vhdl-flac-decode/rtl/mem/flacdec_byte_fifo.vhd

144 lines
5.2 KiB
VHDL

-------------------------------------------------------------------------------
-- Title : FIFO for 8 bit data
-- Project : VHDL FLAC Decoder
-------------------------------------------------------------------------------
-- File : flacdec_byte_fifo.vhd
-- Author : Mario Huettel <mario.huettel@linux.com>
-- Company :
-- Created : 2023-10-05
-- Last update: 2023-10-05
-- Platform :
-- Standard : VHDL'93/02
-------------------------------------------------------------------------------
-- Description: This is a generic FIFO implementation for 8 bit Data. This
-- implementation should be able to map to a dual ported BRAM in an FPGA. If an
-- ASIC Design is used, decide weather to use a RAM instance or let the
-- synthesis generate a FIFO out of Flip Flops.
-- The FIFO is 64 bytes large.
-------------------------------------------------------------------------------
-- Copyright (c) 2023 Mario Huettel
-------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity flacdec_byte_fifo is
port (
clk : in std_logic; -- Clock
rst_n : in std_logic; -- async. low-active reset
data_in : in std_logic_vector(7 downto 0);
data_in_wstrb : in std_logic; -- Write strobe to push data into the FIFO
data_out : out std_logic_vector(7 downto 0); -- Output data. 1 cycle delayed after read strobe.
data_rstrb : in std_logic;
fifo_full : out std_logic; -- FIFO is full
fifo_empty : out std_logic; -- FIFO is empty
fifo_32_free : out std_logic); -- FIFO has at least 32 bytes free
end entity flacdec_byte_fifo;
architecture RTL of flacdec_byte_fifo is
type fifo_mem_t is array(natural range <>) of std_logic_vector(data_in'range);
signal mem : fifo_mem_t(0 to 63);
signal read_ptr : unsigned(6 downto 0);
signal write_ptr : unsigned(6 downto 0);
signal write_strb_s : std_logic;
signal read_strb_s : std_logic;
signal write_addr : unsigned(5 downto 0);
signal read_addr : unsigned(5 downto 0);
signal fifo_fill_level : integer range 0 to 64;
signal wrapped_around : std_logic;
signal fifo_full_s : std_logic;
signal fifo_empty_s : std_logic;
begin -- architecture RTL
fifo_full <= fifo_full_s;
fifo_empty <= fifo_empty_s;
--------------------------------------------------------------------------
-- FIFO memory implementation
--------------------------------------------------------------------------
-- FIFO memory process. Should allow BRAM infer.
fifo_mem_proc : process is
begin
wait until rising_edge(clk);
if write_strb_s = '1' then
mem(to_integer(write_addr)) <= data_in;
end if;
if read_strb_s = '1' then
data_out <= mem(to_integer(read_addr));
end if;
end process fifo_mem_proc;
--------------------------------------------------------------------------
-- FIFO fill level and address logic
--------------------------------------------------------------------------
-- Addresses to memory are the pointers except for the MSB, which is used
-- for wrap around detection
read_addr <= read_ptr(read_ptr'high - 1 downto read_ptr'low);
write_addr <= write_ptr(write_ptr'high - 1 downto write_ptr'low);
wrapped_around <= '1' when read_ptr(read_ptr'high) /= write_ptr(write_ptr'high) else '0';
fill_level_proc : process(wrapped_around, read_addr, write_addr) is
begin
fifo_fill_level <= 0;
if wrapped_around = '0' then
fifo_fill_level <= to_integer(write_addr - read_addr);
else
fifo_fill_level <= to_integer(64 - read_addr + write_addr);
end if;
end process fill_level_proc;
fifo_full_s <= '1' when read_addr = write_addr and wrapped_around = '1' else '0';
fifo_empty_s <= '1' when read_addr = write_addr and wrapped_around = '0' else '0';
fifo_32_free <= '1' when fifo_fill_level >= 32 else '0';
---------------------------------------------------------------------------
-- FIFO write pointer
---------------------------------------------------------------------------
write_strb_s <= data_in_wstrb and (not fifo_full_s);
write_ptr_proc : process(clk, rst_n) is
begin
if rst_n = '0' then
write_ptr <= (others => '0');
elsif rising_edge(clk) then
if write_strb_s = '1' then
-- Wrap around expected
write_ptr <= write_ptr + 1;
end if;
end if;
end process write_ptr_proc;
---------------------------------------------------------------------------
-- FIFO read pointer
---------------------------------------------------------------------------
read_strb_s <= data_rstrb and (not fifo_empty_s);
read_ptr_proc : process(clk, rst_n) is
begin
if rst_n = '0' then
read_ptr <= (others => '0');
elsif rising_edge(clk) then
if read_strb_s = '1' then
-- Wrap around expected
read_ptr <= read_ptr + 1;
end if;
end if;
end process read_ptr_proc;
end architecture RTL;