pSrcA,
+  uint32_t srcALen,
+  q15_t * pSrcB,
+  uint32_t srcBLen,
+  q15_t * pDst);
+
+
+  /**
+   * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+   * @param[in]  pSrcA    points to the first input sequence.
+   * @param[in]  srcALen  length of the first input sequence.
+   * @param[in]  pSrcB    points to the second input sequence.
+   * @param[in]  srcBLen  length of the second input sequence.
+   * @param[out] pDst     points to the block of output data  Length srcALen+srcBLen-1.
+   */
+  void arm_conv_fast_q15(
+          q15_t * pSrcA,
+          uint32_t srcALen,
+          q15_t * pSrcB,
+          uint32_t srcBLen,
+          q15_t * pDst);
+
+
+  /**
+   * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+   * @param[in]  pSrcA      points to the first input sequence.
+   * @param[in]  srcALen    length of the first input sequence.
+   * @param[in]  pSrcB      points to the second input sequence.
+   * @param[in]  srcBLen    length of the second input sequence.
+   * @param[out] pDst       points to the block of output data  Length srcALen+srcBLen-1.
+   * @param[in]  pScratch1  points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+   * @param[in]  pScratch2  points to scratch buffer of size min(srcALen, srcBLen).
+   */
+  void arm_conv_fast_opt_q15(
+  q15_t * pSrcA,
+  uint32_t srcALen,
+  q15_t * pSrcB,
+  uint32_t srcBLen,
+  q15_t * pDst,
+  q15_t * pScratch1,
+  q15_t * pScratch2);
+
+
+  /**
+   * @brief Convolution of Q31 sequences.
+   * @param[in]  pSrcA    points to the first input sequence.
+   * @param[in]  srcALen  length of the first input sequence.
+   * @param[in]  pSrcB    points to the second input sequence.
+   * @param[in]  srcBLen  length of the second input sequence.
+   * @param[out] pDst     points to the block of output data  Length srcALen+srcBLen-1.
+   */
+  void arm_conv_q31(
+  q31_t * pSrcA,
+  uint32_t srcALen,
+  q31_t * pSrcB,
+  uint32_t srcBLen,
+  q31_t * pDst);
+
+
+  /**
+   * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+   * @param[in]  pSrcA    points to the first input sequence.
+   * @param[in]  srcALen  length of the first input sequence.
+   * @param[in]  pSrcB    points to the second input sequence.
+   * @param[in]  srcBLen  length of the second input sequence.
+   * @param[out] pDst     points to the block of output data  Length srcALen+srcBLen-1.
+   */
+  void arm_conv_fast_q31(
+  q31_t * pSrcA,
+  uint32_t srcALen,
+  q31_t * pSrcB,
+  uint32_t srcBLen,
+  q31_t * pDst);
+
+
+    /**
+   * @brief Convolution of Q7 sequences.
+   * @param[in]  pSrcA      points to the first input sequence.
+   * @param[in]  srcALen    length of the first input sequence.
+   * @param[in]  pSrcB      points to the second input sequence.
+   * @param[in]  srcBLen    length of the second input sequence.
+   * @param[out] pDst       points to the block of output data  Length srcALen+srcBLen-1.
+   * @param[in]  pScratch1  points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+   * @param[in]  pScratch2  points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+   */
+  void arm_conv_opt_q7(
+  q7_t * pSrcA,
+  uint32_t srcALen,
+  q7_t * pSrcB,
+  uint32_t srcBLen,
+  q7_t * pDst,
+  q15_t * pScratch1,
+  q15_t * pScratch2);
+
+
+  /**
+   * @brief Convolution of Q7 sequences.
+   * @param[in]  pSrcA    points to the first input sequence.
+   * @param[in]  srcALen  length of the first input sequence.
+   * @param[in]  pSrcB    points to the second input sequence.
+   * @param[in]  srcBLen  length of the second input sequence.
+   * @param[out] pDst     points to the block of output data  Length srcALen+srcBLen-1.
+   */
+  void arm_conv_q7(
+  q7_t * pSrcA,
+  uint32_t srcALen,
+  q7_t * pSrcB,
+  uint32_t srcBLen,
+  q7_t * pDst);
+
+
+  /**
+   * @brief Partial convolution of floating-point sequences.
+   * @param[in]  pSrcA       points to the first input sequence.
+   * @param[in]  srcALen     length of the first input sequence.
+   * @param[in]  pSrcB       points to the second input sequence.
+   * @param[in]  srcBLen     length of the second input sequence.
+   * @param[out] pDst        points to the block of output data
+   * @param[in]  firstIndex  is the first output sample to start with.
+   * @param[in]  numPoints   is the number of output points to be computed.
+   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+   */
+  arm_status arm_conv_partial_f32(
+  float32_t * pSrcA,
+  uint32_t srcALen,
+  float32_t * pSrcB,
+  uint32_t srcBLen,
+  float32_t * pDst,
+  uint32_t firstIndex,
+  uint32_t numPoints);
+
+
+  /**
+   * @brief Partial convolution of Q15 sequences.
+   * @param[in]  pSrcA       points to the first input sequence.
+   * @param[in]  srcALen     length of the first input sequence.
+   * @param[in]  pSrcB       points to the second input sequence.
+   * @param[in]  srcBLen     length of the second input sequence.
+   * @param[out] pDst        points to the block of output data
+   * @param[in]  firstIndex  is the first output sample to start with.
+   * @param[in]  numPoints   is the number of output points to be computed.
+   * @param[in]  pScratch1   points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+   * @param[in]  pScratch2   points to scratch buffer of size min(srcALen, srcBLen).
+   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+   */
+  arm_status arm_conv_partial_opt_q15(
+  q15_t * pSrcA,
+  uint32_t srcALen,
+  q15_t * pSrcB,
+  uint32_t srcBLen,
+  q15_t * pDst,
+  uint32_t firstIndex,
+  uint32_t numPoints,
+  q15_t * pScratch1,
+  q15_t * pScratch2);
+
+
+  /**
+   * @brief Partial convolution of Q15 sequences.
+   * @param[in]  pSrcA       points to the first input sequence.
+   * @param[in]  srcALen     length of the first input sequence.
+   * @param[in]  pSrcB       points to the second input sequence.
+   * @param[in]  srcBLen     length of the second input sequence.
+   * @param[out] pDst        points to the block of output data
+   * @param[in]  firstIndex  is the first output sample to start with.
+   * @param[in]  numPoints   is the number of output points to be computed.
+   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+   */
+  arm_status arm_conv_partial_q15(
+  q15_t * pSrcA,
+  uint32_t srcALen,
+  q15_t * pSrcB,
+  uint32_t srcBLen,
+  q15_t * pDst,
+  uint32_t firstIndex,
+  uint32_t numPoints);
+
+
+  /**
+   * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+   * @param[in]  pSrcA       points to the first input sequence.
+   * @param[in]  srcALen     length of the first input sequence.
+   * @param[in]  pSrcB       points to the second input sequence.
+   * @param[in]  srcBLen     length of the second input sequence.
+   * @param[out] pDst        points to the block of output data
+   * @param[in]  firstIndex  is the first output sample to start with.
+   * @param[in]  numPoints   is the number of output points to be computed.
+   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+   */
+  arm_status arm_conv_partial_fast_q15(
+  q15_t * pSrcA,
+  uint32_t srcALen,
+  q15_t * pSrcB,
+  uint32_t srcBLen,
+  q15_t * pDst,
+  uint32_t firstIndex,
+  uint32_t numPoints);
+
+
+  /**
+   * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+   * @param[in]  pSrcA       points to the first input sequence.
+   * @param[in]  srcALen     length of the first input sequence.
+   * @param[in]  pSrcB       points to the second input sequence.
+   * @param[in]  srcBLen     length of the second input sequence.
+   * @param[out] pDst        points to the block of output data
+   * @param[in]  firstIndex  is the first output sample to start with.
+   * @param[in]  numPoints   is the number of output points to be computed.
+   * @param[in]  pScratch1   points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+   * @param[in]  pScratch2   points to scratch buffer of size min(srcALen, srcBLen).
+   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+   */
+  arm_status arm_conv_partial_fast_opt_q15(
+  q15_t * pSrcA,
+  uint32_t srcALen,
+  q15_t * pSrcB,
+  uint32_t srcBLen,
+  q15_t * pDst,
+  uint32_t firstIndex,
+  uint32_t numPoints,
+  q15_t * pScratch1,
+  q15_t * pScratch2);
+
+
+  /**
+   * @brief Partial convolution of Q31 sequences.
+   * @param[in]  pSrcA       points to the first input sequence.
+   * @param[in]  srcALen     length of the first input sequence.
+   * @param[in]  pSrcB       points to the second input sequence.
+   * @param[in]  srcBLen     length of the second input sequence.
+   * @param[out] pDst        points to the block of output data
+   * @param[in]  firstIndex  is the first output sample to start with.
+   * @param[in]  numPoints   is the number of output points to be computed.
+   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+   */
+  arm_status arm_conv_partial_q31(
+  q31_t * pSrcA,
+  uint32_t srcALen,
+  q31_t * pSrcB,
+  uint32_t srcBLen,
+  q31_t * pDst,
+  uint32_t firstIndex,
+  uint32_t numPoints);
+
+
+  /**
+   * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+   * @param[in]  pSrcA       points to the first input sequence.
+   * @param[in]  srcALen     length of the first input sequence.
+   * @param[in]  pSrcB       points to the second input sequence.
+   * @param[in]  srcBLen     length of the second input sequence.
+   * @param[out] pDst        points to the block of output data
+   * @param[in]  firstIndex  is the first output sample to start with.
+   * @param[in]  numPoints   is the number of output points to be computed.
+   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+   */
+  arm_status arm_conv_partial_fast_q31(
+  q31_t * pSrcA,
+  uint32_t srcALen,
+  q31_t * pSrcB,
+  uint32_t srcBLen,
+  q31_t * pDst,
+  uint32_t firstIndex,
+  uint32_t numPoints);
+
+
+  /**
+   * @brief Partial convolution of Q7 sequences
+   * @param[in]  pSrcA       points to the first input sequence.
+   * @param[in]  srcALen     length of the first input sequence.
+   * @param[in]  pSrcB       points to the second input sequence.
+   * @param[in]  srcBLen     length of the second input sequence.
+   * @param[out] pDst        points to the block of output data
+   * @param[in]  firstIndex  is the first output sample to start with.
+   * @param[in]  numPoints   is the number of output points to be computed.
+   * @param[in]  pScratch1   points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+   * @param[in]  pScratch2   points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+   */
+  arm_status arm_conv_partial_opt_q7(
+  q7_t * pSrcA,
+  uint32_t srcALen,
+  q7_t * pSrcB,
+  uint32_t srcBLen,
+  q7_t * pDst,
+  uint32_t firstIndex,
+  uint32_t numPoints,
+  q15_t * pScratch1,
+  q15_t * pScratch2);
+
+
+/**
+   * @brief Partial convolution of Q7 sequences.
+   * @param[in]  pSrcA       points to the first input sequence.
+   * @param[in]  srcALen     length of the first input sequence.
+   * @param[in]  pSrcB       points to the second input sequence.
+   * @param[in]  srcBLen     length of the second input sequence.
+   * @param[out] pDst        points to the block of output data
+   * @param[in]  firstIndex  is the first output sample to start with.
+   * @param[in]  numPoints   is the number of output points to be computed.
+   * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+   */
+  arm_status arm_conv_partial_q7(
+  q7_t * pSrcA,
+  uint32_t srcALen,
+  q7_t * pSrcB,
+  uint32_t srcBLen,
+  q7_t * pDst,
+  uint32_t firstIndex,
+  uint32_t numPoints);
+
+
+  /**
+   * @brief Instance structure for the Q15 FIR decimator.
+   */
+  typedef struct
+  {
+    uint8_t M;                  /**< decimation factor. */
+    uint16_t numTaps;           /**< number of coefficients in the filter. */
+    q15_t *pCoeffs;             /**< points to the coefficient array. The array is of length numTaps.*/
+    q15_t *pState;              /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+  } arm_fir_decimate_instance_q15;
+
+  /**
+   * @brief Instance structure for the Q31 FIR decimator.
+   */
+  typedef struct
+  {
+    uint8_t M;                  /**< decimation factor. */
+    uint16_t numTaps;           /**< number of coefficients in the filter. */
+    q31_t *pCoeffs;             /**< points to the coefficient array. The array is of length numTaps.*/
+    q31_t *pState;              /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+  } arm_fir_decimate_instance_q31;
+
+  /**
+   * @brief Instance structure for the floating-point FIR decimator.
+   */
+  typedef struct
+  {
+    uint8_t M;                  /**< decimation factor. */
+    uint16_t numTaps;           /**< number of coefficients in the filter. */
+    float32_t *pCoeffs;         /**< points to the coefficient array. The array is of length numTaps.*/
+    float32_t *pState;          /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+  } arm_fir_decimate_instance_f32;
+
+
+  /**
+   * @brief Processing function for the floating-point FIR decimator.
+   * @param[in]  S          points to an instance of the floating-point FIR decimator structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data
+   * @param[in]  blockSize  number of input samples to process per call.
+   */
+  void arm_fir_decimate_f32(
+  const arm_fir_decimate_instance_f32 * S,
+  float32_t * pSrc,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the floating-point FIR decimator.
+   * @param[in,out] S          points to an instance of the floating-point FIR decimator structure.
+   * @param[in]     numTaps    number of coefficients in the filter.
+   * @param[in]     M          decimation factor.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     blockSize  number of input samples to process per call.
+   * @return    The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+   * blockSize is not a multiple of M.
+   */
+  arm_status arm_fir_decimate_init_f32(
+  arm_fir_decimate_instance_f32 * S,
+  uint16_t numTaps,
+  uint8_t M,
+  float32_t * pCoeffs,
+  float32_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the Q15 FIR decimator.
+   * @param[in]  S          points to an instance of the Q15 FIR decimator structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data
+   * @param[in]  blockSize  number of input samples to process per call.
+   */
+  void arm_fir_decimate_q15(
+  const arm_fir_decimate_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+   * @param[in]  S          points to an instance of the Q15 FIR decimator structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data
+   * @param[in]  blockSize  number of input samples to process per call.
+   */
+  void arm_fir_decimate_fast_q15(
+  const arm_fir_decimate_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q15 FIR decimator.
+   * @param[in,out] S          points to an instance of the Q15 FIR decimator structure.
+   * @param[in]     numTaps    number of coefficients in the filter.
+   * @param[in]     M          decimation factor.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     blockSize  number of input samples to process per call.
+   * @return    The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+   * blockSize is not a multiple of M.
+   */
+  arm_status arm_fir_decimate_init_q15(
+  arm_fir_decimate_instance_q15 * S,
+  uint16_t numTaps,
+  uint8_t M,
+  q15_t * pCoeffs,
+  q15_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the Q31 FIR decimator.
+   * @param[in]  S     points to an instance of the Q31 FIR decimator structure.
+   * @param[in]  pSrc  points to the block of input data.
+   * @param[out] pDst  points to the block of output data
+   * @param[in] blockSize number of input samples to process per call.
+   */
+  void arm_fir_decimate_q31(
+  const arm_fir_decimate_instance_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+  /**
+   * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+   * @param[in]  S          points to an instance of the Q31 FIR decimator structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data
+   * @param[in]  blockSize  number of input samples to process per call.
+   */
+  void arm_fir_decimate_fast_q31(
+  arm_fir_decimate_instance_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q31 FIR decimator.
+   * @param[in,out] S          points to an instance of the Q31 FIR decimator structure.
+   * @param[in]     numTaps    number of coefficients in the filter.
+   * @param[in]     M          decimation factor.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     blockSize  number of input samples to process per call.
+   * @return    The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+   * blockSize is not a multiple of M.
+   */
+  arm_status arm_fir_decimate_init_q31(
+  arm_fir_decimate_instance_q31 * S,
+  uint16_t numTaps,
+  uint8_t M,
+  q31_t * pCoeffs,
+  q31_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Instance structure for the Q15 FIR interpolator.
+   */
+  typedef struct
+  {
+    uint8_t L;                      /**< upsample factor. */
+    uint16_t phaseLength;           /**< length of each polyphase filter component. */
+    q15_t *pCoeffs;                 /**< points to the coefficient array. The array is of length L*phaseLength. */
+    q15_t *pState;                  /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+  } arm_fir_interpolate_instance_q15;
+
+  /**
+   * @brief Instance structure for the Q31 FIR interpolator.
+   */
+  typedef struct
+  {
+    uint8_t L;                      /**< upsample factor. */
+    uint16_t phaseLength;           /**< length of each polyphase filter component. */
+    q31_t *pCoeffs;                 /**< points to the coefficient array. The array is of length L*phaseLength. */
+    q31_t *pState;                  /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+  } arm_fir_interpolate_instance_q31;
+
+  /**
+   * @brief Instance structure for the floating-point FIR interpolator.
+   */
+  typedef struct
+  {
+    uint8_t L;                     /**< upsample factor. */
+    uint16_t phaseLength;          /**< length of each polyphase filter component. */
+    float32_t *pCoeffs;            /**< points to the coefficient array. The array is of length L*phaseLength. */
+    float32_t *pState;             /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
+  } arm_fir_interpolate_instance_f32;
+
+
+  /**
+   * @brief Processing function for the Q15 FIR interpolator.
+   * @param[in]  S          points to an instance of the Q15 FIR interpolator structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of input samples to process per call.
+   */
+  void arm_fir_interpolate_q15(
+  const arm_fir_interpolate_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q15 FIR interpolator.
+   * @param[in,out] S          points to an instance of the Q15 FIR interpolator structure.
+   * @param[in]     L          upsample factor.
+   * @param[in]     numTaps    number of filter coefficients in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficient buffer.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     blockSize  number of input samples to process per call.
+   * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+   * the filter length numTaps is not a multiple of the interpolation factor L.
+   */
+  arm_status arm_fir_interpolate_init_q15(
+  arm_fir_interpolate_instance_q15 * S,
+  uint8_t L,
+  uint16_t numTaps,
+  q15_t * pCoeffs,
+  q15_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the Q31 FIR interpolator.
+   * @param[in]  S          points to an instance of the Q15 FIR interpolator structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of input samples to process per call.
+   */
+  void arm_fir_interpolate_q31(
+  const arm_fir_interpolate_instance_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q31 FIR interpolator.
+   * @param[in,out] S          points to an instance of the Q31 FIR interpolator structure.
+   * @param[in]     L          upsample factor.
+   * @param[in]     numTaps    number of filter coefficients in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficient buffer.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     blockSize  number of input samples to process per call.
+   * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+   * the filter length numTaps is not a multiple of the interpolation factor L.
+   */
+  arm_status arm_fir_interpolate_init_q31(
+  arm_fir_interpolate_instance_q31 * S,
+  uint8_t L,
+  uint16_t numTaps,
+  q31_t * pCoeffs,
+  q31_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the floating-point FIR interpolator.
+   * @param[in]  S          points to an instance of the floating-point FIR interpolator structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of input samples to process per call.
+   */
+  void arm_fir_interpolate_f32(
+  const arm_fir_interpolate_instance_f32 * S,
+  float32_t * pSrc,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the floating-point FIR interpolator.
+   * @param[in,out] S          points to an instance of the floating-point FIR interpolator structure.
+   * @param[in]     L          upsample factor.
+   * @param[in]     numTaps    number of filter coefficients in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficient buffer.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     blockSize  number of input samples to process per call.
+   * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+   * the filter length numTaps is not a multiple of the interpolation factor L.
+   */
+  arm_status arm_fir_interpolate_init_f32(
+  arm_fir_interpolate_instance_f32 * S,
+  uint8_t L,
+  uint16_t numTaps,
+  float32_t * pCoeffs,
+  float32_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Instance structure for the high precision Q31 Biquad cascade filter.
+   */
+  typedef struct
+  {
+    uint8_t numStages;       /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
+    q63_t *pState;           /**< points to the array of state coefficients.  The array is of length 4*numStages. */
+    q31_t *pCoeffs;          /**< points to the array of coefficients.  The array is of length 5*numStages. */
+    uint8_t postShift;       /**< additional shift, in bits, applied to each output sample. */
+  } arm_biquad_cas_df1_32x64_ins_q31;
+
+
+  /**
+   * @param[in]  S          points to an instance of the high precision Q31 Biquad cascade filter structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_biquad_cas_df1_32x64_q31(
+  const arm_biquad_cas_df1_32x64_ins_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @param[in,out] S          points to an instance of the high precision Q31 Biquad cascade filter structure.
+   * @param[in]     numStages  number of 2nd order stages in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     postShift  shift to be applied to the output. Varies according to the coefficients format
+   */
+  void arm_biquad_cas_df1_32x64_init_q31(
+  arm_biquad_cas_df1_32x64_ins_q31 * S,
+  uint8_t numStages,
+  q31_t * pCoeffs,
+  q63_t * pState,
+  uint8_t postShift);
+
+
+  /**
+   * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+   */
+  typedef struct
+  {
+    uint8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
+    float32_t *pState;         /**< points to the array of state coefficients.  The array is of length 2*numStages. */
+    float32_t *pCoeffs;        /**< points to the array of coefficients.  The array is of length 5*numStages. */
+  } arm_biquad_cascade_df2T_instance_f32;
+
+  /**
+   * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+   */
+  typedef struct
+  {
+    uint8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
+    float32_t *pState;         /**< points to the array of state coefficients.  The array is of length 4*numStages. */
+    float32_t *pCoeffs;        /**< points to the array of coefficients.  The array is of length 5*numStages. */
+  } arm_biquad_cascade_stereo_df2T_instance_f32;
+
+  /**
+   * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+   */
+  typedef struct
+  {
+    uint8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
+    float64_t *pState;         /**< points to the array of state coefficients.  The array is of length 2*numStages. */
+    float64_t *pCoeffs;        /**< points to the array of coefficients.  The array is of length 5*numStages. */
+  } arm_biquad_cascade_df2T_instance_f64;
+
+
+  /**
+   * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+   * @param[in]  S          points to an instance of the filter data structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_biquad_cascade_df2T_f32(
+  const arm_biquad_cascade_df2T_instance_f32 * S,
+  float32_t * pSrc,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
+   * @param[in]  S          points to an instance of the filter data structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_biquad_cascade_stereo_df2T_f32(
+  const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
+  float32_t * pSrc,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+   * @param[in]  S          points to an instance of the filter data structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_biquad_cascade_df2T_f64(
+  const arm_biquad_cascade_df2T_instance_f64 * S,
+  float64_t * pSrc,
+  float64_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+   * @param[in,out] S          points to an instance of the filter data structure.
+   * @param[in]     numStages  number of 2nd order stages in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   */
+  void arm_biquad_cascade_df2T_init_f32(
+  arm_biquad_cascade_df2T_instance_f32 * S,
+  uint8_t numStages,
+  float32_t * pCoeffs,
+  float32_t * pState);
+
+
+  /**
+   * @brief  Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+   * @param[in,out] S          points to an instance of the filter data structure.
+   * @param[in]     numStages  number of 2nd order stages in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   */
+  void arm_biquad_cascade_stereo_df2T_init_f32(
+  arm_biquad_cascade_stereo_df2T_instance_f32 * S,
+  uint8_t numStages,
+  float32_t * pCoeffs,
+  float32_t * pState);
+
+
+  /**
+   * @brief  Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+   * @param[in,out] S          points to an instance of the filter data structure.
+   * @param[in]     numStages  number of 2nd order stages in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   */
+  void arm_biquad_cascade_df2T_init_f64(
+  arm_biquad_cascade_df2T_instance_f64 * S,
+  uint8_t numStages,
+  float64_t * pCoeffs,
+  float64_t * pState);
+
+
+  /**
+   * @brief Instance structure for the Q15 FIR lattice filter.
+   */
+  typedef struct
+  {
+    uint16_t numStages;                  /**< number of filter stages. */
+    q15_t *pState;                       /**< points to the state variable array. The array is of length numStages. */
+    q15_t *pCoeffs;                      /**< points to the coefficient array. The array is of length numStages. */
+  } arm_fir_lattice_instance_q15;
+
+  /**
+   * @brief Instance structure for the Q31 FIR lattice filter.
+   */
+  typedef struct
+  {
+    uint16_t numStages;                  /**< number of filter stages. */
+    q31_t *pState;                       /**< points to the state variable array. The array is of length numStages. */
+    q31_t *pCoeffs;                      /**< points to the coefficient array. The array is of length numStages. */
+  } arm_fir_lattice_instance_q31;
+
+  /**
+   * @brief Instance structure for the floating-point FIR lattice filter.
+   */
+  typedef struct
+  {
+    uint16_t numStages;                  /**< number of filter stages. */
+    float32_t *pState;                   /**< points to the state variable array. The array is of length numStages. */
+    float32_t *pCoeffs;                  /**< points to the coefficient array. The array is of length numStages. */
+  } arm_fir_lattice_instance_f32;
+
+
+  /**
+   * @brief Initialization function for the Q15 FIR lattice filter.
+   * @param[in] S          points to an instance of the Q15 FIR lattice structure.
+   * @param[in] numStages  number of filter stages.
+   * @param[in] pCoeffs    points to the coefficient buffer.  The array is of length numStages.
+   * @param[in] pState     points to the state buffer.  The array is of length numStages.
+   */
+  void arm_fir_lattice_init_q15(
+  arm_fir_lattice_instance_q15 * S,
+  uint16_t numStages,
+  q15_t * pCoeffs,
+  q15_t * pState);
+
+
+  /**
+   * @brief Processing function for the Q15 FIR lattice filter.
+   * @param[in]  S          points to an instance of the Q15 FIR lattice structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_fir_lattice_q15(
+  const arm_fir_lattice_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Initialization function for the Q31 FIR lattice filter.
+   * @param[in] S          points to an instance of the Q31 FIR lattice structure.
+   * @param[in] numStages  number of filter stages.
+   * @param[in] pCoeffs    points to the coefficient buffer.  The array is of length numStages.
+   * @param[in] pState     points to the state buffer.   The array is of length numStages.
+   */
+  void arm_fir_lattice_init_q31(
+  arm_fir_lattice_instance_q31 * S,
+  uint16_t numStages,
+  q31_t * pCoeffs,
+  q31_t * pState);
+
+
+  /**
+   * @brief Processing function for the Q31 FIR lattice filter.
+   * @param[in]  S          points to an instance of the Q31 FIR lattice structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_fir_lattice_q31(
+  const arm_fir_lattice_instance_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+/**
+ * @brief Initialization function for the floating-point FIR lattice filter.
+ * @param[in] S          points to an instance of the floating-point FIR lattice structure.
+ * @param[in] numStages  number of filter stages.
+ * @param[in] pCoeffs    points to the coefficient buffer.  The array is of length numStages.
+ * @param[in] pState     points to the state buffer.  The array is of length numStages.
+ */
+  void arm_fir_lattice_init_f32(
+  arm_fir_lattice_instance_f32 * S,
+  uint16_t numStages,
+  float32_t * pCoeffs,
+  float32_t * pState);
+
+
+  /**
+   * @brief Processing function for the floating-point FIR lattice filter.
+   * @param[in]  S          points to an instance of the floating-point FIR lattice structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_fir_lattice_f32(
+  const arm_fir_lattice_instance_f32 * S,
+  float32_t * pSrc,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Instance structure for the Q15 IIR lattice filter.
+   */
+  typedef struct
+  {
+    uint16_t numStages;                  /**< number of stages in the filter. */
+    q15_t *pState;                       /**< points to the state variable array. The array is of length numStages+blockSize. */
+    q15_t *pkCoeffs;                     /**< points to the reflection coefficient array. The array is of length numStages. */
+    q15_t *pvCoeffs;                     /**< points to the ladder coefficient array. The array is of length numStages+1. */
+  } arm_iir_lattice_instance_q15;
+
+  /**
+   * @brief Instance structure for the Q31 IIR lattice filter.
+   */
+  typedef struct
+  {
+    uint16_t numStages;                  /**< number of stages in the filter. */
+    q31_t *pState;                       /**< points to the state variable array. The array is of length numStages+blockSize. */
+    q31_t *pkCoeffs;                     /**< points to the reflection coefficient array. The array is of length numStages. */
+    q31_t *pvCoeffs;                     /**< points to the ladder coefficient array. The array is of length numStages+1. */
+  } arm_iir_lattice_instance_q31;
+
+  /**
+   * @brief Instance structure for the floating-point IIR lattice filter.
+   */
+  typedef struct
+  {
+    uint16_t numStages;                  /**< number of stages in the filter. */
+    float32_t *pState;                   /**< points to the state variable array. The array is of length numStages+blockSize. */
+    float32_t *pkCoeffs;                 /**< points to the reflection coefficient array. The array is of length numStages. */
+    float32_t *pvCoeffs;                 /**< points to the ladder coefficient array. The array is of length numStages+1. */
+  } arm_iir_lattice_instance_f32;
+
+
+  /**
+   * @brief Processing function for the floating-point IIR lattice filter.
+   * @param[in]  S          points to an instance of the floating-point IIR lattice structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_iir_lattice_f32(
+  const arm_iir_lattice_instance_f32 * S,
+  float32_t * pSrc,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Initialization function for the floating-point IIR lattice filter.
+   * @param[in] S          points to an instance of the floating-point IIR lattice structure.
+   * @param[in] numStages  number of stages in the filter.
+   * @param[in] pkCoeffs   points to the reflection coefficient buffer.  The array is of length numStages.
+   * @param[in] pvCoeffs   points to the ladder coefficient buffer.  The array is of length numStages+1.
+   * @param[in] pState     points to the state buffer.  The array is of length numStages+blockSize-1.
+   * @param[in] blockSize  number of samples to process.
+   */
+  void arm_iir_lattice_init_f32(
+  arm_iir_lattice_instance_f32 * S,
+  uint16_t numStages,
+  float32_t * pkCoeffs,
+  float32_t * pvCoeffs,
+  float32_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the Q31 IIR lattice filter.
+   * @param[in]  S          points to an instance of the Q31 IIR lattice structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_iir_lattice_q31(
+  const arm_iir_lattice_instance_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Initialization function for the Q31 IIR lattice filter.
+   * @param[in] S          points to an instance of the Q31 IIR lattice structure.
+   * @param[in] numStages  number of stages in the filter.
+   * @param[in] pkCoeffs   points to the reflection coefficient buffer.  The array is of length numStages.
+   * @param[in] pvCoeffs   points to the ladder coefficient buffer.  The array is of length numStages+1.
+   * @param[in] pState     points to the state buffer.  The array is of length numStages+blockSize.
+   * @param[in] blockSize  number of samples to process.
+   */
+  void arm_iir_lattice_init_q31(
+  arm_iir_lattice_instance_q31 * S,
+  uint16_t numStages,
+  q31_t * pkCoeffs,
+  q31_t * pvCoeffs,
+  q31_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the Q15 IIR lattice filter.
+   * @param[in]  S          points to an instance of the Q15 IIR lattice structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_iir_lattice_q15(
+  const arm_iir_lattice_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+/**
+ * @brief Initialization function for the Q15 IIR lattice filter.
+ * @param[in] S          points to an instance of the fixed-point Q15 IIR lattice structure.
+ * @param[in] numStages  number of stages in the filter.
+ * @param[in] pkCoeffs   points to reflection coefficient buffer.  The array is of length numStages.
+ * @param[in] pvCoeffs   points to ladder coefficient buffer.  The array is of length numStages+1.
+ * @param[in] pState     points to state buffer.  The array is of length numStages+blockSize.
+ * @param[in] blockSize  number of samples to process per call.
+ */
+  void arm_iir_lattice_init_q15(
+  arm_iir_lattice_instance_q15 * S,
+  uint16_t numStages,
+  q15_t * pkCoeffs,
+  q15_t * pvCoeffs,
+  q15_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Instance structure for the floating-point LMS filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;    /**< number of coefficients in the filter. */
+    float32_t *pState;   /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+    float32_t *pCoeffs;  /**< points to the coefficient array. The array is of length numTaps. */
+    float32_t mu;        /**< step size that controls filter coefficient updates. */
+  } arm_lms_instance_f32;
+
+
+  /**
+   * @brief Processing function for floating-point LMS filter.
+   * @param[in]  S          points to an instance of the floating-point LMS filter structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[in]  pRef       points to the block of reference data.
+   * @param[out] pOut       points to the block of output data.
+   * @param[out] pErr       points to the block of error data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_lms_f32(
+  const arm_lms_instance_f32 * S,
+  float32_t * pSrc,
+  float32_t * pRef,
+  float32_t * pOut,
+  float32_t * pErr,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Initialization function for floating-point LMS filter.
+   * @param[in] S          points to an instance of the floating-point LMS filter structure.
+   * @param[in] numTaps    number of filter coefficients.
+   * @param[in] pCoeffs    points to the coefficient buffer.
+   * @param[in] pState     points to state buffer.
+   * @param[in] mu         step size that controls filter coefficient updates.
+   * @param[in] blockSize  number of samples to process.
+   */
+  void arm_lms_init_f32(
+  arm_lms_instance_f32 * S,
+  uint16_t numTaps,
+  float32_t * pCoeffs,
+  float32_t * pState,
+  float32_t mu,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Instance structure for the Q15 LMS filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;    /**< number of coefficients in the filter. */
+    q15_t *pState;       /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+    q15_t *pCoeffs;      /**< points to the coefficient array. The array is of length numTaps. */
+    q15_t mu;            /**< step size that controls filter coefficient updates. */
+    uint32_t postShift;  /**< bit shift applied to coefficients. */
+  } arm_lms_instance_q15;
+
+
+  /**
+   * @brief Initialization function for the Q15 LMS filter.
+   * @param[in] S          points to an instance of the Q15 LMS filter structure.
+   * @param[in] numTaps    number of filter coefficients.
+   * @param[in] pCoeffs    points to the coefficient buffer.
+   * @param[in] pState     points to the state buffer.
+   * @param[in] mu         step size that controls filter coefficient updates.
+   * @param[in] blockSize  number of samples to process.
+   * @param[in] postShift  bit shift applied to coefficients.
+   */
+  void arm_lms_init_q15(
+  arm_lms_instance_q15 * S,
+  uint16_t numTaps,
+  q15_t * pCoeffs,
+  q15_t * pState,
+  q15_t mu,
+  uint32_t blockSize,
+  uint32_t postShift);
+
+
+  /**
+   * @brief Processing function for Q15 LMS filter.
+   * @param[in]  S          points to an instance of the Q15 LMS filter structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[in]  pRef       points to the block of reference data.
+   * @param[out] pOut       points to the block of output data.
+   * @param[out] pErr       points to the block of error data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_lms_q15(
+  const arm_lms_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pRef,
+  q15_t * pOut,
+  q15_t * pErr,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Instance structure for the Q31 LMS filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;    /**< number of coefficients in the filter. */
+    q31_t *pState;       /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+    q31_t *pCoeffs;      /**< points to the coefficient array. The array is of length numTaps. */
+    q31_t mu;            /**< step size that controls filter coefficient updates. */
+    uint32_t postShift;  /**< bit shift applied to coefficients. */
+  } arm_lms_instance_q31;
+
+
+  /**
+   * @brief Processing function for Q31 LMS filter.
+   * @param[in]  S          points to an instance of the Q15 LMS filter structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[in]  pRef       points to the block of reference data.
+   * @param[out] pOut       points to the block of output data.
+   * @param[out] pErr       points to the block of error data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_lms_q31(
+  const arm_lms_instance_q31 * S,
+  q31_t * pSrc,
+  q31_t * pRef,
+  q31_t * pOut,
+  q31_t * pErr,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Initialization function for Q31 LMS filter.
+   * @param[in] S          points to an instance of the Q31 LMS filter structure.
+   * @param[in] numTaps    number of filter coefficients.
+   * @param[in] pCoeffs    points to coefficient buffer.
+   * @param[in] pState     points to state buffer.
+   * @param[in] mu         step size that controls filter coefficient updates.
+   * @param[in] blockSize  number of samples to process.
+   * @param[in] postShift  bit shift applied to coefficients.
+   */
+  void arm_lms_init_q31(
+  arm_lms_instance_q31 * S,
+  uint16_t numTaps,
+  q31_t * pCoeffs,
+  q31_t * pState,
+  q31_t mu,
+  uint32_t blockSize,
+  uint32_t postShift);
+
+
+  /**
+   * @brief Instance structure for the floating-point normalized LMS filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;     /**< number of coefficients in the filter. */
+    float32_t *pState;    /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+    float32_t *pCoeffs;   /**< points to the coefficient array. The array is of length numTaps. */
+    float32_t mu;         /**< step size that control filter coefficient updates. */
+    float32_t energy;     /**< saves previous frame energy. */
+    float32_t x0;         /**< saves previous input sample. */
+  } arm_lms_norm_instance_f32;
+
+
+  /**
+   * @brief Processing function for floating-point normalized LMS filter.
+   * @param[in]  S          points to an instance of the floating-point normalized LMS filter structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[in]  pRef       points to the block of reference data.
+   * @param[out] pOut       points to the block of output data.
+   * @param[out] pErr       points to the block of error data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_lms_norm_f32(
+  arm_lms_norm_instance_f32 * S,
+  float32_t * pSrc,
+  float32_t * pRef,
+  float32_t * pOut,
+  float32_t * pErr,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Initialization function for floating-point normalized LMS filter.
+   * @param[in] S          points to an instance of the floating-point LMS filter structure.
+   * @param[in] numTaps    number of filter coefficients.
+   * @param[in] pCoeffs    points to coefficient buffer.
+   * @param[in] pState     points to state buffer.
+   * @param[in] mu         step size that controls filter coefficient updates.
+   * @param[in] blockSize  number of samples to process.
+   */
+  void arm_lms_norm_init_f32(
+  arm_lms_norm_instance_f32 * S,
+  uint16_t numTaps,
+  float32_t * pCoeffs,
+  float32_t * pState,
+  float32_t mu,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Instance structure for the Q31 normalized LMS filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;     /**< number of coefficients in the filter. */
+    q31_t *pState;        /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+    q31_t *pCoeffs;       /**< points to the coefficient array. The array is of length numTaps. */
+    q31_t mu;             /**< step size that controls filter coefficient updates. */
+    uint8_t postShift;    /**< bit shift applied to coefficients. */
+    q31_t *recipTable;    /**< points to the reciprocal initial value table. */
+    q31_t energy;         /**< saves previous frame energy. */
+    q31_t x0;             /**< saves previous input sample. */
+  } arm_lms_norm_instance_q31;
+
+
+  /**
+   * @brief Processing function for Q31 normalized LMS filter.
+   * @param[in]  S          points to an instance of the Q31 normalized LMS filter structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[in]  pRef       points to the block of reference data.
+   * @param[out] pOut       points to the block of output data.
+   * @param[out] pErr       points to the block of error data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_lms_norm_q31(
+  arm_lms_norm_instance_q31 * S,
+  q31_t * pSrc,
+  q31_t * pRef,
+  q31_t * pOut,
+  q31_t * pErr,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Initialization function for Q31 normalized LMS filter.
+   * @param[in] S          points to an instance of the Q31 normalized LMS filter structure.
+   * @param[in] numTaps    number of filter coefficients.
+   * @param[in] pCoeffs    points to coefficient buffer.
+   * @param[in] pState     points to state buffer.
+   * @param[in] mu         step size that controls filter coefficient updates.
+   * @param[in] blockSize  number of samples to process.
+   * @param[in] postShift  bit shift applied to coefficients.
+   */
+  void arm_lms_norm_init_q31(
+  arm_lms_norm_instance_q31 * S,
+  uint16_t numTaps,
+  q31_t * pCoeffs,
+  q31_t * pState,
+  q31_t mu,
+  uint32_t blockSize,
+  uint8_t postShift);
+
+
+  /**
+   * @brief Instance structure for the Q15 normalized LMS filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;     /**< Number of coefficients in the filter. */
+    q15_t *pState;        /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+    q15_t *pCoeffs;       /**< points to the coefficient array. The array is of length numTaps. */
+    q15_t mu;             /**< step size that controls filter coefficient updates. */
+    uint8_t postShift;    /**< bit shift applied to coefficients. */
+    q15_t *recipTable;    /**< Points to the reciprocal initial value table. */
+    q15_t energy;         /**< saves previous frame energy. */
+    q15_t x0;             /**< saves previous input sample. */
+  } arm_lms_norm_instance_q15;
+
+
+  /**
+   * @brief Processing function for Q15 normalized LMS filter.
+   * @param[in]  S          points to an instance of the Q15 normalized LMS filter structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[in]  pRef       points to the block of reference data.
+   * @param[out] pOut       points to the block of output data.
+   * @param[out] pErr       points to the block of error data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_lms_norm_q15(
+  arm_lms_norm_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pRef,
+  q15_t * pOut,
+  q15_t * pErr,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Initialization function for Q15 normalized LMS filter.
+   * @param[in] S          points to an instance of the Q15 normalized LMS filter structure.
+   * @param[in] numTaps    number of filter coefficients.
+   * @param[in] pCoeffs    points to coefficient buffer.
+   * @param[in] pState     points to state buffer.
+   * @param[in] mu         step size that controls filter coefficient updates.
+   * @param[in] blockSize  number of samples to process.
+   * @param[in] postShift  bit shift applied to coefficients.
+   */
+  void arm_lms_norm_init_q15(
+  arm_lms_norm_instance_q15 * S,
+  uint16_t numTaps,
+  q15_t * pCoeffs,
+  q15_t * pState,
+  q15_t mu,
+  uint32_t blockSize,
+  uint8_t postShift);
+
+
+  /**
+   * @brief Correlation of floating-point sequences.
+   * @param[in]  pSrcA    points to the first input sequence.
+   * @param[in]  srcALen  length of the first input sequence.
+   * @param[in]  pSrcB    points to the second input sequence.
+   * @param[in]  srcBLen  length of the second input sequence.
+   * @param[out] pDst     points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
+   */
+  void arm_correlate_f32(
+  float32_t * pSrcA,
+  uint32_t srcALen,
+  float32_t * pSrcB,
+  uint32_t srcBLen,
+  float32_t * pDst);
+
+
+   /**
+   * @brief Correlation of Q15 sequences
+   * @param[in]  pSrcA     points to the first input sequence.
+   * @param[in]  srcALen   length of the first input sequence.
+   * @param[in]  pSrcB     points to the second input sequence.
+   * @param[in]  srcBLen   length of the second input sequence.
+   * @param[out] pDst      points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
+   * @param[in]  pScratch  points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+   */
+  void arm_correlate_opt_q15(
+  q15_t * pSrcA,
+  uint32_t srcALen,
+  q15_t * pSrcB,
+  uint32_t srcBLen,
+  q15_t * pDst,
+  q15_t * pScratch);
+
+
+  /**
+   * @brief Correlation of Q15 sequences.
+   * @param[in]  pSrcA    points to the first input sequence.
+   * @param[in]  srcALen  length of the first input sequence.
+   * @param[in]  pSrcB    points to the second input sequence.
+   * @param[in]  srcBLen  length of the second input sequence.
+   * @param[out] pDst     points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
+   */
+
+  void arm_correlate_q15(
+  q15_t * pSrcA,
+  uint32_t srcALen,
+  q15_t * pSrcB,
+  uint32_t srcBLen,
+  q15_t * pDst);
+
+
+  /**
+   * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+   * @param[in]  pSrcA    points to the first input sequence.
+   * @param[in]  srcALen  length of the first input sequence.
+   * @param[in]  pSrcB    points to the second input sequence.
+   * @param[in]  srcBLen  length of the second input sequence.
+   * @param[out] pDst     points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
+   */
+
+  void arm_correlate_fast_q15(
+  q15_t * pSrcA,
+  uint32_t srcALen,
+  q15_t * pSrcB,
+  uint32_t srcBLen,
+  q15_t * pDst);
+
+
+  /**
+   * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+   * @param[in]  pSrcA     points to the first input sequence.
+   * @param[in]  srcALen   length of the first input sequence.
+   * @param[in]  pSrcB     points to the second input sequence.
+   * @param[in]  srcBLen   length of the second input sequence.
+   * @param[out] pDst      points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
+   * @param[in]  pScratch  points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+   */
+  void arm_correlate_fast_opt_q15(
+  q15_t * pSrcA,
+  uint32_t srcALen,
+  q15_t * pSrcB,
+  uint32_t srcBLen,
+  q15_t * pDst,
+  q15_t * pScratch);
+
+
+  /**
+   * @brief Correlation of Q31 sequences.
+   * @param[in]  pSrcA    points to the first input sequence.
+   * @param[in]  srcALen  length of the first input sequence.
+   * @param[in]  pSrcB    points to the second input sequence.
+   * @param[in]  srcBLen  length of the second input sequence.
+   * @param[out] pDst     points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
+   */
+  void arm_correlate_q31(
+  q31_t * pSrcA,
+  uint32_t srcALen,
+  q31_t * pSrcB,
+  uint32_t srcBLen,
+  q31_t * pDst);
+
+
+  /**
+   * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+   * @param[in]  pSrcA    points to the first input sequence.
+   * @param[in]  srcALen  length of the first input sequence.
+   * @param[in]  pSrcB    points to the second input sequence.
+   * @param[in]  srcBLen  length of the second input sequence.
+   * @param[out] pDst     points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
+   */
+  void arm_correlate_fast_q31(
+  q31_t * pSrcA,
+  uint32_t srcALen,
+  q31_t * pSrcB,
+  uint32_t srcBLen,
+  q31_t * pDst);
+
+
+ /**
+   * @brief Correlation of Q7 sequences.
+   * @param[in]  pSrcA      points to the first input sequence.
+   * @param[in]  srcALen    length of the first input sequence.
+   * @param[in]  pSrcB      points to the second input sequence.
+   * @param[in]  srcBLen    length of the second input sequence.
+   * @param[out] pDst       points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
+   * @param[in]  pScratch1  points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+   * @param[in]  pScratch2  points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+   */
+  void arm_correlate_opt_q7(
+  q7_t * pSrcA,
+  uint32_t srcALen,
+  q7_t * pSrcB,
+  uint32_t srcBLen,
+  q7_t * pDst,
+  q15_t * pScratch1,
+  q15_t * pScratch2);
+
+
+  /**
+   * @brief Correlation of Q7 sequences.
+   * @param[in]  pSrcA    points to the first input sequence.
+   * @param[in]  srcALen  length of the first input sequence.
+   * @param[in]  pSrcB    points to the second input sequence.
+   * @param[in]  srcBLen  length of the second input sequence.
+   * @param[out] pDst     points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
+   */
+  void arm_correlate_q7(
+  q7_t * pSrcA,
+  uint32_t srcALen,
+  q7_t * pSrcB,
+  uint32_t srcBLen,
+  q7_t * pDst);
+
+
+  /**
+   * @brief Instance structure for the floating-point sparse FIR filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;             /**< number of coefficients in the filter. */
+    uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */
+    float32_t *pState;            /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+    float32_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/
+    uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */
+    int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */
+  } arm_fir_sparse_instance_f32;
+
+  /**
+   * @brief Instance structure for the Q31 sparse FIR filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;             /**< number of coefficients in the filter. */
+    uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */
+    q31_t *pState;                /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+    q31_t *pCoeffs;               /**< points to the coefficient array. The array is of length numTaps.*/
+    uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */
+    int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */
+  } arm_fir_sparse_instance_q31;
+
+  /**
+   * @brief Instance structure for the Q15 sparse FIR filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;             /**< number of coefficients in the filter. */
+    uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */
+    q15_t *pState;                /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+    q15_t *pCoeffs;               /**< points to the coefficient array. The array is of length numTaps.*/
+    uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */
+    int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */
+  } arm_fir_sparse_instance_q15;
+
+  /**
+   * @brief Instance structure for the Q7 sparse FIR filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;             /**< number of coefficients in the filter. */
+    uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */
+    q7_t *pState;                 /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+    q7_t *pCoeffs;                /**< points to the coefficient array. The array is of length numTaps.*/
+    uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */
+    int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */
+  } arm_fir_sparse_instance_q7;
+
+
+  /**
+   * @brief Processing function for the floating-point sparse FIR filter.
+   * @param[in]  S           points to an instance of the floating-point sparse FIR structure.
+   * @param[in]  pSrc        points to the block of input data.
+   * @param[out] pDst        points to the block of output data
+   * @param[in]  pScratchIn  points to a temporary buffer of size blockSize.
+   * @param[in]  blockSize   number of input samples to process per call.
+   */
+  void arm_fir_sparse_f32(
+  arm_fir_sparse_instance_f32 * S,
+  float32_t * pSrc,
+  float32_t * pDst,
+  float32_t * pScratchIn,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the floating-point sparse FIR filter.
+   * @param[in,out] S          points to an instance of the floating-point sparse FIR structure.
+   * @param[in]     numTaps    number of nonzero coefficients in the filter.
+   * @param[in]     pCoeffs    points to the array of filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     pTapDelay  points to the array of offset times.
+   * @param[in]     maxDelay   maximum offset time supported.
+   * @param[in]     blockSize  number of samples that will be processed per block.
+   */
+  void arm_fir_sparse_init_f32(
+  arm_fir_sparse_instance_f32 * S,
+  uint16_t numTaps,
+  float32_t * pCoeffs,
+  float32_t * pState,
+  int32_t * pTapDelay,
+  uint16_t maxDelay,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the Q31 sparse FIR filter.
+   * @param[in]  S           points to an instance of the Q31 sparse FIR structure.
+   * @param[in]  pSrc        points to the block of input data.
+   * @param[out] pDst        points to the block of output data
+   * @param[in]  pScratchIn  points to a temporary buffer of size blockSize.
+   * @param[in]  blockSize   number of input samples to process per call.
+   */
+  void arm_fir_sparse_q31(
+  arm_fir_sparse_instance_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst,
+  q31_t * pScratchIn,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q31 sparse FIR filter.
+   * @param[in,out] S          points to an instance of the Q31 sparse FIR structure.
+   * @param[in]     numTaps    number of nonzero coefficients in the filter.
+   * @param[in]     pCoeffs    points to the array of filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     pTapDelay  points to the array of offset times.
+   * @param[in]     maxDelay   maximum offset time supported.
+   * @param[in]     blockSize  number of samples that will be processed per block.
+   */
+  void arm_fir_sparse_init_q31(
+  arm_fir_sparse_instance_q31 * S,
+  uint16_t numTaps,
+  q31_t * pCoeffs,
+  q31_t * pState,
+  int32_t * pTapDelay,
+  uint16_t maxDelay,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the Q15 sparse FIR filter.
+   * @param[in]  S            points to an instance of the Q15 sparse FIR structure.
+   * @param[in]  pSrc         points to the block of input data.
+   * @param[out] pDst         points to the block of output data
+   * @param[in]  pScratchIn   points to a temporary buffer of size blockSize.
+   * @param[in]  pScratchOut  points to a temporary buffer of size blockSize.
+   * @param[in]  blockSize    number of input samples to process per call.
+   */
+  void arm_fir_sparse_q15(
+  arm_fir_sparse_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  q15_t * pScratchIn,
+  q31_t * pScratchOut,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q15 sparse FIR filter.
+   * @param[in,out] S          points to an instance of the Q15 sparse FIR structure.
+   * @param[in]     numTaps    number of nonzero coefficients in the filter.
+   * @param[in]     pCoeffs    points to the array of filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     pTapDelay  points to the array of offset times.
+   * @param[in]     maxDelay   maximum offset time supported.
+   * @param[in]     blockSize  number of samples that will be processed per block.
+   */
+  void arm_fir_sparse_init_q15(
+  arm_fir_sparse_instance_q15 * S,
+  uint16_t numTaps,
+  q15_t * pCoeffs,
+  q15_t * pState,
+  int32_t * pTapDelay,
+  uint16_t maxDelay,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the Q7 sparse FIR filter.
+   * @param[in]  S            points to an instance of the Q7 sparse FIR structure.
+   * @param[in]  pSrc         points to the block of input data.
+   * @param[out] pDst         points to the block of output data
+   * @param[in]  pScratchIn   points to a temporary buffer of size blockSize.
+   * @param[in]  pScratchOut  points to a temporary buffer of size blockSize.
+   * @param[in]  blockSize    number of input samples to process per call.
+   */
+  void arm_fir_sparse_q7(
+  arm_fir_sparse_instance_q7 * S,
+  q7_t * pSrc,
+  q7_t * pDst,
+  q7_t * pScratchIn,
+  q31_t * pScratchOut,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q7 sparse FIR filter.
+   * @param[in,out] S          points to an instance of the Q7 sparse FIR structure.
+   * @param[in]     numTaps    number of nonzero coefficients in the filter.
+   * @param[in]     pCoeffs    points to the array of filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     pTapDelay  points to the array of offset times.
+   * @param[in]     maxDelay   maximum offset time supported.
+   * @param[in]     blockSize  number of samples that will be processed per block.
+   */
+  void arm_fir_sparse_init_q7(
+  arm_fir_sparse_instance_q7 * S,
+  uint16_t numTaps,
+  q7_t * pCoeffs,
+  q7_t * pState,
+  int32_t * pTapDelay,
+  uint16_t maxDelay,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Floating-point sin_cos function.
+   * @param[in]  theta   input value in degrees
+   * @param[out] pSinVal  points to the processed sine output.
+   * @param[out] pCosVal  points to the processed cos output.
+   */
+  void arm_sin_cos_f32(
+  float32_t theta,
+  float32_t * pSinVal,
+  float32_t * pCosVal);
+
+
+  /**
+   * @brief  Q31 sin_cos function.
+   * @param[in]  theta    scaled input value in degrees
+   * @param[out] pSinVal  points to the processed sine output.
+   * @param[out] pCosVal  points to the processed cosine output.
+   */
+  void arm_sin_cos_q31(
+  q31_t theta,
+  q31_t * pSinVal,
+  q31_t * pCosVal);
+
+
+  /**
+   * @brief  Floating-point complex conjugate.
+   * @param[in]  pSrc        points to the input vector
+   * @param[out] pDst        points to the output vector
+   * @param[in]  numSamples  number of complex samples in each vector
+   */
+  void arm_cmplx_conj_f32(
+  float32_t * pSrc,
+  float32_t * pDst,
+  uint32_t numSamples);
+
+  /**
+   * @brief  Q31 complex conjugate.
+   * @param[in]  pSrc        points to the input vector
+   * @param[out] pDst        points to the output vector
+   * @param[in]  numSamples  number of complex samples in each vector
+   */
+  void arm_cmplx_conj_q31(
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t numSamples);
+
+
+  /**
+   * @brief  Q15 complex conjugate.
+   * @param[in]  pSrc        points to the input vector
+   * @param[out] pDst        points to the output vector
+   * @param[in]  numSamples  number of complex samples in each vector
+   */
+  void arm_cmplx_conj_q15(
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t numSamples);
+
+
+  /**
+   * @brief  Floating-point complex magnitude squared
+   * @param[in]  pSrc        points to the complex input vector
+   * @param[out] pDst        points to the real output vector
+   * @param[in]  numSamples  number of complex samples in the input vector
+   */
+  void arm_cmplx_mag_squared_f32(
+  float32_t * pSrc,
+  float32_t * pDst,
+  uint32_t numSamples);
+
+
+  /**
+   * @brief  Q31 complex magnitude squared
+   * @param[in]  pSrc        points to the complex input vector
+   * @param[out] pDst        points to the real output vector
+   * @param[in]  numSamples  number of complex samples in the input vector
+   */
+  void arm_cmplx_mag_squared_q31(
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t numSamples);
+
+
+  /**
+   * @brief  Q15 complex magnitude squared
+   * @param[in]  pSrc        points to the complex input vector
+   * @param[out] pDst        points to the real output vector
+   * @param[in]  numSamples  number of complex samples in the input vector
+   */
+  void arm_cmplx_mag_squared_q15(
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t numSamples);
+
+
+ /**
+   * @ingroup groupController
+   */
+
+  /**
+   * @defgroup PID PID Motor Control
+   *
+   * A Proportional Integral Derivative (PID) controller is a generic feedback control
+   * loop mechanism widely used in industrial control systems.
+   * A PID controller is the most commonly used type of feedback controller.
+   *
+   * This set of functions implements (PID) controllers
+   * for Q15, Q31, and floating-point data types.  The functions operate on a single sample
+   * of data and each call to the function returns a single processed value.
+   * S points to an instance of the PID control data structure.  in
+   * is the input sample value. The functions return the output value.
+   *
+   * \par Algorithm:
+   * + * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] + * A0 = Kp + Ki + Kd + * A1 = (-Kp ) - (2 * Kd ) + * A2 = Kd+ * + * \par + * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant + * + * \par + * \image html PID.gif "Proportional Integral Derivative Controller" + * + * \par + * The PID controller calculates an "error" value as the difference between + * the measured output and the reference input. + * The controller attempts to minimize the error by adjusting the process control inputs. + * The proportional value determines the reaction to the current error, + * the integral value determines the reaction based on the sum of recent errors, + * and the derivative value determines the reaction based on the rate at which the error has been changing. + * + * \par Instance Structure + * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. + * A separate instance structure must be defined for each PID Controller. + * There are separate instance structure declarations for each of the 3 supported data types. + * + * \par Reset Functions + * There is also an associated reset function for each data type which clears the state array. + * + * \par Initialization Functions + * There is also an associated initialization function for each data type. + * The initialization function performs the following operations: + * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. + * - Zeros out the values in the state buffer. + * + * \par + * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. + * + * \par Fixed-Point Behavior + * Care must be taken when using the fixed-point versions of the PID Controller functions. + * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup PID + * @{ + */ + + /** + * @brief Process function for the floating-point PID Control. + * @param[in,out] S is an instance of the floating-point PID Control structure + * @param[in] in input sample to process + * @return out processed output sample. + */ + static __INLINE float32_t arm_pid_f32( + arm_pid_instance_f32 * S, + float32_t in) + { + float32_t out; + + /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ + out = (S->A0 * in) + + (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + + } + + /** + * @brief Process function for the Q31 PID Control. + * @param[in,out] S points to an instance of the Q31 PID Control structure + * @param[in] in input sample to process + * @return out processed output sample. + * + * Scaling and Overflow Behavior: + * \par + * The function is implemented using an internal 64-bit accumulator. + * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. + * Thus, if the accumulator result overflows it wraps around rather than clip. + * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. + * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. + */ + static __INLINE q31_t arm_pid_q31( + arm_pid_instance_q31 * S, + q31_t in) + { + q63_t acc; + q31_t out; + + /* acc = A0 * x[n] */ + acc = (q63_t) S->A0 * in; + + /* acc += A1 * x[n-1] */ + acc += (q63_t) S->A1 * S->state[0]; + + /* acc += A2 * x[n-2] */ + acc += (q63_t) S->A2 * S->state[1]; + + /* convert output to 1.31 format to add y[n-1] */ + out = (q31_t) (acc >> 31u); + + /* out += y[n-1] */ + out += S->state[2]; + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + } + + + /** + * @brief Process function for the Q15 PID Control. + * @param[in,out] S points to an instance of the Q15 PID Control structure + * @param[in] in input sample to process + * @return out processed output sample. + * + * Scaling and Overflow Behavior: + * \par + * The function is implemented using a 64-bit internal accumulator. + * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. + * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. + * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. + * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. + * Lastly, the accumulator is saturated to yield a result in 1.15 format. + */ + static __INLINE q15_t arm_pid_q15( + arm_pid_instance_q15 * S, + q15_t in) + { + q63_t acc; + q15_t out; + +#ifndef ARM_MATH_CM0_FAMILY + __SIMD32_TYPE *vstate; + + /* Implementation of PID controller */ + + /* acc = A0 * x[n] */ + acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in); + + /* acc += A1 * x[n-1] + A2 * x[n-2] */ + vstate = __SIMD32_CONST(S->state); + acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc); +#else + /* acc = A0 * x[n] */ + acc = ((q31_t) S->A0) * in; + + /* acc += A1 * x[n-1] + A2 * x[n-2] */ + acc += (q31_t) S->A1 * S->state[0]; + acc += (q31_t) S->A2 * S->state[1]; +#endif + + /* acc += y[n-1] */ + acc += (q31_t) S->state[2] << 15; + + /* saturate the output */ + out = (q15_t) (__SSAT((acc >> 15), 16)); + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + } + + /** + * @} end of PID group + */ + + + /** + * @brief Floating-point matrix inverse. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] dst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. + */ + arm_status arm_mat_inverse_f32( + const arm_matrix_instance_f32 * src, + arm_matrix_instance_f32 * dst); + + + /** + * @brief Floating-point matrix inverse. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] dst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. + */ + arm_status arm_mat_inverse_f64( + const arm_matrix_instance_f64 * src, + arm_matrix_instance_f64 * dst); + + + + /** + * @ingroup groupController + */ + + /** + * @defgroup clarke Vector Clarke Transform + * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. + * Generally the Clarke transform uses three-phase currents
Ia, Ib and Ic to calculate currents
+   * in the two-phase orthogonal stator axis Ialpha and Ibeta.
+   * When Ialpha is superposed with Ia as shown in the figure below
+   * \image html clarke.gif Stator current space vector and its components in (a,b).
+   * and Ia + Ib + Ic = 0, in this condition Ialpha and Ibeta
+   * can be calculated using only Ia and Ib.
+   *
+   * The function operates on a single sample of data and each call to the function returns the processed output.
+   * The library provides separate functions for Q31 and floating-point data types.
+   * \par Algorithm
+   * \image html clarkeFormula.gif
+   * where Ia and Ib are the instantaneous stator phases and
+   * pIalpha and pIbeta are the two coordinates of time invariant vector.
+   * \par Fixed-Point Behavior
+   * Care must be taken when using the Q31 version of the Clarke transform.
+   * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+   * Refer to the function specific documentation below for usage guidelines.
+   */
+
+  /**
+   * @addtogroup clarke
+   * @{
+   */
+
+  /**
+   *
+   * @brief  Floating-point Clarke transform
+   * @param[in]  Ia       input three-phase coordinate a
+   * @param[in]  Ib       input three-phase coordinate b
+   * @param[out] pIalpha  points to output two-phase orthogonal vector axis alpha
+   * @param[out] pIbeta   points to output two-phase orthogonal vector axis beta
+   */
+  static __INLINE void arm_clarke_f32(
+  float32_t Ia,
+  float32_t Ib,
+  float32_t * pIalpha,
+  float32_t * pIbeta)
+  {
+    /* Calculate pIalpha using the equation, pIalpha = Ia */
+    *pIalpha = Ia;
+
+    /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
+    *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
+  }
+
+
+  /**
+   * @brief  Clarke transform for Q31 version
+   * @param[in]  Ia       input three-phase coordinate a
+   * @param[in]  Ib       input three-phase coordinate b
+   * @param[out] pIalpha  points to output two-phase orthogonal vector axis alpha
+   * @param[out] pIbeta   points to output two-phase orthogonal vector axis beta
+   *
+   * Scaling and Overflow Behavior:
+   * \par
+   * The function is implemented using an internal 32-bit accumulator.
+   * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+   * There is saturation on the addition, hence there is no risk of overflow.
+   */
+  static __INLINE void arm_clarke_q31(
+  q31_t Ia,
+  q31_t Ib,
+  q31_t * pIalpha,
+  q31_t * pIbeta)
+  {
+    q31_t product1, product2;                    /* Temporary variables used to store intermediate results */
+
+    /* Calculating pIalpha from Ia by equation pIalpha = Ia */
+    *pIalpha = Ia;
+
+    /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
+    product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
+
+    /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
+    product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
+
+    /* pIbeta is calculated by adding the intermediate products */
+    *pIbeta = __QADD(product1, product2);
+  }
+
+  /**
+   * @} end of clarke group
+   */
+
+  /**
+   * @brief  Converts the elements of the Q7 vector to Q31 vector.
+   * @param[in]  pSrc       input pointer
+   * @param[out] pDst       output pointer
+   * @param[in]  blockSize  number of samples to process
+   */
+  void arm_q7_to_q31(
+  q7_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+
+  /**
+   * @ingroup groupController
+   */
+
+  /**
+   * @defgroup inv_clarke Vector Inverse Clarke Transform
+   * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
+   *
+   * The function operates on a single sample of data and each call to the function returns the processed output.
+   * The library provides separate functions for Q31 and floating-point data types.
+   * \par Algorithm
+   * \image html clarkeInvFormula.gif
+   * where pIa and pIb are the instantaneous stator phases and
+   * Ialpha and Ibeta are the two coordinates of time invariant vector.
+   * \par Fixed-Point Behavior
+   * Care must be taken when using the Q31 version of the Clarke transform.
+   * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+   * Refer to the function specific documentation below for usage guidelines.
+   */
+
+  /**
+   * @addtogroup inv_clarke
+   * @{
+   */
+
+   /**
+   * @brief  Floating-point Inverse Clarke transform
+   * @param[in]  Ialpha  input two-phase orthogonal vector axis alpha
+   * @param[in]  Ibeta   input two-phase orthogonal vector axis beta
+   * @param[out] pIa     points to output three-phase coordinate a
+   * @param[out] pIb     points to output three-phase coordinate b
+   */
+  static __INLINE void arm_inv_clarke_f32(
+  float32_t Ialpha,
+  float32_t Ibeta,
+  float32_t * pIa,
+  float32_t * pIb)
+  {
+    /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+    *pIa = Ialpha;
+
+    /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
+    *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
+  }
+
+
+  /**
+   * @brief  Inverse Clarke transform for Q31 version
+   * @param[in]  Ialpha  input two-phase orthogonal vector axis alpha
+   * @param[in]  Ibeta   input two-phase orthogonal vector axis beta
+   * @param[out] pIa     points to output three-phase coordinate a
+   * @param[out] pIb     points to output three-phase coordinate b
+   *
+   * Scaling and Overflow Behavior:
+   * \par
+   * The function is implemented using an internal 32-bit accumulator.
+   * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+   * There is saturation on the subtraction, hence there is no risk of overflow.
+   */
+  static __INLINE void arm_inv_clarke_q31(
+  q31_t Ialpha,
+  q31_t Ibeta,
+  q31_t * pIa,
+  q31_t * pIb)
+  {
+    q31_t product1, product2;                    /* Temporary variables used to store intermediate results */
+
+    /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+    *pIa = Ialpha;
+
+    /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
+    product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
+
+    /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
+    product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
+
+    /* pIb is calculated by subtracting the products */
+    *pIb = __QSUB(product2, product1);
+  }
+
+  /**
+   * @} end of inv_clarke group
+   */
+
+  /**
+   * @brief  Converts the elements of the Q7 vector to Q15 vector.
+   * @param[in]  pSrc       input pointer
+   * @param[out] pDst       output pointer
+   * @param[in]  blockSize  number of samples to process
+   */
+  void arm_q7_to_q15(
+  q7_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+
+  /**
+   * @ingroup groupController
+   */
+
+  /**
+   * @defgroup park Vector Park Transform
+   *
+   * Forward Park transform converts the input two-coordinate vector to flux and torque components.
+   * The Park transform can be used to realize the transformation of the Ialpha and the Ibeta currents
+   * from the stationary to the moving reference frame and control the spatial relationship between
+   * the stator vector current and rotor flux vector.
+   * If we consider the d axis aligned with the rotor flux, the diagram below shows the
+   * current vector and the relationship from the two reference frames:
+   * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
+   *
+   * The function operates on a single sample of data and each call to the function returns the processed output.
+   * The library provides separate functions for Q31 and floating-point data types.
+   * \par Algorithm
+   * \image html parkFormula.gif
+   * where Ialpha and Ibeta are the stator vector components,
+   * pId and pIq are rotor vector components and cosVal and sinVal are the
+   * cosine and sine values of theta (rotor flux position).
+   * \par Fixed-Point Behavior
+   * Care must be taken when using the Q31 version of the Park transform.
+   * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+   * Refer to the function specific documentation below for usage guidelines.
+   */
+
+  /**
+   * @addtogroup park
+   * @{
+   */
+
+  /**
+   * @brief Floating-point Park transform
+   * @param[in]  Ialpha  input two-phase vector coordinate alpha
+   * @param[in]  Ibeta   input two-phase vector coordinate beta
+   * @param[out] pId     points to output   rotor reference frame d
+   * @param[out] pIq     points to output   rotor reference frame q
+   * @param[in]  sinVal  sine value of rotation angle theta
+   * @param[in]  cosVal  cosine value of rotation angle theta
+   *
+   * The function implements the forward Park transform.
+   *
+   */
+  static __INLINE void arm_park_f32(
+  float32_t Ialpha,
+  float32_t Ibeta,
+  float32_t * pId,
+  float32_t * pIq,
+  float32_t sinVal,
+  float32_t cosVal)
+  {
+    /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
+    *pId = Ialpha * cosVal + Ibeta * sinVal;
+
+    /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
+    *pIq = -Ialpha * sinVal + Ibeta * cosVal;
+  }
+
+
+  /**
+   * @brief  Park transform for Q31 version
+   * @param[in]  Ialpha  input two-phase vector coordinate alpha
+   * @param[in]  Ibeta   input two-phase vector coordinate beta
+   * @param[out] pId     points to output rotor reference frame d
+   * @param[out] pIq     points to output rotor reference frame q
+   * @param[in]  sinVal  sine value of rotation angle theta
+   * @param[in]  cosVal  cosine value of rotation angle theta
+   *
+   * Scaling and Overflow Behavior:
+   * \par
+   * The function is implemented using an internal 32-bit accumulator.
+   * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+   * There is saturation on the addition and subtraction, hence there is no risk of overflow.
+   */
+  static __INLINE void arm_park_q31(
+  q31_t Ialpha,
+  q31_t Ibeta,
+  q31_t * pId,
+  q31_t * pIq,
+  q31_t sinVal,
+  q31_t cosVal)
+  {
+    q31_t product1, product2;                    /* Temporary variables used to store intermediate results */
+    q31_t product3, product4;                    /* Temporary variables used to store intermediate results */
+
+    /* Intermediate product is calculated by (Ialpha * cosVal) */
+    product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
+
+    /* Intermediate product is calculated by (Ibeta * sinVal) */
+    product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
+
+
+    /* Intermediate product is calculated by (Ialpha * sinVal) */
+    product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
+
+    /* Intermediate product is calculated by (Ibeta * cosVal) */
+    product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
+
+    /* Calculate pId by adding the two intermediate products 1 and 2 */
+    *pId = __QADD(product1, product2);
+
+    /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
+    *pIq = __QSUB(product4, product3);
+  }
+
+  /**
+   * @} end of park group
+   */
+
+  /**
+   * @brief  Converts the elements of the Q7 vector to floating-point vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[out] pDst       is output pointer
+   * @param[in]  blockSize  is the number of samples to process
+   */
+  void arm_q7_to_float(
+  q7_t * pSrc,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @ingroup groupController
+   */
+
+  /**
+   * @defgroup inv_park Vector Inverse Park transform
+   * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
+   *
+   * The function operates on a single sample of data and each call to the function returns the processed output.
+   * The library provides separate functions for Q31 and floating-point data types.
+   * \par Algorithm
+   * \image html parkInvFormula.gif
+   * where pIalpha and pIbeta are the stator vector components,
+   * Id and Iq are rotor vector components and cosVal and sinVal are the
+   * cosine and sine values of theta (rotor flux position).
+   * \par Fixed-Point Behavior
+   * Care must be taken when using the Q31 version of the Park transform.
+   * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+   * Refer to the function specific documentation below for usage guidelines.
+   */
+
+  /**
+   * @addtogroup inv_park
+   * @{
+   */
+
+   /**
+   * @brief  Floating-point Inverse Park transform
+   * @param[in]  Id       input coordinate of rotor reference frame d
+   * @param[in]  Iq       input coordinate of rotor reference frame q
+   * @param[out] pIalpha  points to output two-phase orthogonal vector axis alpha
+   * @param[out] pIbeta   points to output two-phase orthogonal vector axis beta
+   * @param[in]  sinVal   sine value of rotation angle theta
+   * @param[in]  cosVal   cosine value of rotation angle theta
+   */
+  static __INLINE void arm_inv_park_f32(
+  float32_t Id,
+  float32_t Iq,
+  float32_t * pIalpha,
+  float32_t * pIbeta,
+  float32_t sinVal,
+  float32_t cosVal)
+  {
+    /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
+    *pIalpha = Id * cosVal - Iq * sinVal;
+
+    /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
+    *pIbeta = Id * sinVal + Iq * cosVal;
+  }
+
+
+  /**
+   * @brief  Inverse Park transform for   Q31 version
+   * @param[in]  Id       input coordinate of rotor reference frame d
+   * @param[in]  Iq       input coordinate of rotor reference frame q
+   * @param[out] pIalpha  points to output two-phase orthogonal vector axis alpha
+   * @param[out] pIbeta   points to output two-phase orthogonal vector axis beta
+   * @param[in]  sinVal   sine value of rotation angle theta
+   * @param[in]  cosVal   cosine value of rotation angle theta
+   *
+   * Scaling and Overflow Behavior:
+   * \par
+   * The function is implemented using an internal 32-bit accumulator.
+   * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+   * There is saturation on the addition, hence there is no risk of overflow.
+   */
+  static __INLINE void arm_inv_park_q31(
+  q31_t Id,
+  q31_t Iq,
+  q31_t * pIalpha,
+  q31_t * pIbeta,
+  q31_t sinVal,
+  q31_t cosVal)
+  {
+    q31_t product1, product2;                    /* Temporary variables used to store intermediate results */
+    q31_t product3, product4;                    /* Temporary variables used to store intermediate results */
+
+    /* Intermediate product is calculated by (Id * cosVal) */
+    product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
+
+    /* Intermediate product is calculated by (Iq * sinVal) */
+    product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
+
+
+    /* Intermediate product is calculated by (Id * sinVal) */
+    product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
+
+    /* Intermediate product is calculated by (Iq * cosVal) */
+    product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
+
+    /* Calculate pIalpha by using the two intermediate products 1 and 2 */
+    *pIalpha = __QSUB(product1, product2);
+
+    /* Calculate pIbeta by using the two intermediate products 3 and 4 */
+    *pIbeta = __QADD(product4, product3);
+  }
+
+  /**
+   * @} end of Inverse park group
+   */
+
+
+  /**
+   * @brief  Converts the elements of the Q31 vector to floating-point vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[out] pDst       is output pointer
+   * @param[in]  blockSize  is the number of samples to process
+   */
+  void arm_q31_to_float(
+  q31_t * pSrc,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+  /**
+   * @ingroup groupInterpolation
+   */
+
+  /**
+   * @defgroup LinearInterpolate Linear Interpolation
+   *
+   * Linear interpolation is a method of curve fitting using linear polynomials.
+   * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
+   *
+   * \par
+   * \image html LinearInterp.gif "Linear interpolation"
+   *
+   * \par
+   * A  Linear Interpolate function calculates an output value(y), for the input(x)
+   * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
+   *
+   * \par Algorithm:
+   * + * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) + * where x0, x1 are nearest values of input x + * y0, y1 are nearest values to output y + *+ * + * \par + * This set of functions implements Linear interpolation process + * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single + * sample of data and each call to the function returns a single processed value. + *
S points to an instance of the Linear Interpolate function data structure.
+   * x is the input sample value. The functions returns the output value.
+   *
+   * \par
+   * if x is outside of the table boundary, Linear interpolation returns first value of the table
+   * if x is below input range and returns last value of table if x is above range.
+   */
+
+  /**
+   * @addtogroup LinearInterpolate
+   * @{
+   */
+
+  /**
+   * @brief  Process function for the floating-point Linear Interpolation Function.
+   * @param[in,out] S  is an instance of the floating-point Linear Interpolation structure
+   * @param[in]     x  input sample to process
+   * @return y processed output sample.
+   *
+   */
+  static __INLINE float32_t arm_linear_interp_f32(
+  arm_linear_interp_instance_f32 * S,
+  float32_t x)
+  {
+    float32_t y;
+    float32_t x0, x1;                            /* Nearest input values */
+    float32_t y0, y1;                            /* Nearest output values */
+    float32_t xSpacing = S->xSpacing;            /* spacing between input values */
+    int32_t i;                                   /* Index variable */
+    float32_t *pYData = S->pYData;               /* pointer to output table */
+
+    /* Calculation of index */
+    i = (int32_t) ((x - S->x1) / xSpacing);
+
+    if(i < 0)
+    {
+      /* Iniatilize output for below specified range as least output value of table */
+      y = pYData[0];
+    }
+    else if((uint32_t)i >= S->nValues)
+    {
+      /* Iniatilize output for above specified range as last output value of table */
+      y = pYData[S->nValues - 1];
+    }
+    else
+    {
+      /* Calculation of nearest input values */
+      x0 = S->x1 +  i      * xSpacing;
+      x1 = S->x1 + (i + 1) * xSpacing;
+
+      /* Read of nearest output values */
+      y0 = pYData[i];
+      y1 = pYData[i + 1];
+
+      /* Calculation of output */
+      y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
+
+    }
+
+    /* returns output value */
+    return (y);
+  }
+
+
+   /**
+   *
+   * @brief  Process function for the Q31 Linear Interpolation Function.
+   * @param[in] pYData   pointer to Q31 Linear Interpolation table
+   * @param[in] x        input sample to process
+   * @param[in] nValues  number of table values
+   * @return y processed output sample.
+   *
+   * \par
+   * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+   * This function can support maximum of table size 2^12.
+   *
+   */
+  static __INLINE q31_t arm_linear_interp_q31(
+  q31_t * pYData,
+  q31_t x,
+  uint32_t nValues)
+  {
+    q31_t y;                                     /* output */
+    q31_t y0, y1;                                /* Nearest output values */
+    q31_t fract;                                 /* fractional part */
+    int32_t index;                               /* Index to read nearest output values */
+
+    /* Input is in 12.20 format */
+    /* 12 bits for the table index */
+    /* Index value calculation */
+    index = ((x & (q31_t)0xFFF00000) >> 20);
+
+    if(index >= (int32_t)(nValues - 1))
+    {
+      return (pYData[nValues - 1]);
+    }
+    else if(index < 0)
+    {
+      return (pYData[0]);
+    }
+    else
+    {
+      /* 20 bits for the fractional part */
+      /* shift left by 11 to keep fract in 1.31 format */
+      fract = (x & 0x000FFFFF) << 11;
+
+      /* Read two nearest output values from the index in 1.31(q31) format */
+      y0 = pYData[index];
+      y1 = pYData[index + 1];
+
+      /* Calculation of y0 * (1-fract) and y is in 2.30 format */
+      y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
+
+      /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
+      y += ((q31_t) (((q63_t) y1 * fract) >> 32));
+
+      /* Convert y to 1.31 format */
+      return (y << 1u);
+    }
+  }
+
+
+  /**
+   *
+   * @brief  Process function for the Q15 Linear Interpolation Function.
+   * @param[in] pYData   pointer to Q15 Linear Interpolation table
+   * @param[in] x        input sample to process
+   * @param[in] nValues  number of table values
+   * @return y processed output sample.
+   *
+   * \par
+   * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+   * This function can support maximum of table size 2^12.
+   *
+   */
+  static __INLINE q15_t arm_linear_interp_q15(
+  q15_t * pYData,
+  q31_t x,
+  uint32_t nValues)
+  {
+    q63_t y;                                     /* output */
+    q15_t y0, y1;                                /* Nearest output values */
+    q31_t fract;                                 /* fractional part */
+    int32_t index;                               /* Index to read nearest output values */
+
+    /* Input is in 12.20 format */
+    /* 12 bits for the table index */
+    /* Index value calculation */
+    index = ((x & (int32_t)0xFFF00000) >> 20);
+
+    if(index >= (int32_t)(nValues - 1))
+    {
+      return (pYData[nValues - 1]);
+    }
+    else if(index < 0)
+    {
+      return (pYData[0]);
+    }
+    else
+    {
+      /* 20 bits for the fractional part */
+      /* fract is in 12.20 format */
+      fract = (x & 0x000FFFFF);
+
+      /* Read two nearest output values from the index */
+      y0 = pYData[index];
+      y1 = pYData[index + 1];
+
+      /* Calculation of y0 * (1-fract) and y is in 13.35 format */
+      y = ((q63_t) y0 * (0xFFFFF - fract));
+
+      /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
+      y += ((q63_t) y1 * (fract));
+
+      /* convert y to 1.15 format */
+      return (q15_t) (y >> 20);
+    }
+  }
+
+
+  /**
+   *
+   * @brief  Process function for the Q7 Linear Interpolation Function.
+   * @param[in] pYData   pointer to Q7 Linear Interpolation table
+   * @param[in] x        input sample to process
+   * @param[in] nValues  number of table values
+   * @return y processed output sample.
+   *
+   * \par
+   * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+   * This function can support maximum of table size 2^12.
+   */
+  static __INLINE q7_t arm_linear_interp_q7(
+  q7_t * pYData,
+  q31_t x,
+  uint32_t nValues)
+  {
+    q31_t y;                                     /* output */
+    q7_t y0, y1;                                 /* Nearest output values */
+    q31_t fract;                                 /* fractional part */
+    uint32_t index;                              /* Index to read nearest output values */
+
+    /* Input is in 12.20 format */
+    /* 12 bits for the table index */
+    /* Index value calculation */
+    if (x < 0)
+    {
+      return (pYData[0]);
+    }
+    index = (x >> 20) & 0xfff;
+
+    if(index >= (nValues - 1))
+    {
+      return (pYData[nValues - 1]);
+    }
+    else
+    {
+      /* 20 bits for the fractional part */
+      /* fract is in 12.20 format */
+      fract = (x & 0x000FFFFF);
+
+      /* Read two nearest output values from the index and are in 1.7(q7) format */
+      y0 = pYData[index];
+      y1 = pYData[index + 1];
+
+      /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
+      y = ((y0 * (0xFFFFF - fract)));
+
+      /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
+      y += (y1 * fract);
+
+      /* convert y to 1.7(q7) format */
+      return (q7_t) (y >> 20);
+     }
+  }
+
+  /**
+   * @} end of LinearInterpolate group
+   */
+
+  /**
+   * @brief  Fast approximation to the trigonometric sine function for floating-point data.
+   * @param[in] x  input value in radians.
+   * @return  sin(x).
+   */
+  float32_t arm_sin_f32(
+  float32_t x);
+
+
+  /**
+   * @brief  Fast approximation to the trigonometric sine function for Q31 data.
+   * @param[in] x  Scaled input value in radians.
+   * @return  sin(x).
+   */
+  q31_t arm_sin_q31(
+  q31_t x);
+
+
+  /**
+   * @brief  Fast approximation to the trigonometric sine function for Q15 data.
+   * @param[in] x  Scaled input value in radians.
+   * @return  sin(x).
+   */
+  q15_t arm_sin_q15(
+  q15_t x);
+
+
+  /**
+   * @brief  Fast approximation to the trigonometric cosine function for floating-point data.
+   * @param[in] x  input value in radians.
+   * @return  cos(x).
+   */
+  float32_t arm_cos_f32(
+  float32_t x);
+
+
+  /**
+   * @brief Fast approximation to the trigonometric cosine function for Q31 data.
+   * @param[in] x  Scaled input value in radians.
+   * @return  cos(x).
+   */
+  q31_t arm_cos_q31(
+  q31_t x);
+
+
+  /**
+   * @brief  Fast approximation to the trigonometric cosine function for Q15 data.
+   * @param[in] x  Scaled input value in radians.
+   * @return  cos(x).
+   */
+  q15_t arm_cos_q15(
+  q15_t x);
+
+
+  /**
+   * @ingroup groupFastMath
+   */
+
+
+  /**
+   * @defgroup SQRT Square Root
+   *
+   * Computes the square root of a number.
+   * There are separate functions for Q15, Q31, and floating-point data types.
+   * The square root function is computed using the Newton-Raphson algorithm.
+   * This is an iterative algorithm of the form:
+   * + * x1 = x0 - f(x0)/f'(x0) + *+ * where
x1 is the current estimate,
+   * x0 is the previous estimate, and
+   * f'(x0) is the derivative of f() evaluated at x0.
+   * For the square root function, the algorithm reduces to:
+   * + * x0 = in/2 [initial guess] + * x1 = 1/2 * ( x0 + in / x0) [each iteration] + *+ */ + + + /** + * @addtogroup SQRT + * @{ + */ + + /** + * @brief Floating-point square root function. + * @param[in] in input value. + * @param[out] pOut square root of input value. + * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if + *
in is negative value and returns zero output for negative values.
+   */
+  static __INLINE arm_status arm_sqrt_f32(
+  float32_t in,
+  float32_t * pOut)
+  {
+    if(in >= 0.0f)
+    {
+
+#if   (__FPU_USED == 1) && defined ( __CC_ARM   )
+      *pOut = __sqrtf(in);
+#elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
+      *pOut = __builtin_sqrtf(in);
+#elif (__FPU_USED == 1) && defined(__GNUC__)
+      *pOut = __builtin_sqrtf(in);
+#elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000)
+      __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));
+#else
+      *pOut = sqrtf(in);
+#endif
+
+      return (ARM_MATH_SUCCESS);
+    }
+    else
+    {
+      *pOut = 0.0f;
+      return (ARM_MATH_ARGUMENT_ERROR);
+    }
+  }
+
+
+  /**
+   * @brief Q31 square root function.
+   * @param[in]  in    input value.  The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
+   * @param[out] pOut  square root of input value.
+   * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
+   * in is negative value and returns zero output for negative values.
+   */
+  arm_status arm_sqrt_q31(
+  q31_t in,
+  q31_t * pOut);
+
+
+  /**
+   * @brief  Q15 square root function.
+   * @param[in]  in    input value.  The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
+   * @param[out] pOut  square root of input value.
+   * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
+   * in is negative value and returns zero output for negative values.
+   */
+  arm_status arm_sqrt_q15(
+  q15_t in,
+  q15_t * pOut);
+
+  /**
+   * @} end of SQRT group
+   */
+
+
+  /**
+   * @brief floating-point Circular write function.
+   */
+  static __INLINE void arm_circularWrite_f32(
+  int32_t * circBuffer,
+  int32_t L,
+  uint16_t * writeOffset,
+  int32_t bufferInc,
+  const int32_t * src,
+  int32_t srcInc,
+  uint32_t blockSize)
+  {
+    uint32_t i = 0u;
+    int32_t wOffset;
+
+    /* Copy the value of Index pointer that points
+     * to the current location where the input samples to be copied */
+    wOffset = *writeOffset;
+
+    /* Loop over the blockSize */
+    i = blockSize;
+
+    while(i > 0u)
+    {
+      /* copy the input sample to the circular buffer */
+      circBuffer[wOffset] = *src;
+
+      /* Update the input pointer */
+      src += srcInc;
+
+      /* Circularly update wOffset.  Watch out for positive and negative value */
+      wOffset += bufferInc;
+      if(wOffset >= L)
+        wOffset -= L;
+
+      /* Decrement the loop counter */
+      i--;
+    }
+
+    /* Update the index pointer */
+    *writeOffset = (uint16_t)wOffset;
+  }
+
+
+
+  /**
+   * @brief floating-point Circular Read function.
+   */
+  static __INLINE void arm_circularRead_f32(
+  int32_t * circBuffer,
+  int32_t L,
+  int32_t * readOffset,
+  int32_t bufferInc,
+  int32_t * dst,
+  int32_t * dst_base,
+  int32_t dst_length,
+  int32_t dstInc,
+  uint32_t blockSize)
+  {
+    uint32_t i = 0u;
+    int32_t rOffset, dst_end;
+
+    /* Copy the value of Index pointer that points
+     * to the current location from where the input samples to be read */
+    rOffset = *readOffset;
+    dst_end = (int32_t) (dst_base + dst_length);
+
+    /* Loop over the blockSize */
+    i = blockSize;
+
+    while(i > 0u)
+    {
+      /* copy the sample from the circular buffer to the destination buffer */
+      *dst = circBuffer[rOffset];
+
+      /* Update the input pointer */
+      dst += dstInc;
+
+      if(dst == (int32_t *) dst_end)
+      {
+        dst = dst_base;
+      }
+
+      /* Circularly update rOffset.  Watch out for positive and negative value  */
+      rOffset += bufferInc;
+
+      if(rOffset >= L)
+      {
+        rOffset -= L;
+      }
+
+      /* Decrement the loop counter */
+      i--;
+    }
+
+    /* Update the index pointer */
+    *readOffset = rOffset;
+  }
+
+
+  /**
+   * @brief Q15 Circular write function.
+   */
+  static __INLINE void arm_circularWrite_q15(
+  q15_t * circBuffer,
+  int32_t L,
+  uint16_t * writeOffset,
+  int32_t bufferInc,
+  const q15_t * src,
+  int32_t srcInc,
+  uint32_t blockSize)
+  {
+    uint32_t i = 0u;
+    int32_t wOffset;
+
+    /* Copy the value of Index pointer that points
+     * to the current location where the input samples to be copied */
+    wOffset = *writeOffset;
+
+    /* Loop over the blockSize */
+    i = blockSize;
+
+    while(i > 0u)
+    {
+      /* copy the input sample to the circular buffer */
+      circBuffer[wOffset] = *src;
+
+      /* Update the input pointer */
+      src += srcInc;
+
+      /* Circularly update wOffset.  Watch out for positive and negative value */
+      wOffset += bufferInc;
+      if(wOffset >= L)
+        wOffset -= L;
+
+      /* Decrement the loop counter */
+      i--;
+    }
+
+    /* Update the index pointer */
+    *writeOffset = (uint16_t)wOffset;
+  }
+
+
+  /**
+   * @brief Q15 Circular Read function.
+   */
+  static __INLINE void arm_circularRead_q15(
+  q15_t * circBuffer,
+  int32_t L,
+  int32_t * readOffset,
+  int32_t bufferInc,
+  q15_t * dst,
+  q15_t * dst_base,
+  int32_t dst_length,
+  int32_t dstInc,
+  uint32_t blockSize)
+  {
+    uint32_t i = 0;
+    int32_t rOffset, dst_end;
+
+    /* Copy the value of Index pointer that points
+     * to the current location from where the input samples to be read */
+    rOffset = *readOffset;
+
+    dst_end = (int32_t) (dst_base + dst_length);
+
+    /* Loop over the blockSize */
+    i = blockSize;
+
+    while(i > 0u)
+    {
+      /* copy the sample from the circular buffer to the destination buffer */
+      *dst = circBuffer[rOffset];
+
+      /* Update the input pointer */
+      dst += dstInc;
+
+      if(dst == (q15_t *) dst_end)
+      {
+        dst = dst_base;
+      }
+
+      /* Circularly update wOffset.  Watch out for positive and negative value */
+      rOffset += bufferInc;
+
+      if(rOffset >= L)
+      {
+        rOffset -= L;
+      }
+
+      /* Decrement the loop counter */
+      i--;
+    }
+
+    /* Update the index pointer */
+    *readOffset = rOffset;
+  }
+
+
+  /**
+   * @brief Q7 Circular write function.
+   */
+  static __INLINE void arm_circularWrite_q7(
+  q7_t * circBuffer,
+  int32_t L,
+  uint16_t * writeOffset,
+  int32_t bufferInc,
+  const q7_t * src,
+  int32_t srcInc,
+  uint32_t blockSize)
+  {
+    uint32_t i = 0u;
+    int32_t wOffset;
+
+    /* Copy the value of Index pointer that points
+     * to the current location where the input samples to be copied */
+    wOffset = *writeOffset;
+
+    /* Loop over the blockSize */
+    i = blockSize;
+
+    while(i > 0u)
+    {
+      /* copy the input sample to the circular buffer */
+      circBuffer[wOffset] = *src;
+
+      /* Update the input pointer */
+      src += srcInc;
+
+      /* Circularly update wOffset.  Watch out for positive and negative value */
+      wOffset += bufferInc;
+      if(wOffset >= L)
+        wOffset -= L;
+
+      /* Decrement the loop counter */
+      i--;
+    }
+
+    /* Update the index pointer */
+    *writeOffset = (uint16_t)wOffset;
+  }
+
+
+  /**
+   * @brief Q7 Circular Read function.
+   */
+  static __INLINE void arm_circularRead_q7(
+  q7_t * circBuffer,
+  int32_t L,
+  int32_t * readOffset,
+  int32_t bufferInc,
+  q7_t * dst,
+  q7_t * dst_base,
+  int32_t dst_length,
+  int32_t dstInc,
+  uint32_t blockSize)
+  {
+    uint32_t i = 0;
+    int32_t rOffset, dst_end;
+
+    /* Copy the value of Index pointer that points
+     * to the current location from where the input samples to be read */
+    rOffset = *readOffset;
+
+    dst_end = (int32_t) (dst_base + dst_length);
+
+    /* Loop over the blockSize */
+    i = blockSize;
+
+    while(i > 0u)
+    {
+      /* copy the sample from the circular buffer to the destination buffer */
+      *dst = circBuffer[rOffset];
+
+      /* Update the input pointer */
+      dst += dstInc;
+
+      if(dst == (q7_t *) dst_end)
+      {
+        dst = dst_base;
+      }
+
+      /* Circularly update rOffset.  Watch out for positive and negative value */
+      rOffset += bufferInc;
+
+      if(rOffset >= L)
+      {
+        rOffset -= L;
+      }
+
+      /* Decrement the loop counter */
+      i--;
+    }
+
+    /* Update the index pointer */
+    *readOffset = rOffset;
+  }
+
+
+  /**
+   * @brief  Sum of the squares of the elements of a Q31 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_power_q31(
+  q31_t * pSrc,
+  uint32_t blockSize,
+  q63_t * pResult);
+
+
+  /**
+   * @brief  Sum of the squares of the elements of a floating-point vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_power_f32(
+  float32_t * pSrc,
+  uint32_t blockSize,
+  float32_t * pResult);
+
+
+  /**
+   * @brief  Sum of the squares of the elements of a Q15 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_power_q15(
+  q15_t * pSrc,
+  uint32_t blockSize,
+  q63_t * pResult);
+
+
+  /**
+   * @brief  Sum of the squares of the elements of a Q7 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_power_q7(
+  q7_t * pSrc,
+  uint32_t blockSize,
+  q31_t * pResult);
+
+
+  /**
+   * @brief  Mean value of a Q7 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_mean_q7(
+  q7_t * pSrc,
+  uint32_t blockSize,
+  q7_t * pResult);
+
+
+  /**
+   * @brief  Mean value of a Q15 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_mean_q15(
+  q15_t * pSrc,
+  uint32_t blockSize,
+  q15_t * pResult);
+
+
+  /**
+   * @brief  Mean value of a Q31 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_mean_q31(
+  q31_t * pSrc,
+  uint32_t blockSize,
+  q31_t * pResult);
+
+
+  /**
+   * @brief  Mean value of a floating-point vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_mean_f32(
+  float32_t * pSrc,
+  uint32_t blockSize,
+  float32_t * pResult);
+
+
+  /**
+   * @brief  Variance of the elements of a floating-point vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_var_f32(
+  float32_t * pSrc,
+  uint32_t blockSize,
+  float32_t * pResult);
+
+
+  /**
+   * @brief  Variance of the elements of a Q31 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_var_q31(
+  q31_t * pSrc,
+  uint32_t blockSize,
+  q31_t * pResult);
+
+
+  /**
+   * @brief  Variance of the elements of a Q15 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_var_q15(
+  q15_t * pSrc,
+  uint32_t blockSize,
+  q15_t * pResult);
+
+
+  /**
+   * @brief  Root Mean Square of the elements of a floating-point vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_rms_f32(
+  float32_t * pSrc,
+  uint32_t blockSize,
+  float32_t * pResult);
+
+
+  /**
+   * @brief  Root Mean Square of the elements of a Q31 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_rms_q31(
+  q31_t * pSrc,
+  uint32_t blockSize,
+  q31_t * pResult);
+
+
+  /**
+   * @brief  Root Mean Square of the elements of a Q15 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_rms_q15(
+  q15_t * pSrc,
+  uint32_t blockSize,
+  q15_t * pResult);
+
+
+  /**
+   * @brief  Standard deviation of the elements of a floating-point vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_std_f32(
+  float32_t * pSrc,
+  uint32_t blockSize,
+  float32_t * pResult);
+
+
+  /**
+   * @brief  Standard deviation of the elements of a Q31 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_std_q31(
+  q31_t * pSrc,
+  uint32_t blockSize,
+  q31_t * pResult);
+
+
+  /**
+   * @brief  Standard deviation of the elements of a Q15 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output value.
+   */
+  void arm_std_q15(
+  q15_t * pSrc,
+  uint32_t blockSize,
+  q15_t * pResult);
+
+
+  /**
+   * @brief  Floating-point complex magnitude
+   * @param[in]  pSrc        points to the complex input vector
+   * @param[out] pDst        points to the real output vector
+   * @param[in]  numSamples  number of complex samples in the input vector
+   */
+  void arm_cmplx_mag_f32(
+  float32_t * pSrc,
+  float32_t * pDst,
+  uint32_t numSamples);
+
+
+  /**
+   * @brief  Q31 complex magnitude
+   * @param[in]  pSrc        points to the complex input vector
+   * @param[out] pDst        points to the real output vector
+   * @param[in]  numSamples  number of complex samples in the input vector
+   */
+  void arm_cmplx_mag_q31(
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t numSamples);
+
+
+  /**
+   * @brief  Q15 complex magnitude
+   * @param[in]  pSrc        points to the complex input vector
+   * @param[out] pDst        points to the real output vector
+   * @param[in]  numSamples  number of complex samples in the input vector
+   */
+  void arm_cmplx_mag_q15(
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t numSamples);
+
+
+  /**
+   * @brief  Q15 complex dot product
+   * @param[in]  pSrcA       points to the first input vector
+   * @param[in]  pSrcB       points to the second input vector
+   * @param[in]  numSamples  number of complex samples in each vector
+   * @param[out] realResult  real part of the result returned here
+   * @param[out] imagResult  imaginary part of the result returned here
+   */
+  void arm_cmplx_dot_prod_q15(
+  q15_t * pSrcA,
+  q15_t * pSrcB,
+  uint32_t numSamples,
+  q31_t * realResult,
+  q31_t * imagResult);
+
+
+  /**
+   * @brief  Q31 complex dot product
+   * @param[in]  pSrcA       points to the first input vector
+   * @param[in]  pSrcB       points to the second input vector
+   * @param[in]  numSamples  number of complex samples in each vector
+   * @param[out] realResult  real part of the result returned here
+   * @param[out] imagResult  imaginary part of the result returned here
+   */
+  void arm_cmplx_dot_prod_q31(
+  q31_t * pSrcA,
+  q31_t * pSrcB,
+  uint32_t numSamples,
+  q63_t * realResult,
+  q63_t * imagResult);
+
+
+  /**
+   * @brief  Floating-point complex dot product
+   * @param[in]  pSrcA       points to the first input vector
+   * @param[in]  pSrcB       points to the second input vector
+   * @param[in]  numSamples  number of complex samples in each vector
+   * @param[out] realResult  real part of the result returned here
+   * @param[out] imagResult  imaginary part of the result returned here
+   */
+  void arm_cmplx_dot_prod_f32(
+  float32_t * pSrcA,
+  float32_t * pSrcB,
+  uint32_t numSamples,
+  float32_t * realResult,
+  float32_t * imagResult);
+
+
+  /**
+   * @brief  Q15 complex-by-real multiplication
+   * @param[in]  pSrcCmplx   points to the complex input vector
+   * @param[in]  pSrcReal    points to the real input vector
+   * @param[out] pCmplxDst   points to the complex output vector
+   * @param[in]  numSamples  number of samples in each vector
+   */
+  void arm_cmplx_mult_real_q15(
+  q15_t * pSrcCmplx,
+  q15_t * pSrcReal,
+  q15_t * pCmplxDst,
+  uint32_t numSamples);
+
+
+  /**
+   * @brief  Q31 complex-by-real multiplication
+   * @param[in]  pSrcCmplx   points to the complex input vector
+   * @param[in]  pSrcReal    points to the real input vector
+   * @param[out] pCmplxDst   points to the complex output vector
+   * @param[in]  numSamples  number of samples in each vector
+   */
+  void arm_cmplx_mult_real_q31(
+  q31_t * pSrcCmplx,
+  q31_t * pSrcReal,
+  q31_t * pCmplxDst,
+  uint32_t numSamples);
+
+
+  /**
+   * @brief  Floating-point complex-by-real multiplication
+   * @param[in]  pSrcCmplx   points to the complex input vector
+   * @param[in]  pSrcReal    points to the real input vector
+   * @param[out] pCmplxDst   points to the complex output vector
+   * @param[in]  numSamples  number of samples in each vector
+   */
+  void arm_cmplx_mult_real_f32(
+  float32_t * pSrcCmplx,
+  float32_t * pSrcReal,
+  float32_t * pCmplxDst,
+  uint32_t numSamples);
+
+
+  /**
+   * @brief  Minimum value of a Q7 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] result     is output pointer
+   * @param[in]  index      is the array index of the minimum value in the input buffer.
+   */
+  void arm_min_q7(
+  q7_t * pSrc,
+  uint32_t blockSize,
+  q7_t * result,
+  uint32_t * index);
+
+
+  /**
+   * @brief  Minimum value of a Q15 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output pointer
+   * @param[in]  pIndex     is the array index of the minimum value in the input buffer.
+   */
+  void arm_min_q15(
+  q15_t * pSrc,
+  uint32_t blockSize,
+  q15_t * pResult,
+  uint32_t * pIndex);
+
+
+  /**
+   * @brief  Minimum value of a Q31 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output pointer
+   * @param[out] pIndex     is the array index of the minimum value in the input buffer.
+   */
+  void arm_min_q31(
+  q31_t * pSrc,
+  uint32_t blockSize,
+  q31_t * pResult,
+  uint32_t * pIndex);
+
+
+  /**
+   * @brief  Minimum value of a floating-point vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[in]  blockSize  is the number of samples to process
+   * @param[out] pResult    is output pointer
+   * @param[out] pIndex     is the array index of the minimum value in the input buffer.
+   */
+  void arm_min_f32(
+  float32_t * pSrc,
+  uint32_t blockSize,
+  float32_t * pResult,
+  uint32_t * pIndex);
+
+
+/**
+ * @brief Maximum value of a Q7 vector.
+ * @param[in]  pSrc       points to the input buffer
+ * @param[in]  blockSize  length of the input vector
+ * @param[out] pResult    maximum value returned here
+ * @param[out] pIndex     index of maximum value returned here
+ */
+  void arm_max_q7(
+  q7_t * pSrc,
+  uint32_t blockSize,
+  q7_t * pResult,
+  uint32_t * pIndex);
+
+
+/**
+ * @brief Maximum value of a Q15 vector.
+ * @param[in]  pSrc       points to the input buffer
+ * @param[in]  blockSize  length of the input vector
+ * @param[out] pResult    maximum value returned here
+ * @param[out] pIndex     index of maximum value returned here
+ */
+  void arm_max_q15(
+  q15_t * pSrc,
+  uint32_t blockSize,
+  q15_t * pResult,
+  uint32_t * pIndex);
+
+
+/**
+ * @brief Maximum value of a Q31 vector.
+ * @param[in]  pSrc       points to the input buffer
+ * @param[in]  blockSize  length of the input vector
+ * @param[out] pResult    maximum value returned here
+ * @param[out] pIndex     index of maximum value returned here
+ */
+  void arm_max_q31(
+  q31_t * pSrc,
+  uint32_t blockSize,
+  q31_t * pResult,
+  uint32_t * pIndex);
+
+
+/**
+ * @brief Maximum value of a floating-point vector.
+ * @param[in]  pSrc       points to the input buffer
+ * @param[in]  blockSize  length of the input vector
+ * @param[out] pResult    maximum value returned here
+ * @param[out] pIndex     index of maximum value returned here
+ */
+  void arm_max_f32(
+  float32_t * pSrc,
+  uint32_t blockSize,
+  float32_t * pResult,
+  uint32_t * pIndex);
+
+
+  /**
+   * @brief  Q15 complex-by-complex multiplication
+   * @param[in]  pSrcA       points to the first input vector
+   * @param[in]  pSrcB       points to the second input vector
+   * @param[out] pDst        points to the output vector
+   * @param[in]  numSamples  number of complex samples in each vector
+   */
+  void arm_cmplx_mult_cmplx_q15(
+  q15_t * pSrcA,
+  q15_t * pSrcB,
+  q15_t * pDst,
+  uint32_t numSamples);
+
+
+  /**
+   * @brief  Q31 complex-by-complex multiplication
+   * @param[in]  pSrcA       points to the first input vector
+   * @param[in]  pSrcB       points to the second input vector
+   * @param[out] pDst        points to the output vector
+   * @param[in]  numSamples  number of complex samples in each vector
+   */
+  void arm_cmplx_mult_cmplx_q31(
+  q31_t * pSrcA,
+  q31_t * pSrcB,
+  q31_t * pDst,
+  uint32_t numSamples);
+
+
+  /**
+   * @brief  Floating-point complex-by-complex multiplication
+   * @param[in]  pSrcA       points to the first input vector
+   * @param[in]  pSrcB       points to the second input vector
+   * @param[out] pDst        points to the output vector
+   * @param[in]  numSamples  number of complex samples in each vector
+   */
+  void arm_cmplx_mult_cmplx_f32(
+  float32_t * pSrcA,
+  float32_t * pSrcB,
+  float32_t * pDst,
+  uint32_t numSamples);
+
+
+  /**
+   * @brief Converts the elements of the floating-point vector to Q31 vector.
+   * @param[in]  pSrc       points to the floating-point input vector
+   * @param[out] pDst       points to the Q31 output vector
+   * @param[in]  blockSize  length of the input vector
+   */
+  void arm_float_to_q31(
+  float32_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Converts the elements of the floating-point vector to Q15 vector.
+   * @param[in]  pSrc       points to the floating-point input vector
+   * @param[out] pDst       points to the Q15 output vector
+   * @param[in]  blockSize  length of the input vector
+   */
+  void arm_float_to_q15(
+  float32_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Converts the elements of the floating-point vector to Q7 vector.
+   * @param[in]  pSrc       points to the floating-point input vector
+   * @param[out] pDst       points to the Q7 output vector
+   * @param[in]  blockSize  length of the input vector
+   */
+  void arm_float_to_q7(
+  float32_t * pSrc,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Converts the elements of the Q31 vector to Q15 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[out] pDst       is output pointer
+   * @param[in]  blockSize  is the number of samples to process
+   */
+  void arm_q31_to_q15(
+  q31_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Converts the elements of the Q31 vector to Q7 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[out] pDst       is output pointer
+   * @param[in]  blockSize  is the number of samples to process
+   */
+  void arm_q31_to_q7(
+  q31_t * pSrc,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Converts the elements of the Q15 vector to floating-point vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[out] pDst       is output pointer
+   * @param[in]  blockSize  is the number of samples to process
+   */
+  void arm_q15_to_float(
+  q15_t * pSrc,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Converts the elements of the Q15 vector to Q31 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[out] pDst       is output pointer
+   * @param[in]  blockSize  is the number of samples to process
+   */
+  void arm_q15_to_q31(
+  q15_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Converts the elements of the Q15 vector to Q7 vector.
+   * @param[in]  pSrc       is input pointer
+   * @param[out] pDst       is output pointer
+   * @param[in]  blockSize  is the number of samples to process
+   */
+  void arm_q15_to_q7(
+  q15_t * pSrc,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @ingroup groupInterpolation
+   */
+
+  /**
+   * @defgroup BilinearInterpolate Bilinear Interpolation
+   *
+   * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
+   * The underlying function f(x, y) is sampled on a regular grid and the interpolation process
+   * determines values between the grid points.
+   * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
+   * Bilinear interpolation is often used in image processing to rescale images.
+   * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
+   *
+   * Algorithm
+   * \par
+   * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
+   * For floating-point, the instance structure is defined as:
+   * 
+   *   typedef struct
+   *   {
+   *     uint16_t numRows;
+   *     uint16_t numCols;
+   *     float32_t *pData;
+   * } arm_bilinear_interp_instance_f32;
+   * 
+   *
+   * \par
+   * where numRows specifies the number of rows in the table;
+   * numCols specifies the number of columns in the table;
+   * and pData points to an array of size numRows*numCols values.
+   * The data table pTable is organized in row order and the supplied data values fall on integer indexes.
+   * That is, table element (x,y) is located at pTable[x + y*numCols] where x and y are integers.
+   *
+   * \par
+   * Let (x, y) specify the desired interpolation point.  Then define:
+   * + * XF = floor(x) + * YF = floor(y) + *+ * \par + * The interpolated output point is computed as: + *
+ * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) + * + f(XF+1, YF) * (x-XF)*(1-(y-YF)) + * + f(XF, YF+1) * (1-(x-XF))*(y-YF) + * + f(XF+1, YF+1) * (x-XF)*(y-YF) + *+ * Note that the coordinates (x, y) contain integer and fractional components. + * The integer components specify which portion of the table to use while the + * fractional components control the interpolation processor. + * + * \par + * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. + */ + + /** + * @addtogroup BilinearInterpolate + * @{ + */ + + + /** + * + * @brief Floating-point bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate. + * @param[in] Y interpolation coordinate. + * @return out interpolated value. + */ + static __INLINE float32_t arm_bilinear_interp_f32( + const arm_bilinear_interp_instance_f32 * S, + float32_t X, + float32_t Y) + { + float32_t out; + float32_t f00, f01, f10, f11; + float32_t *pData = S->pData; + int32_t xIndex, yIndex, index; + float32_t xdiff, ydiff; + float32_t b1, b2, b3, b4; + + xIndex = (int32_t) X; + yIndex = (int32_t) Y; + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1)) + { + return (0); + } + + /* Calculation of index for two nearest points in X-direction */ + index = (xIndex - 1) + (yIndex - 1) * S->numCols; + + + /* Read two nearest points in X-direction */ + f00 = pData[index]; + f01 = pData[index + 1]; + + /* Calculation of index for two nearest points in Y-direction */ + index = (xIndex - 1) + (yIndex) * S->numCols; + + + /* Read two nearest points in Y-direction */ + f10 = pData[index]; + f11 = pData[index + 1]; + + /* Calculation of intermediate values */ + b1 = f00; + b2 = f01 - f00; + b3 = f10 - f00; + b4 = f00 - f01 - f10 + f11; + + /* Calculation of fractional part in X */ + xdiff = X - xIndex; + + /* Calculation of fractional part in Y */ + ydiff = Y - yIndex; + + /* Calculation of bi-linear interpolated output */ + out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; + + /* return to application */ + return (out); + } + + + /** + * + * @brief Q31 bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + static __INLINE q31_t arm_bilinear_interp_q31( + arm_bilinear_interp_instance_q31 * S, + q31_t X, + q31_t Y) + { + q31_t out; /* Temporary output */ + q31_t acc = 0; /* output */ + q31_t xfract, yfract; /* X, Y fractional parts */ + q31_t x1, x2, y1, y2; /* Nearest output values */ + int32_t rI, cI; /* Row and column indices */ + q31_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & (q31_t)0xFFF00000) >> 20); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & (q31_t)0xFFF00000) >> 20); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* shift left xfract by 11 to keep 1.31 format */ + xfract = (X & 0x000FFFFF) << 11u; + + /* Read two nearest output values from the index */ + x1 = pYData[(rI) + (int32_t)nCols * (cI) ]; + x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1]; + + /* 20 bits for the fractional part */ + /* shift left yfract by 11 to keep 1.31 format */ + yfract = (Y & 0x000FFFFF) << 11u; + + /* Read two nearest output values from the index */ + y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ]; + y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ + out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); + acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); + + /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); + + /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); + + /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); + + /* Convert acc to 1.31(q31) format */ + return ((q31_t)(acc << 2)); + } + + + /** + * @brief Q15 bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + static __INLINE q15_t arm_bilinear_interp_q15( + arm_bilinear_interp_instance_q15 * S, + q31_t X, + q31_t Y) + { + q63_t acc = 0; /* output */ + q31_t out; /* Temporary output */ + q15_t x1, x2, y1, y2; /* Nearest output values */ + q31_t xfract, yfract; /* X, Y fractional parts */ + int32_t rI, cI; /* Row and column indices */ + q15_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & (q31_t)0xFFF00000) >> 20); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & (q31_t)0xFFF00000) >> 20); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* xfract should be in 12.20 format */ + xfract = (X & 0x000FFFFF); + + /* Read two nearest output values from the index */ + x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; + x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; + + /* 20 bits for the fractional part */ + /* yfract should be in 12.20 format */ + yfract = (Y & 0x000FFFFF); + + /* Read two nearest output values from the index */ + y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; + y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ + + /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ + /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ + out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u); + acc = ((q63_t) out * (0xFFFFF - yfract)); + + /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u); + acc += ((q63_t) out * (xfract)); + + /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u); + acc += ((q63_t) out * (yfract)); + + /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u); + acc += ((q63_t) out * (yfract)); + + /* acc is in 13.51 format and down shift acc by 36 times */ + /* Convert out to 1.15 format */ + return ((q15_t)(acc >> 36)); + } + + + /** + * @brief Q7 bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + static __INLINE q7_t arm_bilinear_interp_q7( + arm_bilinear_interp_instance_q7 * S, + q31_t X, + q31_t Y) + { + q63_t acc = 0; /* output */ + q31_t out; /* Temporary output */ + q31_t xfract, yfract; /* X, Y fractional parts */ + q7_t x1, x2, y1, y2; /* Nearest output values */ + int32_t rI, cI; /* Row and column indices */ + q7_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & (q31_t)0xFFF00000) >> 20); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & (q31_t)0xFFF00000) >> 20); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* xfract should be in 12.20 format */ + xfract = (X & (q31_t)0x000FFFFF); + + /* Read two nearest output values from the index */ + x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; + x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; + + /* 20 bits for the fractional part */ + /* yfract should be in 12.20 format */ + yfract = (Y & (q31_t)0x000FFFFF); + + /* Read two nearest output values from the index */ + y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; + y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ + out = ((x1 * (0xFFFFF - xfract))); + acc = (((q63_t) out * (0xFFFFF - yfract))); + + /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ + out = ((x2 * (0xFFFFF - yfract))); + acc += (((q63_t) out * (xfract))); + + /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ + out = ((y1 * (0xFFFFF - xfract))); + acc += (((q63_t) out * (yfract))); + + /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ + out = ((y2 * (yfract))); + acc += (((q63_t) out * (xfract))); + + /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ + return ((q7_t)(acc >> 40)); + } + + /** + * @} end of BilinearInterpolate group + */ + + +/* SMMLAR */ +#define multAcc_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) + +/* SMMLSR */ +#define multSub_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) + +/* SMMULR */ +#define mult_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) + +/* SMMLA */ +#define multAcc_32x32_keep32(a, x, y) \ + a += (q31_t) (((q63_t) x * y) >> 32) + +/* SMMLS */ +#define multSub_32x32_keep32(a, x, y) \ + a -= (q31_t) (((q63_t) x * y) >> 32) + +/* SMMUL */ +#define mult_32x32_keep32(a, x, y) \ + a = (q31_t) (((q63_t) x * y ) >> 32) + + +#if defined ( __CC_ARM ) + /* Enter low optimization region - place directly above function definition */ + #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("push") \ + _Pragma ("O1") + #else + #define LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ + #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) + #define LOW_OPTIMIZATION_EXIT \ + _Pragma ("pop") + #else + #define LOW_OPTIMIZATION_EXIT + #endif + + /* Enter low optimization region - place directly above function definition */ + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + + /* Exit low optimization region - place directly after end of function definition */ + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined(__GNUC__) + #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") )) + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined(__ICCARM__) + /* Enter low optimization region - place directly above function definition */ + #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + #else + #define LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ + #define LOW_OPTIMIZATION_EXIT + + /* Enter low optimization region - place directly above function definition */ + #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + #else + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined(__CSMC__) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined(__TASKING__) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#endif + + +#ifdef __cplusplus +} +#endif + + +#if defined ( __GNUC__ ) +#pragma GCC diagnostic pop +#endif + +#endif /* _ARM_MATH_H */ + +/** + * + * End of file. + */ diff --git a/include/cmsis/cmsis_gcc.h b/include/cmsis/cmsis_gcc.h new file mode 100644 index 0000000..d868f2e --- /dev/null +++ b/include/cmsis/cmsis_gcc.h @@ -0,0 +1,1373 @@ +/**************************************************************************//** + * @file cmsis_gcc.h + * @brief CMSIS Cortex-M Core Function/Instruction Header File + * @version V4.30 + * @date 20. October 2015 + ******************************************************************************/ +/* Copyright (c) 2009 - 2015 ARM LIMITED + + All rights reserved. + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + - Neither the name of ARM nor the names of its contributors may be used + to endorse or promote products derived from this software without + specific prior written permission. + * + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + ---------------------------------------------------------------------------*/ + + +#ifndef __CMSIS_GCC_H +#define __CMSIS_GCC_H + +/* ignore some GCC warnings */ +#if defined ( __GNUC__ ) +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wsign-conversion" +#pragma GCC diagnostic ignored "-Wconversion" +#pragma GCC diagnostic ignored "-Wunused-parameter" +#endif + + +/* ########################### Core Function Access ########################### */ +/** \ingroup CMSIS_Core_FunctionInterface + \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions + @{ + */ + +/** + \brief Enable IRQ Interrupts + \details Enables IRQ interrupts by clearing the I-bit in the CPSR. + Can only be executed in Privileged modes. + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void) +{ + __ASM volatile ("cpsie i" : : : "memory"); +} + + +/** + \brief Disable IRQ Interrupts + \details Disables IRQ interrupts by setting the I-bit in the CPSR. + Can only be executed in Privileged modes. + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_irq(void) +{ + __ASM volatile ("cpsid i" : : : "memory"); +} + + +/** + \brief Get Control Register + \details Returns the content of the Control Register. + \return Control Register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CONTROL(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, control" : "=r" (result) ); + return(result); +} + + +/** + \brief Set Control Register + \details Writes the given value to the Control Register. + \param [in] control Control Register value to set + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CONTROL(uint32_t control) +{ + __ASM volatile ("MSR control, %0" : : "r" (control) : "memory"); +} + + +/** + \brief Get IPSR Register + \details Returns the content of the IPSR Register. + \return IPSR Register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_IPSR(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, ipsr" : "=r" (result) ); + return(result); +} + + +/** + \brief Get APSR Register + \details Returns the content of the APSR Register. + \return APSR Register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, apsr" : "=r" (result) ); + return(result); +} + + +/** + \brief Get xPSR Register + \details Returns the content of the xPSR Register. + + \return xPSR Register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_xPSR(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, xpsr" : "=r" (result) ); + return(result); +} + + +/** + \brief Get Process Stack Pointer + \details Returns the current value of the Process Stack Pointer (PSP). + \return PSP Register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PSP(void) +{ + register uint32_t result; + + __ASM volatile ("MRS %0, psp\n" : "=r" (result) ); + return(result); +} + + +/** + \brief Set Process Stack Pointer + \details Assigns the given value to the Process Stack Pointer (PSP). + \param [in] topOfProcStack Process Stack Pointer value to set + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack) +{ + __ASM volatile ("MSR psp, %0\n" : : "r" (topOfProcStack) : "sp"); +} + + +/** + \brief Get Main Stack Pointer + \details Returns the current value of the Main Stack Pointer (MSP). + \return MSP Register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_MSP(void) +{ + register uint32_t result; + + __ASM volatile ("MRS %0, msp\n" : "=r" (result) ); + return(result); +} + + +/** + \brief Set Main Stack Pointer + \details Assigns the given value to the Main Stack Pointer (MSP). + + \param [in] topOfMainStack Main Stack Pointer value to set + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack) +{ + __ASM volatile ("MSR msp, %0\n" : : "r" (topOfMainStack) : "sp"); +} + + +/** + \brief Get Priority Mask + \details Returns the current state of the priority mask bit from the Priority Mask Register. + \return Priority Mask value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PRIMASK(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, primask" : "=r" (result) ); + return(result); +} + + +/** + \brief Set Priority Mask + \details Assigns the given value to the Priority Mask Register. + \param [in] priMask Priority Mask + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask) +{ + __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory"); +} + + +#if (__CORTEX_M >= 0x03U) + +/** + \brief Enable FIQ + \details Enables FIQ interrupts by clearing the F-bit in the CPSR. + Can only be executed in Privileged modes. + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_fault_irq(void) +{ + __ASM volatile ("cpsie f" : : : "memory"); +} + + +/** + \brief Disable FIQ + \details Disables FIQ interrupts by setting the F-bit in the CPSR. + Can only be executed in Privileged modes. + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_fault_irq(void) +{ + __ASM volatile ("cpsid f" : : : "memory"); +} + + +/** + \brief Get Base Priority + \details Returns the current value of the Base Priority register. + \return Base Priority register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_BASEPRI(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, basepri" : "=r" (result) ); + return(result); +} + + +/** + \brief Set Base Priority + \details Assigns the given value to the Base Priority register. + \param [in] basePri Base Priority value to set + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI(uint32_t value) +{ + __ASM volatile ("MSR basepri, %0" : : "r" (value) : "memory"); +} + + +/** + \brief Set Base Priority with condition + \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled, + or the new value increases the BASEPRI priority level. + \param [in] basePri Base Priority value to set + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t value) +{ + __ASM volatile ("MSR basepri_max, %0" : : "r" (value) : "memory"); +} + + +/** + \brief Get Fault Mask + \details Returns the current value of the Fault Mask register. + \return Fault Mask register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FAULTMASK(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, faultmask" : "=r" (result) ); + return(result); +} + + +/** + \brief Set Fault Mask + \details Assigns the given value to the Fault Mask register. + \param [in] faultMask Fault Mask value to set + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask) +{ + __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory"); +} + +#endif /* (__CORTEX_M >= 0x03U) */ + + +#if (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U) + +/** + \brief Get FPSCR + \details Returns the current value of the Floating Point Status/Control register. + \return Floating Point Status/Control register value + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void) +{ +#if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U) + uint32_t result; + + /* Empty asm statement works as a scheduling barrier */ + __ASM volatile (""); + __ASM volatile ("VMRS %0, fpscr" : "=r" (result) ); + __ASM volatile (""); + return(result); +#else + return(0); +#endif +} + + +/** + \brief Set FPSCR + \details Assigns the given value to the Floating Point Status/Control register. + \param [in] fpscr Floating Point Status/Control value to set + */ +__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr) +{ +#if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U) + /* Empty asm statement works as a scheduling barrier */ + __ASM volatile (""); + __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc"); + __ASM volatile (""); +#endif +} + +#endif /* (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U) */ + + + +/*@} end of CMSIS_Core_RegAccFunctions */ + + +/* ########################## Core Instruction Access ######################### */ +/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface + Access to dedicated instructions + @{ +*/ + +/* Define macros for porting to both thumb1 and thumb2. + * For thumb1, use low register (r0-r7), specified by constraint "l" + * Otherwise, use general registers, specified by constraint "r" */ +#if defined (__thumb__) && !defined (__thumb2__) +#define __CMSIS_GCC_OUT_REG(r) "=l" (r) +#define __CMSIS_GCC_USE_REG(r) "l" (r) +#else +#define __CMSIS_GCC_OUT_REG(r) "=r" (r) +#define __CMSIS_GCC_USE_REG(r) "r" (r) +#endif + +/** + \brief No Operation + \details No Operation does nothing. This instruction can be used for code alignment purposes. + */ +__attribute__((always_inline)) __STATIC_INLINE void __NOP(void) +{ + __ASM volatile ("nop"); +} + + +/** + \brief Wait For Interrupt + \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. + */ +__attribute__((always_inline)) __STATIC_INLINE void __WFI(void) +{ + __ASM volatile ("wfi"); +} + + +/** + \brief Wait For Event + \details Wait For Event is a hint instruction that permits the processor to enter + a low-power state until one of a number of events occurs. + */ +__attribute__((always_inline)) __STATIC_INLINE void __WFE(void) +{ + __ASM volatile ("wfe"); +} + + +/** + \brief Send Event + \details Send Event is a hint instruction. It causes an event to be signaled to the CPU. + */ +__attribute__((always_inline)) __STATIC_INLINE void __SEV(void) +{ + __ASM volatile ("sev"); +} + + +/** + \brief Instruction Synchronization Barrier + \details Instruction Synchronization Barrier flushes the pipeline in the processor, + so that all instructions following the ISB are fetched from cache or memory, + after the instruction has been completed. + */ +__attribute__((always_inline)) __STATIC_INLINE void __ISB(void) +{ + __ASM volatile ("isb 0xF":::"memory"); +} + + +/** + \brief Data Synchronization Barrier + \details Acts as a special kind of Data Memory Barrier. + It completes when all explicit memory accesses before this instruction complete. + */ +__attribute__((always_inline)) __STATIC_INLINE void __DSB(void) +{ + __ASM volatile ("dsb 0xF":::"memory"); +} + + +/** + \brief Data Memory Barrier + \details Ensures the apparent order of the explicit memory operations before + and after the instruction, without ensuring their completion. + */ +__attribute__((always_inline)) __STATIC_INLINE void __DMB(void) +{ + __ASM volatile ("dmb 0xF":::"memory"); +} + + +/** + \brief Reverse byte order (32 bit) + \details Reverses the byte order in integer value. + \param [in] value Value to reverse + \return Reversed value + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __REV(uint32_t value) +{ +#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5) + return __builtin_bswap32(value); +#else + uint32_t result; + + __ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); + return(result); +#endif +} + + +/** + \brief Reverse byte order (16 bit) + \details Reverses the byte order in two unsigned short values. + \param [in] value Value to reverse + \return Reversed value + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value) +{ + uint32_t result; + + __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); + return(result); +} + + +/** + \brief Reverse byte order in signed short value + \details Reverses the byte order in a signed short value with sign extension to integer. + \param [in] value Value to reverse + \return Reversed value + */ +__attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value) +{ +#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) + return (short)__builtin_bswap16(value); +#else + int32_t result; + + __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); + return(result); +#endif +} + + +/** + \brief Rotate Right in unsigned value (32 bit) + \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. + \param [in] value Value to rotate + \param [in] value Number of Bits to rotate + \return Rotated value + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2) +{ + return (op1 >> op2) | (op1 << (32U - op2)); +} + + +/** + \brief Breakpoint + \details Causes the processor to enter Debug state. + Debug tools can use this to investigate system state when the instruction at a particular address is reached. + \param [in] value is ignored by the processor. + If required, a debugger can use it to store additional information about the breakpoint. + */ +#define __BKPT(value) __ASM volatile ("bkpt "#value) + + +/** + \brief Reverse bit order of value + \details Reverses the bit order of the given value. + \param [in] value Value to reverse + \return Reversed value + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value) +{ + uint32_t result; + +#if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) + __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) ); +#else + int32_t s = 4 /*sizeof(v)*/ * 8 - 1; /* extra shift needed at end */ + + result = value; /* r will be reversed bits of v; first get LSB of v */ + for (value >>= 1U; value; value >>= 1U) + { + result <<= 1U; + result |= value & 1U; + s--; + } + result <<= s; /* shift when v's highest bits are zero */ +#endif + return(result); +} + + +/** + \brief Count leading zeros + \details Counts the number of leading zeros of a data value. + \param [in] value Value to count the leading zeros + \return number of leading zeros in value + */ +#define __CLZ __builtin_clz + + +#if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) + +/** + \brief LDR Exclusive (8 bit) + \details Executes a exclusive LDR instruction for 8 bit value. + \param [in] ptr Pointer to data + \return value of type uint8_t at (*ptr) + */ +__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr) +{ + uint32_t result; + +#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) + __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) ); +#else + /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not + accepted by assembler. So has to use following less efficient pattern. + */ + __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); +#endif + return ((uint8_t) result); /* Add explicit type cast here */ +} + + +/** + \brief LDR Exclusive (16 bit) + \details Executes a exclusive LDR instruction for 16 bit values. + \param [in] ptr Pointer to data + \return value of type uint16_t at (*ptr) + */ +__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr) +{ + uint32_t result; + +#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) + __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) ); +#else + /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not + accepted by assembler. So has to use following less efficient pattern. + */ + __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); +#endif + return ((uint16_t) result); /* Add explicit type cast here */ +} + + +/** + \brief LDR Exclusive (32 bit) + \details Executes a exclusive LDR instruction for 32 bit values. + \param [in] ptr Pointer to data + \return value of type uint32_t at (*ptr) + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr) +{ + uint32_t result; + + __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) ); + return(result); +} + + +/** + \brief STR Exclusive (8 bit) + \details Executes a exclusive STR instruction for 8 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + \return 0 Function succeeded + \return 1 Function failed + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr) +{ + uint32_t result; + + __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) ); + return(result); +} + + +/** + \brief STR Exclusive (16 bit) + \details Executes a exclusive STR instruction for 16 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + \return 0 Function succeeded + \return 1 Function failed + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr) +{ + uint32_t result; + + __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) ); + return(result); +} + + +/** + \brief STR Exclusive (32 bit) + \details Executes a exclusive STR instruction for 32 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + \return 0 Function succeeded + \return 1 Function failed + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr) +{ + uint32_t result; + + __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) ); + return(result); +} + + +/** + \brief Remove the exclusive lock + \details Removes the exclusive lock which is created by LDREX. + */ +__attribute__((always_inline)) __STATIC_INLINE void __CLREX(void) +{ + __ASM volatile ("clrex" ::: "memory"); +} + + +/** + \brief Signed Saturate + \details Saturates a signed value. + \param [in] value Value to be saturated + \param [in] sat Bit position to saturate to (1..32) + \return Saturated value + */ +#define __SSAT(ARG1,ARG2) \ +({ \ + uint32_t __RES, __ARG1 = (ARG1); \ + __ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ + __RES; \ + }) + + +/** + \brief Unsigned Saturate + \details Saturates an unsigned value. + \param [in] value Value to be saturated + \param [in] sat Bit position to saturate to (0..31) + \return Saturated value + */ +#define __USAT(ARG1,ARG2) \ +({ \ + uint32_t __RES, __ARG1 = (ARG1); \ + __ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ + __RES; \ + }) + + +/** + \brief Rotate Right with Extend (32 bit) + \details Moves each bit of a bitstring right by one bit. + The carry input is shifted in at the left end of the bitstring. + \param [in] value Value to rotate + \return Rotated value + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value) +{ + uint32_t result; + + __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); + return(result); +} + + +/** + \brief LDRT Unprivileged (8 bit) + \details Executes a Unprivileged LDRT instruction for 8 bit value. + \param [in] ptr Pointer to data + \return value of type uint8_t at (*ptr) + */ +__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *addr) +{ + uint32_t result; + +#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) + __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*addr) ); +#else + /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not + accepted by assembler. So has to use following less efficient pattern. + */ + __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); +#endif + return ((uint8_t) result); /* Add explicit type cast here */ +} + + +/** + \brief LDRT Unprivileged (16 bit) + \details Executes a Unprivileged LDRT instruction for 16 bit values. + \param [in] ptr Pointer to data + \return value of type uint16_t at (*ptr) + */ +__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *addr) +{ + uint32_t result; + +#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) + __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*addr) ); +#else + /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not + accepted by assembler. So has to use following less efficient pattern. + */ + __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); +#endif + return ((uint16_t) result); /* Add explicit type cast here */ +} + + +/** + \brief LDRT Unprivileged (32 bit) + \details Executes a Unprivileged LDRT instruction for 32 bit values. + \param [in] ptr Pointer to data + \return value of type uint32_t at (*ptr) + */ +__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *addr) +{ + uint32_t result; + + __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*addr) ); + return(result); +} + + +/** + \brief STRT Unprivileged (8 bit) + \details Executes a Unprivileged STRT instruction for 8 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + */ +__attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *addr) +{ + __ASM volatile ("strbt %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) ); +} + + +/** + \brief STRT Unprivileged (16 bit) + \details Executes a Unprivileged STRT instruction for 16 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + */ +__attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *addr) +{ + __ASM volatile ("strht %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) ); +} + + +/** + \brief STRT Unprivileged (32 bit) + \details Executes a Unprivileged STRT instruction for 32 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + */ +__attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *addr) +{ + __ASM volatile ("strt %1, %0" : "=Q" (*addr) : "r" (value) ); +} + +#endif /* (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) */ + +/*@}*/ /* end of group CMSIS_Core_InstructionInterface */ + + +/* ################### Compiler specific Intrinsics ########################### */ +/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics + Access to dedicated SIMD instructions + @{ +*/ + +#if (__CORTEX_M >= 0x04U) /* only for Cortex-M4 and above */ + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3) +{ + uint32_t result; + + __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); + return(result); +} + +#define __SSAT16(ARG1,ARG2) \ +({ \ + int32_t __RES, __ARG1 = (ARG1); \ + __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ + __RES; \ + }) + +#define __USAT16(ARG1,ARG2) \ +({ \ + uint32_t __RES, __ARG1 = (ARG1); \ + __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ + __RES; \ + }) + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1) +{ + uint32_t result; + + __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1)); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1) +{ + uint32_t result; + + __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1)); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3) +{ + uint32_t result; + + __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3) +{ + uint32_t result; + + __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc) +{ + union llreg_u{ + uint32_t w32[2]; + uint64_t w64; + } llr; + llr.w64 = acc; + +#ifndef __ARMEB__ /* Little endian */ + __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); +#else /* Big endian */ + __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); +#endif + + return(llr.w64); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc) +{ + union llreg_u{ + uint32_t w32[2]; + uint64_t w64; + } llr; + llr.w64 = acc; + +#ifndef __ARMEB__ /* Little endian */ + __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); +#else /* Big endian */ + __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); +#endif + + return(llr.w64); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3) +{ + uint32_t result; + + __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3) +{ + uint32_t result; + + __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc) +{ + union llreg_u{ + uint32_t w32[2]; + uint64_t w64; + } llr; + llr.w64 = acc; + +#ifndef __ARMEB__ /* Little endian */ + __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); +#else /* Big endian */ + __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); +#endif + + return(llr.w64); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc) +{ + union llreg_u{ + uint32_t w32[2]; + uint64_t w64; + } llr; + llr.w64 = acc; + +#ifndef __ARMEB__ /* Little endian */ + __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); +#else /* Big endian */ + __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); +#endif + + return(llr.w64); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SEL (uint32_t op1, uint32_t op2) +{ + uint32_t result; + + __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __QADD( int32_t op1, int32_t op2) +{ + int32_t result; + + __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __QSUB( int32_t op1, int32_t op2) +{ + int32_t result; + + __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); + return(result); +} + +#define __PKHBT(ARG1,ARG2,ARG3) \ +({ \ + uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \ + __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \ + __RES; \ + }) + +#define __PKHTB(ARG1,ARG2,ARG3) \ +({ \ + uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \ + if (ARG3 == 0) \ + __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \ + else \ + __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \ + __RES; \ + }) + +__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3) +{ + int32_t result; + + __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) ); + return(result); +} + +#endif /* (__CORTEX_M >= 0x04) */ +/*@} end of group CMSIS_SIMD_intrinsics */ + + +#if defined ( __GNUC__ ) +#pragma GCC diagnostic pop +#endif + +#endif /* __CMSIS_GCC_H */ diff --git a/include/cmsis/core_cm7.h b/include/cmsis/core_cm7.h new file mode 100644 index 0000000..20963c1 --- /dev/null +++ b/include/cmsis/core_cm7.h @@ -0,0 +1,2512 @@ +/**************************************************************************//** + * @file core_cm7.h + * @brief CMSIS Cortex-M7 Core Peripheral Access Layer Header File + * @version V4.30 + * @date 20. October 2015 + ******************************************************************************/ +/* Copyright (c) 2009 - 2015 ARM LIMITED + + All rights reserved. + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + - Neither the name of ARM nor the names of its contributors may be used + to endorse or promote products derived from this software without + specific prior written permission. + * + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + ---------------------------------------------------------------------------*/ + + +#if defined ( __ICCARM__ ) + #pragma system_include /* treat file as system include file for MISRA check */ +#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) + #pragma clang system_header /* treat file as system include file */ +#endif + +#ifndef __CORE_CM7_H_GENERIC +#define __CORE_CM7_H_GENERIC + +#include