Compare commits

..

20 Commits

Author SHA1 Message Date
Phil Nash
f4ba8aaf19 dev build 2 2015-12-15 07:54:49 +00:00
Phil Nash
25899ea20e Use __COUNTER__ when generating unique names instead of __LINE__, if available.
Based on PR #351
2015-12-15 07:51:42 +00:00
Phil Nash
36cee598cf Approvals for Matcher change (added comma) 2015-12-10 18:16:30 +00:00
Simon Warta
506b915f7f Add missing comma when in captured expression for matchers
Such that
CHECK_THAT( hex_encode(outbuf) Equals("B5D4045C") )
becomes
CHECK_THAT( hex_encode(outbuf), Equals("B5D4045C") )
2015-12-10 08:13:08 +00:00
Phil Nash
5cab3cc1b8 Fixed non-variadic version of REGISTER_TEST_CASE 2015-12-10 08:12:58 +00:00
Phil Nash
d2642325ae main takes args by non-const char*
- see #548
2015-12-09 18:08:24 +00:00
Phil Nash
8fa41d96c7 Initialise m_currentSortOrder
- as reported in #545
2015-12-09 18:08:10 +00:00
Phil Nash
693355cc75 Regenerated single header 2015-11-23 10:29:29 +00:00
Phil Nash
5e0db60443 Use CATCH_AUTO_PTR in DebugOutStream 2015-11-23 10:28:13 +00:00
Phil Nash
ce547c1799 Moved branch on to v2 2015-11-23 10:09:09 +00:00
Phil Nash
28aece6a7a Added noexcept to CustomStdException destructor 2015-11-23 10:07:29 +00:00
Phil Nash
bd8688cded Added support for manually registering test functions.
As discussed in #421
2015-11-20 16:54:07 +00:00
Phil Nash
c70170e904 Reduce number of places getCurrentRunContext() is called 2015-11-20 08:31:17 +00:00
Phil Nash
6789dfa2ba catch_capture.hpp doesn't need to depend on catch_interfaces_capture.h 2015-11-19 18:37:39 +00:00
Phil Nash
fdc8a2b2df Fully removed Context class
- responsibilities subsumed by RunContext
2015-11-19 18:30:03 +00:00
Phil Nash
eea9357284 Removed IRunner (rolled into IRunContext) 2015-11-19 17:53:21 +00:00
Phil Nash
73968f29a5 ResultCapture -> RunContext 2015-11-19 17:45:56 +00:00
Phil Nash
b77b45a390 Some RunContext clean-up 2015-11-19 07:35:35 +00:00
Phil Nash
2ebe11660c Approvals for generator test removal 2015-11-18 19:28:29 +00:00
Phil Nash
e55273db19 Removed old generators implementation (and tests) 2015-11-18 19:19:17 +00:00
563 changed files with 45595 additions and 109757 deletions

View File

@@ -1,25 +0,0 @@
---
AccessModifierOffset: '-4'
AlignEscapedNewlines: Left
AllowAllConstructorInitializersOnNextLine: 'true'
BinPackArguments: 'false'
BinPackParameters: 'false'
BreakConstructorInitializers: AfterColon
ConstructorInitializerAllOnOneLineOrOnePerLine: 'true'
DerivePointerAlignment: 'false'
FixNamespaceComments: 'true'
IncludeBlocks: Regroup
IndentCaseLabels: 'false'
IndentPPDirectives: AfterHash
IndentWidth: '4'
Language: Cpp
NamespaceIndentation: All
PointerAlignment: Left
SpaceBeforeCtorInitializerColon: 'false'
SpaceInEmptyParentheses: 'false'
SpacesInParentheses: 'true'
Standard: Cpp11
TabWidth: '4'
UseTab: Never
...

View File

@@ -1,94 +0,0 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import re
from cpt.packager import ConanMultiPackager
from cpt.ci_manager import CIManager
from cpt.printer import Printer
class BuilderSettings(object):
@property
def username(self):
""" Set catchorg as package's owner
"""
return os.getenv("CONAN_USERNAME", "catchorg")
@property
def login_username(self):
""" Set Bintray login username
"""
return os.getenv("CONAN_LOGIN_USERNAME", "horenmar")
@property
def upload(self):
""" Set Catch2 repository to be used on upload.
The upload server address could be customized by env var
CONAN_UPLOAD. If not defined, the method will check the branch name.
Only master or CONAN_STABLE_BRANCH_PATTERN will be accepted.
The master branch will be pushed to testing channel, because it does
not match the stable pattern. Otherwise it will upload to stable
channel.
"""
return os.getenv("CONAN_UPLOAD", "https://api.bintray.com/conan/catchorg/catch2")
@property
def upload_only_when_stable(self):
""" Force to upload when running over tag branch
"""
return os.getenv("CONAN_UPLOAD_ONLY_WHEN_STABLE", "True").lower() in ["true", "1", "yes"]
@property
def stable_branch_pattern(self):
""" Only upload the package the branch name is like a tag
"""
return os.getenv("CONAN_STABLE_BRANCH_PATTERN", r"v\d+\.\d+\.\d+")
@property
def reference(self):
""" Read project version from branch create Conan reference
"""
return os.getenv("CONAN_REFERENCE", "catch2/{}".format(self._version))
@property
def channel(self):
""" Default Conan package channel when not stable
"""
return os.getenv("CONAN_CHANNEL", "testing")
@property
def _version(self):
""" Get version name from cmake file
"""
pattern = re.compile(r"project\(Catch2 LANGUAGES CXX VERSION (\d+\.\d+\.\d+)\)")
version = "latest"
with open("CMakeLists.txt") as file:
for line in file:
result = pattern.search(line)
if result:
version = result.group(1)
return version
@property
def _branch(self):
""" Get branch name from CI manager
"""
printer = Printer(None)
ci_manager = CIManager(printer)
return ci_manager.get_branch()
if __name__ == "__main__":
settings = BuilderSettings()
builder = ConanMultiPackager(
reference=settings.reference,
channel=settings.channel,
upload=settings.upload,
upload_only_when_stable=False,
stable_branch_pattern=settings.stable_branch_pattern,
login_username=settings.login_username,
username=settings.username,
test_folder=os.path.join(".conan", "test_package"))
builder.add()
builder.run()

View File

@@ -1,19 +0,0 @@
cmake_minimum_required(VERSION 3.2.0)
project(test_package CXX)
# We set it only for the convenience of calling the executable
# in the package test function
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/bin)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELWITHDEBINFO ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_MINSIZEREL ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
find_package(Catch2 REQUIRED CONFIG)
add_executable(${PROJECT_NAME} test_package.cpp)
# Note: Conan 1.21 doesn't support granular target generation yet.
# The Main library would be included into the unified target.
# It's controlled by the `with_main` option in the recipe.
target_link_libraries(${PROJECT_NAME} Catch2::Catch2)
set_target_properties(${PROJECT_NAME} PROPERTIES CXX_STANDARD 14)

View File

@@ -1,19 +0,0 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from conans import ConanFile, CMake
import os
class TestPackageConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
generators = "cmake_find_package_multi"
def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
def test(self):
assert os.path.isfile(os.path.join(self.deps_cpp_info["catch2"].rootpath, "licenses", "LICENSE.txt"))
bin_path = os.path.join("bin", "test_package")
self.run("%s -s" % bin_path, run_environment=True)

View File

@@ -1,13 +0,0 @@
#include <catch2/catch_test_macros.hpp>
int Factorial( int number ) {
return number <= 1 ? 1 : Factorial( number - 1 ) * number;
}
TEST_CASE( "Factorial Tests", "[single-file]" ) {
REQUIRE( Factorial(0) == 1 );
REQUIRE( Factorial(1) == 1 );
REQUIRE( Factorial(2) == 2 );
REQUIRE( Factorial(3) == 6 );
REQUIRE( Factorial(10) == 3628800 );
}

13
.gitattributes vendored
View File

@@ -8,15 +8,4 @@
*.hpp text
# Windows specific files should retain windows line-endings
*.sln text eol=crlf
# Keep executable scripts with LFs so they can be run after being
# checked out on Windows
*.py text eol=lf
# Keep the single include header with LFs to make sure it is uploaded,
# hashed etc with LF
single_include/**/*.hpp eol=lf
# Also keep the LICENCE file with LFs for the same reason
LICENCE.txt eol=lf
*.sln text eol=crlf

1
.github/FUNDING.yml vendored
View File

@@ -1 +0,0 @@
custom: "https://www.paypal.me/horenmar"

View File

@@ -1,29 +0,0 @@
---
name: Bug report
about: Create an issue that documents a bug
title: ''
labels: ''
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**Expected behavior**
A clear and concise description of what you expected to happen.
**Reproduction steps**
Steps to reproduce the bug.
<!-- Usually this means a small and self-contained piece of code that uses Catch and specifying compiler flags if relevant. -->
**Platform information:**
<!-- Fill in any extra information that might be important for your issue. -->
- OS: **Windows NT**
- Compiler+version: **GCC v2.9.5**
- Catch version: **v1.2.3**
**Additional context**
Add any other context about the problem here.

View File

@@ -1,14 +0,0 @@
---
name: Feature request
about: Create an issue that requests a feature or other improvement
title: ''
labels: ''
assignees: ''
---
**Description**
Describe the feature/change you request and why do you want it.
**Additional context**
Add any other context or screenshots about the feature request here.

View File

@@ -1,28 +0,0 @@
<!--
Please do not submit pull requests changing the `version.hpp`
or the single-include `catch.hpp` file, these are changed
only when a new release is made.
Before submitting a PR you should probably read the contributor documentation
at docs/contributing.md. It will tell you how to properly test your changes.
-->
## Description
<!--
Describe the what and the why of your pull request. Remember that these two
are usually a bit different. As an example, if you have made various changes
to decrease the number of new strings allocated, that's what. The why probably
was that you have a large set of tests and found that this speeds them up.
-->
## GitHub Issues
<!--
If this PR was motivated by some existing issues, reference them here.
If it is a simple bug-fix, please also add a line like 'Closes #123'
to your commit message, so that it is automatically closed.
If it is not, don't, as it might take several iterations for a feature
to be done properly. If in doubt, leave it open and reference it in the
PR itself, so that maintainers can decide.
-->

12
.gitignore vendored
View File

@@ -14,19 +14,9 @@ Breakpoints.xcbkptlist
projects/VS2010/TestCatch/_UpgradeReport_Files/
projects/VS2010/TestCatch/TestCatch/TestCatch.vcxproj.filters
projects/VisualStudio/TestCatch/UpgradeLog.XML
projects/CMake/.idea
projects/CMake/cmake-build-debug
UpgradeLog.XML
Resources/DWARF
projects/Generated
projects/XCode/iOSTest/Build
*.pyc
DerivedData
*.xccheckout
Build
.idea
.vs
cmake-build-*
benchmark-dir
.conan/test_package/build
bazel-*
build-fuzzers

View File

@@ -1,213 +1,163 @@
language: cpp
dist: xenial
sudo: false
cache:
ccache: true
directories:
- $HOME/.ccache
branches:
except:
- /dev-appveyor.*/
common_sources: &all_sources
- ubuntu-toolchain-r-test
- llvm-toolchain-xenial
- llvm-toolchain-xenial-3.8
- llvm-toolchain-xenial-3.9
- llvm-toolchain-xenial-4.0
- llvm-toolchain-xenial-5.0
- llvm-toolchain-xenial-6.0
- llvm-toolchain-xenial-7
- llvm-toolchain-xenial-8
env:
global:
- USE_CCACHE=1
- CCACHE_COMPRESS=1
- CCACHE_MAXSIZE=200M
- CCACHE_CPP2=1
matrix:
include:
# Clang builds
- os: linux
compiler: clang
addons:
apt:
sources: *all_sources
packages: ['clang-3.8']
env: COMPILER='clang++-3.8' CPP14=1
# 1/ Linux Clang Builds
- os: linux
compiler: clang
addons:
addons: &clang35
apt:
sources: *all_sources
packages: ['clang-3.8', 'lcov']
env: COMPILER='clang++-3.8' CPP14=1 EXAMPLES=1 COVERAGE=1 EXTRAS=1
sources: ['llvm-toolchain-precise-3.5', 'ubuntu-toolchain-r-test']
packages: ['clang-3.5']
env: COMPILER='ccache clang++-3.5' BUILD_TYPE='Release'
- os: linux
compiler: clang
addons:
apt:
sources: *all_sources
packages: ['clang-3.9']
env: COMPILER='clang++-3.9' CPP14=1
addons: *clang35
env: COMPILER='ccache clang++-3.5' BUILD_TYPE='Debug'
- os: linux
compiler: clang
addons:
apt:
sources: *all_sources
packages: ['clang-4.0']
env: COMPILER='clang++-4.0' CPP14=1
addons: &clang36
apt:
sources: ['llvm-toolchain-precise-3.6', 'ubuntu-toolchain-r-test']
packages: ['clang-3.6']
env: COMPILER='ccache clang++-3.6' BUILD_TYPE='Release'
- os: linux
compiler: clang
addons:
apt:
sources: *all_sources
packages: ['clang-5.0']
env: COMPILER='clang++-5.0' CPP14=1
addons: *clang36
env: COMPILER='ccache clang++-3.6' BUILD_TYPE='Debug'
- os: linux
compiler: clang
addons:
apt:
sources: *all_sources
packages: ['clang-6.0']
env: COMPILER='clang++-6.0' CPP14=1
addons: &clang37
apt:
sources: ['llvm-toolchain-precise-3.7', 'ubuntu-toolchain-r-test']
packages: ['clang-3.7']
env: COMPILER='ccache clang++-3.7' BUILD_TYPE='Release'
- os: linux
compiler: clang
addons:
apt:
sources: *all_sources
packages: ['clang-6.0', 'libstdc++-8-dev']
env: COMPILER='clang++-6.0' CPP17=1
addons: *clang37
env: COMPILER='ccache clang++-3.7' BUILD_TYPE='Debug'
- os: linux
compiler: clang
addons:
apt:
sources: *all_sources
packages: ['clang-7']
env: COMPILER='clang++-7' CPP14=1
addons: &clang38
apt:
sources: ['llvm-toolchain-precise', 'ubuntu-toolchain-r-test']
packages: ['clang-3.8']
env: COMPILER='ccache clang++-3.8' BUILD_TYPE='Release'
- os: linux
compiler: clang
addons:
apt:
sources: *all_sources
packages: ['clang-8']
env: COMPILER='clang++-8' CPP14=1
- os: linux
compiler: clang
addons:
apt:
sources: *all_sources
packages: ['clang-8', 'libstdc++-8-dev']
env: COMPILER='clang++-8' CPP17=1 EXAMPLES=1 COVERAGE=1 EXTRAS=1
addons: *clang38
env: COMPILER='ccache clang++-3.8' BUILD_TYPE='Debug'
# GCC builds
# 2/ Linux GCC Builds
- os: linux
compiler: gcc
addons:
addons: &gcc48
apt:
sources: *all_sources
sources: ['ubuntu-toolchain-r-test']
packages: ['g++-4.8']
env: COMPILER='ccache g++-4.8' BUILD_TYPE='Release'
- os: linux
compiler: gcc
addons: *gcc48
env: COMPILER='ccache g++-4.8' BUILD_TYPE='Debug'
- os: linux
compiler: gcc
addons: &gcc49
apt:
sources: ['ubuntu-toolchain-r-test']
packages: ['g++-4.9']
env: COMPILER='ccache g++-4.9' BUILD_TYPE='Release'
- os: linux
compiler: gcc
addons: *gcc49
env: COMPILER='ccache g++-4.9' BUILD_TYPE='Debug'
- os: linux
compiler: gcc
addons: &gcc5
apt:
sources: ['ubuntu-toolchain-r-test']
packages: ['g++-5']
env: COMPILER='g++-5' CPP14=1
env: COMPILER='ccache g++-5' BUILD_TYPE='Release'
- os: linux
compiler: gcc
addons:
apt:
sources: *all_sources
packages: ['g++-6']
env: COMPILER='g++-6' CPP14=1
addons: *gcc5
env: COMPILER='ccache g++-5' BUILD_TYPE='Debug'
- os: linux
compiler: gcc
addons:
apt:
sources: *all_sources
packages: ['g++-7', 'lcov']
env: COMPILER='g++-7' CPP14=1 EXAMPLES=1 COVERAGE=1 EXTRAS=1
- os: linux
compiler: gcc
addons:
apt:
sources: *all_sources
packages: ['g++-8']
env: COMPILER='g++-8' CPP17=1
# OSX Clang Builds
# 3/ OSX Clang Builds
- os: osx
osx_image: xcode9.4
osx_image: xcode6.4
compiler: clang
env: COMPILER='clang++' CPP14=1
env: COMPILER='ccache clang++' BUILD_TYPE='Debug'
- os: osx
osx_image: xcode10.3
osx_image: xcode6.4
compiler: clang
env: COMPILER='clang++' CPP14=1
env: COMPILER='ccache clang++' BUILD_TYPE='Release'
- os: osx
osx_image: xcode11.2
osx_image: xcode7
compiler: clang
env: COMPILER='clang++' CPP14=1
env: COMPILER='ccache clang++' BUILD_TYPE='Debug'
- os: osx
osx_image: xcode11.2
osx_image: xcode7
compiler: clang
env: COMPILER='clang++' CPP14=1 EXAMPLES=1 COVERAGE=1 EXTRAS=1
env: COMPILER='ccache clang++' BUILD_TYPE='Release'
# Special builds, e.g. conan
- language: python
python:
- "3.7"
install:
- pip install conan-package-tools
env:
- CONAN_GCC_VERSIONS=8
- CONAN_DOCKER_IMAGE=conanio/gcc8
- CPP14=1
script:
- python .conan/build.py
install:
- DEPS_DIR="${TRAVIS_BUILD_DIR}/deps"
- mkdir -p ${DEPS_DIR} && cd ${DEPS_DIR}
- |
if [[ "${TRAVIS_OS_NAME}" == "linux" ]]; then
CMAKE_URL="http://www.cmake.org/files/v3.3/cmake-3.3.2-Linux-x86_64.tar.gz"
mkdir cmake && travis_retry wget --quiet -O - ${CMAKE_URL} | tar --strip-components=1 -xz -C cmake
export PATH=${DEPS_DIR}/cmake/bin:${PATH}
elif [[ "${TRAVIS_OS_NAME}" == "osx" ]]; then
brew install cmake ccache
fi
before_script:
- export CXX=${COMPILER}
- cd ${TRAVIS_BUILD_DIR}
# We want to regenerate the amalgamated header if the extra tests
# are enabled.
- |
if [[ ${EXTRAS} -eq 1 ]]; then
python3 ./tools/scripts/generateAmalgamatedFiles.py
fi
- |
if [[ ${CPP17} -eq 1 ]]; then
export CPP_STANDARD=17
elif [[ ${CPP14} -eq 1 ]]; then
export CPP_STANDARD=14
else
travis_terminate 4;
fi
# Use Debug builds for running Valgrind and building examples
- cmake -H. -BBuild-Debug -DCMAKE_BUILD_TYPE=Debug -Wdev -DCATCH_USE_VALGRIND=${VALGRIND} -DCATCH_BUILD_EXAMPLES=${EXAMPLES} -DCATCH_ENABLE_COVERAGE=${COVERAGE} -DCATCH_BUILD_EXTRA_TESTS=${EXTRAS} -DCMAKE_CXX_STANDARD=${CPP_STANDARD} -DCMAKE_CXX_STANDARD_REQUIRED=On -DCMAKE_CXX_EXTENSIONS=OFF -DCATCH_DEVELOPMENT_BUILD=ON
# Don't bother with release build for coverage build
- cmake -H. -BBuild-Release -DCMAKE_BUILD_TYPE=Release -Wdev -DCMAKE_CXX_STANDARD=${CPP_STANDARD} -DCMAKE_CXX_STANDARD_REQUIRED=On -DCMAKE_CXX_EXTENSIONS=OFF -DCATCH_DEVELOPMENT_BUILD=ON
- cmake -Hprojects/CMake -BBuild -DCMAKE_BUILD_TYPE=${BUILD_TYPE}
- cd Build
script:
- cd Build-Debug
- make -j 2
- CTEST_OUTPUT_ON_FAILURE=1 ctest -j 2
# Coverage collection does not work for OS X atm
- |
if [[ "${TRAVIS_OS_NAME}" == "linux" ]] && [[ "${COVERAGE}" == "1" ]]; then
make gcov
make lcov
bash <(curl -s https://codecov.io/bash) -X gcov || echo "Codecov did not collect coverage reports"
fi
- # Go to release build
- cd ../Build-Release
- make -j 2
- CTEST_OUTPUT_ON_FAILURE=1 ctest -j 2
- ctest -V -j 2

View File

@@ -1,25 +0,0 @@
# Load the cc_library rule.
load("@rules_cc//cc:defs.bzl", "cc_library")
# Static library, without main.
cc_library(
name = "catch2",
hdrs = glob(["src/catch2/**/*.hpp"]),
srcs = glob(["src/catch2/**/*.cpp"],
exclude=[ "src/catch2/internal/catch_main.cpp"]),
visibility = ["//visibility:public"],
copts = ["-std=c++14"],
linkstatic = True,
includes = ["src/"],
)
# Static library, with main.
cc_library(
name = "catch2_main",
srcs = ["src/catch2/internal/catch_main.cpp"],
deps = [":catch2"],
visibility = ["//visibility:public"],
linkstatic = True,
copts = ["-std=c++14"],
includes = ["src/"],
)

View File

@@ -1,10 +0,0 @@
@PACKAGE_INIT@
# Avoid repeatedly including the targets
if(NOT TARGET Catch2::Catch2)
# Provide path for scripts
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}")
include(${CMAKE_CURRENT_LIST_DIR}/Catch2Targets.cmake)
endif()

View File

@@ -1,157 +0,0 @@
# This file is part of CMake-codecov.
#
# Copyright (c)
# 2015-2017 RWTH Aachen University, Federal Republic of Germany
#
# See the LICENSE file in the package base directory for details
#
# Written by Alexander Haase, alexander.haase@rwth-aachen.de
#
# include required Modules
include(FindPackageHandleStandardArgs)
# Search for gcov binary.
set(CMAKE_REQUIRED_QUIET_SAVE ${CMAKE_REQUIRED_QUIET})
set(CMAKE_REQUIRED_QUIET ${codecov_FIND_QUIETLY})
get_property(ENABLED_LANGUAGES GLOBAL PROPERTY ENABLED_LANGUAGES)
foreach (LANG ${ENABLED_LANGUAGES})
# Gcov evaluation is dependent on the used compiler. Check gcov support for
# each compiler that is used. If gcov binary was already found for this
# compiler, do not try to find it again.
if (NOT GCOV_${CMAKE_${LANG}_COMPILER_ID}_BIN)
get_filename_component(COMPILER_PATH "${CMAKE_${LANG}_COMPILER}" PATH)
if ("${CMAKE_${LANG}_COMPILER_ID}" STREQUAL "GNU")
# Some distributions like OSX (homebrew) ship gcov with the compiler
# version appended as gcov-x. To find this binary we'll build the
# suggested binary name with the compiler version.
string(REGEX MATCH "^[0-9]+" GCC_VERSION
"${CMAKE_${LANG}_COMPILER_VERSION}")
find_program(GCOV_BIN NAMES gcov-${GCC_VERSION} gcov
HINTS ${COMPILER_PATH})
elseif ("${CMAKE_${LANG}_COMPILER_ID}" STREQUAL "Clang")
# Some distributions like Debian ship llvm-cov with the compiler
# version appended as llvm-cov-x.y. To find this binary we'll build
# the suggested binary name with the compiler version.
string(REGEX MATCH "^[0-9]+.[0-9]+" LLVM_VERSION
"${CMAKE_${LANG}_COMPILER_VERSION}")
# llvm-cov prior version 3.5 seems to be not working with coverage
# evaluation tools, but these versions are compatible with the gcc
# gcov tool.
if(LLVM_VERSION VERSION_GREATER 3.4)
find_program(LLVM_COV_BIN NAMES "llvm-cov-${LLVM_VERSION}"
"llvm-cov" HINTS ${COMPILER_PATH})
mark_as_advanced(LLVM_COV_BIN)
if (LLVM_COV_BIN)
find_program(LLVM_COV_WRAPPER "llvm-cov-wrapper" PATHS
${CMAKE_MODULE_PATH})
if (LLVM_COV_WRAPPER)
set(GCOV_BIN "${LLVM_COV_WRAPPER}" CACHE FILEPATH "")
# set additional parameters
set(GCOV_${CMAKE_${LANG}_COMPILER_ID}_ENV
"LLVM_COV_BIN=${LLVM_COV_BIN}" CACHE STRING
"Environment variables for llvm-cov-wrapper.")
mark_as_advanced(GCOV_${CMAKE_${LANG}_COMPILER_ID}_ENV)
endif ()
endif ()
endif ()
if (NOT GCOV_BIN)
# Fall back to gcov binary if llvm-cov was not found or is
# incompatible. This is the default on OSX, but may crash on
# recent Linux versions.
find_program(GCOV_BIN gcov HINTS ${COMPILER_PATH})
endif ()
endif ()
if (GCOV_BIN)
set(GCOV_${CMAKE_${LANG}_COMPILER_ID}_BIN "${GCOV_BIN}" CACHE STRING
"${LANG} gcov binary.")
if (NOT CMAKE_REQUIRED_QUIET)
message("-- Found gcov evaluation for "
"${CMAKE_${LANG}_COMPILER_ID}: ${GCOV_BIN}")
endif()
unset(GCOV_BIN CACHE)
endif ()
endif ()
endforeach ()
# Add a new global target for all gcov targets. This target could be used to
# generate the gcov files for the whole project instead of calling <TARGET>-gcov
# for each target.
if (NOT TARGET gcov)
add_custom_target(gcov)
endif (NOT TARGET gcov)
# This function will add gcov evaluation for target <TNAME>. Only sources of
# this target will be evaluated and no dependencies will be added. It will call
# Gcov on any source file of <TNAME> once and store the gcov file in the same
# directory.
function (add_gcov_target TNAME)
set(TDIR ${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/${TNAME}.dir)
# We don't have to check, if the target has support for coverage, thus this
# will be checked by add_coverage_target in Findcoverage.cmake. Instead we
# have to determine which gcov binary to use.
get_target_property(TSOURCES ${TNAME} SOURCES)
set(SOURCES "")
set(TCOMPILER "")
foreach (FILE ${TSOURCES})
codecov_path_of_source(${FILE} FILE)
if (NOT "${FILE}" STREQUAL "")
codecov_lang_of_source(${FILE} LANG)
if (NOT "${LANG}" STREQUAL "")
list(APPEND SOURCES "${FILE}")
set(TCOMPILER ${CMAKE_${LANG}_COMPILER_ID})
endif ()
endif ()
endforeach ()
# If no gcov binary was found, coverage data can't be evaluated.
if (NOT GCOV_${TCOMPILER}_BIN)
message(WARNING "No coverage evaluation binary found for ${TCOMPILER}.")
return()
endif ()
set(GCOV_BIN "${GCOV_${TCOMPILER}_BIN}")
set(GCOV_ENV "${GCOV_${TCOMPILER}_ENV}")
set(BUFFER "")
foreach(FILE ${SOURCES})
get_filename_component(FILE_PATH "${TDIR}/${FILE}" PATH)
# call gcov
add_custom_command(OUTPUT ${TDIR}/${FILE}.gcov
COMMAND ${GCOV_ENV} ${GCOV_BIN} ${TDIR}/${FILE}.gcno > /dev/null
DEPENDS ${TNAME} ${TDIR}/${FILE}.gcno
WORKING_DIRECTORY ${FILE_PATH}
)
list(APPEND BUFFER ${TDIR}/${FILE}.gcov)
endforeach()
# add target for gcov evaluation of <TNAME>
add_custom_target(${TNAME}-gcov DEPENDS ${BUFFER})
# add evaluation target to the global gcov target.
add_dependencies(gcov ${TNAME}-gcov)
endfunction (add_gcov_target)

View File

@@ -1,354 +0,0 @@
# This file is part of CMake-codecov.
#
# Copyright (c)
# 2015-2017 RWTH Aachen University, Federal Republic of Germany
#
# See the LICENSE file in the package base directory for details
#
# Written by Alexander Haase, alexander.haase@rwth-aachen.de
#
# configuration
set(LCOV_DATA_PATH "${CMAKE_BINARY_DIR}/lcov/data")
set(LCOV_DATA_PATH_INIT "${LCOV_DATA_PATH}/init")
set(LCOV_DATA_PATH_CAPTURE "${LCOV_DATA_PATH}/capture")
set(LCOV_HTML_PATH "${CMAKE_BINARY_DIR}/lcov/html")
# Search for Gcov which is used by Lcov.
find_package(Gcov)
# This function will add lcov evaluation for target <TNAME>. Only sources of
# this target will be evaluated and no dependencies will be added. It will call
# geninfo on any source file of <TNAME> once and store the info file in the same
# directory.
#
# Note: This function is only a wrapper to define this function always, even if
# coverage is not supported by the compiler or disabled. This function must
# be defined here, because the module will be exited, if there is no coverage
# support by the compiler or it is disabled by the user.
function (add_lcov_target TNAME)
if (LCOV_FOUND)
# capture initial coverage data
lcov_capture_initial_tgt(${TNAME})
# capture coverage data after execution
lcov_capture_tgt(${TNAME})
endif ()
endfunction (add_lcov_target)
# include required Modules
include(FindPackageHandleStandardArgs)
# Search for required lcov binaries.
find_program(LCOV_BIN lcov)
find_program(GENINFO_BIN geninfo)
find_program(GENHTML_BIN genhtml)
find_package_handle_standard_args(lcov
REQUIRED_VARS LCOV_BIN GENINFO_BIN GENHTML_BIN
)
# enable genhtml C++ demangeling, if c++filt is found.
set(GENHTML_CPPFILT_FLAG "")
find_program(CPPFILT_BIN c++filt)
if (NOT CPPFILT_BIN STREQUAL "")
set(GENHTML_CPPFILT_FLAG "--demangle-cpp")
endif (NOT CPPFILT_BIN STREQUAL "")
# enable no-external flag for lcov, if available.
if (GENINFO_BIN AND NOT DEFINED GENINFO_EXTERN_FLAG)
set(FLAG "")
execute_process(COMMAND ${GENINFO_BIN} --help OUTPUT_VARIABLE GENINFO_HELP)
string(REGEX MATCH "external" GENINFO_RES "${GENINFO_HELP}")
if (GENINFO_RES)
set(FLAG "--no-external")
endif ()
set(GENINFO_EXTERN_FLAG "${FLAG}"
CACHE STRING "Geninfo flag to exclude system sources.")
endif ()
# If Lcov was not found, exit module now.
if (NOT LCOV_FOUND)
return()
endif (NOT LCOV_FOUND)
# Create directories to be used.
file(MAKE_DIRECTORY ${LCOV_DATA_PATH_INIT})
file(MAKE_DIRECTORY ${LCOV_DATA_PATH_CAPTURE})
set(LCOV_REMOVE_PATTERNS "")
# This function will merge lcov files to a single target file. Additional lcov
# flags may be set with setting LCOV_EXTRA_FLAGS before calling this function.
function (lcov_merge_files OUTFILE ...)
# Remove ${OUTFILE} from ${ARGV} and generate lcov parameters with files.
list(REMOVE_AT ARGV 0)
# Generate merged file.
string(REPLACE "${CMAKE_BINARY_DIR}/" "" FILE_REL "${OUTFILE}")
add_custom_command(OUTPUT "${OUTFILE}.raw"
COMMAND cat ${ARGV} > ${OUTFILE}.raw
DEPENDS ${ARGV}
COMMENT "Generating ${FILE_REL}"
)
add_custom_command(OUTPUT "${OUTFILE}"
COMMAND ${LCOV_BIN} --quiet -a ${OUTFILE}.raw --output-file ${OUTFILE}
--base-directory ${PROJECT_SOURCE_DIR} ${LCOV_EXTRA_FLAGS}
COMMAND ${LCOV_BIN} --quiet -r ${OUTFILE} ${LCOV_REMOVE_PATTERNS}
--output-file ${OUTFILE} ${LCOV_EXTRA_FLAGS}
DEPENDS ${OUTFILE}.raw
COMMENT "Post-processing ${FILE_REL}"
)
endfunction ()
# Add a new global target to generate initial coverage reports for all targets.
# This target will be used to generate the global initial info file, which is
# used to gather even empty report data.
if (NOT TARGET lcov-capture-init)
add_custom_target(lcov-capture-init)
set(LCOV_CAPTURE_INIT_FILES "" CACHE INTERNAL "")
endif (NOT TARGET lcov-capture-init)
# This function will add initial capture of coverage data for target <TNAME>,
# which is needed to get also data for objects, which were not loaded at
# execution time. It will call geninfo for every source file of <TNAME> once and
# store the info file in the same directory.
function (lcov_capture_initial_tgt TNAME)
# We don't have to check, if the target has support for coverage, thus this
# will be checked by add_coverage_target in Findcoverage.cmake. Instead we
# have to determine which gcov binary to use.
get_target_property(TSOURCES ${TNAME} SOURCES)
set(SOURCES "")
set(TCOMPILER "")
foreach (FILE ${TSOURCES})
codecov_path_of_source(${FILE} FILE)
if (NOT "${FILE}" STREQUAL "")
codecov_lang_of_source(${FILE} LANG)
if (NOT "${LANG}" STREQUAL "")
list(APPEND SOURCES "${FILE}")
set(TCOMPILER ${CMAKE_${LANG}_COMPILER_ID})
endif ()
endif ()
endforeach ()
# If no gcov binary was found, coverage data can't be evaluated.
if (NOT GCOV_${TCOMPILER}_BIN)
message(WARNING "No coverage evaluation binary found for ${TCOMPILER}.")
return()
endif ()
set(GCOV_BIN "${GCOV_${TCOMPILER}_BIN}")
set(GCOV_ENV "${GCOV_${TCOMPILER}_ENV}")
set(TDIR ${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/${TNAME}.dir)
set(GENINFO_FILES "")
foreach(FILE ${SOURCES})
# generate empty coverage files
set(OUTFILE "${TDIR}/${FILE}.info.init")
list(APPEND GENINFO_FILES ${OUTFILE})
add_custom_command(OUTPUT ${OUTFILE} COMMAND ${GCOV_ENV} ${GENINFO_BIN}
--quiet --base-directory ${PROJECT_SOURCE_DIR} --initial
--gcov-tool ${GCOV_BIN} --output-filename ${OUTFILE}
${GENINFO_EXTERN_FLAG} ${TDIR}/${FILE}.gcno
DEPENDS ${TNAME}
COMMENT "Capturing initial coverage data for ${FILE}"
)
endforeach()
# Concatenate all files generated by geninfo to a single file per target.
set(OUTFILE "${LCOV_DATA_PATH_INIT}/${TNAME}.info")
set(LCOV_EXTRA_FLAGS "--initial")
lcov_merge_files("${OUTFILE}" ${GENINFO_FILES})
add_custom_target(${TNAME}-capture-init ALL DEPENDS ${OUTFILE})
# add geninfo file generation to global lcov-geninfo target
add_dependencies(lcov-capture-init ${TNAME}-capture-init)
set(LCOV_CAPTURE_INIT_FILES "${LCOV_CAPTURE_INIT_FILES}"
"${OUTFILE}" CACHE INTERNAL ""
)
endfunction (lcov_capture_initial_tgt)
# This function will generate the global info file for all targets. It has to be
# called after all other CMake functions in the root CMakeLists.txt file, to get
# a full list of all targets that generate coverage data.
function (lcov_capture_initial)
# Skip this function (and do not create the following targets), if there are
# no input files.
if ("${LCOV_CAPTURE_INIT_FILES}" STREQUAL "")
return()
endif ()
# Add a new target to merge the files of all targets.
set(OUTFILE "${LCOV_DATA_PATH_INIT}/all_targets.info")
lcov_merge_files("${OUTFILE}" ${LCOV_CAPTURE_INIT_FILES})
add_custom_target(lcov-geninfo-init ALL DEPENDS ${OUTFILE}
lcov-capture-init
)
endfunction (lcov_capture_initial)
# Add a new global target to generate coverage reports for all targets. This
# target will be used to generate the global info file.
if (NOT TARGET lcov-capture)
add_custom_target(lcov-capture)
set(LCOV_CAPTURE_FILES "" CACHE INTERNAL "")
endif (NOT TARGET lcov-capture)
# This function will add capture of coverage data for target <TNAME>, which is
# needed to get also data for objects, which were not loaded at execution time.
# It will call geninfo for every source file of <TNAME> once and store the info
# file in the same directory.
function (lcov_capture_tgt TNAME)
# We don't have to check, if the target has support for coverage, thus this
# will be checked by add_coverage_target in Findcoverage.cmake. Instead we
# have to determine which gcov binary to use.
get_target_property(TSOURCES ${TNAME} SOURCES)
set(SOURCES "")
set(TCOMPILER "")
foreach (FILE ${TSOURCES})
codecov_path_of_source(${FILE} FILE)
if (NOT "${FILE}" STREQUAL "")
codecov_lang_of_source(${FILE} LANG)
if (NOT "${LANG}" STREQUAL "")
list(APPEND SOURCES "${FILE}")
set(TCOMPILER ${CMAKE_${LANG}_COMPILER_ID})
endif ()
endif ()
endforeach ()
# If no gcov binary was found, coverage data can't be evaluated.
if (NOT GCOV_${TCOMPILER}_BIN)
message(WARNING "No coverage evaluation binary found for ${TCOMPILER}.")
return()
endif ()
set(GCOV_BIN "${GCOV_${TCOMPILER}_BIN}")
set(GCOV_ENV "${GCOV_${TCOMPILER}_ENV}")
set(TDIR ${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/${TNAME}.dir)
set(GENINFO_FILES "")
foreach(FILE ${SOURCES})
# Generate coverage files. If no .gcda file was generated during
# execution, the empty coverage file will be used instead.
set(OUTFILE "${TDIR}/${FILE}.info")
list(APPEND GENINFO_FILES ${OUTFILE})
add_custom_command(OUTPUT ${OUTFILE}
COMMAND test -f "${TDIR}/${FILE}.gcda"
&& ${GCOV_ENV} ${GENINFO_BIN} --quiet --base-directory
${PROJECT_SOURCE_DIR} --gcov-tool ${GCOV_BIN}
--output-filename ${OUTFILE} ${GENINFO_EXTERN_FLAG}
${TDIR}/${FILE}.gcda
|| cp ${OUTFILE}.init ${OUTFILE}
DEPENDS ${TNAME} ${TNAME}-capture-init
COMMENT "Capturing coverage data for ${FILE}"
)
endforeach()
# Concatenate all files generated by geninfo to a single file per target.
set(OUTFILE "${LCOV_DATA_PATH_CAPTURE}/${TNAME}.info")
lcov_merge_files("${OUTFILE}" ${GENINFO_FILES})
add_custom_target(${TNAME}-geninfo DEPENDS ${OUTFILE})
# add geninfo file generation to global lcov-capture target
add_dependencies(lcov-capture ${TNAME}-geninfo)
set(LCOV_CAPTURE_FILES "${LCOV_CAPTURE_FILES}" "${OUTFILE}" CACHE INTERNAL
""
)
# Add target for generating html output for this target only.
file(MAKE_DIRECTORY ${LCOV_HTML_PATH}/${TNAME})
add_custom_target(${TNAME}-genhtml
COMMAND ${GENHTML_BIN} --quiet --sort --prefix ${PROJECT_SOURCE_DIR}
--baseline-file ${LCOV_DATA_PATH_INIT}/${TNAME}.info
--output-directory ${LCOV_HTML_PATH}/${TNAME}
--title "${CMAKE_PROJECT_NAME} - target ${TNAME}"
${GENHTML_CPPFILT_FLAG} ${OUTFILE}
DEPENDS ${TNAME}-geninfo ${TNAME}-capture-init
)
endfunction (lcov_capture_tgt)
# This function will generate the global info file for all targets. It has to be
# called after all other CMake functions in the root CMakeLists.txt file, to get
# a full list of all targets that generate coverage data.
function (lcov_capture)
# Skip this function (and do not create the following targets), if there are
# no input files.
if ("${LCOV_CAPTURE_FILES}" STREQUAL "")
return()
endif ()
# Add a new target to merge the files of all targets.
set(OUTFILE "${LCOV_DATA_PATH_CAPTURE}/all_targets.info")
lcov_merge_files("${OUTFILE}" ${LCOV_CAPTURE_FILES})
add_custom_target(lcov-geninfo DEPENDS ${OUTFILE} lcov-capture)
# Add a new global target for all lcov targets. This target could be used to
# generate the lcov html output for the whole project instead of calling
# <TARGET>-geninfo and <TARGET>-genhtml for each target. It will also be
# used to generate a html site for all project data together instead of one
# for each target.
if (NOT TARGET lcov)
file(MAKE_DIRECTORY ${LCOV_HTML_PATH}/all_targets)
add_custom_target(lcov
COMMAND ${GENHTML_BIN} --quiet --sort
--baseline-file ${LCOV_DATA_PATH_INIT}/all_targets.info
--output-directory ${LCOV_HTML_PATH}/all_targets
--title "${CMAKE_PROJECT_NAME}" --prefix "${PROJECT_SOURCE_DIR}"
${GENHTML_CPPFILT_FLAG} ${OUTFILE}
DEPENDS lcov-geninfo-init lcov-geninfo
)
endif ()
endfunction (lcov_capture)
# Add a new global target to generate the lcov html report for the whole project
# instead of calling <TARGET>-genhtml for each target (to create an own report
# for each target). Instead of the lcov target it does not require geninfo for
# all targets, so you have to call <TARGET>-geninfo to generate the info files
# the targets you'd like to have in your report or lcov-geninfo for generating
# info files for all targets before calling lcov-genhtml.
file(MAKE_DIRECTORY ${LCOV_HTML_PATH}/selected_targets)
if (NOT TARGET lcov-genhtml)
add_custom_target(lcov-genhtml
COMMAND ${GENHTML_BIN}
--quiet
--output-directory ${LCOV_HTML_PATH}/selected_targets
--title \"${CMAKE_PROJECT_NAME} - targets `find
${LCOV_DATA_PATH_CAPTURE} -name \"*.info\" ! -name
\"all_targets.info\" -exec basename {} .info \\\;`\"
--prefix ${PROJECT_SOURCE_DIR}
--sort
${GENHTML_CPPFILT_FLAG}
`find ${LCOV_DATA_PATH_CAPTURE} -name \"*.info\" ! -name
\"all_targets.info\"`
)
endif (NOT TARGET lcov-genhtml)

View File

@@ -1,258 +0,0 @@
# This file is part of CMake-codecov.
#
# Copyright (c)
# 2015-2017 RWTH Aachen University, Federal Republic of Germany
#
# See the LICENSE file in the package base directory for details
#
# Written by Alexander Haase, alexander.haase@rwth-aachen.de
#
# Add an option to choose, if coverage should be enabled or not. If enabled
# marked targets will be build with coverage support and appropriate targets
# will be added. If disabled coverage will be ignored for *ALL* targets.
option(ENABLE_COVERAGE "Enable coverage build." OFF)
set(COVERAGE_FLAG_CANDIDATES
# gcc and clang
"-O0 -g -fprofile-arcs -ftest-coverage"
# gcc and clang fallback
"-O0 -g --coverage"
)
# Add coverage support for target ${TNAME} and register target for coverage
# evaluation. If coverage is disabled or not supported, this function will
# simply do nothing.
#
# Note: This function is only a wrapper to define this function always, even if
# coverage is not supported by the compiler or disabled. This function must
# be defined here, because the module will be exited, if there is no coverage
# support by the compiler or it is disabled by the user.
function (add_coverage TNAME)
# only add coverage for target, if coverage is support and enabled.
if (ENABLE_COVERAGE)
foreach (TNAME ${ARGV})
add_coverage_target(${TNAME})
endforeach ()
endif ()
endfunction (add_coverage)
# Add global target to gather coverage information after all targets have been
# added. Other evaluation functions could be added here, after checks for the
# specific module have been passed.
#
# Note: This function is only a wrapper to define this function always, even if
# coverage is not supported by the compiler or disabled. This function must
# be defined here, because the module will be exited, if there is no coverage
# support by the compiler or it is disabled by the user.
function (coverage_evaluate)
# add lcov evaluation
if (LCOV_FOUND)
lcov_capture_initial()
lcov_capture()
endif (LCOV_FOUND)
endfunction ()
# Exit this module, if coverage is disabled. add_coverage is defined before this
# return, so this module can be exited now safely without breaking any build-
# scripts.
if (NOT ENABLE_COVERAGE)
return()
endif ()
# Find the reuired flags foreach language.
set(CMAKE_REQUIRED_QUIET_SAVE ${CMAKE_REQUIRED_QUIET})
set(CMAKE_REQUIRED_QUIET ${codecov_FIND_QUIETLY})
get_property(ENABLED_LANGUAGES GLOBAL PROPERTY ENABLED_LANGUAGES)
foreach (LANG ${ENABLED_LANGUAGES})
# Coverage flags are not dependent on language, but the used compiler. So
# instead of searching flags foreach language, search flags foreach compiler
# used.
set(COMPILER ${CMAKE_${LANG}_COMPILER_ID})
if (NOT COVERAGE_${COMPILER}_FLAGS)
foreach (FLAG ${COVERAGE_FLAG_CANDIDATES})
if(NOT CMAKE_REQUIRED_QUIET)
message(STATUS "Try ${COMPILER} code coverage flag = [${FLAG}]")
endif()
set(CMAKE_REQUIRED_FLAGS "${FLAG}")
unset(COVERAGE_FLAG_DETECTED CACHE)
if (${LANG} STREQUAL "C")
include(CheckCCompilerFlag)
check_c_compiler_flag("${FLAG}" COVERAGE_FLAG_DETECTED)
elseif (${LANG} STREQUAL "CXX")
include(CheckCXXCompilerFlag)
check_cxx_compiler_flag("${FLAG}" COVERAGE_FLAG_DETECTED)
elseif (${LANG} STREQUAL "Fortran")
# CheckFortranCompilerFlag was introduced in CMake 3.x. To be
# compatible with older Cmake versions, we will check if this
# module is present before we use it. Otherwise we will define
# Fortran coverage support as not available.
include(CheckFortranCompilerFlag OPTIONAL
RESULT_VARIABLE INCLUDED)
if (INCLUDED)
check_fortran_compiler_flag("${FLAG}"
COVERAGE_FLAG_DETECTED)
elseif (NOT CMAKE_REQUIRED_QUIET)
message("-- Performing Test COVERAGE_FLAG_DETECTED")
message("-- Performing Test COVERAGE_FLAG_DETECTED - Failed"
" (Check not supported)")
endif ()
endif()
if (COVERAGE_FLAG_DETECTED)
set(COVERAGE_${COMPILER}_FLAGS "${FLAG}"
CACHE STRING "${COMPILER} flags for code coverage.")
mark_as_advanced(COVERAGE_${COMPILER}_FLAGS)
break()
else ()
message(WARNING "Code coverage is not available for ${COMPILER}"
" compiler. Targets using this compiler will be "
"compiled without it.")
endif ()
endforeach ()
endif ()
endforeach ()
set(CMAKE_REQUIRED_QUIET ${CMAKE_REQUIRED_QUIET_SAVE})
# Helper function to get the language of a source file.
function (codecov_lang_of_source FILE RETURN_VAR)
get_filename_component(FILE_EXT "${FILE}" EXT)
string(TOLOWER "${FILE_EXT}" FILE_EXT)
string(SUBSTRING "${FILE_EXT}" 1 -1 FILE_EXT)
get_property(ENABLED_LANGUAGES GLOBAL PROPERTY ENABLED_LANGUAGES)
foreach (LANG ${ENABLED_LANGUAGES})
list(FIND CMAKE_${LANG}_SOURCE_FILE_EXTENSIONS "${FILE_EXT}" TEMP)
if (NOT ${TEMP} EQUAL -1)
set(${RETURN_VAR} "${LANG}" PARENT_SCOPE)
return()
endif ()
endforeach()
set(${RETURN_VAR} "" PARENT_SCOPE)
endfunction ()
# Helper function to get the relative path of the source file destination path.
# This path is needed by FindGcov and FindLcov cmake files to locate the
# captured data.
function (codecov_path_of_source FILE RETURN_VAR)
string(REGEX MATCH "TARGET_OBJECTS:([^ >]+)" _source ${FILE})
# If expression was found, SOURCEFILE is a generator-expression for an
# object library. Currently we found no way to call this function automatic
# for the referenced target, so it must be called in the directoryso of the
# object library definition.
if (NOT "${_source}" STREQUAL "")
set(${RETURN_VAR} "" PARENT_SCOPE)
return()
endif ()
string(REPLACE "${CMAKE_CURRENT_BINARY_DIR}/" "" FILE "${FILE}")
if(IS_ABSOLUTE ${FILE})
file(RELATIVE_PATH FILE ${CMAKE_CURRENT_SOURCE_DIR} ${FILE})
endif()
# get the right path for file
string(REPLACE ".." "__" PATH "${FILE}")
set(${RETURN_VAR} "${PATH}" PARENT_SCOPE)
endfunction()
# Add coverage support for target ${TNAME} and register target for coverage
# evaluation.
function(add_coverage_target TNAME)
# Check if all sources for target use the same compiler. If a target uses
# e.g. C and Fortran mixed and uses different compilers (e.g. clang and
# gfortran) this can trigger huge problems, because different compilers may
# use different implementations for code coverage.
get_target_property(TSOURCES ${TNAME} SOURCES)
set(TARGET_COMPILER "")
set(ADDITIONAL_FILES "")
foreach (FILE ${TSOURCES})
# If expression was found, FILE is a generator-expression for an object
# library. Object libraries will be ignored.
string(REGEX MATCH "TARGET_OBJECTS:([^ >]+)" _file ${FILE})
if ("${_file}" STREQUAL "")
codecov_lang_of_source(${FILE} LANG)
if (LANG)
list(APPEND TARGET_COMPILER ${CMAKE_${LANG}_COMPILER_ID})
list(APPEND ADDITIONAL_FILES "${FILE}.gcno")
list(APPEND ADDITIONAL_FILES "${FILE}.gcda")
endif ()
endif ()
endforeach ()
list(REMOVE_DUPLICATES TARGET_COMPILER)
list(LENGTH TARGET_COMPILER NUM_COMPILERS)
if (NUM_COMPILERS GREATER 1)
message(WARNING "Can't use code coverage for target ${TNAME}, because "
"it will be compiled by incompatible compilers. Target will be "
"compiled without code coverage.")
return()
elseif (NUM_COMPILERS EQUAL 0)
message(WARNING "Can't use code coverage for target ${TNAME}, because "
"it uses an unknown compiler. Target will be compiled without "
"code coverage.")
return()
elseif (NOT DEFINED "COVERAGE_${TARGET_COMPILER}_FLAGS")
# A warning has been printed before, so just return if flags for this
# compiler aren't available.
return()
endif()
# enable coverage for target
set_property(TARGET ${TNAME} APPEND_STRING
PROPERTY COMPILE_FLAGS " ${COVERAGE_${TARGET_COMPILER}_FLAGS}")
set_property(TARGET ${TNAME} APPEND_STRING
PROPERTY LINK_FLAGS " ${COVERAGE_${TARGET_COMPILER}_FLAGS}")
# Add gcov files generated by compiler to clean target.
set(CLEAN_FILES "")
foreach (FILE ${ADDITIONAL_FILES})
codecov_path_of_source(${FILE} FILE)
list(APPEND CLEAN_FILES "CMakeFiles/${TNAME}.dir/${FILE}")
endforeach()
set_directory_properties(PROPERTIES ADDITIONAL_MAKE_CLEAN_FILES
"${CLEAN_FILES}")
add_gcov_target(${TNAME})
add_lcov_target(${TNAME})
endfunction(add_coverage_target)
# Include modules for parsing the collected data and output it in a readable
# format (like gcov and lcov).
find_package(Gcov)
find_package(Lcov)

View File

@@ -1,78 +0,0 @@
include(CheckCXXCompilerFlag)
function(add_cxx_flag_if_supported_to_targets flagname targets)
check_cxx_compiler_flag("${flagname}" HAVE_FLAG_${flagname})
if (HAVE_FLAG_${flagname})
foreach(target ${targets})
target_compile_options(${target} PUBLIC ${flagname})
endforeach()
endif()
endfunction()
# Assumes that it is only called for development builds, where warnings
# and Werror is desired, so it also enables Werror.
function(add_warnings_to_targets targets)
LIST(LENGTH targets TARGETS_LEN)
# For now we just assume 2 possibilities: msvc and msvc-like compilers,
# and other.
if (MSVC)
foreach(target ${targets})
# Force MSVC to consider everything as encoded in utf-8
target_compile_options( ${target} PRIVATE /utf-8 )
# Enable Werror equivalent
if (CATCH_ENABLE_WERROR)
target_compile_options( ${target} PRIVATE /WX )
endif()
# MSVC is currently handled specially
if ( CMAKE_CXX_COMPILER_ID MATCHES "MSVC" )
STRING(REGEX REPLACE "/W[0-9]" "/W4" CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}) # override default warning level
target_compile_options( ${target} PRIVATE /w44265 /w44061 /w44062 /w45038 )
endif()
endforeach()
endif()
if (NOT MSVC)
set(CHECKED_WARNING_FLAGS
"-Wall"
"-Wextra"
"-Wpedantic"
"-Wweak-vtables"
"-Wunreachable-code"
"-Wmissing-declarations"
"-Wexit-time-destructors"
"-Wglobal-constructors"
"-Wmissing-noreturn"
"-Wparentheses"
"-Wextra-semi-stmt"
"-Wunreachable-code"
"-Wstrict-aliasing"
"-Wreturn-std-move"
"-Wmissing-braces"
"-Wdeprecated"
"-Wvla"
"-Wundef"
"-Wmisleading-indentation"
"-Wcatch-value"
"-Wabsolute-value"
"-Wreturn-std-move"
"-Wunused-parameter"
"-Wunused-function"
"-Wcall-to-pure-virtual-from-ctor-dtor"
"-Wdeprecated-register"
"-Wsuggest-override"
"-Wshadow"
)
foreach(warning ${CHECKED_WARNING_FLAGS})
add_cxx_flag_if_supported_to_targets(${warning} "${targets}")
endforeach()
if (CATCH_ENABLE_WERROR)
foreach(target ${targets})
# Enable Werror equivalent
target_compile_options( ${target} PRIVATE -Werror )
endforeach()
endif()
endif()
endfunction()

View File

@@ -1,10 +0,0 @@
includedir=@CMAKE_INSTALL_FULL_INCLUDEDIR@
libdir=@CMAKE_INSTALL_FULL_LIBDIR@
pkg_version=@Catch2_VERSION@
Name: Catch2-With-Main
Description: A modern, C++-native test framework for C++14 and above (links in default main)
Version: ${pkg_version}
Requires: catch2 = ${pkg_version}
Cflags: -I${includedir}
Libs: -L${libdir} -lCatch2WithMain

View File

@@ -1,9 +0,0 @@
includedir=@CMAKE_INSTALL_FULL_INCLUDEDIR@
libdir=@CMAKE_INSTALL_FULL_LIBDIR@
Name: Catch2
Description: A modern, C++-native, test framework for C++14 and above
URL: https://github.com/catchorg/Catch2
Version: @Catch2_VERSION@
Cflags: -I${includedir}
Libs: -L${libdir} -lCatch2

View File

@@ -1,56 +0,0 @@
#!/bin/sh
# This file is part of CMake-codecov.
#
# Copyright (c)
# 2015-2017 RWTH Aachen University, Federal Republic of Germany
#
# See the LICENSE file in the package base directory for details
#
# Written by Alexander Haase, alexander.haase@rwth-aachen.de
#
if [ -z "$LLVM_COV_BIN" ]
then
echo "LLVM_COV_BIN not set!" >& 2
exit 1
fi
# Get LLVM version to find out.
LLVM_VERSION=$($LLVM_COV_BIN -version | grep -i "LLVM version" \
| sed "s/^\([A-Za-z ]*\)\([0-9]\).\([0-9]\).*$/\2.\3/g")
if [ "$1" = "-v" ]
then
echo "llvm-cov-wrapper $LLVM_VERSION"
exit 0
fi
if [ -n "$LLVM_VERSION" ]
then
MAJOR=$(echo $LLVM_VERSION | cut -d'.' -f1)
MINOR=$(echo $LLVM_VERSION | cut -d'.' -f2)
if [ $MAJOR -eq 3 ] && [ $MINOR -le 4 ]
then
if [ -f "$1" ]
then
filename=$(basename "$1")
extension="${filename##*.}"
case "$extension" in
"gcno") exec $LLVM_COV_BIN --gcno="$1" ;;
"gcda") exec $LLVM_COV_BIN --gcda="$1" ;;
esac
fi
fi
if [ $MAJOR -eq 3 ] && [ $MINOR -le 5 ]
then
exec $LLVM_COV_BIN $@
fi
fi
exec $LLVM_COV_BIN gcov $@

View File

@@ -1,201 +0,0 @@
cmake_minimum_required(VERSION 3.5)
# detect if Catch is being bundled,
# disable testsuite in that case
if(NOT DEFINED PROJECT_NAME)
set(NOT_SUBPROJECT ON)
endif()
option(CATCH_INSTALL_DOCS "Install documentation alongside library" ON)
option(CATCH_INSTALL_EXTRAS "Install extras alongside library" ON)
option(CATCH_DEVELOPMENT_BUILD "Build tests, enable warnings, enable Werror, etc" OFF)
include(CMakeDependentOption)
cmake_dependent_option(CATCH_BUILD_TESTING "Build the SelfTest project" ON "CATCH_DEVELOPMENT_BUILD" OFF)
cmake_dependent_option(CATCH_BUILD_EXAMPLES "Build code examples" OFF "CATCH_DEVELOPMENT_BUILD" OFF)
cmake_dependent_option(CATCH_BUILD_EXTRA_TESTS "Build extra tests" OFF "CATCH_DEVELOPMENT_BUILD" OFF)
cmake_dependent_option(CATCH_BUILD_FUZZERS "Build fuzzers" OFF "CATCH_DEVELOPMENT_BUILD" OFF)
cmake_dependent_option(CATCH_ENABLE_COVERAGE "Generate coverage for codecov.io" OFF "CATCH_DEVELOPMENT_BUILD" OFF)
cmake_dependent_option(CATCH_ENABLE_WERROR "Enables Werror during build" ON "CATCH_DEVELOPMENT_BUILD" OFF)
# Catch2's build breaks if done in-tree. You probably should not build
# things in tree anyway, but we can allow projects that include Catch2
# as a subproject to build in-tree as long as it is not in our tree.
if (CMAKE_BINARY_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
message(FATAL_ERROR "Building in-source is not supported! Create a build dir and remove ${CMAKE_SOURCE_DIR}/CMakeCache.txt")
endif()
project(Catch2 LANGUAGES CXX VERSION 3.0.0)
# Provide path for scripts
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/CMake")
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
include(CTest)
# This variable is used in some subdirectories, so we need it here, rather
# than later in the install block
set(CATCH_CMAKE_CONFIG_DESTINATION "${CMAKE_INSTALL_LIBDIR}/cmake/Catch2")
# We have some Windows builds that test `wmain` entry point,
# and we need this change to be present in all binaries that
# are built during these tests, so this is required here, before
# the subdirectories are added.
if(CATCH_TEST_USE_WMAIN)
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} /ENTRY:wmainCRTStartup")
endif()
# Basic paths
set(CATCH_DIR ${CMAKE_CURRENT_SOURCE_DIR})
set(SOURCES_DIR ${CATCH_DIR}/src/catch2)
set(SELF_TEST_DIR ${CATCH_DIR}/tests/SelfTest)
set(BENCHMARK_DIR ${CATCH_DIR}/tests/Benchmark)
set(EXAMPLES_DIR ${CATCH_DIR}/examples)
# We need to bring-in the variables defined there to this scope
add_subdirectory(src)
# Build tests only if requested
if (BUILD_TESTING AND CATCH_BUILD_TESTING AND NOT_SUBPROJECT)
find_package(PythonInterp 3 REQUIRED)
if (NOT PYTHONINTERP_FOUND)
message(FATAL_ERROR "Python not found, but required for tests")
endif()
add_subdirectory(tests)
endif()
if(CATCH_BUILD_EXAMPLES)
add_subdirectory(examples)
endif()
if(CATCH_BUILD_EXTRA_TESTS)
add_subdirectory(tests/ExtraTests)
endif()
if(CATCH_BUILD_FUZZERS)
add_subdirectory(fuzzing)
endif()
if (CATCH_DEVELOPMENT_BUILD)
add_warnings_to_targets("${CATCH_WARNING_TARGETS}")
endif()
#option(CATCH_USE_VALGRIND "Perform SelfTests with Valgrind" OFF)
#option(CATCH_ENABLE_WERROR "Enable all warnings as errors" ON)
#
#set_property(GLOBAL PROPERTY USE_FOLDERS ON)
#
#
#
#
#
# Only perform the installation steps when Catch is not being used as
# a subproject via `add_subdirectory`, or the destinations will break,
# see https://github.com/catchorg/Catch2/issues/1373
if (NOT_SUBPROJECT)
configure_package_config_file(
${CMAKE_CURRENT_LIST_DIR}/CMake/Catch2Config.cmake.in
${CMAKE_CURRENT_BINARY_DIR}/Catch2Config.cmake
INSTALL_DESTINATION
${CATCH_CMAKE_CONFIG_DESTINATION}
)
## TODO: Catch2 main target?
## Install some cpp file as well?
# By default, FooConfigVersion is tied to architecture that it was
# generated on. Because Catch2 is header-only, it is arch-independent
# and thus Catch2ConfigVersion should not be tied to the architecture
# it was generated on.
#
# CMake does not provide a direct customization point for this in
# `write_basic_package_version_file`, but it can be accomplished
# indirectly by temporarily redefining `CMAKE_SIZEOF_VOID_P` to an
# empty string. Note that just undefining the variable could be
# insufficient in cases where the variable was already in CMake cache
set(CATCH2_CMAKE_SIZEOF_VOID_P ${CMAKE_SIZEOF_VOID_P})
set(CMAKE_SIZEOF_VOID_P "")
write_basic_package_version_file(
"${CMAKE_CURRENT_BINARY_DIR}/Catch2ConfigVersion.cmake"
COMPATIBILITY
SameMajorVersion
)
set(CMAKE_SIZEOF_VOID_P ${CATCH2_CMAKE_SIZEOF_VOID_P})
install(
FILES
"${CMAKE_CURRENT_BINARY_DIR}/Catch2Config.cmake"
"${CMAKE_CURRENT_BINARY_DIR}/Catch2ConfigVersion.cmake"
DESTINATION
${CATCH_CMAKE_CONFIG_DESTINATION}
)
# Install documentation
if(CATCH_INSTALL_DOCS)
install(
DIRECTORY
docs/
DESTINATION
"${CMAKE_INSTALL_DOCDIR}"
)
endif()
if(CATCH_INSTALL_EXTRAS)
# Install CMake scripts
install(
FILES
"extras/ParseAndAddCatchTests.cmake"
"extras/Catch.cmake"
"extras/CatchAddTests.cmake"
DESTINATION
${CATCH_CMAKE_CONFIG_DESTINATION}
)
# Install debugger helpers
install(
FILES
"extras/gdbinit"
"extras/lldbinit"
DESTINATION
${CMAKE_INSTALL_DATAROOTDIR}/Catch2
)
endif()
## Provide some pkg-config integration
set(PKGCONFIG_INSTALL_DIR
"${CMAKE_INSTALL_DATAROOTDIR}/pkgconfig"
CACHE PATH "Path where catch2.pc is installed"
)
configure_file(
${CMAKE_CURRENT_SOURCE_DIR}/CMake/catch2.pc.in
${CMAKE_CURRENT_BINARY_DIR}/catch2.pc
@ONLY
)
configure_file(
${CMAKE_CURRENT_SOURCE_DIR}/CMake/catch2-with-main.pc.in
${CMAKE_CURRENT_BINARY_DIR}/catch2-with-main.pc
@ONLY
)
install(
FILES
"${CMAKE_CURRENT_BINARY_DIR}/catch2.pc"
"${CMAKE_CURRENT_BINARY_DIR}/catch2-with-main.pc"
DESTINATION
${PKGCONFIG_INSTALL_DIR}
)
# CPack/CMake started taking the package version from project version 3.12
# So we need to set the version manually for older CMake versions
if(${CMAKE_VERSION} VERSION_LESS "3.12.0")
set(CPACK_PACKAGE_VERSION ${PROJECT_VERSION})
endif()
set(CPACK_PACKAGE_CONTACT "https://github.com/catchorg/Catch2/")
include( CPack )
endif(NOT_SUBPROJECT)

View File

@@ -1,46 +0,0 @@
# Contributor Covenant Code of Conduct
## Our Pledge
In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.
## Our Standards
Examples of behavior that contributes to creating a positive environment include:
* Using welcoming and inclusive language
* Being respectful of differing viewpoints and experiences
* Gracefully accepting constructive criticism
* Focusing on what is best for the community
* Showing empathy towards other community members
Examples of unacceptable behavior by participants include:
* The use of sexualized language or imagery and unwelcome sexual attention or advances
* Trolling, insulting/derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or electronic address, without explicit permission
* Other conduct which could reasonably be considered inappropriate in a professional setting
## Our Responsibilities
Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.
Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.
## Scope
This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at github@philnash.me. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.
Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project's leadership.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, available at [http://contributor-covenant.org/version/1/4][version]
[homepage]: http://contributor-covenant.org
[version]: http://contributor-covenant.org/version/1/4/

View File

@@ -1,33 +1,26 @@
<a id="top"></a>
![catch logo](data/artwork/catch2-logo-small.png)
![catch logo](catch-logo-small.png)
[![Github Releases](https://img.shields.io/github/release/catchorg/catch2.svg)](https://github.com/catchorg/catch2/releases)
[![Build Status](https://travis-ci.org/catchorg/Catch2.svg?branch=master)](https://travis-ci.org/catchorg/Catch2)
[![Build status](https://ci.appveyor.com/api/projects/status/github/catchorg/Catch2?svg=true)](https://ci.appveyor.com/project/catchorg/catch2)
[![codecov](https://codecov.io/gh/catchorg/Catch2/branch/master/graph/badge.svg)](https://codecov.io/gh/catchorg/Catch2)
<!-- We can eventually bring this back, but the upload script will have to be more complex -->
<!-- [![Try online](https://img.shields.io/badge/try-online-blue.svg)](https://wandbox.org/permlink/LzYWgcPrcy9yQmed) -->
[![Join the chat in Discord: https://discord.gg/4CWS9zD](https://img.shields.io/badge/Discord-Chat!-brightgreen.svg)](https://discord.gg/4CWS9zD)
*v2.0.0-develop.2*
Build status (on Travis CI) [![Build Status](https://travis-ci.org/philsquared/Catch.png)](https://travis-ci.org/philsquared/Catch)
## Catch2 is released!
[Please see this page if you are updating from a version before 1.0](docs/whats-changed.md)
If you've been using an earlier version of Catch, please see the
Breaking Changes section of [the release notes](https://github.com/catchorg/Catch2/releases/tag/v2.0.1)
before moving to Catch2. You might also like to read [this blog post](https://levelofindirection.com/blog/catch2-released.html) for more details.
<a href="https://raw.githubusercontent.com/philsquared/Catch/master/single_include/catch.hpp">[The latest, single header, version can be downloaded directly using this link]</a>
## What's the Catch?
Catch2 is a multi-paradigm test framework for C++.
Catch stands for C++ Automated Test Cases in Headers and is a multi-paradigm automated test framework for C++ and Objective-C (and, maybe, C). It is implemented entirely in a set of header files, but is packaged up as a single header for extra convenience.
## How to use it
This documentation comprises these three parts:
* [Why do we need yet another C++ Test Framework?](docs/why-catch.md#top)
* [Tutorial](docs/tutorial.md#top) - getting started
* [Reference section](docs/Readme.md#top) - all the details
* [Why do we need yet another C++ Test Framework?](docs/why-catch.md)
* [Tutorial](docs/tutorial.md) - getting started
* [Reference section](docs/Readme.md) - all the details
The documentation will continue until morale improves
## More
* Issues and bugs can be raised on the [Issue tracker on GitHub](https://github.com/catchorg/Catch2/issues)
* For discussion or questions please use [the dedicated Google Groups forum](https://groups.google.com/forum/?fromgroups#!forum/catch-forum) or our [Discord](https://discord.gg/4CWS9zD)
* See [who else is using Catch2](docs/opensource-users.md#top)
* Issues and bugs can be raised on the [Issue tracker on GitHub](https://github.com/philsquared/Catch/issues)
* For discussion or questions please use [the dedicated Google Groups forum](https://groups.google.com/forum/?fromgroups#!forum/catch-forum)

View File

@@ -1,124 +0,0 @@
version: "{build}-{branch}"
# If we ever get a backlog larger than clone_depth, builds will fail
# spuriously. I do not think we will ever get 20 deep commits deep though.
clone_depth: 20
# We want to build everything, except for branches that are explicitly
# for messing around with travis.
branches:
except:
- /dev-travis.+/
# We need a more up to date pip because Python 2.7 is EOL soon
init:
- set PATH=C:\Python35;C:\Python35\Scripts;%PATH%
install:
- ps: if (($env:CONFIGURATION) -eq "Debug" -And ($env:coverage) -eq "1" ) { pip --disable-pip-version-check install codecov }
- ps: if (($env:CONFIGURATION) -eq "Debug" -And ($env:coverage) -eq "1" ) { .\tools\misc\installOpenCppCoverage.ps1 }
before_build:
- set CXXFLAGS=%additional_flags%
# If we are building examples/extra-tests, we need to regenerate the amalgamated files
- cmd: if "%examples%"=="1" ( python .\tools\scripts\generateAmalgamatedFiles.py )
# Indirection because appveyor doesn't handle multiline batch scripts properly
# https://stackoverflow.com/questions/37627248/how-to-split-a-command-over-multiple-lines-in-appveyor-yml/37647169#37647169
# https://help.appveyor.com/discussions/questions/3888-multi-line-cmd-or-powershell-warning-ignore
- cmd: .\tools\misc\appveyorBuildConfigurationScript.bat
# build with MSBuild
build:
project: Build\Catch2.sln # path to Visual Studio solution or project
parallel: true # enable MSBuild parallel builds
verbosity: normal # MSBuild verbosity level {quiet|minimal|normal|detailed}
test_script:
- set CTEST_OUTPUT_ON_FAILURE=1
- cmd: .\tools\misc\appveyorTestRunScript.bat
# Sadly we cannot use the standard "dimensions" based approach towards
# specifying the different builds, as there is no way to add one-offs
# builds afterwards. This means that we will painfully specify each
# build explicitly.
environment:
matrix:
- FLAVOR: VS 2019 x64 Debug
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2019
platform: x64
configuration: Debug
- FLAVOR: VS 2019 x64 Release
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2019
platform: x64
configuration: Release
- FLAVOR: VS 2019 x64 Debug Coverage Examples
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2019
examples: 1
coverage: 1
platform: x64
configuration: Debug
- FLAVOR: VS 2019 x64 Debug WMain
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2019
wmain: 1
additional_flags: "/D_UNICODE /DUNICODE"
platform: x64
configuration: Debug
- FLAVOR: VS 2019 Win32 Debug
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2019
platform: Win32
configuration: Debug
- FLAVOR: VS 2019 x64 Debug Latest Strict
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2019
additional_flags: "/permissive- /std:c++latest"
platform: x64
configuration: Debug
- FLAVOR: VS 2017 x64 Debug
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2017
platform: x64
configuration: Debug
- FLAVOR: VS 2017 x64 Release
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2017
platform: x64
configuration: Release
- FLAVOR: VS 2017 x64 Release Coverage
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2017
coverage: 1
platform: x64
configuration: Debug
- FLAVOR: VS 2017 Win32 Debug
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2017
platform: Win32
configuration: Debug
- FLAVOR: VS 2017 Win32 Debug Examples
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2017
examples: 1
platform: Win32
configuration: Debug
- FLAVOR: VS 2017 Win32 Debug WMain
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2017
wmain: 1
additional_flags: "/D_UNICODE /DUNICODE"
platform: Win32
configuration: Debug
- FLAVOR: VS 2017 x64 Debug Latest Strict
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2017
additional_flags: "/permissive- /std:c++latest"
platform: x64
configuration: Debug

BIN
catch-logo-small.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

View File

@@ -1,22 +0,0 @@
coverage:
precision: 2
round: nearest
range: "60...90"
status:
project:
default:
threshold: 2%
patch:
default:
target: 80%
ignore:
- "**/external/clara.hpp"
- "tests"
codecov:
branch: master
max_report_age: off
comment:
layout: "diff"

View File

@@ -1,45 +0,0 @@
#!/usr/bin/env python
from conans import ConanFile, CMake
class CatchConan(ConanFile):
name = "catch2"
description = "A modern, C++-native, framework for unit-tests, TDD and BDD"
topics = ("conan", "catch2", "unit-test", "tdd", "bdd")
url = "https://github.com/catchorg/Catch2"
homepage = url
license = "BSL-1.0"
exports = "LICENSE.txt"
exports_sources = ("src/*", "CMakeLists.txt", "CMake/*", "extras/*")
settings = "os", "compiler", "build_type", "arch"
options = {"with_main": [True, False]}
default_options = {"with_main": True}
def _configure_cmake(self):
cmake = CMake(self)
cmake.definitions["BUILD_TESTING"] = "OFF"
cmake.definitions["CATCH_INSTALL_DOCS"] = "OFF"
cmake.definitions["CATCH_INSTALL_HELPERS"] = "ON"
cmake.configure(build_folder="build")
return cmake
def build(self):
cmake = self._configure_cmake()
cmake.build()
def package(self):
self.copy(pattern="LICENSE.txt", dst="licenses")
cmake = self._configure_cmake()
cmake.install()
def package_id(self):
del self.info.options.with_main
def package_info(self):
self.cpp_info.libs = [
'Catch2Main', 'Catch2'] if self.options.with_main else ['Catch2']
self.cpp_info.names["cmake_find_package"] = "Catch2"
self.cpp_info.names["cmake_find_package_multi"] = "Catch2"

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

View File

@@ -1,41 +1,20 @@
<a id="top"></a>
# Reference
These are the currently documented areas of the framework. There is more to come.
To get the most out of Catch2, start with the [tutorial](tutorial.md#top).
Once you're up and running consider the following reference material.
Before looking at this material be sure to read the [tutorial](tutorial.md)
Writing tests:
* [Assertion macros](assertions.md#top)
* [Matchers](matchers.md#top)
* [Logging macros](logging.md#top)
* [Test cases and sections](test-cases-and-sections.md#top)
* [Test fixtures](test-fixtures.md#top)
* [Reporters](reporters.md#top)
* [Event Listeners](event-listeners.md#top)
* [Data Generators](generators.md#top)
* [Other macros](other-macros.md#top)
* [Micro benchmarking](benchmarks.md#top)
* [Assertion macros](assertions.md)
* [Logging macros](logging.md)
* [Test cases and sections](test-cases-and-sections.md)
* [Test fixtures](test-fixtures.md)
* [Command line](command-line.md)
* [Build systems](build-systems.md)
* [Supplying your own main()](own-main.md)
* [Configuration](configuration.md)
* [String Conversions](tostring.md)
* [Why are my tests slow to compile?](slow-compiles.md)
Fine tuning:
* [Supplying your own main()](own-main.md#top)
* [Compile-time configuration](configuration.md#top)
* [String Conversions](tostring.md#top)
Other
Running:
* [Command line](command-line.md#top)
Odds and ends:
* [CMake integration](cmake-integration.md#top)
* [CI and other miscellaneous pieces](ci-and-misc.md#top)
FAQ:
* [Why are my tests slow to compile?](slow-compiles.md#top)
* [Known limitations](limitations.md#top)
Other:
* [Why Catch?](why-catch.md#top)
* [Open Source Projects using Catch](opensource-users.md#top)
* [Commercial Projects using Catch](commercial-users.md#top)
* [Contributing](contributing.md#top)
* [Release Notes](release-notes.md#top)
* [Deprecations and incoming changes](deprecations.md#top)
* [Why Catch?](why-catch.md)
* [What's changed](whats-changed.md)
* [Contributing](contributing.md)

View File

@@ -1,16 +1,8 @@
<a id="top"></a>
# Assertion Macros
**Contents**<br>
[Natural Expressions](#natural-expressions)<br>
[Exceptions](#exceptions)<br>
[Matcher expressions](#matcher-expressions)<br>
[Thread Safety](#thread-safety)<br>
[Expressions with commas](#expressions-with-commas)<br>
Most test frameworks have a large collection of assertion macros to capture all possible conditional forms (```_EQUALS```, ```_NOTEQUALS```, ```_GREATER_THAN``` etc).
Catch is different. Because it decomposes natural C-style conditional expressions most of these forms are reduced to one or two that you will use all the time. That said there is a rich set of auxiliary macros as well. We'll describe all of these here.
Catch is different. Because it decomposes natural C-style conditional expressions most of these forms are reduced to one or two that you will use all the time. That said there are a rich set of auxilliary macros as well. We'll describe all of these here.
Most of these macros come in two forms:
@@ -22,7 +14,7 @@ The ```CHECK``` family are equivalent but execution continues in the same test c
* **REQUIRE(** _expression_ **)** and
* **CHECK(** _expression_ **)**
Evaluates the expression and records the result. If an exception is thrown, it is caught, reported, and counted as a failure. These are the macros you will use most of the time.
Evaluates the expression and records the result. If an exception is thrown it is caught, reported, and counted as a failure. These are the macros you will use most of the time
Examples:
```
@@ -42,76 +34,26 @@ Example:
REQUIRE_FALSE( thisReturnsFalse() );
```
Do note that "overly complex" expressions cannot be decomposed and thus will not compile. This is done partly for practical reasons (to keep the underlying expression template machinery to minimum) and partly for philosophical reasons (assertions should be simple and deterministic).
Examples:
* `CHECK(a == 1 && b == 2);`
This expression is too complex because of the `&&` operator. If you want to check that 2 or more properties hold, you can either put the expression into parenthesis, which stops decomposition from working, or you need to decompose the expression into two assertions: `CHECK( a == 1 ); CHECK( b == 2);`
* `CHECK( a == 2 || b == 1 );`
This expression is too complex because of the `||` operator. If you want to check that one of several properties hold, you can put the expression into parenthesis (unlike with `&&`, expression decomposition into several `CHECK`s is not possible).
### Floating point comparisons
When comparing floating point numbers - especially if at least one of them has been computed - great care must be taken to allow for rounding errors and inexact representations.
Catch provides a way to perform tolerant comparisons of floating point values through use of a wrapper class called `Approx`. `Approx` can be used on either side of a comparison expression. It overloads the comparisons operators to take a tolerance into account. Here's a simple example:
Catch provides a way to perform tolerant comparisons of floating point values through use of a wrapper class called ```Approx```. ```Approx``` can be used on either side of a comparison expression. It overloads the comparisons operators to take a tolerance into account. Here's a simple example:
```cpp
```
REQUIRE( performComputation() == Approx( 2.1 ) );
```
Catch also provides a user-defined literal for `Approx`; `_a`. It resides in
the `Catch::literals` namespace and can be used like so:
```cpp
using namespace Catch::literals;
REQUIRE( performComputation() == 2.1_a );
By default a small epsilon value is used that covers many simple cases of rounding errors. When this is insufficent the epsilon value (the amount within which a difference either way is ignored) can be specified by calling the ```epsilon()``` method on the ```Approx``` instance. e.g.:
```
REQUIRE( 22/7 == Approx( 3.141 ).epsilon( 0.01 ) );
```
`Approx` is constructed with defaults that should cover most simple cases.
For the more complex cases, `Approx` provides 3 customization points:
* __epsilon__ - epsilon serves to set the coefficient by which a result
can differ from `Approx`'s value before it is rejected.
_By default set to `std::numeric_limits<float>::epsilon()*100`._
* __margin__ - margin serves to set the the absolute value by which
a result can differ from `Approx`'s value before it is rejected.
_By default set to `0.0`._
* __scale__ - scale is used to change the magnitude of `Approx` for relative check.
_By default set to `0.0`._
#### epsilon example
```cpp
Approx target = Approx(100).epsilon(0.01);
100.0 == target; // Obviously true
200.0 == target; // Obviously still false
100.5 == target; // True, because we set target to allow up to 1% difference
```
#### margin example
```cpp
Approx target = Approx(100).margin(5);
100.0 == target; // Obviously true
200.0 == target; // Obviously still false
104.0 == target; // True, because we set target to allow absolute difference of at most 5
```
#### scale
Scale can be useful if the computation leading to the result worked
on different scale than is used by the results. Since allowed difference
between Approx's value and compared value is based primarily on Approx's value
(the allowed difference is computed as
`(Approx::scale + Approx::value) * epsilon`), the resulting comparison could
need rescaling to be correct.
When dealing with very large or very small numbers it can be useful to specify a scale, which can be achieved by calling the ```scale()``` method on the ```Approx``` instance.
## Exceptions
* **REQUIRE_NOTHROW(** _expression_ **)** and
* **CHECK_NOTHROW(** _expression_ **)**
Expects that no exception is thrown during evaluation of the expression.
* **REQUIRE_THROWS(** _expression_ **)** and
* **CHECK_THROWS(** _expression_ **)**
@@ -120,82 +62,21 @@ Expects that an exception (of any type) is be thrown during evaluation of the ex
* **REQUIRE_THROWS_AS(** _expression_, _exception type_ **)** and
* **CHECK_THROWS_AS(** _expression_, _exception type_ **)**
Expects that an exception of the _specified type_ is thrown during evaluation of the expression. Note that the _exception type_ is extended with `const&` and you should not include it yourself.
* **REQUIRE_THROWS_WITH(** _expression_, _string or string matcher_ **)** and
* **CHECK_THROWS_WITH(** _expression_, _string or string matcher_ **)**
Expects that an exception is thrown that, when converted to a string, matches the _string_ or _string matcher_ provided (see next section for Matchers).
e.g.
```cpp
REQUIRE_THROWS_WITH( openThePodBayDoors(), Contains( "afraid" ) && Contains( "can't do that" ) );
REQUIRE_THROWS_WITH( dismantleHal(), "My mind is going" );
```
* **REQUIRE_THROWS_MATCHES(** _expression_, _exception type_, _matcher for given exception type_ **)** and
* **CHECK_THROWS_MATCHES(** _expression_, _exception type_, _matcher for given exception type_ **)**
Expects that exception of _exception type_ is thrown and it matches provided matcher (see the [documentation for Matchers](matchers.md#top)).
_Please note that the `THROW` family of assertions expects to be passed a single expression, not a statement or series of statements. If you want to check a more complicated sequence of operations, you can use a C++11 lambda function._
```cpp
REQUIRE_NOTHROW([&](){
int i = 1;
int j = 2;
auto k = i + j;
if (k == 3) {
throw 1;
}
}());
```
Expects that an exception of the _specified type_ is thrown during evaluation of the expression.
* **REQUIRE_NOTHROW(** _expression_ **)** and
* **CHECK_NOTHROW(** _expression_ **)**
Expects that no exception is thrown during evaluation of the expression.
## Matcher expressions
To support Matchers a slightly different form is used. Matchers have [their own documentation](matchers.md#top).
To support Matchers a slightly different form is used. Matchers will be more fully documented elsewhere. *Note that Matchers are still at early stage development and are subject to change.*
* **REQUIRE_THAT(** _lhs_, _matcher expression_ **)** and
* **CHECK_THAT(** _lhs_, _matcher expression_ **)**
* **REQUIRE_THAT(** _lhs_, _matcher call_ **)** and
* **CHECK_THAT(** _lhs_, _matcher call_ **)**
Matchers can be composed using `&&`, `||` and `!` operators.
## Thread Safety
Currently assertions in Catch are not thread safe.
For more details, along with workarounds, see the section on [the limitations page](limitations.md#thread-safe-assertions).
## Expressions with commas
Because the preprocessor parses code using different rules than the
compiler, multiple-argument assertions (e.g. `REQUIRE_THROWS_AS`) have
problems with commas inside the provided expressions. As an example
`REQUIRE_THROWS_AS(std::pair<int, int>(1, 2), std::invalid_argument);`
will fail to compile, because the preprocessor sees 3 arguments provided,
but the macro accepts only 2. There are two possible workarounds.
1) Use typedef:
```cpp
using int_pair = std::pair<int, int>;
REQUIRE_THROWS_AS(int_pair(1, 2), std::invalid_argument);
```
This solution is always applicable, but makes the meaning of the code
less clear.
2) Parenthesize the expression:
```cpp
TEST_CASE_METHOD((Fixture<int, int>), "foo", "[bar]") {
SUCCEED();
}
```
This solution is not always applicable, because it might require extra
changes on the Catch's side to work.
---
[Home](Readme.md#top)
[Home](Readme.md)

View File

@@ -1,250 +0,0 @@
<a id="top"></a>
# Authoring benchmarks
> [Introduced](https://github.com/catchorg/Catch2/issues/1616) in Catch 2.9.0.
Writing benchmarks is not easy. Catch simplifies certain aspects but you'll
always need to take care about various aspects. Understanding a few things about
the way Catch runs your code will be very helpful when writing your benchmarks.
First off, let's go over some terminology that will be used throughout this
guide.
- *User code*: user code is the code that the user provides to be measured.
- *Run*: one run is one execution of the user code.
- *Sample*: one sample is one data point obtained by measuring the time it takes
to perform a certain number of runs. One sample can consist of more than one
run if the clock available does not have enough resolution to accurately
measure a single run. All samples for a given benchmark execution are obtained
with the same number of runs.
## Execution procedure
Now I can explain how a benchmark is executed in Catch. There are three main
steps, though the first does not need to be repeated for every benchmark.
1. *Environmental probe*: before any benchmarks can be executed, the clock's
resolution is estimated. A few other environmental artifacts are also estimated
at this point, like the cost of calling the clock function, but they almost
never have any impact in the results.
2. *Estimation*: the user code is executed a few times to obtain an estimate of
the amount of runs that should be in each sample. This also has the potential
effect of bringing relevant code and data into the caches before the actual
measurement starts.
3. *Measurement*: all the samples are collected sequentially by performing the
number of runs estimated in the previous step for each sample.
This already gives us one important rule for writing benchmarks for Catch: the
benchmarks must be repeatable. The user code will be executed several times, and
the number of times it will be executed during the estimation step cannot be
known beforehand since it depends on the time it takes to execute the code.
User code that cannot be executed repeatedly will lead to bogus results or
crashes.
## Benchmark specification
Benchmarks can be specified anywhere inside a Catch test case.
There is a simple and a slightly more advanced version of the `BENCHMARK` macro.
Let's have a look how a naive Fibonacci implementation could be benchmarked:
```c++
std::uint64_t Fibonacci(std::uint64_t number) {
return number < 2 ? 1 : Fibonacci(number - 1) + Fibonacci(number - 2);
}
```
Now the most straight forward way to benchmark this function, is just adding a `BENCHMARK` macro to our test case:
```c++
TEST_CASE("Fibonacci") {
CHECK(Fibonacci(0) == 1);
// some more asserts..
CHECK(Fibonacci(5) == 8);
// some more asserts..
// now let's benchmark:
BENCHMARK("Fibonacci 20") {
return Fibonacci(20);
};
BENCHMARK("Fibonacci 25") {
return Fibonacci(25);
};
BENCHMARK("Fibonacci 30") {
return Fibonacci(30);
};
BENCHMARK("Fibonacci 35") {
return Fibonacci(35);
};
}
```
There's a few things to note:
- As `BENCHMARK` expands to a lambda expression it is necessary to add a semicolon after
the closing brace (as opposed to the first experimental version).
- The `return` is a handy way to avoid the compiler optimizing away the benchmark code.
Running this already runs the benchmarks and outputs something similar to:
```
-------------------------------------------------------------------------------
Fibonacci
-------------------------------------------------------------------------------
C:\path\to\Catch2\Benchmark.tests.cpp(10)
...............................................................................
benchmark name samples iterations estimated
mean low mean high mean
std dev low std dev high std dev
-------------------------------------------------------------------------------
Fibonacci 20 100 416439 83.2878 ms
2 ns 2 ns 2 ns
0 ns 0 ns 0 ns
Fibonacci 25 100 400776 80.1552 ms
3 ns 3 ns 3 ns
0 ns 0 ns 0 ns
Fibonacci 30 100 396873 79.3746 ms
17 ns 17 ns 17 ns
0 ns 0 ns 0 ns
Fibonacci 35 100 145169 87.1014 ms
468 ns 464 ns 473 ns
21 ns 15 ns 34 ns
```
### Advanced benchmarking
The simplest use case shown above, takes no arguments and just runs the user code that needs to be measured.
However, if using the `BENCHMARK_ADVANCED` macro and adding a `Catch::Benchmark::Chronometer` argument after
the macro, some advanced features are available. The contents of the simple benchmarks are invoked once per run,
while the blocks of the advanced benchmarks are invoked exactly twice:
once during the estimation phase, and another time during the execution phase.
```c++
BENCHMARK("simple"){ return long_computation(); };
BENCHMARK_ADVANCED("advanced")(Catch::Benchmark::Chronometer meter) {
set_up();
meter.measure([] { return long_computation(); });
};
```
These advanced benchmarks no longer consist entirely of user code to be measured.
In these cases, the code to be measured is provided via the
`Catch::Benchmark::Chronometer::measure` member function. This allows you to set up any
kind of state that might be required for the benchmark but is not to be included
in the measurements, like making a vector of random integers to feed to a
sorting algorithm.
A single call to `Catch::Benchmark::Chronometer::measure` performs the actual measurements
by invoking the callable object passed in as many times as necessary. Anything
that needs to be done outside the measurement can be done outside the call to
`measure`.
The callable object passed in to `measure` can optionally accept an `int`
parameter.
```c++
meter.measure([](int i) { return long_computation(i); });
```
If it accepts an `int` parameter, the sequence number of each run will be passed
in, starting with 0. This is useful if you want to measure some mutating code,
for example. The number of runs can be known beforehand by calling
`Catch::Benchmark::Chronometer::runs`; with this one can set up a different instance to be
mutated by each run.
```c++
std::vector<std::string> v(meter.runs());
std::fill(v.begin(), v.end(), test_string());
meter.measure([&v](int i) { in_place_escape(v[i]); });
```
Note that it is not possible to simply use the same instance for different runs
and resetting it between each run since that would pollute the measurements with
the resetting code.
It is also possible to just provide an argument name to the simple `BENCHMARK` macro to get
the same semantics as providing a callable to `meter.measure` with `int` argument:
```c++
BENCHMARK("indexed", i){ return long_computation(i); };
```
### Constructors and destructors
All of these tools give you a lot mileage, but there are two things that still
need special handling: constructors and destructors. The problem is that if you
use automatic objects they get destroyed by the end of the scope, so you end up
measuring the time for construction and destruction together. And if you use
dynamic allocation instead, you end up including the time to allocate memory in
the measurements.
To solve this conundrum, Catch provides class templates that let you manually
construct and destroy objects without dynamic allocation and in a way that lets
you measure construction and destruction separately.
```c++
BENCHMARK_ADVANCED("construct")(Catch::Benchmark::Chronometer meter) {
std::vector<Catch::Benchmark::storage_for<std::string>> storage(meter.runs());
meter.measure([&](int i) { storage[i].construct("thing"); });
};
BENCHMARK_ADVANCED("destroy")(Catch::Benchmark::Chronometer meter) {
std::vector<Catch::Benchmark::destructable_object<std::string>> storage(meter.runs());
for(auto&& o : storage)
o.construct("thing");
meter.measure([&](int i) { storage[i].destruct(); });
};
```
`Catch::Benchmark::storage_for<T>` objects are just pieces of raw storage suitable for `T`
objects. You can use the `Catch::Benchmark::storage_for::construct` member function to call a constructor and
create an object in that storage. So if you want to measure the time it takes
for a certain constructor to run, you can just measure the time it takes to run
this function.
When the lifetime of a `Catch::Benchmark::storage_for<T>` object ends, if an actual object was
constructed there it will be automatically destroyed, so nothing leaks.
If you want to measure a destructor, though, we need to use
`Catch::Benchmark::destructable_object<T>`. These objects are similar to
`Catch::Benchmark::storage_for<T>` in that construction of the `T` object is manual, but
it does not destroy anything automatically. Instead, you are required to call
the `Catch::Benchmark::destructable_object::destruct` member function, which is what you
can use to measure the destruction time.
### The optimizer
Sometimes the optimizer will optimize away the very code that you want to
measure. There are several ways to use results that will prevent the optimiser
from removing them. You can use the `volatile` keyword, or you can output the
value to standard output or to a file, both of which force the program to
actually generate the value somehow.
Catch adds a third option. The values returned by any function provided as user
code are guaranteed to be evaluated and not optimised out. This means that if
your user code consists of computing a certain value, you don't need to bother
with using `volatile` or forcing output. Just `return` it from the function.
That helps with keeping the code in a natural fashion.
Here's an example:
```c++
// may measure nothing at all by skipping the long calculation since its
// result is not used
BENCHMARK("no return"){ long_calculation(); };
// the result of long_calculation() is guaranteed to be computed somehow
BENCHMARK("with return"){ return long_calculation(); };
```
However, there's no other form of control over the optimizer whatsoever. It is
up to you to write a benchmark that actually measures what you want and doesn't
just measure the time to do a whole bunch of nothing.
To sum up, there are two simple rules: whatever you would do in handwritten code
to control optimization still works in Catch; and Catch makes return values
from user code into observable effects that can't be optimized away.
<i>Adapted from nonius' documentation.</i>

86
docs/build-systems.md Normal file
View File

@@ -0,0 +1,86 @@
# Integration with build systems
Build Systems may refer to low-level tools, like CMake, or larger systems that run on servers, like Jenkins or TeamCity. This page will talk about both.
# Continuous Integration systems
Probably the most important aspect to using Catch with a build server is the use of different reporters. Catch comes bundled with three reporters that should cover the majority of build servers out there - although adding more for better integration with some is always a possibility (as has been done with TeamCity).
Two of these reporters are built in (XML and JUnit) and the third (TeamCity) is included as a separate header. It's possible that the other two may be split out in the future too - as that would make the core of Catch smaller for those that don't need them.
## XML Reporter
```-r xml```
The XML Reporter writes in an XML format that is specific to Catch.
The advantage of this format is that it corresponds well to the way Catch works (especially the more unusual features, such as nested sections) and is a fully streaming format - that is it writes output as it goes, without having to store up all its results before it can start writing.
The disadvantage is that, being specific to Catch, no existing build servers understand the format natively. It can be used as input to an XSLT transformation that could covert it to, say, HTML - although this loses the streaming advantage, of course.
## JUnit Reporter
```-r junit```
The JUnit Reporter writes in an XML format that mimics the JUnit ANT schema.
The advantage of this format is that the JUnit Ant schema is widely understood by most build servers and so can usually be consumed with no additional work.
The disadvantage is that this schema was designed to correspond to how JUnit works - and there is a significant mismatch with how Catch works. Additionally the format is not streamable (because opening elements hold counts of failed and passing tests as attributes) - so the whole test run must complete before it can be written.
## TeamCity Reporter
```-r teamcity```
The TeamCity Reporter writes TeamCity service messages to stdout. In order to be able to use this reporter an additional header must also be included.
```catch_reporter_teamcity.hpp``` can be found in the ```include\reporters``` directory. It should be included in the same file that ```#define```s ```CATCH_CONFIG_MAIN``` or ```CATCH_CONFIG_RUNNER```. The ```#include``` should be placed after ```#include```ing Catch itself.
e.g.:
```
#define CATCH_CONFIG_MAIN
#include "catch.hpp"
#include "catch_reporter_teamcity.hpp"
```
Being specific to TeamCity this is the best reporter to use with it - but it is completely unsuitable for any other purpose. It is a streaming format (it writes as it goes) - although test results don't appear in the TeamCity interface until the completion of a suite (usually the whole test run).
# Low-level tools
## CMake
You can use the following CMake script to automatically fetch Catch from github and configure it as an external project:
```CMake
cmake_minimum_required(VERSION 2.8.8)
project(catch_builder CXX)
include(ExternalProject)
find_package(Git REQUIRED)
ExternalProject_Add(
catch
PREFIX ${CMAKE_BINARY_DIR}/catch
GIT_REPOSITORY https://github.com/philsquared/Catch.git
TIMEOUT 10
UPDATE_COMMAND ${GIT_EXECUTABLE} pull
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
LOG_DOWNLOAD ON
)
# Expose required variable (CATCH_INCLUDE_DIR) to parent scope
ExternalProject_Get_Property(catch source_dir)
set(CATCH_INCLUDE_DIR ${source_dir}/include CACHE INTERNAL "Path to include folder for Catch")
```
If you put it in, e.g., `${PROJECT_SRC_DIR}/${EXT_PROJECTS_DIR}/catch/`, you can use it in your project by adding the following to your root CMake file:
```CMake
# Includes Catch in the project:
add_subdirectory(${EXT_PROJECTS_DIR}/catch)
include_directories(${CATCH_INCLUDE_DIR} ${COMMON_INCLUDES})
enable_testing(true) # Enables unit-testing.
```
---
[Home](Readme.md)

View File

@@ -1,112 +0,0 @@
<a id="top"></a>
# CI and other odd pieces
**Contents**<br>
[Continuous Integration systems](#continuous-integration-systems)<br>
[Other reporters](#other-reporters)<br>
[Low-level tools](#low-level-tools)<br>
[CMake](#cmake)<br>
This page talks about how Catch integrates with Continuous Integration
Build Systems may refer to low-level tools, like CMake, or larger systems that run on servers, like Jenkins or TeamCity. This page will talk about both.
## Continuous Integration systems
Probably the most important aspect to using Catch with a build server is the use of different reporters. Catch comes bundled with three reporters that should cover the majority of build servers out there - although adding more for better integration with some is always a possibility (currently we also offer TeamCity, TAP, Automake and SonarQube reporters).
Two of these reporters are built in (XML and JUnit) and the third (TeamCity) is included as a separate header. It's possible that the other two may be split out in the future too - as that would make the core of Catch smaller for those that don't need them.
### XML Reporter
```-r xml```
The XML Reporter writes in an XML format that is specific to Catch.
The advantage of this format is that it corresponds well to the way Catch works (especially the more unusual features, such as nested sections) and is a fully streaming format - that is it writes output as it goes, without having to store up all its results before it can start writing.
The disadvantage is that, being specific to Catch, no existing build servers understand the format natively. It can be used as input to an XSLT transformation that could convert it to, say, HTML - although this loses the streaming advantage, of course.
### JUnit Reporter
```-r junit```
The JUnit Reporter writes in an XML format that mimics the JUnit ANT schema.
The advantage of this format is that the JUnit Ant schema is widely understood by most build servers and so can usually be consumed with no additional work.
The disadvantage is that this schema was designed to correspond to how JUnit works - and there is a significant mismatch with how Catch works. Additionally the format is not streamable (because opening elements hold counts of failed and passing tests as attributes) - so the whole test run must complete before it can be written.
## Other reporters
Other reporters are not part of the single-header distribution and need
to be downloaded and included separately. All reporters are stored in
`single_include` directory in the git repository, and are named
`catch_reporter_*.hpp`. For example, to use the TeamCity reporter you
need to download `single_include/catch_reporter_teamcity.hpp` and include
it after Catch itself.
```cpp
#define CATCH_CONFIG_MAIN
#include "catch.hpp"
#include "catch_reporter_teamcity.hpp"
```
### TeamCity Reporter
```-r teamcity```
The TeamCity Reporter writes TeamCity service messages to stdout. In order to be able to use this reporter an additional header must also be included.
Being specific to TeamCity this is the best reporter to use with it - but it is completely unsuitable for any other purpose. It is a streaming format (it writes as it goes) - although test results don't appear in the TeamCity interface until the completion of a suite (usually the whole test run).
### Automake Reporter
```-r automake```
The Automake Reporter writes out the [meta tags](https://www.gnu.org/software/automake/manual/html_node/Log-files-generation-and-test-results-recording.html#Log-files-generation-and-test-results-recording) expected by automake via `make check`.
### TAP (Test Anything Protocol) Reporter
```-r tap```
Because of the incremental nature of Catch's test suites and ability to run specific tests, our implementation of TAP reporter writes out the number of tests in a suite last.
### SonarQube Reporter
```-r sonarqube```
[SonarQube Generic Test Data](https://docs.sonarqube.org/latest/analysis/generic-test/) XML format for tests metrics.
## Low-level tools
### Precompiled headers (PCHs)
Catch offers prototypal support for being included in precompiled headers, but because of its single-header nature it does need some actions by the user:
* The precompiled header needs to define `CATCH_CONFIG_ALL_PARTS`
* The implementation file needs to
* undefine `TWOBLUECUBES_SINGLE_INCLUDE_CATCH_HPP_INCLUDED`
* define `CATCH_CONFIG_IMPL_ONLY`
* define `CATCH_CONFIG_MAIN` or `CATCH_CONFIG_RUNNER`
* include "catch.hpp" again
### CodeCoverage module (GCOV, LCOV...)
If you are using GCOV tool to get testing coverage of your code, and are not sure how to integrate it with CMake and Catch, there should be an external example over at https://github.com/fkromer/catch_cmake_coverage
### pkg-config
Catch2 provides a rudimentary pkg-config integration, by registering itself
under the name `catch2`. This means that after Catch2 is installed, you
can use `pkg-config` to get its include path: `pkg-config --cflags catch2`.
### gdb and lldb scripts
Catch2's `contrib` folder also contains two simple debugger scripts,
`gdbinit` for `gdb` and `lldbinit` for `lldb`. If loaded into their
respective debugger, these will tell it to step over Catch2's internals
when stepping through code.
## CMake
[As it has been getting kinda long, the documentation of Catch2's
integration with CMake has been moved to its own page.](cmake-integration.md#top)
---
[Home](Readme.md#top)

View File

@@ -1,284 +0,0 @@
<a id="top"></a>
# CMake integration
**Contents**<br>
[CMake target](#cmake-target)<br>
[Automatic test registration](#automatic-test-registration)<br>
[CMake project options](#cmake-project-options)<br>
[Installing Catch2 from git repository](#installing-catch2-from-git-repository)<br>
[Installing Catch2 from vcpkg](#installing-catch2-from-vcpkg)<br>
Because we use CMake to build Catch2, we also provide a couple of
integration points for our users.
1) Catch2 exports a (namespaced) CMake target
2) Catch2's repository contains CMake scripts for automatic registration
of `TEST_CASE`s in CTest
## CMake target
Catch2's CMake build exports an interface target `Catch2::Catch2`. Linking
against it will add the proper include path and all necessary capabilities
to the resulting binary.
This means that if Catch2 has been installed on the system, it should be
enough to do:
```cmake
find_package(Catch2 REQUIRED)
target_link_libraries(tests Catch2::Catch2)
```
This target is also provided when Catch2 is used as a subdirectory.
Assuming that Catch2 has been cloned to `lib/Catch2`:
```cmake
add_subdirectory(lib/Catch2)
target_link_libraries(tests Catch2::Catch2)
```
Another possibility is to use [FetchContent](https://cmake.org/cmake/help/latest/module/FetchContent.html):
```cmake
Include(FetchContent)
FetchContent_Declare(
Catch2
GIT_REPOSITORY https://github.com/catchorg/Catch2.git
GIT_TAG v2.13.1)
FetchContent_MakeAvailable(Catch2)
target_link_libraries(tests Catch2::Catch2)
```
## Automatic test registration
Catch2's repository also contains two CMake scripts that help users
with automatically registering their `TEST_CASE`s with CTest. They
can be found in the `contrib` folder, and are
1) `Catch.cmake` (and its dependency `CatchAddTests.cmake`)
2) `ParseAndAddCatchTests.cmake`
If Catch2 has been installed in system, both of these can be used after
doing `find_package(Catch2 REQUIRED)`. Otherwise you need to add them
to your CMake module path.
### `Catch.cmake` and `CatchAddTests.cmake`
`Catch.cmake` provides function `catch_discover_tests` to get tests from
a target. This function works by running the resulting executable with
`--list-test-names-only` flag, and then parsing the output to find all
existing tests.
#### Usage
```cmake
cmake_minimum_required(VERSION 3.5)
project(baz LANGUAGES CXX VERSION 0.0.1)
find_package(Catch2 REQUIRED)
add_executable(foo test.cpp)
target_link_libraries(foo Catch2::Catch2)
include(CTest)
include(Catch)
catch_discover_tests(foo)
```
#### Customization
`catch_discover_tests` can be given several extra argumets:
```cmake
catch_discover_tests(target
[TEST_SPEC arg1...]
[EXTRA_ARGS arg1...]
[WORKING_DIRECTORY dir]
[TEST_PREFIX prefix]
[TEST_SUFFIX suffix]
[PROPERTIES name1 value1...]
[TEST_LIST var]
[REPORTER reporter]
[OUTPUT_DIR dir]
[OUTPUT_PREFIX prefix]
[OUTPUT_SUFFIX suffix]
)
```
* `TEST_SPEC arg1...`
Specifies test cases, wildcarded test cases, tags and tag expressions to
pass to the Catch executable alongside the `--list-test-names-only` flag.
* `EXTRA_ARGS arg1...`
Any extra arguments to pass on the command line to each test case.
* `WORKING_DIRECTORY dir`
Specifies the directory in which to run the discovered test cases. If this
option is not provided, the current binary directory is used.
* `TEST_PREFIX prefix`
Specifies a _prefix_ to be added to the name of each discovered test case.
This can be useful when the same test executable is being used in multiple
calls to `catch_discover_tests()`, with different `TEST_SPEC` or `EXTRA_ARGS`.
* `TEST_SUFFIX suffix`
Same as `TEST_PREFIX`, except it specific the _suffix_ for the test names.
Both `TEST_PREFIX` and `TEST_SUFFIX` can be specified at the same time.
* `PROPERTIES name1 value1...`
Specifies additional properties to be set on all tests discovered by this
invocation of `catch_discover_tests`.
* `TEST_LIST var`
Make the list of tests available in the variable `var`, rather than the
default `<target>_TESTS`. This can be useful when the same test
executable is being used in multiple calls to `catch_discover_tests()`.
Note that this variable is only available in CTest.
* `REPORTER reporter`
Use the specified reporter when running the test case. The reporter will
be passed to the test runner as `--reporter reporter`.
* `OUTPUT_DIR dir`
If specified, the parameter is passed along as
`--out dir/<test_name>` to test executable. The actual file name is the
same as the test name. This should be used instead of
`EXTRA_ARGS --out foo` to avoid race conditions writing the result output
when using parallel test execution.
* `OUTPUT_PREFIX prefix`
May be used in conjunction with `OUTPUT_DIR`.
If specified, `prefix` is added to each output file name, like so
`--out dir/prefix<test_name>`.
* `OUTPUT_SUFFIX suffix`
May be used in conjunction with `OUTPUT_DIR`.
If specified, `suffix` is added to each output file name, like so
`--out dir/<test_name>suffix`. This can be used to add a file extension to
the output file name e.g. ".xml".
### `ParseAndAddCatchTests.cmake`
`ParseAndAddCatchTests` works by parsing all implementation files
associated with the provided target, and registering them via CTest's
`add_test`. This approach has some limitations, such as the fact that
commented-out tests will be registered anyway.
#### Usage
```cmake
cmake_minimum_required(VERSION 3.5)
project(baz LANGUAGES CXX VERSION 0.0.1)
find_package(Catch2 REQUIRED)
add_executable(foo test.cpp)
target_link_libraries(foo Catch2::Catch2)
include(CTest)
include(ParseAndAddCatchTests)
ParseAndAddCatchTests(foo)
```
#### Customization
`ParseAndAddCatchTests` provides some customization points:
* `PARSE_CATCH_TESTS_VERBOSE` -- When `ON`, the script prints debug
messages. Defaults to `OFF`.
* `PARSE_CATCH_TESTS_NO_HIDDEN_TESTS` -- When `ON`, hidden tests (tests
tagged with either of `[.]` or `[.foo]`) will not be registered.
Defaults to `OFF`.
* `PARSE_CATCH_TESTS_ADD_FIXTURE_IN_TEST_NAME` -- When `ON`, adds fixture
class name to the test name in CTest. Defaults to `ON`.
* `PARSE_CATCH_TESTS_ADD_TARGET_IN_TEST_NAME` -- When `ON`, adds target
name to the test name in CTest. Defaults to `ON`.
* `PARSE_CATCH_TESTS_ADD_TO_CONFIGURE_DEPENDS` -- When `ON`, adds test
file to `CMAKE_CONFIGURE_DEPENDS`. This means that the CMake configuration
step will be re-ran when the test files change, letting new tests be
automatically discovered. Defaults to `OFF`.
Optionally, one can specify a launching command to run tests by setting the
variable `OptionalCatchTestLauncher` before calling `ParseAndAddCatchTests`. For
instance to run some tests using `MPI` and other sequentially, one can write
```cmake
set(OptionalCatchTestLauncher ${MPIEXEC} ${MPIEXEC_NUMPROC_FLAG} ${NUMPROC})
ParseAndAddCatchTests(mpi_foo)
unset(OptionalCatchTestLauncher)
ParseAndAddCatchTests(bar)
```
## CMake project options
Catch2's CMake project also provides some options for other projects
that consume it. These are
* `CATCH_BUILD_TESTING` -- When `ON`, Catch2's SelfTest project will be
built. Defaults to `ON`. Note that Catch2 also obeys `BUILD_TESTING` CMake
variable, so _both_ of them need to be `ON` for the SelfTest to be built,
and either of them can be set to `OFF` to disable building SelfTest.
* `CATCH_BUILD_EXAMPLES` -- When `ON`, Catch2's usage examples will be
built. Defaults to `OFF`.
* `CATCH_INSTALL_DOCS` -- When `ON`, Catch2's documentation will be
included in the installation. Defaults to `ON`.
* `CATCH_INSTALL_HELPERS` -- When `ON`, Catch2's contrib folder will be
included in the installation. Defaults to `ON`.
* `BUILD_TESTING` -- When `ON` and the project is not used as a subproject,
Catch2's test binary will be built. Defaults to `ON`.
## Installing Catch2 from git repository
If you cannot install Catch2 from a package manager (e.g. Ubuntu 16.04
provides catch only in version 1.2.0) you might want to install it from
the repository instead. Assuming you have enough rights, you can just
install it to the default location, like so:
```
$ git clone https://github.com/catchorg/Catch2.git
$ cd Catch2
$ cmake -Bbuild -H. -DBUILD_TESTING=OFF
$ sudo cmake --build build/ --target install
```
If you do not have superuser rights, you will also need to specify
[CMAKE_INSTALL_PREFIX](https://cmake.org/cmake/help/latest/variable/CMAKE_INSTALL_PREFIX.html)
when configuring the build, and then modify your calls to
[find_package](https://cmake.org/cmake/help/latest/command/find_package.html)
accordingly.
## Installing Catch2 from vcpkg
Alternatively, you can build and install Catch2 using [vcpkg](https://github.com/microsoft/vcpkg/) dependency manager:
```
git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.sh
./vcpkg integrate install
./vcpkg install catch2
```
The catch2 port in vcpkg is kept up to date by microsoft team members and community contributors.
If the version is out of date, please [create an issue or pull request](https://github.com/Microsoft/vcpkg) on the vcpkg repository.
---
[Home](Readme.md#top)

View File

@@ -1,37 +1,5 @@
<a id="top"></a>
# Command line
**Contents**<br>
[Specifying which tests to run](#specifying-which-tests-to-run)<br>
[Choosing a reporter to use](#choosing-a-reporter-to-use)<br>
[Breaking into the debugger](#breaking-into-the-debugger)<br>
[Showing results for successful tests](#showing-results-for-successful-tests)<br>
[Aborting after a certain number of failures](#aborting-after-a-certain-number-of-failures)<br>
[Listing available tests, tags or reporters](#listing-available-tests-tags-or-reporters)<br>
[Sending output to a file](#sending-output-to-a-file)<br>
[Naming a test run](#naming-a-test-run)<br>
[Eliding assertions expected to throw](#eliding-assertions-expected-to-throw)<br>
[Make whitespace visible](#make-whitespace-visible)<br>
[Warnings](#warnings)<br>
[Reporting timings](#reporting-timings)<br>
[Load test names to run from a file](#load-test-names-to-run-from-a-file)<br>
[Just test names](#just-test-names)<br>
[Specify the order test cases are run](#specify-the-order-test-cases-are-run)<br>
[Specify a seed for the Random Number Generator](#specify-a-seed-for-the-random-number-generator)<br>
[Identify framework and version according to the libIdentify standard](#identify-framework-and-version-according-to-the-libidentify-standard)<br>
[Wait for key before continuing](#wait-for-key-before-continuing)<br>
[Specify the number of benchmark samples to collect](#specify-the-number-of-benchmark-samples-to-collect)<br>
[Specify the number of resamples for bootstrapping](#specify-the-number-of-resamples-for-bootstrapping)<br>
[Specify the confidence-interval for bootstrapping](#specify-the-confidence-interval-for-bootstrapping)<br>
[Disable statistical analysis of collected benchmark samples](#disable-statistical-analysis-of-collected-benchmark-samples)<br>
[Specify the amount of time in milliseconds spent on warming up each test](#specify-the-amount-of-time-in-milliseconds-spent-on-warming-up-each-test)<br>
[Usage](#usage)<br>
[Specify the section to run](#specify-the-section-to-run)<br>
[Filenames as tags](#filenames-as-tags)<br>
[Override output colouring](#override-output-colouring)<br>
Catch works quite nicely without any command line options at all - but for those times when you want greater control the following options are available.
Click one of the following links to take you straight to that option - or scroll on to browse the available options.
Click one of the followings links to take you straight to that option - or scroll on to browse the available options.
<a href="#specifying-which-tests-to-run"> ` <test-spec> ...`</a><br />
<a href="#usage"> ` -h, -?, --help`</a><br />
@@ -49,9 +17,6 @@ Click one of the following links to take you straight to that option - or scroll
<a href="#warnings"> ` -w, --warn`</a><br />
<a href="#reporting-timings"> ` -d, --durations`</a><br />
<a href="#input-file"> ` -f, --input-file`</a><br />
<a href="#run-section"> ` -c, --section`</a><br />
<a href="#filenames-as-tags"> ` -#, --filenames-as-tags`</a><br />
</br>
@@ -59,14 +24,6 @@ Click one of the following links to take you straight to that option - or scroll
<a href="#listing-available-tests-tags-or-reporters"> ` --list-reporters`</a><br />
<a href="#order"> ` --order`</a><br />
<a href="#rng-seed"> ` --rng-seed`</a><br />
<a href="#libidentify"> ` --libidentify`</a><br />
<a href="#wait-for-keypress"> ` --wait-for-keypress`</a><br />
<a href="#benchmark-samples"> ` --benchmark-samples`</a><br />
<a href="#benchmark-resamples"> ` --benchmark-resamples`</a><br />
<a href="#benchmark-confidence-interval"> ` --benchmark-confidence-interval`</a><br />
<a href="#benchmark-no-analysis"> ` --benchmark-no-analysis`</a><br />
<a href="#benchmark-warmup-time"> ` --benchmark-warmup-time`</a><br />
<a href="#use-colour"> ` --use-colour`</a><br />
</br>
@@ -88,7 +45,7 @@ Wildcards consist of the `*` character at the beginning and/or end of test case
Test specs are case insensitive.
If a spec is prefixed with `exclude:` or the `~` character then the pattern matches an exclusion. This means that tests matching the pattern are excluded from the set - even if a prior inclusion spec included them. Subsequent inclusion specs will take precedence, however.
If a spec is prefixed with `exclude:` or the `~` character then the pattern matches an exclusion. This means that tests matching the pattern are excluded from the set - even if a prior inclusion spec included them. Subsequent inclusion specs will take precendence, however.
Inclusions and exclusions are evaluated in left-to-right order.
Test case examples:
@@ -101,17 +58,14 @@ exclude:notThis Matches all tests except, 'notThis'
~*private* Matches all tests except those that contain 'private'
a* ~ab* abc Matches all tests that start with 'a', except those that
start with 'ab', except 'abc', which is included
-# [#somefile] Matches all tests from the file 'somefile.cpp'
</pre>
Names within square brackets are interpreted as tags.
A series of tags form an AND expression whereas a comma-separated sequence forms an OR expression. e.g.:
A series of tags form an AND expression wheras a comma-separated sequence forms an OR expression. e.g.:
<pre>[one][two],[three]</pre>
This matches all tests tagged `[one]` and `[two]`, as well as all tests tagged `[three]`
Test names containing special characters, such as `,` or `[` can specify them on the command line using `\`.
`\` also escapes itself.
<a id="choosing-a-reporter-to-use"></a>
## Choosing a reporter to use
@@ -133,9 +87,8 @@ The JUnit reporter is an xml format that follows the structure of the JUnit XML
## Breaking into the debugger
<pre>-b, --break</pre>
Under most debuggers Catch2 is capable of automatically breaking on a test
failure. This allows the user to see the current state of the test during
failure.
In some IDEs (currently XCode and Visual Studio) it is possible for Catch to break into the debugger on a test failure. This can be very helpful during debug sessions - especially when there is more than one path through a particular test.
In addition to the command line option, ensure you have built your code with the DEBUG preprocessor symbol
<a id="showing-results-for-successful-tests"></a>
## Showing results for successful tests
@@ -162,7 +115,7 @@ Sometimes this results in a flood of failure messages and you'd rather just see
--list-reporters
</pre>
```-l``` or ```--list-tests``` will list all registered tests, along with any tags.
```-l``` or ```--list-tests`` will list all registered tests, along with any tags.
If one or more test-specs have been supplied too then only the matching tests will be listed.
```-t``` or ```--list-tags``` lists all available tags, along with the number of test cases they match. Again, supplying test specs limits the tags that match.
@@ -205,16 +158,9 @@ This option transforms tabs and newline characters into ```\t``` and ```\n``` re
## Warnings
<pre>-w, --warn &lt;warning name></pre>
Enables reporting of suspicious test states. There are currently two
available warnings
```
NoAssertions // Fail test case / leaf section if no assertions
// (e.g. `REQUIRE`) is encountered.
NoTests // Return non-zero exit code when no test cases were run
// Also calls reporter's noMatchingTestCases method
```
Enables reporting of warnings (only one, at time of this writing). If a warning is issued it fails the test.
The ony available warning, presently, is ```NoAssertions```. This warning fails a test case, or (leaf) section if no assertions (```REQUIRE```/ ```CHECK``` etc) are encountered.
<a id="reporting-timings"></a>
## Reporting timings
@@ -222,16 +168,6 @@ available warnings
When set to ```yes``` Catch will report the duration of each test case, in milliseconds. Note that it does this regardless of whether a test case passes or fails. Note, also, the certain reporters (e.g. Junit) always report test case durations regardless of this option being set or not.
<pre>-D, --min-duration &lt;value></pre>
> `--min-duration` was [introduced](https://github.com/catchorg/Catch2/pull/1910) in Catch 2.13.0
When set, Catch will report the duration of each test case that took more
than &lt;value> seconds, in milliseconds. This option is overriden by both
`-d yes` and `-d no`, so that either all durations are reported, or none
are.
<a id="input-file"></a>
## Load test names to run from a file
<pre>-f, --input-file &lt;filename></pre>
@@ -253,25 +189,15 @@ This option lists all available tests in a non-indented form, one on each line.
Test cases are ordered one of three ways:
### decl
Declaration order (this is the default order if no --order argument is provided).
Tests in the same TU are sorted using their declaration orders, different
TUs are in an implementation (linking) dependent order.
### decl
Declaration order. The order the tests were originally declared in. Note that ordering between files is not guaranteed and is implementation dependent.
### lex
Lexicographic order. Tests are sorted by their name, their tags are ignored.
Lexicographically sorted. Tests are sorted, alpha-numerically, by name.
### rand
Randomly sorted. The order is dependent on Catch2's random seed (see
[`--rng-seed`](#rng-seed)), and is subset invariant. What this means
is that as long as the random seed is fixed, running only some tests
(e.g. via tag) does not change their relative order.
> The subset stability was introduced in Catch2 v2.12.0
Randomly sorted. Test names are sorted using ```std::random_shuffle()```. By default the random number generator is seeded with 0 - and so the order is repeatable. To control the random seed see <a href="#rng-seed">rng-seed</a>.
<a id="rng-seed"></a>
## Specify a seed for the Random Number Generator
@@ -279,143 +205,16 @@ is that as long as the random seed is fixed, running only some tests
Sets a seed for the random number generator using ```std::srand()```.
If a number is provided this is used directly as the seed so the random pattern is repeatable.
Alternatively if the keyword ```time``` is provided then the result of calling ```std::time(0)``` is used and so the pattern becomes unpredictable. In some cases, you might need to pass the keyword ```time``` in double quotes instead of single quotes.
Alternatively if the keyword ```time``` is provided then the result of calling ```std::time(0)``` is used and so the pattern becomes unpredictable.
In either case the actual value for the seed is printed as part of Catch's output so if an issue is discovered that is sensitive to test ordering the ordering can be reproduced - even if it was originally seeded from ```std::time(0)```.
<a id="libidentify"></a>
## Identify framework and version according to the libIdentify standard
<pre>--libidentify</pre>
See [The LibIdentify repo for more information and examples](https://github.com/janwilmans/LibIdentify).
<a id="wait-for-keypress"></a>
## Wait for key before continuing
<pre>--wait-for-keypress &lt;never|start|exit|both&gt;</pre>
Will cause the executable to print a message and wait until the return/ enter key is pressed before continuing -
either before running any tests, after running all tests - or both, depending on the argument.
<a id="benchmark-samples"></a>
## Specify the number of benchmark samples to collect
<pre>--benchmark-samples &lt;# of samples&gt;</pre>
> [Introduced](https://github.com/catchorg/Catch2/issues/1616) in Catch 2.9.0.
When running benchmarks a number of "samples" is collected. This is the base data for later statistical analysis.
Per sample a clock resolution dependent number of iterations of the user code is run, which is independent of the number of samples. Defaults to 100.
<a id="benchmark-resamples"></a>
## Specify the number of resamples for bootstrapping
<pre>--benchmark-resamples &lt;# of resamples&gt;</pre>
> [Introduced](https://github.com/catchorg/Catch2/issues/1616) in Catch 2.9.0.
After the measurements are performed, statistical [bootstrapping] is performed
on the samples. The number of resamples for that bootstrapping is configurable
but defaults to 100000. Due to the bootstrapping it is possible to give
estimates for the mean and standard deviation. The estimates come with a lower
bound and an upper bound, and the confidence interval (which is configurable but
defaults to 95%).
[bootstrapping]: http://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29
<a id="benchmark-confidence-interval"></a>
## Specify the confidence-interval for bootstrapping
<pre>--benchmark-confidence-interval &lt;confidence-interval&gt;</pre>
> [Introduced](https://github.com/catchorg/Catch2/issues/1616) in Catch 2.9.0.
The confidence-interval is used for statistical bootstrapping on the samples to
calculate the upper and lower bounds of mean and standard deviation.
Must be between 0 and 1 and defaults to 0.95.
<a id="benchmark-no-analysis"></a>
## Disable statistical analysis of collected benchmark samples
<pre>--benchmark-no-analysis</pre>
> [Introduced](https://github.com/catchorg/Catch2/issues/1616) in Catch 2.9.0.
When this flag is specified no bootstrapping or any other statistical analysis is performed.
Instead the user code is only measured and the plain mean from the samples is reported.
<a id="benchmark-warmup-time"></a>
## Specify the amount of time in milliseconds spent on warming up each test
<pre>--benchmark-warmup-time</pre>
> [Introduced](https://github.com/catchorg/Catch2/pull/1844) in Catch 2.11.2.
Configure the amount of time spent warming up each test.
<a id="usage"></a>
## Usage
<pre>-h, -?, --help</pre>
Prints the command line arguments to stdout
<a id="run-section"></a>
## Specify the section to run
<pre>-c, --section &lt;section name&gt;</pre>
To limit execution to a specific section within a test case, use this option one or more times.
To narrow to sub-sections use multiple instances, where each subsequent instance specifies a deeper nesting level.
E.g. if you have:
<pre>
TEST_CASE( "Test" ) {
SECTION( "sa" ) {
SECTION( "sb" ) {
/*...*/
}
SECTION( "sc" ) {
/*...*/
}
}
SECTION( "sd" ) {
/*...*/
}
}
</pre>
Then you can run `sb` with:
<pre>./MyExe Test -c sa -c sb</pre>
Or run just `sd` with:
<pre>./MyExe Test -c sd</pre>
To run all of `sa`, including `sb` and `sc` use:
<pre>./MyExe Test -c sa</pre>
There are some limitations of this feature to be aware of:
- Code outside of sections being skipped will still be executed - e.g. any set-up code in the TEST_CASE before the
start of the first section.</br>
- At time of writing, wildcards are not supported in section names.
- If you specify a section without narrowing to a test case first then all test cases will be executed
(but only matching sections within them).
<a id="filenames-as-tags"></a>
## Filenames as tags
<pre>-#, --filenames-as-tags</pre>
When this option is used then every test is given an additional tag which is formed of the unqualified
filename it is found in, with any extension stripped, prefixed with the `#` character.
So, for example, tests within the file `~\Dev\MyProject\Ferrets.cpp` would be tagged `[#Ferrets]`.
<a id="use-colour"></a>
## Override output colouring
<pre>--use-colour &lt;yes|no|auto&gt;</pre>
Catch colours output for terminals, but omits colouring when it detects that
output is being sent to a pipe. This is done to avoid interfering with automated
processing of output.
`--use-colour yes` forces coloured output, `--use-colour no` disables coloured
output. The default behaviour is `--use-colour auto`.
---
[Home](Readme.md#top)
[Home](Readme.md)

View File

@@ -1,22 +0,0 @@
<a id="top"></a>
# Commercial users of Catch
As well as [Open Source](opensource-users.md#top) users Catch is widely used within proprietary code bases too.
Many organisations like to keep this information internal, and that's fine,
but if you're more open it would be great if we could list the names of as
many organisations as possible that use Catch somewhere in their codebase.
Enterprise environments often tend to be far more conservative in their tool adoption -
and being aware that other companies are using Catch can ease the path in.
So if you are aware of Catch usage in your organisation, and are fairly confident there is no issue with sharing this
fact then please let us know - either directly, via a PR or
[issue](https://github.com/philsquared/Catch/issues), or on the [forums](https://groups.google.com/forum/?fromgroups#!forum/catch-forum).
- Bloomberg
- [Bloomlife](https://bloomlife.com)
- NASA
- [Inscopix Inc.](https://www.inscopix.com/)
- [Makimo](https://makimo.pl/)
- [UX3D](https://ux3d.io)
- [King](https://king.com)

View File

@@ -1,38 +1,26 @@
<a id="top"></a>
# Compile-time configuration
**Contents**<br>
[Prefixing Catch macros](#prefixing-catch-macros)<br>
[Terminal colour](#terminal-colour)<br>
[Console width](#console-width)<br>
[stdout](#stdout)<br>
[Fallback stringifier](#fallback-stringifier)<br>
[Default reporter](#default-reporter)<br>
[C++11 toggles](#c11-toggles)<br>
[C++17 toggles](#c17-toggles)<br>
[Other toggles](#other-toggles)<br>
[Windows header clutter](#windows-header-clutter)<br>
[Enabling stringification](#enabling-stringification)<br>
[Disabling exceptions](#disabling-exceptions)<br>
[Overriding Catch's debug break (`-b`)](#overriding-catchs-debug-break--b)<br>
Catch is designed to "just work" as much as possible. For most people the only configuration needed is telling Catch which source file should host all the implementation code (```CATCH_CONFIG_MAIN```).
Nonetheless there are still some occasions where finer control is needed. For these occasions Catch exposes a set of macros for configuring how it is built.
Nonetheless there are still some occasions where finer control is needed. For these occasions Catch exposes a small set of macros for configuring how it is built.
# main()/ implementation
## Prefixing Catch macros
CATCH_CONFIG_MAIN // Designates this as implementation file and defines main()
CATCH_CONFIG_RUNNER // Designates this as implementation file
CATCH_CONFIG_PREFIX_ALL
Although Catch is header only it still, internally, maintains a distinction between interface headers and headers that contain implementation. Only one source file in your test project should compile the implementation headers and this is controlled through the use of one of these macros - one of these identifiers should be defined before including Catch in *exactly one implementation file in your project*.
# Prefixing Catch macros
CATCH_CONFIG_PREFIX_ALL
To keep test code clean and uncluttered Catch uses short macro names (e.g. ```TEST_CASE``` and ```REQUIRE```). Occasionally these may conflict with identifiers from platform headers or the system under test. In this case the above identifier can be defined. This will cause all the Catch user macros to be prefixed with ```CATCH_``` (e.g. ```CATCH_TEST_CASE``` and ```CATCH_REQUIRE```).
## Terminal colour
# Terminal colour
CATCH_CONFIG_COLOUR_NONE // completely disables all text colouring
CATCH_CONFIG_COLOUR_WINDOWS // forces the Win32 console API to be used
CATCH_CONFIG_COLOUR_ANSI // forces ANSI colour codes to be used
CATCH_CONFIG_COLOUR_NONE // completely disables all text colouring
CATCH_CONFIG_COLOUR_WINDOWS // forces the Win32 console API to be used
CATCH_CONFIG_COLOUR_ANSI // forces ANSI colour codes to be used
Yes, I am English, so I will continue to spell "colour" with a 'u'.
@@ -44,211 +32,42 @@ Note that when ANSI colour codes are used "unistd.h" must be includable - along
Typically you should place the ```#define``` before #including "catch.hpp" in your main source file - but if you prefer you can define it for your whole project by whatever your IDE or build system provides for you to do so.
## Console width
# Console width
CATCH_CONFIG_CONSOLE_WIDTH = x // where x is a number
CATCH_CONFIG_CONSOLE_WIDTH = x // where x is a number
Catch formats output intended for the console to fit within a fixed number of characters. This is especially important as indentation is used extensively and uncontrolled line wraps break this.
By default a console width of 80 is assumed but this can be controlled by defining the above identifier to be a different value.
## stdout
# stdout
CATCH_CONFIG_NOSTDOUT
CATCH_CONFIG_NOSTDOUT
To support platforms that do not provide `std::cout`, `std::cerr` and
`std::clog`, Catch does not usem the directly, but rather calls
`Catch::cout`, `Catch::cerr` and `Catch::clog`. You can replace their
implementation by defining `CATCH_CONFIG_NOSTDOUT` and implementing
them yourself, their signatures are:
Catch does not use ```std::cout``` and ```std::cerr``` directly but gets them from ```Catch::cout()``` and ```Catch::cerr()``` respectively. If the above identifier is defined these functions are left unimplemented and you must implement them yourself. Their signatures are:
std::ostream& cout();
std::ostream& cerr();
std::ostream& clog();
[You can see an example of replacing these functions here.](
../examples/231-Cfg-OutputStreams.cpp)
This can be useful on certain platforms that do not provide ```std::cout``` and ```std::cerr```, such as certain embedded systems.
# C++ conformance toggles
## Fallback stringifier
CATCH_CONFIG_CPP11_NULLPTR // nullptr is supported?
CATCH_CONFIG_CPP11_NOEXCEPT // noexcept is supported?
CATCH_CONFIG_CPP11_GENERATED_METHODS // delete and default keywords for methods
CATCH_CONFIG_CPP11_IS_ENUM // std::is_enum is supported?
CATCH_CONFIG_CPP11_TUPLE // std::tuple is supported
CATCH_CONFIG_VARIADIC_MACROS // Usually pre-C++11 compiler extensions are sufficient
CATCH_CONFIG_CPP11_LONG_LONG // generates overloads for the long long type
CATCH_CONFIG_CPP11_OVERRIDE // CATCH_OVERRIDE expands to override (for virtual function implementations)
CATCH_CONFIG_CPP11_UNIQUE_PTR // Use std::unique_ptr instead of std::auto_ptr
By default, when Catch's stringification machinery has to stringify
a type that does not specialize `StringMaker`, does not overload `operator<<`,
is not an enumeration and is not a range, it uses `"{?}"`. This can be
overridden by defining `CATCH_CONFIG_FALLBACK_STRINGIFIER` to name of a
function that should perform the stringification instead.
All types that do not provide `StringMaker` specialization or `operator<<`
overload will be sent to this function (this includes enums and ranges).
The provided function must return `std::string` and must accept any type,
e.g. via overloading.
_Note that if the provided function does not handle a type and this type
requires to be stringified, the compilation will fail._
## Default reporter
Catch's default reporter can be changed by defining macro
`CATCH_CONFIG_DEFAULT_REPORTER` to string literal naming the desired
default reporter.
This means that defining `CATCH_CONFIG_DEFAULT_REPORTER` to `"console"`
is equivalent with the out-of-the-box experience.
## C++11 toggles
CATCH_CONFIG_CPP11_TO_STRING // Use `std::to_string`
Because we support platforms whose standard library does not contain
`std::to_string`, it is possible to force Catch to use a workaround
based on `std::stringstream`. On platforms other than Android,
the default is to use `std::to_string`. On Android, the default is to
use the `stringstream` workaround. As always, it is possible to override
Catch's selection, by defining either `CATCH_CONFIG_CPP11_TO_STRING` or
`CATCH_CONFIG_NO_CPP11_TO_STRING`.
## C++17 toggles
CATCH_CONFIG_CPP17_UNCAUGHT_EXCEPTIONS // Override std::uncaught_exceptions (instead of std::uncaught_exception) support detection
CATCH_CONFIG_CPP17_STRING_VIEW // Override std::string_view support detection (Catch provides a StringMaker specialization by default)
CATCH_CONFIG_CPP17_VARIANT // Override std::variant support detection (checked by CATCH_CONFIG_ENABLE_VARIANT_STRINGMAKER)
CATCH_CONFIG_CPP17_OPTIONAL // Override std::optional support detection (checked by CATCH_CONFIG_ENABLE_OPTIONAL_STRINGMAKER)
CATCH_CONFIG_CPP17_BYTE // Override std::byte support detection (Catch provides a StringMaker specialization by default)
> `CATCH_CONFIG_CPP17_STRING_VIEW` was [introduced](https://github.com/catchorg/Catch2/issues/1376) in Catch 2.4.1.
Catch contains basic compiler/standard detection and attempts to use
some C++17 features whenever appropriate. This automatic detection
can be manually overridden in both directions, that is, a feature
can be enabled by defining the macro in the table above, and disabled
by using `_NO_` in the macro, e.g. `CATCH_CONFIG_NO_CPP17_UNCAUGHT_EXCEPTIONS`.
## Other toggles
CATCH_CONFIG_COUNTER // Use __COUNTER__ to generate unique names for test cases
CATCH_CONFIG_WINDOWS_SEH // Enable SEH handling on Windows
CATCH_CONFIG_FAST_COMPILE // Sacrifices some (rather minor) features for compilation speed
CATCH_CONFIG_POSIX_SIGNALS // Enable handling POSIX signals
CATCH_CONFIG_WINDOWS_CRTDBG // Enable leak checking using Windows's CRT Debug Heap
CATCH_CONFIG_DISABLE_STRINGIFICATION // Disable stringifying the original expression
CATCH_CONFIG_DISABLE // Disables assertions and test case registration
CATCH_CONFIG_WCHAR // Enables use of wchart_t
CATCH_CONFIG_EXPERIMENTAL_REDIRECT // Enables the new (experimental) way of capturing stdout/stderr
CATCH_CONFIG_USE_ASYNC // Force parallel statistical processing of samples during benchmarking
CATCH_CONFIG_ANDROID_LOGWRITE // Use android's logging system for debug output
CATCH_CONFIG_GLOBAL_NEXTAFTER // Use nextafter{,f,l} instead of std::nextafter
> [`CATCH_CONFIG_ANDROID_LOGWRITE`](https://github.com/catchorg/Catch2/issues/1743) and [`CATCH_CONFIG_GLOBAL_NEXTAFTER`](https://github.com/catchorg/Catch2/pull/1739) were introduced in Catch 2.10.0
Currently Catch enables `CATCH_CONFIG_WINDOWS_SEH` only when compiled with MSVC, because some versions of MinGW do not have the necessary Win32 API support.
`CATCH_CONFIG_POSIX_SIGNALS` is on by default, except when Catch is compiled under `Cygwin`, where it is disabled by default (but can be force-enabled by defining `CATCH_CONFIG_POSIX_SIGNALS`).
`CATCH_CONFIG_WINDOWS_CRTDBG` is off by default. If enabled, Windows's
CRT is used to check for memory leaks, and displays them after the tests
finish running. This option only works when linking against the default
main, and must be defined for the whole library build.
`CATCH_CONFIG_WCHAR` is on by default, but can be disabled. Currently
it is only used in support for DJGPP cross-compiler.
With the exception of `CATCH_CONFIG_EXPERIMENTAL_REDIRECT`,
these toggles can be disabled by using `_NO_` form of the toggle,
e.g. `CATCH_CONFIG_NO_WINDOWS_SEH`.
### `CATCH_CONFIG_FAST_COMPILE`
This compile-time flag speeds up compilation of assertion macros by ~20%,
by disabling the generation of assertion-local try-catch blocks for
non-exception family of assertion macros ({`REQUIRE`,`CHECK`}{``,`_FALSE`, `_THAT`}).
This disables translation of exceptions thrown under these assertions, but
should not lead to false negatives.
`CATCH_CONFIG_FAST_COMPILE` has to be either defined, or not defined,
in all translation units that are linked into single test binary.
### `CATCH_CONFIG_DISABLE_STRINGIFICATION`
This toggle enables a workaround for VS 2017 bug. For details see [known limitations](limitations.md#visual-studio-2017----raw-string-literal-in-assert-fails-to-compile).
### `CATCH_CONFIG_DISABLE`
This toggle removes most of Catch from given file. This means that `TEST_CASE`s are not registered and assertions are turned into no-ops. Useful for keeping tests within implementation files (ie for functions with internal linkage), instead of in external files.
This feature is considered experimental and might change at any point.
_Inspired by Doctest's `DOCTEST_CONFIG_DISABLE`_
## Windows header clutter
On Windows Catch includes `windows.h`. To minimize global namespace clutter in the implementation file, it defines `NOMINMAX` and `WIN32_LEAN_AND_MEAN` before including it. You can control this behaviour via two macros:
CATCH_CONFIG_NO_NOMINMAX // Stops Catch from using NOMINMAX macro
CATCH_CONFIG_NO_WIN32_LEAN_AND_MEAN // Stops Catch from using WIN32_LEAN_AND_MEAN macro
## Enabling stringification
By default, Catch does not stringify some types from the standard library. This is done to avoid dragging in various standard library headers by default. However, Catch does contain these and can be configured to provide them, using these macros:
CATCH_CONFIG_ENABLE_PAIR_STRINGMAKER // Provide StringMaker specialization for std::pair
CATCH_CONFIG_ENABLE_TUPLE_STRINGMAKER // Provide StringMaker specialization for std::tuple
CATCH_CONFIG_ENABLE_VARIANT_STRINGMAKER // Provide StringMaker specialization for std::variant, std::monostate (on C++17)
CATCH_CONFIG_ENABLE_OPTIONAL_STRINGMAKER // Provide StringMaker specialization for std::optional (on C++17)
CATCH_CONFIG_ENABLE_ALL_STRINGMAKERS // Defines all of the above
> `CATCH_CONFIG_ENABLE_VARIANT_STRINGMAKER` was [introduced](https://github.com/catchorg/Catch2/issues/1380) in Catch 2.4.1.
> `CATCH_CONFIG_ENABLE_OPTIONAL_STRINGMAKER` was [introduced](https://github.com/catchorg/Catch2/issues/1510) in Catch 2.6.0.
## Disabling exceptions
> Introduced in Catch 2.4.0.
By default, Catch2 uses exceptions to signal errors and to abort tests
when an assertion from the `REQUIRE` family of assertions fails. We also
provide an experimental support for disabling exceptions. Catch2 should
automatically detect when it is compiled with exceptions disabled, but
it can be forced to compile without exceptions by defining
CATCH_CONFIG_DISABLE_EXCEPTIONS
Note that when using Catch2 without exceptions, there are 2 major
limitations:
1) If there is an error that would normally be signalled by an exception,
the exception's message will instead be written to `Catch::cerr` and
`std::terminate` will be called.
2) If an assertion from the `REQUIRE` family of macros fails,
`std::terminate` will be called after the active reporter returns.
There is also a customization point for the exact behaviour of what
happens instead of exception being thrown. To use it, define
CATCH_CONFIG_DISABLE_EXCEPTIONS_CUSTOM_HANDLER
and provide a definition for this function:
```cpp
namespace Catch {
[[noreturn]]
void throw_exception(std::exception const&);
}
```
## Overriding Catch's debug break (`-b`)
> [Introduced](https://github.com/catchorg/Catch2/pull/1846) in Catch 2.11.2.
You can override Catch2's break-into-debugger code by defining the
`CATCH_BREAK_INTO_DEBUGGER()` macro. This can be used if e.g. Catch2 does
not know your platform, or your platform is misdetected.
The macro will be used as is, that is, `CATCH_BREAK_INTO_DEBUGGER();`
must compile and must break into debugger.
Catch has some basic compiler detection that will attempt to select the appropriate mix of these macros. However being incomplete - and often without access to the respective compilers - this detection tends to be conservative.
So overriding control is given to the user. If a compiler supports a feature (and Catch does not already detect it) then one or more of these may be defined to enable it (or suppress it, in some cases). If you do do this please raise an issue, specifying your compiler version (ideally with an idea of how to detect it) and stating that it has such support.
You may also suppress any of these features by using the `_NO_` form, e.g. `CATCH_CONFIG_CPP11_NO_NULLPTR`.
All C++11 support can be disabled with `CATCH_CONFIG_NO_CPP11`
---
[Home](Readme.md#top)
[Home](Readme.md)

View File

@@ -1,255 +1,23 @@
<a id="top"></a>
# Contributing to Catch2
# Contributing to Catch
**Contents**<br>
[Using Git(Hub)](#using-github)<br>
[Testing your changes](#testing-your-changes)<br>
[Writing documentation](#writing-documentation)<br>
[Writing code](#writing-code)<br>
[CoC](#coc)<br>
So you want to contribute something to Catch? That's great! Whether it's a bug fix, a new feature, support for additional compilers - or just a fix to the documentation - all contributions are very welcome and very much appreciated. Of course so are bug reports and other comments and questions.
So you want to contribute something to Catch2? That's great! Whether it's
a bug fix, a new feature, support for additional compilers - or just
a fix to the documentation - all contributions are very welcome and very
much appreciated. Of course so are bug reports, other comments, and
questions, but generally it is a better idea to ask questions in our
[Discord](https://discord.gg/4CWS9zD), than in the issue tracker.
If you are contributing to the code base there are a few simple guidelines to keep in mind. This also includes notes to help you find your way around. As this is liable to drift out of date please raise an issue or, better still, a pull request for this file, if you notice that.
## Branches
This page covers some guidelines and helpful tips for contributing
to the codebase itself.
Ongoing development is on the "develop" branch (if there is one, currently), or on feature branches that are branched off of develop. Please target any pull requests at develop, or, for larger chunks of work, a branch off of develop.
## Using Git(Hub)
## Directory structure
Ongoing development happens in the `devel` branch for Catch2 v3, and in
`v2.x` for maintenance updates to the v2 versions.
Users of Catch primarily use the single header version. Maintainers should work with the full source (which is still, primarily, in headers). This can be found in the ```include``` folder, but you may prefer to use one of the IDE project files (for MSVC or XCode). These can be found under ```projects/```*IDE Name*```/```*project name*. A number of contributors have proposed make files, and submitted their own versions. At some point these should be made available too.
Commits should be small and atomic. A commit is atomic when, after it is
applied, the codebase, tests and all, still works as expected. Small
commits are also prefered, as they make later operations with git history,
whether it is bisecting, reverting, or something else, easier.
In addition to the include files and IDE projects there are a number of tests in cpp files. These can all be found in ```projects/SelfTest```. You'll also see a ```SurrogateCpps``` directory in there. This contains a set of cpp files that each ```#include``` a single header. While these files are not essential to compilation they help to keep the implementation headers self-contained. At time of writing this set is not complete but has reasonable coverage. If you add additional headers please try to remember to add a surrogate cpp for it.
_When submitting a pull request please do not include changes to the
amalgamated distribution files. This means do not include them in your
git commits!_
When addressing review comments in a MR, please do not rebase/squash the
commits immediately. Doing so makes it harder to review the new changes,
slowing down the process of merging a MR. Instead, when addressing review
comments, you should append new commits to the branch and only squash
them into other commits when the MR is ready to be merged. We recommend
creating new commits with `git commit --fixup` (or `--squash`) and then
later squashing them with `git rebase --autosquash` to make things easier.
## Testing your changes
_Note: Running Catch2's tests requires Python3_
Catch2 has multiple layers of tests that are then run as part of our CI.
The most obvious one are the unit tests compiled into the `SelfTest`
binary. These are then used in "Approval tests", which run (almost) all
tests from `SelfTest` through a specific reporter and then compare the
generated output with a known good output ("Baseline"). By default, new
tests should be placed here.
However, not all tests can be written as plain unit tests. For example,
checking that Catch2 orders tests randomly when asked to, and that this
random ordering is subset-invariant, is better done as an integration
test using an external check script. Catch2 integration tests are written
using CTest, either as a direct command invocation + pass/fail regex,
or by delegating the check to a Python script.
There are also two more kinds of tests, examples and "ExtraTests".
Examples present a small and self-contained snippets of code that
use Catch2's facilities for specific purpose. Currently they are assumed
passing if they compile. ExtraTests then are expensive tests, that we
do not want to run all the time. This can be either because they take
a long time to run, or because they take a long time to compile, e.g.
because they test compile time configuration and require separate
compilation.
Examples and ExtraTests are not compiled by default. To compile them,
add `-DCATCH_BUILD_EXAMPLES=ON` and `-DCATCH_BUILD_EXTRA_TESTS=ON` to
the invocation of CMake configuration step.
Bringing this all together, the steps below should configure, build,
and run all tests in the `Debug` compilation.
1. Regenerate the amalgamated distribution
```
$ cd Catch2
$ ./tools/scripts/generateAmalgamatedFiles.py
```
2. Configure the full test build
```
$ cmake -Bdebug-build -H. -DCMAKE_BUILD_TYPE=Debug -DCATCH_BUILD_EXAMPLES=ON -DCATCH_BUILD_EXTRA_TESTS=ON
```
3. Run the actual build
```
$ cmake --build debug-build
```
4. Run the tests using CTest
```
$ cd debug-build
$ ctest -j 4 --output-on-failure -C Debug
```
If you added new tests, you will likely see `ApprovalTests` failure.
After you check that the output difference is expected, you should
run `tools/scripts/approve.py` to confirm them, and include these changes
in your commit.
## Writing documentation
If you have added new feature to Catch2, it needs documentation, so that
other people can use it as well. This section collects some technical
information that you will need for updating Catch2's documentation, and
possibly some generic advise as well.
### Technicalities
First, the technicalities:
* If you have introduced a new document, there is a simple template you
should use. It provides you with the top anchor mentioned to link to
(more below), and also with a backlink to the top of the documentation:
```markdown
<a id="top"></a>
# Cool feature
Text that explains how to use the cool feature.
The other directories are ```scripts``` which contains a set of python scripts to help in testing Catch as well as generating the single include, and docs, which contains the documentation as a set of markdown files.
*this document is in-progress...*
---
[Home](Readme.md#top)
```
* Crosslinks to different pages should target the `top` anchor, like this
`[link to contributing](contributing.md#top)`.
* We introduced version tags to the documentation, which show users in
which version a specific feature was introduced. This means that newly
written documentation should be tagged with a placeholder, that will
be replaced with the actual version upon release. There are 2 styles
of placeholders used through the documentation, you should pick one that
fits your text better (if in doubt, take a look at the existing version
tags for other features).
* `> [Introduced](link-to-issue-or-PR) in Catch X.Y.Z` - this
placeholder is usually used after a section heading
* `> X (Y and Z) was [introduced](link-to-issue-or-PR) in Catch X.Y.Z`
- this placeholder is used when you need to tag a subpart of something,
e.g. a list
* For pages with more than 4 subheadings, we provide a table of contents
(ToC) at the top of the page. Because GitHub markdown does not support
automatic generation of ToC, it has to be handled semi-manually. Thus,
if you've added a new subheading to some page, you should add it to the
ToC. This can be done either manually, or by running the
`updateDocumentToC.py` script in the `scripts/` folder.
### Contents
Now, for some content tips:
* Usage examples are good. However, having large code snippets inline
can make the documentation less readable, and so the inline snippets
should be kept reasonably short. To provide more complex compilable
examples, consider adding new .cpp file to `examples/`.
* Don't be afraid to introduce new pages. The current documentation
tends towards long pages, but a lot of that is caused by legacy, and
we know that some of the pages are overly big and unfocused.
* When adding information to an existing page, please try to keep your
formatting, style and changes consistent with the rest of the page.
* Any documentation has multiple different audiences, that desire
different information from the text. The 3 basic user-types to try and
cover are:
* A beginner to Catch2, who requires closer guidance for the usage of Catch2.
* Advanced user of Catch2, who want to customize their usage.
* Experts, looking for full reference of Catch2's capabilities.
## Writing code
If want to contribute code, this section contains some simple rules
and tips on things like code formatting, code constructions to avoid,
and so on.
### Formatting
To make code formatting simpler for the contributors, Catch2 provides
its own config for `clang-format`. However, because it is currently
impossible to replicate existing Catch2's formatting in clang-format,
using it to reformat a whole file would cause massive diffs. To keep
the size of your diffs reasonable, you should only use clang-format
on the newly changed code.
### Code constructs to watch out for
This section is a (sadly incomplete) listing of various constructs that
are problematic and are not always caught by our CI infrastructure.
#### Naked exceptions and exceptions-related function
If you are throwing an exception, it should be done via `CATCH_ERROR`
or `CATCH_RUNTIME_ERROR` in `catch_enforce.h`. These macros will handle
the differences between compilation with or without exceptions for you.
However, some platforms (IAR) also have problems with exceptions-related
functions, such as `std::current_exceptions`. We do not have IAR in our
CI, but luckily there should not be too many reasons to use these.
However, if you do, they should be kept behind a
`CATCH_CONFIG_DISABLE_EXCEPTIONS` macro.
#### Unqualified usage of functions from C's stdlib
If you are using a function from C's stdlib, please include the header
as `<cfoo>` and call the function qualified. The common knowledge that
there is no difference is wrong, QNX and VxWorks won't compile if you
include the header as `<cfoo>` and call the function unqualified.
### New source file template
If you are adding new source file, there is a template you should use.
Specifically, every source file should start with the licence header:
```cpp
// Copyright Catch2 Authors
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// https://www.boost.org/LICENSE_1_0.txt)
// SPDX-License-Identifier: BSL-1.0
```
The include guards for header files should follow the pattern `{FILENAME}_INCLUDED`.
This means that for file `catch_matchers_foo`, the include guard should
be `CATCH_MATCHERS_FOO_INCLUDED`, for `catch_generators_bar`, the include
guard should be `CATCH_GENERATORS_BAR_INCLUDED`, and so on.
## CoC
This project has a [CoC](../CODE_OF_CONDUCT.md). Please adhere to it
while contributing to Catch2.
-----------
_This documentation will always be in-progress as new information comes
up, but we are trying to keep it as up to date as possible._
---
[Home](Readme.md#top)
[Home](Readme.md)

View File

@@ -1,31 +0,0 @@
<a id="top"></a>
# Deprecations and incoming changes
This page documents current deprecations and upcoming planned changes
inside Catch2. The difference between these is that a deprecated feature
will be removed, while a planned change to a feature means that the
feature will behave differently, but will still be present. Obviously,
either of these is a breaking change, and thus will not happen until
at least the next major release.
## Planned changes
### `CHECKED_IF` and `CHECKED_ELSE`
To make the `CHECKED_IF` and `CHECKED_ELSE` macros more useful, they will
be marked as "OK to fail" (`Catch::ResultDisposition::SuppressFail` flag
will be added), which means that their failure will not fail the test,
making the `else` actually useful.
### Console Colour API
The API for Catch2's console colour will be changed to take an extra
argument, the stream to which the colour code should be applied.
---
[Home](Readme.md#top)

View File

@@ -1,75 +0,0 @@
<a id="top"></a>
# Event Listeners
A `Listener` is a class you can register with Catch that will then be passed events,
such as a test case starting or ending, as they happen during a test run.
`Listeners` are actually types of `Reporters`, with a few small differences:
1. Once registered in code they are automatically used - you don't need to specify them on the command line
2. They are called in addition to (just before) any reporters, and you can register multiple listeners.
3. They derive from `Catch::TestEventListenerBase`, which has default stubs for all the events,
so you are not forced to implement events you're not interested in.
4. You register a listener with `CATCH_REGISTER_LISTENER`
## Implementing a Listener
Simply derive a class from `Catch::TestEventListenerBase` and implement the methods you are interested in, either in
the main source file (i.e. the one that defines `CATCH_CONFIG_MAIN` or `CATCH_CONFIG_RUNNER`), or in a
file that defines `CATCH_CONFIG_EXTERNAL_INTERFACES`.
Then register it using `CATCH_REGISTER_LISTENER`.
For example ([complete source code](../examples/210-Evt-EventListeners.cpp)):
```c++
#define CATCH_CONFIG_MAIN
#include "catch.hpp"
struct MyListener : Catch::TestEventListenerBase {
using TestEventListenerBase::TestEventListenerBase; // inherit constructor
void testCaseStarting( Catch::TestCaseInfo const& testInfo ) override {
// Perform some setup before a test case is run
}
void testCaseEnded( Catch::TestCaseStats const& testCaseStats ) override {
// Tear-down after a test case is run
}
};
CATCH_REGISTER_LISTENER( MyListener )
```
_Note that you should not use any assertion macros within a Listener!_
## Events that can be hooked
The following are the methods that can be overridden in the Listener:
```c++
// The whole test run, starting and ending
virtual void testRunStarting( TestRunInfo const& testRunInfo );
virtual void testRunEnded( TestRunStats const& testRunStats );
// Test cases starting and ending
virtual void testCaseStarting( TestCaseInfo const& testInfo );
virtual void testCaseEnded( TestCaseStats const& testCaseStats );
// Sections starting and ending
virtual void sectionStarting( SectionInfo const& sectionInfo );
virtual void sectionEnded( SectionStats const& sectionStats );
// Assertions before/ after
virtual void assertionStarting( AssertionInfo const& assertionInfo );
virtual bool assertionEnded( AssertionStats const& assertionStats );
// A test is being skipped (because it is "hidden")
virtual void skipTest( TestCaseInfo const& testInfo );
```
More information about the events (e.g. name of the test case) is contained in the structs passed as arguments -
just look in the source code to see what fields are available.
---
[Home](Readme.md#top)

View File

@@ -1,219 +0,0 @@
<a id="top"></a>
# Data Generators
> Introduced in Catch 2.6.0.
Data generators (also known as _data driven/parametrized test cases_)
let you reuse the same set of assertions across different input values.
In Catch2, this means that they respect the ordering and nesting
of the `TEST_CASE` and `SECTION` macros, and their nested sections
are run once per each value in a generator.
This is best explained with an example:
```cpp
TEST_CASE("Generators") {
auto i = GENERATE(1, 3, 5);
REQUIRE(is_odd(i));
}
```
The "Generators" `TEST_CASE` will be entered 3 times, and the value of
`i` will be 1, 3, and 5 in turn. `GENERATE`s can also be used multiple
times at the same scope, in which case the result will be a cartesian
product of all elements in the generators. This means that in the snippet
below, the test case will be run 6 (2\*3) times.
```cpp
TEST_CASE("Generators") {
auto i = GENERATE(1, 2);
auto j = GENERATE(3, 4, 5);
}
```
There are 2 parts to generators in Catch2, the `GENERATE` macro together
with the already provided generators, and the `IGenerator<T>` interface
that allows users to implement their own generators.
## Combining `GENERATE` and `SECTION`.
`GENERATE` can be seen as an implicit `SECTION`, that goes from the place
`GENERATE` is used, to the end of the scope. This can be used for various
effects. The simplest usage is shown below, where the `SECTION` "one"
runs 4 (2\*2) times, and `SECTION` "two" is run 6 times (2\*3).
```cpp
TEST_CASE("Generators") {
auto i = GENERATE(1, 2);
SECTION("one") {
auto j = GENERATE(-3, -2);
REQUIRE(j < i);
}
SECTION("two") {
auto k = GENERATE(4, 5, 6);
REQUIRE(i != k);
}
}
```
The specific order of the `SECTION`s will be "one", "one", "two", "two",
"two", "one"...
The fact that `GENERATE` introduces a virtual `SECTION` can also be used
to make a generator replay only some `SECTION`s, without having to
explicitly add a `SECTION`. As an example, the code below reports 3
assertions, because the "first" section is run once, but the "second"
section is run twice.
```cpp
TEST_CASE("GENERATE between SECTIONs") {
SECTION("first") { REQUIRE(true); }
auto _ = GENERATE(1, 2);
SECTION("second") { REQUIRE(true); }
}
```
This can lead to surprisingly complex test flows. As an example, the test
below will report 14 assertions:
```cpp
TEST_CASE("Complex mix of sections and generates") {
auto i = GENERATE(1, 2);
SECTION("A") {
SUCCEED("A");
}
auto j = GENERATE(3, 4);
SECTION("B") {
SUCCEED("B");
}
auto k = GENERATE(5, 6);
SUCCEED();
}
```
> The ability to place `GENERATE` between two `SECTION`s was [introduced](https://github.com/catchorg/Catch2/issues/1938) in Catch 2.13.0.
## Provided generators
Catch2's provided generator functionality consists of three parts,
* `GENERATE` macro, that serves to integrate generator expression with
a test case,
* 2 fundamental generators
* `SingleValueGenerator<T>` -- contains only single element
* `FixedValuesGenerator<T>` -- contains multiple elements
* 5 generic generators that modify other generators
* `FilterGenerator<T, Predicate>` -- filters out elements from a generator
for which the predicate returns "false"
* `TakeGenerator<T>` -- takes first `n` elements from a generator
* `RepeatGenerator<T>` -- repeats output from a generator `n` times
* `MapGenerator<T, U, Func>` -- returns the result of applying `Func`
on elements from a different generator
* `ChunkGenerator<T>` -- returns chunks (inside `std::vector`) of n elements from a generator
* 4 specific purpose generators
* `RandomIntegerGenerator<Integral>` -- generates random Integrals from range
* `RandomFloatGenerator<Float>` -- generates random Floats from range
* `RangeGenerator<T>` -- generates all values inside an arithmetic range
* `IteratorGenerator<T>` -- copies and returns values from an iterator range
> `ChunkGenerator<T>`, `RandomIntegerGenerator<Integral>`, `RandomFloatGenerator<Float>` and `RangeGenerator<T>` were introduced in Catch 2.7.0.
> `IteratorGenerator<T>` was introduced in Catch 2.10.0.
The generators also have associated helper functions that infer their
type, making their usage much nicer. These are
* `value(T&&)` for `SingleValueGenerator<T>`
* `values(std::initializer_list<T>)` for `FixedValuesGenerator<T>`
* `table<Ts...>(std::initializer_list<std::tuple<Ts...>>)` for `FixedValuesGenerator<std::tuple<Ts...>>`
* `filter(predicate, GeneratorWrapper<T>&&)` for `FilterGenerator<T, Predicate>`
* `take(count, GeneratorWrapper<T>&&)` for `TakeGenerator<T>`
* `repeat(repeats, GeneratorWrapper<T>&&)` for `RepeatGenerator<T>`
* `map(func, GeneratorWrapper<T>&&)` for `MapGenerator<T, U, Func>` (map `U` to `T`, deduced from `Func`)
* `map<T>(func, GeneratorWrapper<U>&&)` for `MapGenerator<T, U, Func>` (map `U` to `T`)
* `chunk(chunk-size, GeneratorWrapper<T>&&)` for `ChunkGenerator<T>`
* `random(IntegerOrFloat a, IntegerOrFloat b)` for `RandomIntegerGenerator` or `RandomFloatGenerator`
* `range(Arithemtic start, Arithmetic end)` for `RangeGenerator<Arithmetic>` with a step size of `1`
* `range(Arithmetic start, Arithmetic end, Arithmetic step)` for `RangeGenerator<Arithmetic>` with a custom step size
* `from_range(InputIterator from, InputIterator to)` for `IteratorGenerator<T>`
* `from_range(Container const&)` for `IteratorGenerator<T>`
> `chunk()`, `random()` and both `range()` functions were introduced in Catch 2.7.0.
> `from_range` has been introduced in Catch 2.10.0
> `range()` for floating point numbers has been introduced in Catch 2.11.0
And can be used as shown in the example below to create a generator
that returns 100 odd random number:
```cpp
TEST_CASE("Generating random ints", "[example][generator]") {
SECTION("Deducing functions") {
auto i = GENERATE(take(100, filter([](int i) { return i % 2 == 1; }, random(-100, 100))));
REQUIRE(i > -100);
REQUIRE(i < 100);
REQUIRE(i % 2 == 1);
}
}
```
Apart from registering generators with Catch2, the `GENERATE` macro has
one more purpose, and that is to provide simple way of generating trivial
generators, as seen in the first example on this page, where we used it
as `auto i = GENERATE(1, 2, 3);`. This usage converted each of the three
literals into a single `SingleValueGenerator<int>` and then placed them all in
a special generator that concatenates other generators. It can also be
used with other generators as arguments, such as `auto i = GENERATE(0, 2,
take(100, random(300, 3000)));`. This is useful e.g. if you know that
specific inputs are problematic and want to test them separately/first.
**For safety reasons, you cannot use variables inside the `GENERATE` macro.
This is done because the generator expression _will_ outlive the outside
scope and thus capturing references is dangerous. If you need to use
variables inside the generator expression, make sure you thought through
the lifetime implications and use `GENERATE_COPY` or `GENERATE_REF`.**
> `GENERATE_COPY` and `GENERATE_REF` were introduced in Catch 2.7.1.
You can also override the inferred type by using `as<type>` as the first
argument to the macro. This can be useful when dealing with string literals,
if you want them to come out as `std::string`:
```cpp
TEST_CASE("type conversion", "[generators]") {
auto str = GENERATE(as<std::string>{}, "a", "bb", "ccc");
REQUIRE(str.size() > 0);
}
```
## Generator interface
You can also implement your own generators, by deriving from the
`IGenerator<T>` interface:
```cpp
template<typename T>
struct IGenerator : GeneratorUntypedBase {
// via GeneratorUntypedBase:
// Attempts to move the generator to the next element.
// Returns true if successful (and thus has another element that can be read)
virtual bool next() = 0;
// Precondition:
// The generator is either freshly constructed or the last call to next() returned true
virtual T const& get() const = 0;
};
```
However, to be able to use your custom generator inside `GENERATE`, it
will need to be wrapped inside a `GeneratorWrapper<T>`.
`GeneratorWrapper<T>` is a value wrapper around a
`std::unique_ptr<IGenerator<T>>`.
For full example of implementing your own generator, look into Catch2's
examples, specifically
[Generators: Create your own generator](../examples/300-Gen-OwnGenerator.cpp).

View File

@@ -1,187 +0,0 @@
<a id="top"></a>
# Known limitations
Over time, some limitations of Catch2 emerged. Some of these are due
to implementation details that cannot be easily changed, some of these
are due to lack of development resources on our part, and some of these
are due to plain old 3rd party bugs.
## Implementation limits
### Sections nested in loops
If you are using `SECTION`s inside loops, you have to create them with
different name per loop's iteration. The recommended way to do so is to
incorporate the loop's counter into section's name, like so:
```cpp
TEST_CASE( "Looped section" ) {
for (char i = '0'; i < '5'; ++i) {
SECTION(std::string("Looped section ") + i) {
SUCCEED( "Everything is OK" );
}
}
}
```
or with a `DYNAMIC_SECTION` macro (that was made for exactly this purpose):
```cpp
TEST_CASE( "Looped section" ) {
for (char i = '0'; i < '5'; ++i) {
DYNAMIC_SECTION( "Looped section " << i) {
SUCCEED( "Everything is OK" );
}
}
}
```
### Tests might be run again if last section fails
If the last section in a test fails, it might be run again. This is because
Catch2 discovers `SECTION`s dynamically, as they are about to run, and
if the last section in test case is aborted during execution (e.g. via
the `REQUIRE` family of macros), Catch2 does not know that there are no
more sections in that test case and must run the test case again.
### MinGW/CygWin compilation (linking) is extremely slow
Compiling Catch2 with MinGW can be exceedingly slow, especially during
the linking step. As far as we can tell, this is caused by deficiencies
in its default linker. If you can tell MinGW to instead use lld, via
`-fuse-ld=lld`, the link time should drop down to reasonable length
again.
## Features
This section outlines some missing features, what is their status and their possible workarounds.
### Thread safe assertions
Catch2's assertion macros are not thread safe. This does not mean that
you cannot use threads inside Catch's test, but that only single thread
can interact with Catch's assertions and other macros.
This means that this is ok
```cpp
std::vector<std::thread> threads;
std::atomic<int> cnt{ 0 };
for (int i = 0; i < 4; ++i) {
threads.emplace_back([&]() {
++cnt; ++cnt; ++cnt; ++cnt;
});
}
for (auto& t : threads) { t.join(); }
REQUIRE(cnt == 16);
```
because only one thread passes the `REQUIRE` macro and this is not
```cpp
std::vector<std::thread> threads;
std::atomic<int> cnt{ 0 };
for (int i = 0; i < 4; ++i) {
threads.emplace_back([&]() {
++cnt; ++cnt; ++cnt; ++cnt;
CHECK(cnt == 16);
});
}
for (auto& t : threads) { t.join(); }
REQUIRE(cnt == 16);
```
Because C++11 provides the necessary tools to do this, we are planning
to remove this limitation in the future.
### Process isolation in a test
Catch does not support running tests in isolated (forked) processes. While this might in the future, the fact that Windows does not support forking and only allows full-on process creation and the desire to keep code as similar as possible across platforms, mean that this is likely to take significant development time, that is not currently available.
### Running multiple tests in parallel
Catch's test execution is strictly serial. If you find yourself with a test suite that takes too long to run and you want to make it parallel, there are 2 feasible solutions
* You can split your tests into multiple binaries and then run these binaries in parallel.
* You can have Catch list contained test cases and then run the same test binary multiple times in parallel, passing each instance list of test cases it should run.
Both of these solutions have their problems, but should let you wring parallelism out of your test suite.
## 3rd party bugs
This section outlines known bugs in 3rd party components (this means compilers, standard libraries, standard runtimes).
### Visual Studio 2017 -- raw string literal in assert fails to compile
There is a known bug in Visual Studio 2017 (VC 15), that causes compilation error when preprocessor attempts to stringize a raw string literal (`#` preprocessor is applied to it). This snippet is sufficient to trigger the compilation error:
```cpp
#define CATCH_CONFIG_MAIN
#include "catch.hpp"
TEST_CASE("test") {
CHECK(std::string(R"("\)") == "\"\\");
}
```
Catch provides a workaround, it is possible to disable stringification of original expressions by defining `CATCH_CONFIG_DISABLE_STRINGIFICATION`:
```cpp
#define CATCH_CONFIG_FAST_COMPILE
#define CATCH_CONFIG_DISABLE_STRINGIFICATION
#include "catch.hpp"
TEST_CASE("test") {
CHECK(std::string(R"("\)") == "\"\\");
}
```
_Do note that this changes the output somewhat_
```
catchwork\test1.cpp(6):
PASSED:
CHECK( Disabled by CATCH_CONFIG_DISABLE_STRINGIFICATION )
with expansion:
""\" == ""\"
```
### Visual Studio 2015 -- Alignment compilation error (C2718)
VS 2015 has a known bug, where `declval<T>` can cause compilation error
if `T` has alignment requirements that it cannot meet.
A workaround is to explicitly specialize `Catch::is_range` for given
type (this avoids code path that uses `declval<T>` in a SFINAE context).
### Visual Studio 2015 -- Wrong line number reported in debug mode
VS 2015 has a known bug where `__LINE__` macro can be improperly expanded under certain circumstances, while compiling multi-file project in Debug mode.
A workaround is to compile the binary in Release mode.
### Clang/G++ -- skipping leaf sections after an exception
Some versions of `libc++` and `libstdc++` (or their runtimes) have a bug with `std::uncaught_exception()` getting stuck returning `true` after rethrow, even if there are no active exceptions. One such case is this snippet, which skipped the sections "a" and "b", when compiled against `libcxxrt` from master
```cpp
#define CATCH_CONFIG_MAIN
#include <catch.hpp>
TEST_CASE("a") {
CHECK_THROWS(throw 3);
}
TEST_CASE("b") {
int i = 0;
SECTION("a") { i = 1; }
SECTION("b") { i = 2; }
CHECK(i > 0);
}
```
If you are seeing a problem like this, i.e. a weird test paths that trigger only under Clang with `libc++`, or only under very specific version of `libstdc++`, it is very likely you are seeing this. The only known workaround is to use a fixed version of your standard library.
### Clang/G++ -- `Matches` string matcher always returns false
This is a bug in `libstdc++-4.8`, where all matching methods from `<regex>` return false. Since `Matches` uses `<regex>` internally, if the underlying implementation does not work, it doesn't work either.
Workaround: Use newer version of `libstdc++`.
### libstdc++, `_GLIBCXX_DEBUG` macro and random ordering of tests
Running a Catch2 binary compiled against libstdc++ with `_GLIBCXX_DEBUG`
macro defined with `--order rand` will cause a debug check to trigger and
abort the run due to self-assignment.
[This is a known bug inside libstdc++](https://stackoverflow.com/questions/22915325/avoiding-self-assignment-in-stdshuffle/23691322)
Workaround: Don't use `--order rand` when compiling against debug-enabled
libstdc++.

View File

@@ -1,47 +0,0 @@
<a id="top"></a>
# List of examples
## Already available
- Catch main: [Catch-provided main](../examples/000-CatchMain.cpp)
- Test Case: [Single-file](../examples/010-TestCase.cpp)
- Test Case: [Multiple-file 1](../examples/020-TestCase-1.cpp), [2](../examples/020-TestCase-2.cpp)
- Assertion: [REQUIRE, CHECK](../examples/030-Asn-Require-Check.cpp)
- Fixture: [Sections](../examples/100-Fix-Section.cpp)
- Fixture: [Class-based fixtures](../examples/110-Fix-ClassFixture.cpp)
- BDD: [SCENARIO, GIVEN, WHEN, THEN](../examples/120-Bdd-ScenarioGivenWhenThen.cpp)
- Listener: [Listeners](../examples/210-Evt-EventListeners.cpp)
- Configuration: [Provide your own output streams](../examples/231-Cfg-OutputStreams.cpp)
- Generators: [Create your own generator](../examples/300-Gen-OwnGenerator.cpp)
- Generators: [Use map to convert types in GENERATE expression](../examples/301-Gen-MapTypeConversion.cpp)
- Generators: [Run test with a table of input values](../examples/302-Gen-Table.cpp)
- Generators: [Use variables in generator expressions](../examples/310-Gen-VariablesInGenerators.cpp)
- Generators: [Use custom variable capture in generator expressions](../examples/311-Gen-CustomCapture.cpp)
## Planned
- Assertion: [REQUIRE_THAT and Matchers](../examples/040-Asn-RequireThat.cpp)
- Assertion: [REQUIRE_NO_THROW](../examples/050-Asn-RequireNoThrow.cpp)
- Assertion: [REQUIRE_THROWS](../examples/050-Asn-RequireThrows.cpp)
- Assertion: [REQUIRE_THROWS_AS](../examples/070-Asn-RequireThrowsAs.cpp)
- Assertion: [REQUIRE_THROWS_WITH](../examples/080-Asn-RequireThrowsWith.cpp)
- Assertion: [REQUIRE_THROWS_MATCHES](../examples/090-Asn-RequireThrowsMatches.cpp)
- Floating point: [Approx - Comparisons](../examples/130-Fpt-Approx.cpp)
- Logging: [CAPTURE - Capture expression](../examples/140-Log-Capture.cpp)
- Logging: [INFO - Provide information with failure](../examples/150-Log-Info.cpp)
- Logging: [WARN - Issue warning](../examples/160-Log-Warn.cpp)
- Logging: [FAIL, FAIL_CHECK - Issue message and force failure/continue](../examples/170-Log-Fail.cpp)
- Logging: [SUCCEED - Issue message and continue](../examples/180-Log-Succeed.cpp)
- Report: [User-defined type](../examples/190-Rpt-ReportUserDefinedType.cpp)
- Report: [User-defined reporter](../examples/202-Rpt-UserDefinedReporter.cpp)
- Report: [Automake reporter](../examples/205-Rpt-AutomakeReporter.cpp)
- Report: [TAP reporter](../examples/206-Rpt-TapReporter.cpp)
- Report: [Multiple reporter](../examples/208-Rpt-MultipleReporters.cpp)
- Configuration: [Provide your own main()](../examples/220-Cfg-OwnMain.cpp)
- Configuration: [Compile-time configuration](../examples/230-Cfg-CompileTimeConfiguration.cpp)
- Configuration: [Run-time configuration](../examples/240-Cfg-RunTimeConfiguration.cpp)
---
[Home](Readme.md#top)

View File

@@ -1,93 +1,10 @@
<a id="top"></a>
# Logging macros
Additional messages can be logged during a test case. Note that the messages logged with `INFO` are scoped and thus will not be reported if failure occurs in scope preceding the message declaration. An example:
```cpp
TEST_CASE("Foo") {
INFO("Test case start");
for (int i = 0; i < 2; ++i) {
INFO("The number is " << i);
CHECK(i == 0);
}
}
TEST_CASE("Bar") {
INFO("Test case start");
for (int i = 0; i < 2; ++i) {
INFO("The number is " << i);
CHECK(i == i);
}
CHECK(false);
}
```
When the `CHECK` fails in the "Foo" test case, then two messages will be printed.
```
Test case start
The number is 1
```
When the last `CHECK` fails in the "Bar" test case, then only one message will be printed: `Test case start`.
## Logging without local scope
> [Introduced](https://github.com/catchorg/Catch2/issues/1522) in Catch 2.7.0.
`UNSCOPED_INFO` is similar to `INFO` with two key differences:
- Lifetime of an unscoped message is not tied to its own scope.
- An unscoped message can be reported by the first following assertion only, regardless of the result of that assertion.
In other words, lifetime of `UNSCOPED_INFO` is limited by the following assertion (or by the end of test case/section, whichever comes first) whereas lifetime of `INFO` is limited by its own scope.
These differences make this macro useful for reporting information from helper functions or inner scopes. An example:
```cpp
void print_some_info() {
UNSCOPED_INFO("Info from helper");
}
TEST_CASE("Baz") {
print_some_info();
for (int i = 0; i < 2; ++i) {
UNSCOPED_INFO("The number is " << i);
}
CHECK(false);
}
TEST_CASE("Qux") {
INFO("First info");
UNSCOPED_INFO("First unscoped info");
CHECK(false);
INFO("Second info");
UNSCOPED_INFO("Second unscoped info");
CHECK(false);
}
```
"Baz" test case prints:
```
Info from helper
The number is 0
The number is 1
```
With "Qux" test case, two messages will be printed when the first `CHECK` fails:
```
First info
First unscoped info
```
"First unscoped info" message will be cleared after the first `CHECK`, while "First info" message will persist until the end of the test case. Therefore, when the second `CHECK` fails, three messages will be printed:
```
First info
Second info
Second unscoped info
```
Additional messages can be logged during a test case.
## Streaming macros
All these macros allow heterogeneous sequences of values to be streaming using the insertion operator (```<<```) in the same way that std::ostream, std::cout, etc support it.
All these macros allow heterogenous sequences of values to be streaming using the insertion operator (```<<```) in the same way that std::ostream, std::cout, etc support it.
E.g.:
```c++
@@ -99,16 +16,7 @@ These macros come in three forms:
**INFO(** _message expression_ **)**
The message is logged to a buffer, but only reported with next assertions that are logged. This allows you to log contextual information in case of failures which is not shown during a successful test run (for the console reporter, without -s). Messages are removed from the buffer at the end of their scope, so may be used, for example, in loops.
_Note that in Catch2 2.x.x `INFO` can be used without a trailing semicolon as there is a trailing semicolon inside macro.
This semicolon will be removed with next major version. It is highly advised to use a trailing semicolon after `INFO` macro._
**UNSCOPED_INFO(** _message expression_ **)**
> [Introduced](https://github.com/catchorg/Catch2/issues/1522) in Catch 2.7.0.
Similar to `INFO`, but messages are not limited to their own scope: They are removed from the buffer after each assertion, section or test case, whichever comes first.
The message is logged to a buffer, but only reported with the next assertion that is logged. This allows you to log contextual information in case of failures which is not shown during a successful test run (for the console reporter, without -s). Messages are removed from the buffer at the end of their scope, so may be used, for example, in loops.
**WARN(** _message expression_ **)**
@@ -118,42 +26,27 @@ The message is always reported but does not fail the test.
The message is reported and the test case fails.
**FAIL_CHECK(** _message expression_ **)**
## Quickly capture a variable value
AS `FAIL`, but does not abort the test
**CAPTURE(** _expression_ **)**
## Quickly capture value of variables or expressions
Sometimes you just want to log the name and value of a variable. While you can easily do this with the INFO macro, above, as a convenience the CAPTURE macro handles the stringising of the variable name for you (actually it works with any expression, not just variables).
**CAPTURE(** _expression1_, _expression2_, ... **)**
Sometimes you just want to log a value of variable, or expression. For
convenience, we provide the `CAPTURE` macro, that can take a variable,
or an expression, and prints out that variable/expression and its value
at the time of capture.
e.g. `CAPTURE( theAnswer );` will log message "theAnswer := 42", while
```cpp
int a = 1, b = 2, c = 3;
CAPTURE( a, b, c, a + b, c > b, a == 1);
```
will log a total of 6 messages:
```
a := 1
b := 2
c := 3
a + b := 3
c > b := true
a == 1 := true
E.g.
```c++
CAPTURE( theAnswer );
```
You can also capture expressions that use commas inside parentheses
(e.g. function calls), brackets, or braces (e.g. initializers). To
properly capture expression that contains template parameters list
(in other words, it contains commas between angle brackets), you need
to enclose the expression inside parentheses:
`CAPTURE( (std::pair<int, int>{1, 2}) );`
This would log something like:
<pre>"theAnswer := 42"</pre>
## Deprecated macros
**SCOPED_INFO and SCOPED_CAPTURE**
These macros are now deprecated and are just aliases for INFO and CAPTURE (which were not previously scoped).
---
[Home](Readme.md#top)
[Home](Readme.md)

View File

@@ -1,416 +0,0 @@
<a id="top"></a>
# Matchers
**Contents**<br>
[Using Matchers](#using-matchers)<br>
[Built-in matchers](#built-in-matchers)<br>
[Writing custom matchers (old style)](#writing-custom-matchers-old-style)<br>
[Writing custom matchers (new style)](#writing-custom-matchers-new-style)<br>
Matchers, as popularized by the [Hamcrest](https://en.wikipedia.org/wiki/Hamcrest)
framework are an alternative way to write assertions, useful for tests
where you work with complex types or need to assert more complex
properties. Matchers are easily composable and users can write their
own and combine them with the Catch2-provided matchers seamlessly.
## Using Matchers
Matchers are most commonly used in tandem with the `REQUIRE_THAT` or
`CHECK_THAT` macros. The `REQUIRE_THAT` macro takes two arguments,
the first one is the input (object/value) to test, the second argument
is the matcher itself.
For example, to assert that a string ends with the "as a service"
substring, you can write the following assertion
```cpp
using Catch::Matchers::EndsWith;
REQUIRE_THAT( getSomeString(), EndsWith("as a service") );
```
Individual matchers can also be combined using the C++ logical
operators, that is `&&`, `||`, and `!`, like so:
```cpp
using Catch::Matchers::EndsWith;
using Catch::Matchers::Contains;
REQUIRE_THAT( getSomeString(),
EndsWith("as a service") && Contains("web scale"));
```
The example above asserts that the string returned from `getSomeString`
_both_ ends with the suffix "as a service" _and_ contains the string
"web scale" somewhere.
Both of the string matchers used in the examples above live in the
`catch_matchers_string.hpp` header, so to compile the code above also
requires `#include <catch2/matchers/catch_matchers_string.hpp>`.
**IMPORTANT**: The combining operators do not take ownership of the
matcher objects being combined. This means that if you store combined
matcher object, you have to ensure that the matchers being combined
outlive its last use. What this means is that the following code leads
to a use-after-free (UAF):
```cpp
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_string.h>
TEST_CASE("Bugs, bugs, bugs", "[Bug]"){
std::string str = "Bugs as a service";
auto match_expression = Catch::Matchers::EndsWith( "as a service" ) ||
(Catch::Matchers::StartsWith( "Big data" ) && !Catch::Matchers::Contains( "web scale" ) );
REQUIRE_THAT(str, match_expression);
}
```
## Built-in matchers
Every matcher provided by Catch2 is split into 2 parts, a factory
function that lives in the `Catch::Matchers` namespace, and the actual
matcher type that is in some deeper namespace and should not be used by
the user. In the examples above, we used `Catch::Matchers::Contains`.
This is the factory function for the
`Catch::Matchers::StdString::ContainsMatcher` type that does the actual
matching.
Out of the box, Catch2 provides the following matchers:
### `std::string` matchers
Catch2 provides 5 different matchers that work with `std::string`,
* `StartsWith(std::string str, CaseSensitive)`,
* `EndsWith(std::string str, CaseSensitive)`,
* `Contains(std::string str, CaseSensitive)`,
* `Equals(std::string str, CaseSensitive)`, and
* `Matches(std::string str, CaseSensitive)`.
The first three should be fairly self-explanatory, they succeed if
the argument starts with `str`, ends with `str`, or contains `str`
somewhere inside it.
The `Equals` matcher matches a string if (and only if) the argument
string is equal to `str`.
Finally, the `Matches` matcher performs an ECMASCript regex match using
`str` against the argument string. It is important to know that
the match is performed agains the string as a whole, meaning that
the regex `"abc"` will not match input string `"abcd"`. To match
`"abcd"`, you need to use e.g. `"abc.*"` as your regex.
The second argument sets whether the matching should be case-sensitive
or not. By default, it is case-sensitive.
> `std::string` matchers live in `catch2/matchers/catch_matchers_string.hpp`
### Vector matchers
_Vector matchers have been deprecated in favour of the generic
range matchers with the same functionality._
Catch2 provides 5 built-in matchers that work on `std::vector`.
These are
* `Contains` which checks whether a specified vector is present in the result
* `VectorContains` which checks whether a specified element is present in the result
* `Equals` which checks whether the result is exactly equal (order matters) to a specific vector
* `UnorderedEquals` which checks whether the result is equal to a specific vector under a permutation
* `Approx` which checks whether the result is "approx-equal" (order matters, but comparison is done via `Approx`) to a specific vector
> Approx matcher was [introduced](https://github.com/catchorg/Catch2/issues/1499) in Catch 2.7.2.
An example usage:
```cpp
std::vector<int> some_vec{ 1, 2, 3 };
REQUIRE_THAT(some_vec, Catch::Matchers::UnorderedEquals(std::vector<int>{ 3, 2, 1 }));
```
This assertions will pass, because the elements given to the matchers
are a permutation of the ones in `some_vec`.
> vector matchers live in `catch2/matchers/catch_matchers_vector.hpp`
### Floating point matchers
Catch2 provides 3 matchers that target floating point numbers. These
are:
* `WithinAbs(double target, double margin)`,
* `WithinUlps(FloatingPoint target, uint64_t maxUlpDiff)`, and
* `WithinRel(FloatingPoint target, FloatingPoint eps)`.
> `WithinRel` matcher was introduced in Catch 2.10.0
`WithinAbs` creates a matcher that accepts floating point numbers whose
difference with `target` is less than the `margin`.
`WithinULP` creates a matcher that accepts floating point numbers that
are no more than `maxUlpDiff`
[ULPs](https://en.wikipedia.org/wiki/Unit_in_the_last_place)
away from the `target` value. The short version of what this means
is that there is no more than `maxUlpDiff - 1` representeable floating
point numbers between the argument for matching and the `target` value.
`WithinRel` creates a matcher that accepts floating point numbers that
are _approximately equal_ with the `target` with tolerance of `eps.`
Specifically, it matches if
`|arg - target| <= eps * max(|arg|, |target|)` holds. If you do not
specify `eps`, `std::numeric_limits<FloatingPoint>::epsilon * 100`
is used as the default.
In practice, you will often want to combine multiple of these matchers,
together for an assertion, because all 3 options have edge cases where
they behave differently than you would expect. As an example, under
the `WithinRel` matcher, a `0.` only ever matches a `0.` (or `-0.`),
regardless of the relative tolerance specified. Thus, if you want to
handle numbers that are "close enough to 0 to be 0", you have to combine
it with the `WithinAbs` matcher.
For example, to check that our computation matches known good value
within 0.1%, or is close enough (no different to 5 decimal places)
to zero, we would write this assertion:
```cpp
REQUIRE_THAT( computation(input),
Catch::Matchers::WithinRel(expected, 0.001)
|| Catch::Matchers::WithinAbs(0, 0.000001) );
```
> floating point matchers live in `catch2/matchers/catch_matchers_floating.hpp`
### Miscellaneous matchers
Catch2 also provides some matchers and matcher utilities that do not
quite fit into other categories.
The first one of them is the `Predicate(Callable pred, std::string description)`
matcher. It creates a matcher object that calls `pred` for the provided
argument. The `description` argument allows users to set what the
resulting matcher should self-describe as if required.
Do note that you will need to explicitly specify the type of the
argument, like in this example:
```cpp
REQUIRE_THAT("Hello olleH",
Predicate<std::string>(
[] (std::string const& str) -> bool { return str.front() == str.back(); },
"First and last character should be equal")
);
```
> the predicate matcher lives in `catch2/matchers/catch_matchers_predicate.hpp`
The other miscellaneous matcher utility is exception matching.
#### Matching exceptions
Catch2 provides an utility macro for asserting that an expression
throws exception of specific type, and that the exception has desired
properties. The macro is `REQUIRE_THROWS_MATCHES(expr, ExceptionType, Matcher)`.
> `REQUIRE_THROWS_MATCHES` macro lives in `catch2/matchers/catch_matchers.hpp`
Catch2 currently provides only one matcher for exceptions,
`Message(std::string message)`. `Message` checks that the exception's
message, as returned from `what` is exactly equal to `message`.
Example use:
```cpp
REQUIRE_THROWS_MATCHES(throwsDerivedException(), DerivedException, Message("DerivedException::what"));
```
Note that `DerivedException` in the example above has to derive from
`std::exception` for the example to work.
> the exception message matcher lives in `catch2/matchers/catch_matchers_exception.hpp`
### Generic range Matchers
> Generic range matchers were introduced in Catch X.Y.Z
Catch2 also provides some matchers that use the new style matchers
definitions to handle generic range-like types. These are:
* `IsEmpty()`
* `SizeIs(size_t target_size)`
* `SizeIs(Matcher size_matcher)`
* `Contains(T&& target_element, Comparator = std::equal_to<>{})`
* `Contains(Matcher element_matcher)`
`IsEmpty` should be self-explanatory. It successfully matches objects
that are empty according to either `std::empty`, or ADL-found `empty`
free function.
`SizeIs` checks range's size. If constructed with `size_t` arg, the
matchers accepts ranges whose size is exactly equal to the arg. If
constructed from another matcher, then the resulting matcher accepts
ranges whose size is accepted by the provided matcher.
`Contains` accepts ranges that contain specific element. There are
again two variants, one that accepts the desired element directly,
in which case a range is accepted if any of its elements is equal to
the target element. The other variant is constructed from a matcher,
in which case a range is accepted if any of its elements is accepted
by the provided matcher.
## Writing custom matchers (old style)
The old style of writing matchers has been introduced back in Catch
Classic. To create an old-style matcher, you have to create your own
type that derives from `Catch::Matchers::MatcherBase<ArgT>`, where
`ArgT` is the type your matcher works for. Your type has to override
two methods, `bool match(ArgT const&) const`,
and `std::string describe() const`.
As the name suggests, `match` decides whether the provided argument
is matched (accepted) by the matcher. `describe` then provides a
human-oriented description of what the matcher does.
We also recommend that you create factory function, just like Catch2
does, but that is mostly useful for template argument deduction for
templated matchers (assuming you do not have CTAD available).
To combine these into an example, let's say that you want to write
a matcher that decides whether the provided argument is a number
within certain range. We will call it `IsBetweenMatcher<T>`:
```c++
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers.h>
// ...
template <typename T>
class IsBetweenMatcher : public Catch::Matchers::MatcherBase<T> {
T m_begin, m_end;
public:
IsBetweenMatcher(T begin, T end) : m_begin(begin), m_end(end) {}
bool match(T const& in) const override {
return in >= m_begin && in <= m_end;
}
std::string describe() const override {
std::ostringstream ss;
ss << "is between " << m_begin << " and " << m_end;
return ss.str();
}
};
template <typename T>
IsBetweenMatcher<T> IsBetween(T begin, T end) {
return { begin, end };
}
// ...
TEST_CASE("Numbers are within range") {
// infers `double` for the argument type of the matcher
CHECK_THAT(3., IsBetween(1., 10.));
// infers `int` for the argument type of the matcher
CHECK_THAT(100, IsBetween(1, 10));
}
```
Obviously, the code above can be improved somewhat, for example you
might want to `static_assert` over the fact that `T` is an arithmetic
type... or generalize the matcher to cover any type for which the user
can provide a comparison function object.
Note that while any matcher written using the old style can also be
written using the new style, combining old style matchers should
generally compile faster. Also note that you can combine old and new
style matchers arbitrarily.
> `MatcherBase` lives in `catch2/matchers/catch_matchers.hpp`
## Writing custom matchers (new style)
> New style matchers were introduced in Catch X.Y.Z
To create a new-style matcher, you have to create your own type that
derives from `Catch::Matchers::MatcherGenericBase`. Your type has to
also provide two methods, `bool match( ... ) const` and overriden
`std::string describe() const`.
Unlike with old-style matchers, there are no requirements on how
the `match` member function takes its argument. This means that the
argument can be taken by value or by mutating reference, but also that
the matcher's `match` member function can be templated.
This allows you to write more complex matcher, such as a matcher that
can compare one range-like (something that responds to `begin` and
`end`) object to another, like in the following example:
```cpp
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_templated.hpp>
// ...
template<typename Range>
struct EqualsRangeMatcher : Catch::Matchers::MatcherGenericBase {
EqualsRangeMatcher(Range const& range):
range{ range }
{}
template<typename OtherRange>
bool match(OtherRange const& other) const {
using std::begin; using std::end;
return std::equal(begin(range), end(range), begin(other), end(other));
}
std::string describe() const override {
return "Equals: " + Catch::rangeToString(range);
}
private:
Range const& range;
};
template<typename Range>
auto EqualsRange(const Range& range) -> EqualsRangeMatcher<Range> {
return EqualsRangeMatcher<Range>{range};
}
TEST_CASE("Combining templated matchers", "[matchers][templated]") {
std::array<int, 3> container{{ 1,2,3 }};
std::array<int, 3> a{{ 1,2,3 }};
std::vector<int> b{ 0,1,2 };
std::list<int> c{ 4,5,6 };
REQUIRE_THAT(container, EqualsRange(a) || EqualsRange(b) || EqualsRange(c));
}
```
Do note that while you can rewrite any matcher from the old style to
a new style matcher, combining new style matchers is more expensive
in terms of compilation time. Also note that you can combine old style
and new style matchers arbitrarily.
> `MatcherGenericBase` lives in `catch2/matchers/catch_matchers_templated.hpp`
---
[Home](Readme.md#top)

View File

@@ -1,123 +0,0 @@
<a id="top"></a>
# Open Source projects using Catch
Catch is great for open source. With its [liberal license](../LICENSE.txt) and single-header, dependency-free, distribution
it's easy to just drop the header into your project and start writing tests - what's not to like?
As a result Catch is now being used in many Open Source projects, including some quite well known ones.
This page is an attempt to track those projects. Obviously it can never be complete.
This effort largely relies on the maintainers of the projects themselves updating this page and submitting a PR
(or, if you prefer contact one of the maintainers of Catch directly, use the
[forums](https://groups.google.com/forum/?fromgroups#!forum/catch-forum)), or raise an [issue](https://github.com/philsquared/Catch/issues) to let us know).
Of course users of those projects might want to update this page too. That's fine - as long you're confident the project maintainers won't mind.
If you're an Open Source project maintainer and see your project listed here but would rather it wasn't -
just let us know via any of the previously mentioned means - although I'm sure there won't be many who feel that way.
Listing a project here does not imply endorsement and the plan is to keep these ordered alphabetically to avoid an implication of relative importance.
## Libraries & Frameworks
### [ApprovalTests.cpp](https://github.com/approvals/ApprovalTests.cpp)
C++11 implementation of Approval Tests, for quick, convenient testing of legacy code.
### [args](https://github.com/Taywee/args)
A simple header-only C++ argument parser library.
### [Azmq](https://github.com/zeromq/azmq)
Boost Asio style bindings for ZeroMQ.
### [Cataclysm: Dark Days Ahead](https://github.com/CleverRaven/Cataclysm-DDA)
Post-apocalyptic survival RPG.
### [ChaiScript](https://github.com/ChaiScript/ChaiScript)
A, header-only, embedded scripting language designed from the ground up to directly target C++ and take advantage of modern C++ development techniques.
### [ChakraCore](https://github.com/Microsoft/ChakraCore)
The core part of the Chakra JavaScript engine that powers Microsoft Edge.
### [Clara](https://github.com/philsquared/Clara)
A, single-header-only, type-safe, command line parser - which also prints formatted usage strings.
### [Couchbase-lite-core](https://github.com/couchbase/couchbase-lite-core)
The next-generation core storage and query engine for Couchbase Lite.
### [cppcodec](https://github.com/tplgy/cppcodec)
Header-only C++11 library to encode/decode base64, base64url, base32, base32hex and hex (a.k.a. base16) as specified in RFC 4648, plus Crockford's base32.
### [DtCraft](https://github.com/twhuang-uiuc/DtCraft)
A High-performance Cluster Computing Engine.
### [forest](https://github.com/xorz57/forest)
Template Library of Tree Data Structures.
### [Fuxedo](https://github.com/fuxedo/fuxedo)
Open source Oracle Tuxedo-like XATMI middleware for C and C++.
### [Inja](https://github.com/pantor/inja)
A header-only template engine for modern C++.
### [libcluon](https://github.com/chrberger/libcluon)
A single-header-only library written in C++14 to glue distributed software components (UDP, TCP, shared memory) supporting natively Protobuf, LCM/ZCM, MsgPack, and JSON for dynamic message transformations in-between.
### [MNMLSTC Core](https://github.com/mnmlstc/core)
A small and easy to use C++11 library that adds a functionality set that will be available in C++14 and later, as well as some useful additions.
### [nanodbc](https://github.com/lexicalunit/nanodbc/)
A small C++ library wrapper for the native C ODBC API.
### [Nonius](https://github.com/libnonius/nonius)
A header-only framework for benchmarking small snippets of C++ code.
### [polymorphic_value](https://github.com/jbcoe/polymorphic_value)
A polymorphic value-type for C++.
### [Ppconsul](https://github.com/oliora/ppconsul)
A C++ client library for Consul. Consul is a distributed tool for discovering and configuring services in your infrastructure.
### [Reactive-Extensions/ RxCpp](https://github.com/Reactive-Extensions/RxCpp)
A library of algorithms for values-distributed-in-time.
### [SOCI](https://github.com/SOCI/soci)
The C++ Database Access Library.
### [TextFlowCpp](https://github.com/philsquared/textflowcpp)
A small, single-header-only, library for wrapping and composing columns of text.
### [thor](https://github.com/xorz57/thor)
Wrapper Library for CUDA.
### [toml++](https://github.com/marzer/tomlplusplus)
A header-only TOML parser and serializer for modern C++.
### [Trompeloeil](https://github.com/rollbear/trompeloeil)
A thread-safe header-only mocking framework for C++14.
## Applications & Tools
### [ArangoDB](https://github.com/arangodb/arangodb)
ArangoDB is a native multi-model database with flexible data models for documents, graphs, and key-values.
### [Giada - Your Hardcore Loop Machine](https://github.com/monocasual/giada)
Minimal, open-source and cross-platform audio tool for live music production.
### [MAME](https://github.com/mamedev/mame)
MAME originally stood for Multiple Arcade Machine Emulator.
### [Newsbeuter](https://github.com/akrennmair/newsbeuter)
Newsbeuter is an open-source RSS/Atom feed reader for text terminals.
### [PopHead](https://github.com/SPC-Some-Polish-Coders/PopHead)
A 2D, Zombie, RPG game which is being made on our own engine.
### [raspigcd](https://github.com/pantadeusz/raspigcd)
Low level CLI app and library for execution of GCODE on Raspberry Pi without any additional microcontrolers (just RPi + Stepsticks).
### [SpECTRE](https://github.com/sxs-collaboration/spectre)
SpECTRE is a code for multi-scale, multi-physics problems in astrophysics and gravitational physics.
### [Standardese](https://github.com/foonathan/standardese)
Standardese aims to be a nextgen Doxygen.
---
[Home](Readme.md#top)

View File

@@ -1,154 +0,0 @@
<a id="top"></a>
# Other macros
This page serves as a reference for macros that are not documented
elsewhere. For now, these macros are separated into 2 rough categories,
"assertion related macros" and "test case related macros".
## Assertion related macros
* `CHECKED_IF` and `CHECKED_ELSE`
`CHECKED_IF( expr )` is an `if` replacement, that also applies Catch2's
stringification machinery to the _expr_ and records the result. As with
`if`, the block after a `CHECKED_IF` is entered only if the expression
evaluates to `true`. `CHECKED_ELSE( expr )` work similarly, but the block
is entered only if the _expr_ evaluated to `false`.
Example:
```cpp
int a = ...;
int b = ...;
CHECKED_IF( a == b ) {
// This block is entered when a == b
} CHECKED_ELSE ( a == b ) {
// This block is entered when a != b
}
```
* `CHECK_NOFAIL`
`CHECK_NOFAIL( expr )` is a variant of `CHECK` that does not fail the test
case if _expr_ evaluates to `false`. This can be useful for checking some
assumption, that might be violated without the test necessarily failing.
Example output:
```
main.cpp:6:
FAILED - but was ok:
CHECK_NOFAIL( 1 == 2 )
main.cpp:7:
PASSED:
CHECK( 2 == 2 )
```
* `SUCCEED`
`SUCCEED( msg )` is mostly equivalent with `INFO( msg ); REQUIRE( true );`.
In other words, `SUCCEED` is for cases where just reaching a certain line
means that the test has been a success.
Example usage:
```cpp
TEST_CASE( "SUCCEED showcase" ) {
int I = 1;
SUCCEED( "I is " << I );
}
```
* `STATIC_REQUIRE`
> [Introduced](https://github.com/catchorg/Catch2/issues/1362) in Catch 2.4.2.
`STATIC_REQUIRE( expr )` is a macro that can be used the same way as a
`static_assert`, but also registers the success with Catch2, so it is
reported as a success at runtime. The whole check can also be deferred
to the runtime, by defining `CATCH_CONFIG_RUNTIME_STATIC_REQUIRE` before
including the Catch2 header.
Example:
```cpp
TEST_CASE("STATIC_REQUIRE showcase", "[traits]") {
STATIC_REQUIRE( std::is_void<void>::value );
STATIC_REQUIRE_FALSE( std::is_void<int>::value );
}
```
## Test case related macros
* `METHOD_AS_TEST_CASE`
`METHOD_AS_TEST_CASE( member-function-pointer, description )` lets you
register a member function of a class as a Catch2 test case. The class
will be separately instantiated for each method registered in this way.
```cpp
class TestClass {
std::string s;
public:
TestClass()
:s( "hello" )
{}
void testCase() {
REQUIRE( s == "hello" );
}
};
METHOD_AS_TEST_CASE( TestClass::testCase, "Use class's method as a test case", "[class]" )
```
* `REGISTER_TEST_CASE`
`REGISTER_TEST_CASE( function, description )` let's you register
a `function` as a test case. The function has to have `void()` signature,
the description can contain both name and tags.
Example:
```cpp
REGISTER_TEST_CASE( someFunction, "ManuallyRegistered", "[tags]" );
```
_Note that the registration still has to happen before Catch2's session
is initiated. This means that it either needs to be done in a global
constructor, or before Catch2's session is created in user's own main._
* `ANON_TEST_CASE`
`ANON_TEST_CASE` is a `TEST_CASE` replacement that will autogenerate
unique name. The advantage of this is that you do not have to think
of a name for the test case,`the disadvantage is that the name doesn't
necessarily remain stable across different links, and thus it might be
hard to run directly.
Example:
```cpp
ANON_TEST_CASE() {
SUCCEED("Hello from anonymous test case");
}
```
* `DYNAMIC_SECTION`
> Introduced in Catch 2.3.0.
`DYNAMIC_SECTION` is a `SECTION` where the user can use `operator<<` to
create the final name for that section. This can be useful with e.g.
generators, or when creating a `SECTION` dynamically, within a loop.
Example:
```cpp
TEST_CASE( "looped SECTION tests" ) {
int a = 1;
for( int b = 0; b < 10; ++b ) {
DYNAMIC_SECTION( "b is currently: " << b ) {
CHECK( b > a );
}
}
}
```

View File

@@ -1,12 +1,5 @@
<a id="top"></a>
# Supplying main() yourself
**Contents**<br>
[Let Catch take full control of args and config](#let-catch-take-full-control-of-args-and-config)<br>
[Amending the config](#amending-the-config)<br>
[Adding your own command line options](#adding-your-own-command-line-options)<br>
[Version detection](#version-detection)<br>
The easiest way to use Catch is to let it supply ```main()``` for you and handle configuring itself from the command line.
This is achieved by writing ```#define CATCH_CONFIG_MAIN``` before the ```#include "catch.hpp"``` in *exactly one* source file.
@@ -23,7 +16,8 @@ If you just need to have code that executes before and/ or after Catch this is t
#define CATCH_CONFIG_RUNNER
#include "catch.hpp"
int main( int argc, char* argv[] ) {
int main( int argc, char* const argv[] )
{
// global setup...
int result = Catch::Session().run( argc, argv );
@@ -36,33 +30,28 @@ int main( int argc, char* argv[] ) {
## Amending the config
If you still want Catch to process the command line, but you want to programmatically tweak the config, you can do so in one of two ways:
If you still want Catch to process the command line, but you want to programatically tweak the config, you can do so in one of two ways:
```c++
#define CATCH_CONFIG_RUNNER
#include "catch.hpp"
int main( int argc, char* argv[] )
int main( int argc, char* const argv[] )
{
Catch::Session session; // There must be exactly one instance
Catch::Session session; // There must be exactly once instance
// writing to session.configData() here sets defaults
// this is the preferred way to set them
int returnCode = session.applyCommandLine( argc, argv );
if( returnCode != 0 ) // Indicates a command line error
return returnCode;
return returnCode;
// writing to session.configData() or session.Config() here
// overrides command line args
// only do this if you know you need to
int numFailed = session.run();
// numFailed is clamped to 255 as some unices only use the lower 8 bits.
// This clamping has already been applied, so just return it here
// You can also do any post run clean-up here
return numFailed;
return session.run();
}
```
@@ -72,60 +61,8 @@ To take full control of the config simply omit the call to ```applyCommandLine()
## Adding your own command line options
Catch embeds a powerful command line parser called [Clara](https://github.com/philsquared/Clara).
As of Catch2 (and Clara 1.0) Clara allows you to write _composable_ option and argument parsers,
so extending Catch's own command line options is now easy.
```c++
#define CATCH_CONFIG_RUNNER
#include "catch.hpp"
int main( int argc, char* argv[] )
{
Catch::Session session; // There must be exactly one instance
int height = 0; // Some user variable you want to be able to set
// Build a new parser on top of Catch's
using namespace Catch::clara;
auto cli
= session.cli() // Get Catch's composite command line parser
| Opt( height, "height" ) // bind variable to a new option, with a hint string
["-g"]["--height"] // the option names it will respond to
("how high?"); // description string for the help output
// Now pass the new composite back to Catch so it uses that
session.cli( cli );
// Let Catch (using Clara) parse the command line
int returnCode = session.applyCommandLine( argc, argv );
if( returnCode != 0 ) // Indicates a command line error
return returnCode;
// if set on the command line then 'height' is now set at this point
if( height > 0 )
std::cout << "height: " << height << std::endl;
return session.run();
}
```
See the [Clara documentation](https://github.com/philsquared/Clara/blob/master/README.md) for more details.
## Version detection
Catch provides a triplet of macros providing the header's version,
* `CATCH_VERSION_MAJOR`
* `CATCH_VERSION_MINOR`
* `CATCH_VERSION_PATCH`
these macros expand into a single number, that corresponds to the appropriate
part of the version. As an example, given single header version v2.3.4,
the macros would expand into `2`, `3`, and `4` respectively.
Catch embeds a powerful command line parser which you can also use to parse your own options out. This capability is still in active development but will be documented here when it is ready.
---
[Home](Readme.md#top)
[Home](Readme.md)

File diff suppressed because it is too large Load Diff

View File

@@ -1,72 +0,0 @@
<a id="top"></a>
# How to release
When enough changes have accumulated, it is time to release new version of Catch. This document describes the process in doing so, that no steps are forgotten. Note that all referenced scripts can be found in the `tools/scripts/` directory.
## Necessary steps
These steps are necessary and have to be performed before each new release. They serve to make sure that the new release is correct and linked-to from the standard places.
### Testing
All of the tests are currently run in our CI setup based on TravisCI and
AppVeyor. As long as the last commit tested green, the release can
proceed.
### Incrementing version number
Catch uses a variant of [semantic versioning](http://semver.org/), with breaking API changes (and thus major version increments) being very rare. Thus, the release will usually increment the patch version, when it only contains couple of bugfixes, or minor version, when it contains new functionality, or larger changes in implementation of current functionality.
After deciding which part of version number should be incremented, you can use one of the `*Release.py` scripts to perform the required changes to Catch.
This will take care of generating the single include header, updating
version numbers everywhere and pushing the new version to Wandbox.
### Release notes
Once a release is ready, release notes need to be written. They should summarize changes done since last release. For rough idea of expected notes see previous releases. Once written, release notes should be added to `docs/release-notes.md`.
### Commit and push update to GitHub
After version number is incremented, single-include header is regenerated and release notes are updated, changes should be committed and pushed to GitHub.
### Release on GitHub
After pushing changes to GitHub, GitHub release *needs* to be created.
Tag version and release title should be same as the new version,
description should contain the release notes for the current release.
Single header version of `catch.hpp` *needs* to be attached as a binary,
as that is where the official download link links to. Preferably
it should use linux line endings. All non-bundled reporters (Automake, TAP,
TeamCity, SonarQube) should also be attached as binaries, as they might be
dependent on a specific version of the single-include header.
Since 2.5.0, the release tag and the "binaries" (headers) should be PGP
signed.
#### Signing a tag
To create a signed tag, use `git tag -s <VERSION>`, where `<VERSION>`
is the version being released, e.g. `git tag -s v2.6.0`.
Use the version name as the short message and the release notes as
the body (long) message.
#### Signing the headers
This will create ASCII-armored signatures for the headers that are
uploaded to the GitHub release:
```
$ gpg2 --armor --output catch.hpp.asc --detach-sig catch.hpp
$ gpg2 --armor --output catch_reporter_automake.hpp.asc --detach-sig catch_reporter_automake.hpp
$ gpg2 --armor --output catch_reporter_teamcity.hpp.asc --detach-sig catch_reporter_teamcity.hpp
$ gpg2 --armor --output catch_reporter_tap.hpp.asc --detach-sig catch_reporter_tap.hpp
```
_GPG does not support signing multiple files in single invocation._

View File

@@ -1,47 +0,0 @@
<a id="top"></a>
# Reporters
Catch has a modular reporting system and comes bundled with a handful of useful reporters built in.
You can also write your own reporters.
## Using different reporters
The reporter to use can easily be controlled from the command line.
To specify a reporter use [`-r` or `--reporter`](command-line.md#choosing-a-reporter-to-use), followed by the name of the reporter, e.g.:
```
-r xml
```
If you don't specify a reporter then the console reporter is used by default.
There are four reporters built in to the single include:
* `console` writes as lines of text, formatted to a typical terminal width, with colours if a capable terminal is detected.
* `compact` similar to `console` but optimised for minimal output - each entry on one line
* `junit` writes xml that corresponds to Ant's [junitreport](http://help.catchsoftware.com/display/ET/JUnit+Format) target. Useful for build systems that understand Junit.
Because of the way the junit format is structured the run must complete before anything is written.
* `xml` writes an xml format tailored to Catch. Unlike `junit` this is a streaming format so results are delivered progressively.
There are a few additional reporters, for specific build systems, in the Catch repository (in `include\reporters`) which you can `#include` in your project if you would like to make use of them.
Do this in one source file - the same one you have `CATCH_CONFIG_MAIN` or `CATCH_CONFIG_RUNNER`.
* `teamcity` writes the native, streaming, format that [TeamCity](https://www.jetbrains.com/teamcity/) understands.
Use this when building as part of a TeamCity build to see results as they happen ([code example](../examples/207-Rpt-TeamCityReporter.cpp)).
* `tap` writes in the TAP ([Test Anything Protocol](https://en.wikipedia.org/wiki/Test_Anything_Protocol)) format.
* `automake` writes in a format that correspond to [automake .trs](https://www.gnu.org/software/automake/manual/html_node/Log-files-generation-and-test-results-recording.html) files
* `sonarqube` writes the [SonarQube Generic Test Data](https://docs.sonarqube.org/latest/analysis/generic-test/) XML format.
You see what reporters are available from the command line by running with `--list-reporters`.
By default all these reports are written to stdout, but can be redirected to a file with [`-o` or `--out`](command-line.md#sending-output-to-a-file)
## Writing your own reporter
You can write your own custom reporter and register it with Catch.
At time of writing the interface is subject to some changes so is not, yet, documented here.
If you are determined you shouldn't have too much trouble working it out from the existing implementations -
but do keep in mind upcoming changes (these will be minor, simplifying, changes such as not needing to forward calls to the base class).
---
[Home](Readme.md#top)

View File

@@ -1,12 +1,5 @@
<a id="top"></a>
# Why do my tests take so long to compile?
**Contents**<br>
[Short answer](#short-answer)<br>
[Long answer](#long-answer)<br>
[Practical example](#practical-example)<br>
[Other possible solutions](#other-possible-solutions)<br>
Several people have reported that test code written with Catch takes much longer to compile than they would expect. Why is that?
Catch is implemented entirely in headers. There is a little overhead due to this - but not as much as you might think - and you can minimise it simply by organising your test code as follows:
@@ -22,51 +15,8 @@ But functions and methods can also be written inline in header files. The downsi
Because Catch is implemented *entirely* in headers you might think that the whole of Catch must be compiled into every translation unit that uses it! Actually it's not quite as bad as that. Catch mitigates this situation by effectively maintaining the traditional separation between the implementation code and declarations. Internally the implementation code is protected by ```#ifdef```s and is conditionally compiled into only one translation unit. This translation unit is that one that ```#define```s ```CATCH_CONFIG_MAIN``` or ```CATCH_CONFIG_RUNNER```. Let's call this the main source file.
As a result the main source file *does* compile the whole of Catch every time! So it makes sense to dedicate this file to *only* ```#define```-ing the identifier and ```#include```-ing Catch (and implementing the runner code, if you're doing that). Keep all your test cases in other files. This way you won't pay the recompilation cost for the whole of Catch.
## Practical example
Assume you have the `Factorial` function from the [tutorial](tutorial.md#top) in `factorial.cpp` (with forward declaration in `factorial.h`) and want to test it and keep the compile times down when adding new tests. Then you should have 2 files, `tests-main.cpp` and `tests-factorial.cpp`:
```cpp
// tests-main.cpp
#define CATCH_CONFIG_MAIN
#include "catch.hpp"
```
```cpp
// tests-factorial.cpp
#include "catch.hpp"
#include "factorial.h"
TEST_CASE( "Factorials are computed", "[factorial]" ) {
REQUIRE( Factorial(1) == 1 );
REQUIRE( Factorial(2) == 2 );
REQUIRE( Factorial(3) == 6 );
REQUIRE( Factorial(10) == 3628800 );
}
```
After compiling `tests-main.cpp` once, it is enough to link it with separately compiled `tests-factorial.cpp`. This means that adding more tests to `tests-factorial.cpp`, will not result in recompiling Catch's main and the resulting compilation times will decrease substantially.
```
$ g++ tests-main.cpp -c
$ g++ factorial.cpp -c
$ g++ tests-main.o factorial.o tests-factorial.cpp -o tests && ./tests -r compact
Passed 1 test case with 4 assertions.
```
Now, the next time we change the file `tests-factorial.cpp` (say we add `REQUIRE( Factorial(0) == 1)`), it is enough to recompile the tests instead of recompiling main as well:
```
$ g++ tests-main.o factorial.o tests-factorial.cpp -o tests && ./tests -r compact
tests-factorial.cpp:11: failed: Factorial(0) == 1 for: 0 == 1
Failed 1 test case, failed 1 assertion.
```
## Other possible solutions
You can also opt to sacrifice some features in order to speed-up Catch's compilation times. For details see the [documentation on Catch's compile-time configuration](configuration.md#other-toggles).
As a result the main source file *does* compile the whole of Catch every time! So it makes sense to dedicate this file to *only* ```#define```-ing the identifier and ```#include```-ing Catch (and implementing the runner code, if you're doing that). Keep all your test cases in other files. This way you won't pay the recompilation cost for the whole of Catch
---
[Home](Readme.md#top)
[Home](Readme.md)

View File

@@ -1,33 +1,17 @@
<a id="top"></a>
# Test cases and sections
**Contents**<br>
[Tags](#tags)<br>
[Tag aliases](#tag-aliases)<br>
[BDD-style test cases](#bdd-style-test-cases)<br>
[Type parametrised test cases](#type-parametrised-test-cases)<br>
[Signature based parametrised test cases](#signature-based-parametrised-test-cases)<br>
While Catch fully supports the traditional, xUnit, style of class-based fixtures containing test case methods this is not the preferred style.
Instead Catch provides a powerful mechanism for nesting test case sections within a test case. For a more detailed discussion see the [tutorial](tutorial.md#test-cases-and-sections).
Instead Catch provides a powerful mechanism for nesting test case sections within a test case. For a more detailed discussion see the [tutorial](tutorial.md#testCasesAndSections).
Test cases and sections are very easy to use in practice:
* **TEST_CASE(** _test name_ \[, _tags_ \] **)**
* **SECTION(** _section name_, \[, _section description_ \] **)**
* **SECTION(** _section name_ **)**
_test name_ and _section name_ are free form, quoted, strings. The optional _tags_ argument is a quoted string containing one or more tags enclosed in square brackets. Tags are discussed below. Test names must be unique within the Catch executable.
_test name_ and _section name_ are free form, quoted, strings.
The optional _tags_ argument is a quoted string containing one or more
tags enclosed in square brackets, and are discussed below.
_section description_ can be used to provide long form description
of a section while keeping the _section name_ short for use with the
[`-c` command line parameter](command-line.md#specify-the-section-to-run).
**Test names must be unique within the Catch executable.**
For examples see the [Tutorial](tutorial.md#top)
For examples see the [Tutorial](tutorial.md)
## Tags
@@ -35,46 +19,42 @@ Tags allow an arbitrary number of additional strings to be associated with a tes
As an example - given the following test cases:
TEST_CASE( "A", "[widget]" ) { /* ... */ }
TEST_CASE( "B", "[widget]" ) { /* ... */ }
TEST_CASE( "C", "[gadget]" ) { /* ... */ }
TEST_CASE( "D", "[widget][gadget]" ) { /* ... */ }
TEST_CASE( "A", "[widget]" ) { /* ... */ }
TEST_CASE( "B", "[widget]" ) { /* ... */ }
TEST_CASE( "C", "[gadget]" ) { /* ... */ }
TEST_CASE( "D", "[widget][gadget]" ) { /* ... */ }
The tag expression, ```"[widget]"``` selects A, B & D. ```"[gadget]"``` selects C & D. ```"[widget][gadget]"``` selects just D and ```"[widget],[gadget]"``` selects all four test cases.
For more detail on command line selection see [the command line docs](command-line.md#specifying-which-tests-to-run)
Tag names are not case sensitive and can contain any ASCII characters. This means that tags `[tag with spaces]` and `[I said "good day"]` are both allowed tags and can be filtered on. Escapes are not supported however and `[\]]` is not a valid tag.
Tag names are not case sensitive.
### Special Tags
All tag names beginning with non-alphanumeric characters are reserved by Catch. Catch defines a number of "special" tags, which have meaning to the test runner itself. These special tags all begin with a symbol character. Following is a list of currently defined special tags and their meanings.
* `[.]` - causes test cases to be skipped from the default list (i.e. when no test cases have been explicitly selected through tag expressions or name wildcards). The hide tag is often combined with another, user, tag (for example `[.][integration]` - so all integration tests are excluded from the default run but can be run by passing `[integration]` on the command line). As a short-cut you can combine these by simply prefixing your user tag with a `.` - e.g. `[.integration]`.
* `[!hide]` or `[.]` (or, for legacy reasons, `[hide]`) - causes test cases to be skipped from the default list (ie when no test cases have been explicitly selected through tag expressions or name wildcards). The hide tag is often combined with another, user, tag (for example `[.][integration]` - so all integration tests are excluded from the default run but can be run by passing `[integration]` on the command line). As a short-cut you can combine these by simply prefixing your user tag with a `.` - e.g. `[.integration]`. Because the hide tag has evolved to have several forms, all forms are added as tags if you use one of them.
* `[!throws]` - lets Catch know that this test is likely to throw an exception even if successful. This causes the test to be excluded when running with `-e` or `--nothrow`.
* `[!throws]` - lets Catch know that this test is likely to throw an exception even if successful. This causes the test to be exluded when running with `-e` or `--nothrow`.
* `[!mayfail]` - doesn't fail the test if any given assertion fails (but still reports it). This can be useful to flag a work-in-progress, or a known issue that you don't want to immediately fix but still want to track in your tests.
* `[!shouldfail]` - reverse the failing logic of the test: if the test is successful if it fails, and vice-versa.
* `[!shouldfail]` - like `[!mayfail]` but *fails* the test if it *passes*. This can be useful if you want to be notified of accidental, or third-party, fixes.
* `[!mayfail]` - doesn't fail the test if any given assertion fails (but still reports it). This can be useful to flag a work-in-progress, or a known issue that you don't want to immediately fix but still want to track in the your tests.
* `[!nonportable]` - Indicates that behaviour may vary between platforms or compilers.
* `[#<filename>]` - running with `-#` or `--filenames-as-tags` causes Catch to add the filename, prefixed with `#` (and with any extension stripped), as a tag to all contained tests, e.g. tests in testfile.cpp would all be tagged `[#testfile]`.
* `[#<filename>]` - running with `-#` or `--filenames-as-tags` causes Catch to add the filename, prefixed with `#` (and with any extension stripped) as a tag. e.g. tests in testfile.cpp would all be tagged `[#testfile]`.
* `[@<alias>]` - tag aliases all begin with `@` (see below).
* `[!benchmark]` - this test case is actually a benchmark. This is an experimental feature, and currently has no documentation. If you want to try it out, look at `projects/SelfTest/Benchmark.tests.cpp` for details.
## Tag aliases
Between tag expressions and wildcarded test names (as well as combinations of the two) quite complex patterns can be constructed to direct which test cases are run. If a complex pattern is used often it is convenient to be able to create an alias for the expression. This can be done, in code, using the following form:
Between tag expressions and wildcarded test names (as well as combinations of the two) quite complex patterns can be constructed to direct which test cases are run. If a complex pattern is used often it is convenient to be able to create an alias for the expression. this can be done, in code, using the following form:
CATCH_REGISTER_TAG_ALIAS( <alias string>, <tag expression> )
CATCH_REGISTER_TAG_ALIAS( <alias string>, <tag expression> )
Aliases must begin with the `@` character. An example of a tag alias is:
Aliases must begining with the `@` character. An example of a tag alias is:
CATCH_REGISTER_TAG_ALIAS( "[@nhf]", "[failing]~[.]" )
CATCH_REGISTER_TAG_ALIAS( "[@nhf]", "[failing]~[.]" )
Now when `[@nhf]` is used on the command line this matches all tests that are tagged `[failing]`, but which are not also hidden.
@@ -92,192 +72,15 @@ This macro maps onto ```TEST_CASE``` and works in the same way, except that the
These macros map onto ```SECTION```s except that the section names are the _something_s prefixed by "given: ", "when: " or "then: " respectively.
* **AND_GIVEN(** _something_ **)**
* **AND_WHEN(** _something_ **)**
* **AND_THEN(** _something_ **)**
Similar to ```GIVEN```, ```WHEN``` and ```THEN``` except that the prefixes start with "and ". These are used to chain ```GIVEN```s, ```WHEN```s and ```THEN```s together.
> `AND_GIVEN` was [introduced](https://github.com/catchorg/Catch2/issues/1360) in Catch 2.4.0.
Similar to ```WHEN``` and ```THEN``` except that the prefixes start with "and ". These are used to chain ```WHEN```s and ```THEN```s together.
When any of these macros are used the console reporter recognises them and formats the test case header such that the Givens, Whens and Thens are aligned to aid readability.
Other than the additional prefixes and the formatting in the console reporter these macros behave exactly as ```TEST_CASE```s and ```SECTION```s. As such there is nothing enforcing the correct sequencing of these macros - that's up to the programmer!
## Type parametrised test cases
In addition to `TEST_CASE`s, Catch2 also supports test cases parametrised
by types, in the form of `TEMPLATE_TEST_CASE`,
`TEMPLATE_PRODUCT_TEST_CASE` and `TEMPLATE_LIST_TEST_CASE`.
* **TEMPLATE_TEST_CASE(** _test name_ , _tags_, _type1_, _type2_, ..., _typen_ **)**
> [Introduced](https://github.com/catchorg/Catch2/issues/1437) in Catch 2.5.0.
_test name_ and _tag_ are exactly the same as they are in `TEST_CASE`,
with the difference that the tag string must be provided (however, it
can be empty). _type1_ through _typen_ is the list of types for which
this test case should run, and, inside the test code, the current type
is available as the `TestType` type.
Because of limitations of the C++ preprocessor, if you want to specify
a type with multiple template parameters, you need to enclose it in
parentheses, e.g. `std::map<int, std::string>` needs to be passed as
`(std::map<int, std::string>)`.
Example:
```cpp
TEMPLATE_TEST_CASE( "vectors can be sized and resized", "[vector][template]", int, std::string, (std::tuple<int,float>) ) {
std::vector<TestType> v( 5 );
REQUIRE( v.size() == 5 );
REQUIRE( v.capacity() >= 5 );
SECTION( "resizing bigger changes size and capacity" ) {
v.resize( 10 );
REQUIRE( v.size() == 10 );
REQUIRE( v.capacity() >= 10 );
}
SECTION( "resizing smaller changes size but not capacity" ) {
v.resize( 0 );
REQUIRE( v.size() == 0 );
REQUIRE( v.capacity() >= 5 );
SECTION( "We can use the 'swap trick' to reset the capacity" ) {
std::vector<TestType> empty;
empty.swap( v );
REQUIRE( v.capacity() == 0 );
}
}
SECTION( "reserving smaller does not change size or capacity" ) {
v.reserve( 0 );
REQUIRE( v.size() == 5 );
REQUIRE( v.capacity() >= 5 );
}
}
```
* **TEMPLATE_PRODUCT_TEST_CASE(** _test name_ , _tags_, (_template-type1_, _template-type2_, ..., _template-typen_), (_template-arg1_, _template-arg2_, ..., _template-argm_) **)**
> [Introduced](https://github.com/catchorg/Catch2/issues/1468) in Catch 2.6.0.
_template-type1_ through _template-typen_ is list of template template
types which should be combined with each of _template-arg1_ through
_template-argm_, resulting in _n * m_ test cases. Inside the test case,
the resulting type is available under the name of `TestType`.
To specify more than 1 type as a single _template-type_ or _template-arg_,
you must enclose the types in an additional set of parentheses, e.g.
`((int, float), (char, double))` specifies 2 template-args, each
consisting of 2 concrete types (`int`, `float` and `char`, `double`
respectively). You can also omit the outer set of parentheses if you
specify only one type as the full set of either the _template-types_,
or the _template-args_.
Example:
```cpp
template< typename T>
struct Foo {
size_t size() {
return 0;
}
};
TEMPLATE_PRODUCT_TEST_CASE("A Template product test case", "[template][product]", (std::vector, Foo), (int, float)) {
TestType x;
REQUIRE(x.size() == 0);
}
```
You can also have different arities in the _template-arg_ packs:
```cpp
TEMPLATE_PRODUCT_TEST_CASE("Product with differing arities", "[template][product]", std::tuple, (int, (int, double), (int, double, float))) {
TestType x;
REQUIRE(std::tuple_size<TestType>::value >= 1);
}
```
_While there is an upper limit on the number of types you can specify
in single `TEMPLATE_TEST_CASE` or `TEMPLATE_PRODUCT_TEST_CASE`, the limit
is very high and should not be encountered in practice._
* **TEMPLATE_LIST_TEST_CASE(** _test name_, _tags_, _type list_ **)**
> [Introduced](https://github.com/catchorg/Catch2/issues/1627) in Catch 2.9.0.
_type list_ is a generic list of types on which test case should be instantiated.
List can be `std::tuple`, `boost::mpl::list`, `boost::mp11::mp_list` or anything with
`template <typename...>` signature.
This allows you to reuse the _type list_ in multiple test cases.
Example:
```cpp
using MyTypes = std::tuple<int, char, float>;
TEMPLATE_LIST_TEST_CASE("Template test case with test types specified inside std::tuple", "[template][list]", MyTypes)
{
REQUIRE(sizeof(TestType) > 0);
}
```
## Signature based parametrised test cases
> [Introduced](https://github.com/catchorg/Catch2/issues/1609) in Catch 2.8.0.
In addition to [type parametrised test cases](#type-parametrised-test-cases) Catch2 also supports
signature base parametrised test cases, in form of `TEMPLATE_TEST_CASE_SIG` and `TEMPLATE_PRODUCT_TEST_CASE_SIG`.
These test cases have similar syntax like [type parametrised test cases](#type-parametrised-test-cases), with one
additional positional argument which specifies the signature.
### Signature
Signature has some strict rules for these tests cases to work properly:
* signature with multiple template parameters e.g. `typename T, size_t S` must have this format in test case declaration
`((typename T, size_t S), T, S)`
* signature with variadic template arguments e.g. `typename T, size_t S, typename...Ts` must have this format in test case declaration
`((typename T, size_t S, typename...Ts), T, S, Ts...)`
* signature with single non type template parameter e.g. `int V` must have this format in test case declaration `((int V), V)`
* signature with single type template parameter e.g. `typename T` should not be used as it is in fact `TEMPLATE_TEST_CASE`
Currently Catch2 support up to 11 template parameters in signature
### Examples
* **TEMPLATE_TEST_CASE_SIG(** _test name_ , _tags_, _signature_, _type1_, _type2_, ..., _typen_ **)**
Inside `TEMPLATE_TEST_CASE_SIG` test case you can use the names of template parameters as defined in _signature_.
```cpp
TEMPLATE_TEST_CASE_SIG("TemplateTestSig: arrays can be created from NTTP arguments", "[vector][template][nttp]",
((typename T, int V), T, V), (int,5), (float,4), (std::string,15), ((std::tuple<int, float>), 6)) {
std::array<T, V> v;
REQUIRE(v.size() > 1);
}
```
* **TEMPLATE_PRODUCT_TEST_CASE_SIG(** _test name_ , _tags_, _signature_, (_template-type1_, _template-type2_, ..., _template-typen_), (_template-arg1_, _template-arg2_, ..., _template-argm_) **)**
```cpp
template<typename T, size_t S>
struct Bar {
size_t size() { return S; }
};
TEMPLATE_PRODUCT_TEST_CASE_SIG("A Template product test case with array signature", "[template][product][nttp]", ((typename T, size_t S), T, S), (std::array, Bar), ((int, 9), (float, 42))) {
TestType x;
REQUIRE(x.size() > 0);
}
```
---
[Home](Readme.md#top)
[Home](Readme.md)

View File

@@ -1,9 +1,4 @@
<a id="top"></a>
# Test fixtures
## Defining test fixtures
Although Catch allows you to group tests together as sections within a test case, it can still be convenient, sometimes, to group them using a more traditional test fixture. Catch fully supports this too. You define the test fixture as a simple structure:
Although Catch allows you to group tests together as sections within a test case, it can still convenient, sometimes, to group them using a more traditional test fixture. Catch fully supports this too. You define the test fixture as a simple structure:
```c++
class UniqueTestsFixture {
@@ -32,112 +27,6 @@ class UniqueTestsFixture {
The two test cases here will create uniquely-named derived classes of UniqueTestsFixture and thus can access the `getID()` protected method and `conn` member variables. This ensures that both the test cases are able to create a DBConnection using the same method (DRY principle) and that any ID's created are unique such that the order that tests are executed does not matter.
Catch2 also provides `TEMPLATE_TEST_CASE_METHOD` and
`TEMPLATE_PRODUCT_TEST_CASE_METHOD` that can be used together
with templated fixtures and templated template fixtures to perform
tests for multiple different types. Unlike `TEST_CASE_METHOD`,
`TEMPLATE_TEST_CASE_METHOD` and `TEMPLATE_PRODUCT_TEST_CASE_METHOD` do
require the tag specification to be non-empty, as it is followed by
further macro arguments.
Also note that, because of limitations of the C++ preprocessor, if you
want to specify a type with multiple template parameters, you need to
enclose it in parentheses, e.g. `std::map<int, std::string>` needs to be
passed as `(std::map<int, std::string>)`.
In the case of `TEMPLATE_PRODUCT_TEST_CASE_METHOD`, if a member of the
type list should consist of more than single type, it needs to be enclosed
in another pair of parentheses, e.g. `(std::map, std::pair)` and
`((int, float), (char, double))`.
Example:
```cpp
template< typename T >
struct Template_Fixture {
Template_Fixture(): m_a(1) {}
T m_a;
};
TEMPLATE_TEST_CASE_METHOD(Template_Fixture,"A TEMPLATE_TEST_CASE_METHOD based test run that succeeds", "[class][template]", int, float, double) {
REQUIRE( Template_Fixture<TestType>::m_a == 1 );
}
template<typename T>
struct Template_Template_Fixture {
Template_Template_Fixture() {}
T m_a;
};
template<typename T>
struct Foo_class {
size_t size() {
return 0;
}
};
TEMPLATE_PRODUCT_TEST_CASE_METHOD(Template_Template_Fixture, "A TEMPLATE_PRODUCT_TEST_CASE_METHOD based test succeeds", "[class][template]", (Foo_class, std::vector), int) {
REQUIRE( Template_Template_Fixture<TestType>::m_a.size() == 0 );
}
```
_While there is an upper limit on the number of types you can specify
in single `TEMPLATE_TEST_CASE_METHOD` or `TEMPLATE_PRODUCT_TEST_CASE_METHOD`,
the limit is very high and should not be encountered in practice._
## Signature-based parametrised test fixtures
> [Introduced](https://github.com/catchorg/Catch2/issues/1609) in Catch 2.8.0.
Catch2 also provides `TEMPLATE_TEST_CASE_METHOD_SIG` and `TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG` to support
fixtures using non-type template parameters. These test cases work similar to `TEMPLATE_TEST_CASE_METHOD` and `TEMPLATE_PRODUCT_TEST_CASE_METHOD`,
with additional positional argument for [signature](test-cases-and-sections.md#signature-based-parametrised-test-cases).
Example:
```cpp
template <int V>
struct Nttp_Fixture{
int value = V;
};
TEMPLATE_TEST_CASE_METHOD_SIG(Nttp_Fixture, "A TEMPLATE_TEST_CASE_METHOD_SIG based test run that succeeds", "[class][template][nttp]",((int V), V), 1, 3, 6) {
REQUIRE(Nttp_Fixture<V>::value > 0);
}
template<typename T>
struct Template_Fixture_2 {
Template_Fixture_2() {}
T m_a;
};
template< typename T, size_t V>
struct Template_Foo_2 {
size_t size() { return V; }
};
TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG(Template_Fixture_2, "A TEMPLATE_PRODUCT_TEST_CASE_METHOD_SIG based test run that succeeds", "[class][template][product][nttp]", ((typename T, size_t S), T, S),(std::array, Template_Foo_2), ((int,2), (float,6)))
{
REQUIRE(Template_Fixture_2<TestType>{}.m_a.size() >= 2);
}
```
## Template fixtures with types specified in template type lists
Catch2 also provides `TEMPLATE_LIST_TEST_CASE_METHOD` to support template fixtures with types specified in
template type lists like `std::tuple`, `boost::mpl::list` or `boost::mp11::mp_list`. This test case works the same as `TEMPLATE_TEST_CASE_METHOD`,
only difference is the source of types. This allows you to reuse the template type list in multiple test cases.
Example:
```cpp
using MyTypes = std::tuple<int, char, double>;
TEMPLATE_LIST_TEST_CASE_METHOD(Template_Fixture, "Template test case method with test types specified inside std::tuple", "[class][template][list]", MyTypes)
{
REQUIRE( Template_Fixture<TestType>::m_a == 1 );
}
```
---
[Home](Readme.md#top)
[Home](Readme.md)

View File

@@ -1,132 +1,70 @@
<a id="top"></a>
# String conversions
**Contents**<br>
[operator << overload for std::ostream](#operator--overload-for-stdostream)<br>
[Catch::StringMaker specialisation](#catchstringmaker-specialisation)<br>
[Catch::is_range specialisation](#catchis_range-specialisation)<br>
[Exceptions](#exceptions)<br>
[Enums](#enums)<br>
[Floating point precision](#floating-point-precision)<br>
Catch needs to be able to convert types you use in assertions and logging expressions into strings (for logging and reporting purposes).
Most built-in or std types are supported out of the box but there are two ways that you can tell Catch how to convert your own types (or other, third-party types) into strings.
Most built-in or std types are supported out of the box but there are three ways that you can tell Catch how to convert your own types (or other, third-party types) into strings.
## operator << overload for std::ostream
This is the standard way of providing string conversions in C++ - and the chances are you may already provide this for your own purposes. If you're not familiar with this idiom it involves writing a free function of the form:
```cpp
```
std::ostream& operator << ( std::ostream& os, T const& value ) {
os << convertMyTypeToString( value );
return os;
os << convertMyTypeToString( value );
return os;
}
```
(where ```T``` is your type and ```convertMyTypeToString``` is where you'll write whatever code is necessary to make your type printable - it doesn't have to be in another function).
You should put this function in the same namespace as your type, or the global namespace, and have it declared before including Catch's header.
You should put this function in the same namespace as your type.
## Catch::StringMaker specialisation
If you don't want to provide an ```operator <<``` overload, or you want to convert your type differently for testing purposes, you can provide a specialization for `Catch::StringMaker<T>`:
Alternatively you may prefer to write it as a member function:
```cpp
namespace Catch {
template<>
struct StringMaker<T> {
static std::string convert( T const& value ) {
return convertMyTypeToString( value );
}
};
```
std::ostream& T::operator << ( std::ostream& os ) const {
os << convertMyTypeToString( *this );
return os;
}
```
## Catch::is_range specialisation
As a fallback, Catch attempts to detect if the type can be iterated
(`begin(T)` and `end(T)` are valid) and if it can be, it is stringified
as a range. For certain types this can lead to infinite recursion, so
it can be disabled by specializing `Catch::is_range` like so:
## Catch::toString overload
```cpp
namespace Catch {
template<>
struct is_range<T> {
static const bool value = false;
};
}
If you don't want to provide an ```operator <<``` overload, or you want to convert your type differently for testing purposes, you can provide an overload for ```Catch::toString()``` for your type.
```
namespace Catch {
std::string toString( T const& value ) {
return convertMyTypeToString( value );
}
}
```
Again ```T``` is your type and ```convertMyTypeToString``` is where you'll write whatever code is necessary to make your type printable. Note that the function must be in the Catch namespace, which itself must be in the global namespace.
## Catch::StringMaker<T> specialisation
There are some cases where overloading toString does not work as expected. Specialising StringMaker<T> gives you more precise, and reliable, control - but at the cost of slightly more code and complexity:
```
namespace Catch {
template<> struct StringMaker<T> {
static std::string convert( T const& value ) {
return convertMyTypeToString( value );
}
};
}
```
## Exceptions
By default all exceptions deriving from `std::exception` will be translated to strings by calling the `what()` method. For exception types that do not derive from `std::exception` - or if `what()` does not return a suitable string - use `CATCH_TRANSLATE_EXCEPTION`. This defines a function that takes your exception type, by reference, and returns a string. It can appear anywhere in the code - it doesn't have to be in the same translation unit. For example:
```cpp
CATCH_TRANSLATE_EXCEPTION( MyType const& ex ) {
return ex.message();
```
CATCH_TRANSLATE_EXCEPTION( MyType& ex ) {
return ex.message();
}
```
## Enums
> Introduced in Catch 2.8.0.
Enums that already have a `<<` overload for `std::ostream` will convert to strings as expected.
If you only need to convert enums to strings for test reporting purposes you can provide a `StringMaker` specialisations as any other type.
However, as a convenience, Catch provides the `REGISTER_ENUM` helper macro that will generate the `StringMaker` specialiation for you with minimal code.
Simply provide it the (qualified) enum name, followed by all the enum values, and you're done!
E.g.
```cpp
enum class Fruits { Banana, Apple, Mango };
CATCH_REGISTER_ENUM( Fruits, Fruits::Banana, Fruits::Apple, Fruits::Mango )
TEST_CASE() {
REQUIRE( Fruits::Mango == Fruits::Apple );
}
```
... or if the enum is in a namespace:
```cpp
namespace Bikeshed {
enum class Colours { Red, Green, Blue };
}
// Important!: This macro must appear at top level scope - not inside a namespace
// You can fully qualify the names, or use a using if you prefer
CATCH_REGISTER_ENUM( Bikeshed::Colours,
Bikeshed::Colours::Red,
Bikeshed::Colours::Green,
Bikeshed::Colours::Blue )
TEST_CASE() {
REQUIRE( Bikeshed::Colours::Red == Bikeshed::Colours::Blue );
}
```
## Floating point precision
> [Introduced](https://github.com/catchorg/Catch2/issues/1614) in Catch 2.8.0.
Catch provides a built-in `StringMaker` specialization for both `float`
and `double`. By default, it uses what we think is a reasonable precision,
but you can customize it by modifying the `precision` static variable
inside the `StringMaker` specialization, like so:
```cpp
Catch::StringMaker<float>::precision = 15;
const float testFloat1 = 1.12345678901234567899f;
const float testFloat2 = 1.12345678991234567899f;
REQUIRE(testFloat1 == testFloat2);
```
This assertion will fail and print out the `testFloat1` and `testFloat2`
to 15 decimal places.
---
[Home](Readme.md#top)
[Home](Readme.md)

View File

@@ -1,38 +1,19 @@
<a id="top"></a>
# Tutorial
# Getting Catch
**Contents**<br>
[Getting Catch2](#getting-catch2)<br>
[Where to put it?](#where-to-put-it)<br>
[Writing tests](#writing-tests)<br>
[Test cases and sections](#test-cases-and-sections)<br>
[BDD-Style](#bdd-style)<br>
[Scaling up](#scaling-up)<br>
[Type parametrised test cases](#type-parametrised-test-cases)<br>
[Next steps](#next-steps)<br>
The simplest way to get Catch is to download the single header version from [http://builds.catch-lib.net](http://builds.catch-lib.net). Don't be put off by the word "builds" there. The single header is generated by merging a set of individual headers but it is still just normal source code in a header file.
## Getting Catch2
The simplest way to get Catch2 is to download the latest [single header version](https://raw.githubusercontent.com/catchorg/Catch2/master/single_include/catch2/catch.hpp). The single header is generated by merging a set of individual headers but it is still just normal source code in a header file.
Alternative ways of getting Catch2 include using your system package
manager, or installing it using [its CMake package](cmake-integration.md#installing-catch2-from-git-repository).
The full source for Catch2, including test projects, documentation, and other things, is hosted on GitHub. [http://catch-lib.net](http://catch-lib.net) will redirect you there.
The full source for Catch, including test projects, documentation, and other things, is hosted on GitHub. [http://catch-lib.net](http://catch-lib.net) will redirect you there.
## Where to put it?
Catch2 is header only. All you need to do is drop the file somewhere reachable from your project - either in some central location you can set your header search path to find, or directly into your project tree itself! This is a particularly good option for other Open-Source projects that want to use Catch for their test suite. See [this blog entry for more on that](https://levelofindirection.com/blog/unit-testing-in-cpp-and-objective-c-just-got-ridiculously-easier-still.html).
Catch is header only. All you need to do is drop the file(s) somewhere reachable from your project - either in some central location you can set your header search path to find, or directly into your project tree itself! This is a particularly good option for other Open-Source projects that want to use Catch for their test suite. See [this blog entry for more on that](http://www.levelofindirection.com/journal/2011/5/27/unit-testing-in-c-and-objective-c-just-got-ridiculously-easi.html).
The rest of this tutorial will assume that the Catch2 single-include header (or the include folder) is available unqualified - but you may need to prefix it with a folder name if necessary.
The rest of this tutorial will assume that the Catch single-include header (or the include folder) is available unqualified - but you may need to prefix it with a folder name if necessary.
_If you have installed Catch2 from system package manager, or CMake
package, you need to include the header as `#include <catch2/catch.hpp>`_
# Writing tests
## Writing tests
Let's start with a really simple example ([code](../examples/010-TestCase.cpp)). Say you have written a function to calculate factorials and now you want to test it (let's leave aside TDD for now).
Let's start with a really simple example. Say you have written a function to calculate factorials and now you want to test it (let's leave aside TDD for now).
```c++
unsigned int Factorial( unsigned int number ) {
@@ -40,7 +21,7 @@ unsigned int Factorial( unsigned int number ) {
}
```
To keep things simple we'll put everything in a single file (<a href="#scaling-up">see later for more on how to structure your test files</a>).
To keep things simple we'll put everything in a single file (<a href="#scaling-up">see later for more on how to structure your test files</a>)
```c++
#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do this in one cpp file
@@ -58,7 +39,7 @@ TEST_CASE( "Factorials are computed", "[factorial]" ) {
}
```
This will compile to a complete executable which responds to [command line arguments](command-line.md#top). If you just run it with no arguments it will execute all test cases (in this case there is just one), report any failures, report a summary of how many tests passed and failed and return the number of failed tests (useful for if you just want a yes/ no answer to: "did it work").
This will compile to a complete executable which responds to [command line arguments](command-line.md). If you just run it with no arguments it will execute all test cases (in this case there is just one), report any failures, report a summary of how many tests passed and failed and return the number of failed tests (useful for if you just want a yes/ no answer to: "did it work").
If you run this as written it will pass. Everything is good. Right?
Well, there is still a bug here. In fact the first version of this tutorial I posted here genuinely had the bug in! So it's not completely contrived (thanks to Daryle Walker (```@CTMacUser```) for pointing this out).
@@ -87,7 +68,7 @@ with expansion:
0 == 1
```
Note that we get the actual return value of Factorial(0) printed for us (0) - even though we used a natural expression with the == operator. That lets us immediately see what the problem is.
Note that we get the actual return value of Factorial(0) printed for us (0) - even though we used a natural expression with the == operator. That let's us immediately see what the problem is.
Let's change the factorial function to:
@@ -99,14 +80,14 @@ unsigned int Factorial( unsigned int number ) {
Now all the tests pass.
Of course there are still more issues to deal with. For example we'll hit problems when the return value starts to exceed the range of an unsigned int. With factorials that can happen quite quickly. You might want to add tests for such cases and decide how to handle them. We'll stop short of doing that here.
Of course there are still more issues to do deal with. For example we'll hit problems when the return value starts to exceed the range of an unsigned int. With factorials that can happen quite quickly. You might want to add tests for such cases and decide how to handle them. We'll stop short of doing that here.
### What did we do here?
## What did we do here?
Although this was a simple test it's been enough to demonstrate a few things about how Catch is used. Let's take a moment to consider those before we move on.
Although this was a simple test it's been enough to demonstrate a few things about how Catch is used. Let's take moment to consider those before we move on.
1. All we did was ```#define``` one identifier and ```#include``` one header and we got everything - even an implementation of ```main()``` that will [respond to command line arguments](command-line.md#top). You can only use that ```#define``` in one implementation file, for (hopefully) obvious reasons. Once you have more than one file with unit tests in you'll just ```#include "catch.hpp"``` and go. Usually it's a good idea to have a dedicated implementation file that just has ```#define CATCH_CONFIG_MAIN``` and ```#include "catch.hpp"```. You can also provide your own implementation of main and drive Catch yourself (see [Supplying-your-own-main()](own-main.md#top)).
2. We introduce test cases with the ```TEST_CASE``` macro. This macro takes one or two arguments - a free form test name and, optionally, one or more tags (for more see <a href="#test-cases-and-sections">Test cases and Sections</a>). The test name must be unique. You can run sets of tests by specifying a wildcarded test name or a tag expression. See the [command line docs](command-line.md#top) for more information on running tests.
1. All we did was ```#define``` one identifier and ```#include``` one header and we got everything - even an implementation of ```main()``` that will [respond to command line arguments](command-line.md). You can only use that ```#define``` in one implementation file, for (hopefully) obvious reasons. Once you have more than one file with unit tests in you'll just ```#include "catch.hpp"``` and go. Usually it's a good idea to have a dedicated implementation file that just has ```#define CATCH_CONFIG_MAIN``` and ```#include "catch.hpp"```. You can also provide your own implementation of main and drive Catch yourself (see [Supplying-your-own-main()](own-main.md)).
2. We introduce test cases with the ```TEST_CASE``` macro. This macro takes one or two arguments - a free form test name and, optionally, one or more tags (for more see <a href="#test-cases-and-sections">Test cases and Sections</a>, ). The test name must be unique. You can run sets of tests by specifying a wildcarded test name or a tag expression. See the [command line docs](command-line.md) for more information on running tests.
3. The name and tags arguments are just strings. We haven't had to declare a function or method - or explicitly register the test case anywhere. Behind the scenes a function with a generated name is defined for you, and automatically registered using static registry classes. By abstracting the function name away we can name our tests without the constraints of identifier names.
4. We write our individual test assertions using the ```REQUIRE``` macro. Rather than a separate macro for each type of condition we express the condition naturally using C/C++ syntax. Behind the scenes a simple set of expression templates captures the left-hand-side and right-hand-side of the expression so we can display the values in our test report. As we'll see later there _are_ other assertion macros - but because of this technique the number of them is drastically reduced.
@@ -117,37 +98,37 @@ Most test frameworks have a class-based fixture mechanism. That is, test cases m
While Catch fully supports this way of working there are a few problems with the approach. In particular the way your code must be split up, and the blunt granularity of it, may cause problems. You can only have one setup/ teardown pair across a set of methods, but sometimes you want slightly different setup in each method, or you may even want several levels of setup (a concept which we will clarify later on in this tutorial). It was <a href="http://jamesnewkirk.typepad.com/posts/2007/09/why-you-should-.html">problems like these</a> that led James Newkirk, who led the team that built NUnit, to start again from scratch and <a href="http://jamesnewkirk.typepad.com/posts/2007/09/announcing-xuni.html">build xUnit</a>).
Catch takes a different approach (to both NUnit and xUnit) that is a more natural fit for C++ and the C family of languages. This is best explained through an example ([code](../examples/100-Fix-Section.cpp)):
Catch takes a different approach (to both NUnit and xUnit) that is a more natural fit for C++ and the C family of languages. This is best explained through an example:
```c++
TEST_CASE( "vectors can be sized and resized", "[vector]" ) {
std::vector<int> v( 5 );
REQUIRE( v.size() == 5 );
REQUIRE( v.capacity() >= 5 );
SECTION( "resizing bigger changes size and capacity" ) {
v.resize( 10 );
REQUIRE( v.size() == 10 );
REQUIRE( v.capacity() >= 10 );
}
SECTION( "resizing smaller changes size but not capacity" ) {
v.resize( 0 );
REQUIRE( v.size() == 0 );
REQUIRE( v.capacity() >= 5 );
}
SECTION( "reserving bigger changes capacity but not size" ) {
v.reserve( 10 );
REQUIRE( v.size() == 5 );
REQUIRE( v.capacity() >= 10 );
}
SECTION( "reserving smaller does not change size or capacity" ) {
v.reserve( 0 );
REQUIRE( v.size() == 5 );
REQUIRE( v.capacity() >= 5 );
}
@@ -159,18 +140,18 @@ This works because the ```SECTION``` macro contains an if statement that calls b
So far so good - this is already an improvement on the setup/teardown approach because now we see our setup code inline and use the stack.
The power of sections really shows, however, when we need to execute a sequence of checked operations. Continuing the vector example, we might want to verify that attempting to reserve a capacity smaller than the current capacity of the vector changes nothing. We can do that, naturally, like so:
The power of sections really shows, however, when we need to execute a sequence of, checked, operations. Continuing the vector example, we might want to verify that attempting to reserve a capacity smaller than the current capacity of the vector changes nothing. We can do that, naturally, like so:
```c++
SECTION( "reserving bigger changes capacity but not size" ) {
v.reserve( 10 );
REQUIRE( v.size() == 5 );
REQUIRE( v.capacity() >= 10 );
SECTION( "reserving smaller again does not change capacity" ) {
v.reserve( 7 );
REQUIRE( v.capacity() >= 10 );
}
}
@@ -180,22 +161,22 @@ Sections can be nested to an arbitrary depth (limited only by your stack size).
## BDD-Style
If you name your test cases and sections appropriately you can achieve a BDD-style specification structure. This became such a useful way of working that first class support has been added to Catch. Scenarios can be specified using ```SCENARIO```, ```GIVEN```, ```WHEN``` and ```THEN``` macros, which map on to ```TEST_CASE```s and ```SECTION```s, respectively. For more details see [Test cases and sections](test-cases-and-sections.md#top).
If you name your test cases and sections appropriately you can achieve a BDD-style specification structure. This became such a useful way of working that first class support has been added to Catch. Scenarios can be specified using ```SCENARIO```, ```GIVEN```, ```WHEN``` and ```THEN``` macros, which map on to ```TEST_CASE```s and ```SECTION```s, respectively. For more details see [Test cases and sections](test-cases-and-sections.md).
The vector example can be adjusted to use these macros like so ([example code](../examples/120-Bdd-ScenarioGivenWhenThen.cpp)):
The vector example can be adjusted to use these macros like so:
```c++
SCENARIO( "vectors can be sized and resized", "[vector]" ) {
GIVEN( "A vector with some items" ) {
std::vector<int> v( 5 );
REQUIRE( v.size() == 5 );
REQUIRE( v.capacity() >= 5 );
WHEN( "the size is increased" ) {
v.resize( 10 );
THEN( "the size and capacity change" ) {
REQUIRE( v.size() == 10 );
REQUIRE( v.capacity() >= 10 );
@@ -203,7 +184,7 @@ SCENARIO( "vectors can be sized and resized", "[vector]" ) {
}
WHEN( "the size is reduced" ) {
v.resize( 0 );
THEN( "the size changes but not capacity" ) {
REQUIRE( v.size() == 0 );
REQUIRE( v.capacity() >= 5 );
@@ -211,7 +192,7 @@ SCENARIO( "vectors can be sized and resized", "[vector]" ) {
}
WHEN( "more capacity is reserved" ) {
v.reserve( 10 );
THEN( "the capacity changes but not the size" ) {
REQUIRE( v.size() == 5 );
REQUIRE( v.capacity() >= 10 );
@@ -219,7 +200,7 @@ SCENARIO( "vectors can be sized and resized", "[vector]" ) {
}
WHEN( "less capacity is reserved" ) {
v.reserve( 0 );
THEN( "neither size nor capacity are changed" ) {
REQUIRE( v.size() == 5 );
REQUIRE( v.capacity() >= 5 );
@@ -243,7 +224,7 @@ Scenario: vectors can be sized and resized
To keep the tutorial simple we put all our code in a single file. This is fine to get started - and makes jumping into Catch even quicker and easier. As you write more real-world tests, though, this is not really the best approach.
The requirement is that the following block of code ([or equivalent](own-main.md#top)):
The requirement is that the following block of code ([or equivalent](own-main.md)):
```c++
#define CATCH_CONFIG_MAIN
@@ -252,28 +233,17 @@ The requirement is that the following block of code ([or equivalent](own-main.md
appears in _exactly one_ source file. Use as many additional cpp files (or whatever you call your implementation files) as you need for your tests, partitioned however makes most sense for your way of working. Each additional file need only ```#include "catch.hpp"``` - do not repeat the ```#define```!
In fact it is usually a good idea to put the block with the ```#define``` [in its own source file](slow-compiles.md#top) (code example [main](../examples/020-TestCase-1.cpp), [tests](../examples/020-TestCase-2.cpp)).
In fact it is usually a good idea to put the block with the ```#define``` [in it's own source file](slow-compiles.md).
Do not write your tests in header files!
## Type parametrised test cases
Test cases in Catch2 can be also parametrised by type, via the
`TEMPLATE_TEST_CASE` and `TEMPLATE_PRODUCT_TEST_CASE` macros,
which behave in the same way the `TEST_CASE` macro, but are run for
every type or type combination.
For more details, see our documentation on [test cases and
sections](test-cases-and-sections.md#type-parametrised-test-cases).
## Next steps
This has been a brief introduction to get you up and running with Catch, and to point out some of the key differences between Catch and other frameworks you may already be familiar with. This will get you going quite far already and you are now in a position to dive in and write some tests.
Of course there is more to learn - most of which you should be able to page-fault in as you go. Please see the ever-growing [Reference section](Readme.md#top) for what's available.
Of course there is more to learn - most of which you should be able to page-fault in as you go. Please see the ever-growing [Reference section](Readme.md) for what's available.
---
[Home](Readme.md#top)
[Home](Readme.md)

24
docs/whats-changed.md Normal file
View File

@@ -0,0 +1,24 @@
## What's new in Catch for 1.0
After a long "developer preview" state Catch turned 1.0 in mid-2013. Just prior to this a large number of changes, some of them breaking, where merged from the integration branch and now form part of the 1.0 code-base. If this might affect you please read this summary through so you know what to expect.
* Calling Catch from your own ```main()``` has changed - please review [the updated docs](own-main.md)
* The command line has changed. The biggest change is that test case names and tags should now only be supplied as primary arguments - in fact the ```-t``` option has been repurposed to mean "list tags". There are [updated docs for this too](command-line.md)
* There is a new reporter interface. If you have written a custom reporter you can use the ```LegacyReporterAdapter``` to minimise any differences. Ideally you should update to the new interface - especially as it has been designed to be more robust in the face of future changes (which should be minimal).
* The docs have moved from the wiki to the repository itself. They consist of a set of markdown files in the docs folder and are referenced directly from the README in the root. You can still read them online from GitHub.
* Lots of new goodness - more documentation for which is coming. The existing docs have been updated to account for some of the changes already (e.g. variadic macros). A quick rundown:
* Variadic macros are used, where possible, so that, e.g. you can write a ```TEST_CASE``` with just a name - or even no name at all (making it an anonymous test case).
* The hierarchical naming convention is deprecated in favour of using tags (see next)
* ```TEST_CASE```s (but not ```SECTION```s) can now be tagged by placing keywords in square brackets in the second argument - e.g.: ```TEST_CASE( "A nice name", "[tag1][tag2]")```. The old style is still supported but please consider using this new style.
* Tests can still be "hidden" using the ```./``` prefix as before, but the preferred way now is to give it the ```[hide]``` tag (hidden tests are skipped if you run the test process without specifying any test specs).
* As well as ```TEST_CASE```s and ```SECTION```s you can now also use BDD-style ```SCENARIO``` (in place of ```TEST_CASE```) and ```GIVEN```, ```WHEN``` and ```THEN``` macros (in place of ```SECTION```s).
* New command line parser. Under the hood it is a complete rewrite - now powered by a command line library that will soon be spun out as a separate project: Clara. The options themselves are largely the same but there are some notable differences (as already discussed).
* Completely overhauled output from the textual reporter (now the Console reporter). This now features a much clearer, cleaner format, including good use of indentation.
More information can be found in [this blog post](http://www.levelofindirection.com/journal/2013/6/28/catch-10.html).
If you find any issues please raise issue tickets on the [issue tracker on GitHub](https://github.com/philsquared/Catch/issues) as before. For general questions, comments and suggestions, though, please use the [new forums on Google Groups](https://groups.google.com/forum/?fromgroups#!forum/catch-forum).
---
[Home](Readme.md)

View File

@@ -1,46 +1,42 @@
<a id="top"></a>
# Why do we need yet another C++ test framework?
Good question. For C++ there are quite a number of established frameworks,
including (but not limited to),
[Google Test](http://code.google.com/p/googletest/),
[Boost.Test](http://www.boost.org/doc/libs/1_49_0/libs/test/doc/html/index.html),
[CppUnit](http://sourceforge.net/apps/mediawiki/cppunit/index.php?title=Main_Page),
[Cute](http://www.cute-test.com),
[many, many more](http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#C.2B.2B).
Good question. For C++ there are quite a number of established frameworks, including (but not limited to), [CppUnit](http://sourceforge.net/apps/mediawiki/cppunit/index.php?title=Main_Page), [Google Test](http://code.google.com/p/googletest/), [Boost.Test](http://www.boost.org/doc/libs/1_49_0/libs/test/doc/html/index.html), [Aeryn](https://launchpad.net/aeryn), [Cute](http://r2.ifs.hsr.ch/cute), [Fructose](http://fructose.sourceforge.net/) and [many, many more](http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#C.2B.2B). Even for Objective-C there are a few, including OCUnit - which now comes bundled with XCode.
So what does Catch bring to the party that differentiates it from these? Apart from a Catchy name, of course.
## Key Features
* Quick and Really easy to get started. Just download catch.hpp, `#include` it and you're away.
* No external dependencies. As long as you can compile C++11 and have a C++ standard library available.
* Write test cases as, self-registering, functions (or methods, if you prefer).
* Divide test cases into sections, each of which is run in isolation (eliminates the need for fixtures).
* Really easy to get started. Just download catch.hpp, #include it and you're away.
* No external dependencies. As long as you can compile C++98 and have a C++ standard library available.
* Write test cases as, self-registering, functions or methods.
* Divide test cases into sections, each of which is run in isolation (eliminates the need for fixtures!)
* Use BDD-style Given-When-Then sections as well as traditional unit test cases.
* Only one core assertion macro for comparisons. Standard C/C++ operators are used for the comparison - yet the full expression is decomposed and lhs and rhs values are logged.
* Tests are named using free-form strings - no more couching names in legal identifiers.
## Other core features
* Tests are named using free-form strings - no more couching names in legal identifiers.
* Tests can be tagged for easily running ad-hoc groups of tests.
* Failures can (optionally) break into the debugger on Windows and Mac.
* Output is through modular reporter objects. Basic textual and XML reporters are included. Custom reporters can easily be added.
* JUnit xml output is supported for integration with third-party tools, such as CI servers.
* A default main() function is provided, but you can supply your own for complete control (e.g. integration into your own test runner GUI).
* A default main() function is provided (in a header), but you can supply your own for complete control (e.g. integration into your own test runner GUI).
* A command line parser is provided and can still be used if you choose to provided your own main() function.
* Catch can test itself.
* Alternative assertion macro(s) report failures but don't abort the test case
* Floating point tolerance comparisons are built in using an expressive Approx() syntax.
* Internal and friendly macros are isolated so name clashes can be managed
* Matchers
* Support for Matchers (early stages)
## Who else is using Catch?
## Objective-C-specific features
See the list of [open source projects using Catch](opensource-users.md#top).
* Automatically detects if you are using it from an Objective-C project
* Works with and without ARC with no additional configuration
* Implement test fixtures using Obj-C classes too (like OCUnit)
* Additional built in matchers that work with Obj-C types (e.g. string matchers)
See the [tutorial](tutorial.md#top) to get more of a taste of using Catch in practice
See the [tutorial](tutorial.md) to get more of a taste of using CATCH in practice
---
[Home](Readme.md#top)
[Home](Readme.md)

View File

@@ -1,13 +0,0 @@
// 000-CatchMain.cpp
// It is generally recommended to have a single file provide the main
// of a testing binary, and other test files to link against it.
// Let Catch provide main():
#include <catch2/internal/catch_default_main.hpp>
// That's it
// Compile implementation of Catch for use with files that do contain tests:
// - g++ -std=c++11 -Wall -I$(CATCH_SINGLE_INCLUDE) -c 000-CatchMain.cpp
// - cl -EHsc -I%CATCH_SINGLE_INCLUDE% -c 000-CatchMain.cpp

View File

@@ -1,33 +0,0 @@
// 010-TestCase.cpp
// And write tests in the same file:
#include <catch2/catch_test_macros.hpp>
static int Factorial( int number ) {
return number <= 1 ? number : Factorial( number - 1 ) * number; // fail
// return number <= 1 ? 1 : Factorial( number - 1 ) * number; // pass
}
TEST_CASE( "Factorial of 0 is 1 (fail)", "[single-file]" ) {
REQUIRE( Factorial(0) == 1 );
}
TEST_CASE( "Factorials of 1 and higher are computed (pass)", "[single-file]" ) {
REQUIRE( Factorial(1) == 1 );
REQUIRE( Factorial(2) == 2 );
REQUIRE( Factorial(3) == 6 );
REQUIRE( Factorial(10) == 3628800 );
}
// Compile & run:
// - g++ -std=c++11 -Wall -I$(CATCH_SINGLE_INCLUDE) -o 010-TestCase 010-TestCase.cpp && 010-TestCase --success
// - cl -EHsc -I%CATCH_SINGLE_INCLUDE% 010-TestCase.cpp && 010-TestCase --success
// Expected compact output (all assertions):
//
// prompt> 010-TestCase --reporter compact --success
// 010-TestCase.cpp:14: failed: Factorial(0) == 1 for: 0 == 1
// 010-TestCase.cpp:18: passed: Factorial(1) == 1 for: 1 == 1
// 010-TestCase.cpp:19: passed: Factorial(2) == 2 for: 2 == 2
// 010-TestCase.cpp:20: passed: Factorial(3) == 6 for: 6 == 6
// 010-TestCase.cpp:21: passed: Factorial(10) == 3628800 for: 3628800 (0x375f00) == 3628800 (0x375f00)
// Failed 1 test case, failed 1 assertion.

View File

@@ -1,29 +0,0 @@
// 020-TestCase-1.cpp
#include <catch2/catch_test_macros.hpp>
TEST_CASE( "1: All test cases reside in other .cpp files (empty)", "[multi-file:1]" ) {
}
// ^^^
// Normally no TEST_CASEs in this file.
// Here just to show there are two source files via option --list-tests.
// Compile & run:
// - g++ -std=c++11 -Wall -I$(CATCH_SINGLE_INCLUDE) -c 020-TestCase-1.cpp
// - g++ -std=c++11 -Wall -I$(CATCH_SINGLE_INCLUDE) -o 020-TestCase TestCase-1.o 020-TestCase-2.cpp && 020-TestCase --success
//
// - cl -EHsc -I%CATCH_SINGLE_INCLUDE% -c 020-TestCase-1.cpp
// - cl -EHsc -I%CATCH_SINGLE_INCLUDE% -Fe020-TestCase.exe 020-TestCase-1.obj 020-TestCase-2.cpp && 020-TestCase --success
// Expected test case listing:
//
// prompt> 020-TestCase --list-tests *
// Matching test cases:
// 1: All test cases reside in other .cpp files (empty)
// [multi-file:1]
// 2: Factorial of 0 is computed (fail)
// [multi-file:2]
// 2: Factorials of 1 and higher are computed (pass)
// [multi-file:2]
// 3 matching test cases

View File

@@ -1,33 +0,0 @@
// 020-TestCase-2.cpp
// main() provided by Catch in file 020-TestCase-1.cpp.
#include <catch2/catch_test_macros.hpp>
static int Factorial( int number ) {
return number <= 1 ? number : Factorial( number - 1 ) * number; // fail
// return number <= 1 ? 1 : Factorial( number - 1 ) * number; // pass
}
TEST_CASE( "2: Factorial of 0 is 1 (fail)", "[multi-file:2]" ) {
REQUIRE( Factorial(0) == 1 );
}
TEST_CASE( "2: Factorials of 1 and higher are computed (pass)", "[multi-file:2]" ) {
REQUIRE( Factorial(1) == 1 );
REQUIRE( Factorial(2) == 2 );
REQUIRE( Factorial(3) == 6 );
REQUIRE( Factorial(10) == 3628800 );
}
// Compile: see 020-TestCase-1.cpp
// Expected compact output (all assertions):
//
// prompt> 020-TestCase --reporter compact --success
// 020-TestCase-2.cpp:13: failed: Factorial(0) == 1 for: 0 == 1
// 020-TestCase-2.cpp:17: passed: Factorial(1) == 1 for: 1 == 1
// 020-TestCase-2.cpp:18: passed: Factorial(2) == 2 for: 2 == 2
// 020-TestCase-2.cpp:19: passed: Factorial(3) == 6 for: 6 == 6
// 020-TestCase-2.cpp:20: passed: Factorial(10) == 3628800 for: 3628800 (0x375f00) == 3628800 (0x375f00)
// Failed 1 test case, failed 1 assertion.

View File

@@ -1,74 +0,0 @@
// 030-Asn-Require-Check.cpp
// Catch has two natural expression assertion macro's:
// - REQUIRE() stops at first failure.
// - CHECK() continues after failure.
// There are two variants to support decomposing negated expressions:
// - REQUIRE_FALSE() stops at first failure.
// - CHECK_FALSE() continues after failure.
// main() provided in 000-CatchMain.cpp
#include <catch2/catch_test_macros.hpp>
static std::string one() {
return "1";
}
TEST_CASE( "Assert that something is true (pass)", "[require]" ) {
REQUIRE( one() == "1" );
}
TEST_CASE( "Assert that something is true (fail)", "[require]" ) {
REQUIRE( one() == "x" );
}
TEST_CASE( "Assert that something is true (stop at first failure)", "[require]" ) {
WARN( "REQUIRE stops at first failure:" );
REQUIRE( one() == "x" );
REQUIRE( one() == "1" );
}
TEST_CASE( "Assert that something is true (continue after failure)", "[check]" ) {
WARN( "CHECK continues after failure:" );
CHECK( one() == "x" );
REQUIRE( one() == "1" );
}
TEST_CASE( "Assert that something is false (stops at first failure)", "[require-false]" ) {
WARN( "REQUIRE_FALSE stops at first failure:" );
REQUIRE_FALSE( one() == "1" );
REQUIRE_FALSE( one() != "1" );
}
TEST_CASE( "Assert that something is false (continue after failure)", "[check-false]" ) {
WARN( "CHECK_FALSE continues after failure:" );
CHECK_FALSE( one() == "1" );
REQUIRE_FALSE( one() != "1" );
}
// Compile & run:
// - g++ -std=c++11 -Wall -I$(CATCH_SINGLE_INCLUDE) -o 030-Asn-Require-Check 030-Asn-Require-Check.cpp 000-CatchMain.o && 030-Asn-Require-Check --success
// - cl -EHsc -I%CATCH_SINGLE_INCLUDE% 030-Asn-Require-Check.cpp 000-CatchMain.obj && 030-Asn-Require-Check --success
// Expected compact output (all assertions):
//
// prompt> 030-Asn-Require-Check.exe --reporter compact --success
// 030-Asn-Require-Check.cpp:20: passed: one() == "1" for: "1" == "1"
// 030-Asn-Require-Check.cpp:24: failed: one() == "x" for: "1" == "x"
// 030-Asn-Require-Check.cpp:28: warning: 'REQUIRE stops at first failure:'
// 030-Asn-Require-Check.cpp:30: failed: one() == "x" for: "1" == "x"
// 030-Asn-Require-Check.cpp:35: warning: 'CHECK continues after failure:'
// 030-Asn-Require-Check.cpp:37: failed: one() == "x" for: "1" == "x"
// 030-Asn-Require-Check.cpp:38: passed: one() == "1" for: "1" == "1"
// 030-Asn-Require-Check.cpp:42: warning: 'REQUIRE_FALSE stops at first failure:'
// 030-Asn-Require-Check.cpp:44: failed: !(one() == "1") for: !("1" == "1")
// 030-Asn-Require-Check.cpp:49: warning: 'CHECK_FALSE continues after failure:'
// 030-Asn-Require-Check.cpp:51: failed: !(one() == "1") for: !("1" == "1")
// 030-Asn-Require-Check.cpp:52: passed: !(one() != "1") for: !("1" != "1")
// Failed 5 test cases, failed 5 assertions.

View File

@@ -1,70 +0,0 @@
// 100-Fix-Section.cpp
// Catch has two ways to express fixtures:
// - Sections (this file)
// - Traditional class-based fixtures
// main() provided in 000-CatchMain.cpp
#include <catch2/catch_test_macros.hpp>
#include <vector>
TEST_CASE( "vectors can be sized and resized", "[vector]" ) {
// For each section, vector v is anew:
std::vector<int> v( 5 );
REQUIRE( v.size() == 5 );
REQUIRE( v.capacity() >= 5 );
SECTION( "resizing bigger changes size and capacity" ) {
v.resize( 10 );
REQUIRE( v.size() == 10 );
REQUIRE( v.capacity() >= 10 );
}
SECTION( "resizing smaller changes size but not capacity" ) {
v.resize( 0 );
REQUIRE( v.size() == 0 );
REQUIRE( v.capacity() >= 5 );
}
SECTION( "reserving bigger changes capacity but not size" ) {
v.reserve( 10 );
REQUIRE( v.size() == 5 );
REQUIRE( v.capacity() >= 10 );
}
SECTION( "reserving smaller does not change size or capacity" ) {
v.reserve( 0 );
REQUIRE( v.size() == 5 );
REQUIRE( v.capacity() >= 5 );
}
}
// Compile & run:
// - g++ -std=c++11 -Wall -I$(CATCH_SINGLE_INCLUDE) -o 100-Fix-Section 100-Fix-Section.cpp 000-CatchMain.o && 100-Fix-Section --success
// - cl -EHsc -I%CATCH_SINGLE_INCLUDE% 100-Fix-Section.cpp 000-CatchMain.obj && 100-Fix-Section --success
// Expected compact output (all assertions):
//
// prompt> 100-Fix-Section.exe --reporter compact --success
// 100-Fix-Section.cpp:17: passed: v.size() == 5 for: 5 == 5
// 100-Fix-Section.cpp:18: passed: v.capacity() >= 5 for: 5 >= 5
// 100-Fix-Section.cpp:23: passed: v.size() == 10 for: 10 == 10
// 100-Fix-Section.cpp:24: passed: v.capacity() >= 10 for: 10 >= 10
// 100-Fix-Section.cpp:17: passed: v.size() == 5 for: 5 == 5
// 100-Fix-Section.cpp:18: passed: v.capacity() >= 5 for: 5 >= 5
// 100-Fix-Section.cpp:29: passed: v.size() == 0 for: 0 == 0
// 100-Fix-Section.cpp:30: passed: v.capacity() >= 5 for: 5 >= 5
// 100-Fix-Section.cpp:17: passed: v.size() == 5 for: 5 == 5
// 100-Fix-Section.cpp:18: passed: v.capacity() >= 5 for: 5 >= 5
// 100-Fix-Section.cpp:35: passed: v.size() == 5 for: 5 == 5
// 100-Fix-Section.cpp:36: passed: v.capacity() >= 10 for: 10 >= 10
// 100-Fix-Section.cpp:17: passed: v.size() == 5 for: 5 == 5
// 100-Fix-Section.cpp:18: passed: v.capacity() >= 5 for: 5 >= 5
// 100-Fix-Section.cpp:41: passed: v.size() == 5 for: 5 == 5
// 100-Fix-Section.cpp:42: passed: v.capacity() >= 5 for: 5 >= 5
// Passed 1 test case with 16 assertions.

View File

@@ -1,63 +0,0 @@
// 110-Fix-ClassFixture.cpp
// Catch has two ways to express fixtures:
// - Sections
// - Traditional class-based fixtures (this file)
// main() provided in 000-CatchMain.cpp
#include <catch2/catch_test_macros.hpp>
class DBConnection
{
public:
static DBConnection createConnection( std::string const & /*dbName*/ ) {
return DBConnection();
}
bool executeSQL( std::string const & /*query*/, int const /*id*/, std::string const & arg ) {
if ( arg.length() == 0 ) {
throw std::logic_error("empty SQL query argument");
}
return true; // ok
}
};
class UniqueTestsFixture
{
protected:
UniqueTestsFixture()
: conn( DBConnection::createConnection( "myDB" ) )
{}
int getID() {
return ++uniqueID;
}
protected:
DBConnection conn;
private:
static int uniqueID;
};
int UniqueTestsFixture::uniqueID = 0;
TEST_CASE_METHOD( UniqueTestsFixture, "Create Employee/No Name", "[create]" ) {
REQUIRE_THROWS( conn.executeSQL( "INSERT INTO employee (id, name) VALUES (?, ?)", getID(), "") );
}
TEST_CASE_METHOD( UniqueTestsFixture, "Create Employee/Normal", "[create]" ) {
REQUIRE( conn.executeSQL( "INSERT INTO employee (id, name) VALUES (?, ?)", getID(), "Joe Bloggs" ) );
}
// Compile & run:
// - g++ -std=c++11 -Wall -I$(CATCH_SINGLE_INCLUDE) -o 110-Fix-ClassFixture 110-Fix-ClassFixture.cpp 000-CatchMain.o && 110-Fix-ClassFixture --success
// - cl -EHsc -I%CATCH_SINGLE_INCLUDE% 110-Fix-ClassFixture.cpp 000-CatchMain.obj && 110-Fix-ClassFixture --success
// Expected compact output (all assertions):
//
// prompt> 110-Fix-ClassFixture.exe --reporter compact --success
// 110-Fix-ClassFixture.cpp:47: passed: conn.executeSQL( "INSERT INTO employee (id, name) VALUES (?, ?)", getID(), "")
// 110-Fix-ClassFixture.cpp:51: passed: conn.executeSQL( "INSERT INTO employee (id, name) VALUES (?, ?)", getID(), "Joe Bloggs" ) for: true
// Passed both 2 test cases with 2 assertions.

View File

@@ -1,73 +0,0 @@
// 120-Bdd-ScenarioGivenWhenThen.cpp
// main() provided in 000-CatchMain.cpp
#include <catch2/catch_test_macros.hpp>
SCENARIO( "vectors can be sized and resized", "[vector]" ) {
GIVEN( "A vector with some items" ) {
std::vector<int> v( 5 );
REQUIRE( v.size() == 5 );
REQUIRE( v.capacity() >= 5 );
WHEN( "the size is increased" ) {
v.resize( 10 );
THEN( "the size and capacity change" ) {
REQUIRE( v.size() == 10 );
REQUIRE( v.capacity() >= 10 );
}
}
WHEN( "the size is reduced" ) {
v.resize( 0 );
THEN( "the size changes but not capacity" ) {
REQUIRE( v.size() == 0 );
REQUIRE( v.capacity() >= 5 );
}
}
WHEN( "more capacity is reserved" ) {
v.reserve( 10 );
THEN( "the capacity changes but not the size" ) {
REQUIRE( v.size() == 5 );
REQUIRE( v.capacity() >= 10 );
}
}
WHEN( "less capacity is reserved" ) {
v.reserve( 0 );
THEN( "neither size nor capacity are changed" ) {
REQUIRE( v.size() == 5 );
REQUIRE( v.capacity() >= 5 );
}
}
}
}
// Compile & run:
// - g++ -std=c++11 -Wall -I$(CATCH_SINGLE_INCLUDE) -o 120-Bdd-ScenarioGivenWhenThen 120-Bdd-ScenarioGivenWhenThen.cpp 000-CatchMain.o && 120-Bdd-ScenarioGivenWhenThen --success
// - cl -EHsc -I%CATCH_SINGLE_INCLUDE% 120-Bdd-ScenarioGivenWhenThen.cpp 000-CatchMain.obj && 120-Bdd-ScenarioGivenWhenThen --success
// Expected compact output (all assertions):
//
// prompt> 120-Bdd-ScenarioGivenWhenThen.exe --reporter compact --success
// 120-Bdd-ScenarioGivenWhenThen.cpp:12: passed: v.size() == 5 for: 5 == 5
// 120-Bdd-ScenarioGivenWhenThen.cpp:13: passed: v.capacity() >= 5 for: 5 >= 5
// 120-Bdd-ScenarioGivenWhenThen.cpp:19: passed: v.size() == 10 for: 10 == 10
// 120-Bdd-ScenarioGivenWhenThen.cpp:20: passed: v.capacity() >= 10 for: 10 >= 10
// 120-Bdd-ScenarioGivenWhenThen.cpp:12: passed: v.size() == 5 for: 5 == 5
// 120-Bdd-ScenarioGivenWhenThen.cpp:13: passed: v.capacity() >= 5 for: 5 >= 5
// 120-Bdd-ScenarioGivenWhenThen.cpp:27: passed: v.size() == 0 for: 0 == 0
// 120-Bdd-ScenarioGivenWhenThen.cpp:28: passed: v.capacity() >= 5 for: 5 >= 5
// 120-Bdd-ScenarioGivenWhenThen.cpp:12: passed: v.size() == 5 for: 5 == 5
// 120-Bdd-ScenarioGivenWhenThen.cpp:13: passed: v.capacity() >= 5 for: 5 >= 5
// 120-Bdd-ScenarioGivenWhenThen.cpp:35: passed: v.size() == 5 for: 5 == 5
// 120-Bdd-ScenarioGivenWhenThen.cpp:36: passed: v.capacity() >= 10 for: 10 >= 10
// 120-Bdd-ScenarioGivenWhenThen.cpp:12: passed: v.size() == 5 for: 5 == 5
// 120-Bdd-ScenarioGivenWhenThen.cpp:13: passed: v.capacity() >= 5 for: 5 >= 5
// 120-Bdd-ScenarioGivenWhenThen.cpp:43: passed: v.size() == 5 for: 5 == 5
// 120-Bdd-ScenarioGivenWhenThen.cpp:44: passed: v.capacity() >= 5 for: 5 >= 5
// Passed 1 test case with 16 assertions.

View File

@@ -1,430 +0,0 @@
// 210-Evt-EventListeners.cpp
// Contents:
// 1. Printing of listener data
// 2. My listener and registration
// 3. Test cases
#include <catch2/catch_test_macros.hpp>
#include <catch2/reporters/catch_reporter_event_listener.hpp>
#include <catch2/catch_reporter_registrars.hpp>
#include <catch2/catch_test_case_info.hpp>
#include <iostream>
// -----------------------------------------------------------------------
// 1. Printing of listener data:
//
namespace {
std::string ws(int const level) {
return std::string( 2 * level, ' ' );
}
std::ostream& operator<<(std::ostream& out, Catch::Tag t) {
return out << "original: " << t.original << "lower cased: " << t.lowerCased;
}
template< typename T >
std::ostream& operator<<( std::ostream& os, std::vector<T> const& v ) {
os << "{ ";
for ( const auto& x : v )
os << x << ", ";
return os << "}";
}
// struct SourceLineInfo {
// char const* file;
// std::size_t line;
// };
void print( std::ostream& os, int const level, std::string const& title, Catch::SourceLineInfo const& info ) {
os << ws(level ) << title << ":\n"
<< ws(level+1) << "- file: " << info.file << "\n"
<< ws(level+1) << "- line: " << info.line << "\n";
}
//struct MessageInfo {
// std::string macroName;
// std::string message;
// SourceLineInfo lineInfo;
// ResultWas::OfType type;
// unsigned int sequence;
//};
void print( std::ostream& os, int const level, Catch::MessageInfo const& info ) {
os << ws(level+1) << "- macroName: '" << info.macroName << "'\n"
<< ws(level+1) << "- message '" << info.message << "'\n";
print( os,level+1 , "- lineInfo", info.lineInfo );
os << ws(level+1) << "- sequence " << info.sequence << "\n";
}
void print( std::ostream& os, int const level, std::string const& title, std::vector<Catch::MessageInfo> const& v ) {
os << ws(level ) << title << ":\n";
for ( const auto& x : v )
{
os << ws(level+1) << "{\n";
print( os, level+2, x );
os << ws(level+1) << "}\n";
}
// os << ws(level+1) << "\n";
}
// struct TestRunInfo {
// std::string name;
// };
void print( std::ostream& os, int const level, std::string const& title, Catch::TestRunInfo const& info ) {
os << ws(level ) << title << ":\n"
<< ws(level+1) << "- name: " << info.name << "\n";
}
// struct Counts {
// std::size_t total() const;
// bool allPassed() const;
// bool allOk() const;
//
// std::size_t passed = 0;
// std::size_t failed = 0;
// std::size_t failedButOk = 0;
// };
void print( std::ostream& os, int const level, std::string const& title, Catch::Counts const& info ) {
os << ws(level ) << title << ":\n"
<< ws(level+1) << "- total(): " << info.total() << "\n"
<< ws(level+1) << "- allPassed(): " << info.allPassed() << "\n"
<< ws(level+1) << "- allOk(): " << info.allOk() << "\n"
<< ws(level+1) << "- passed: " << info.passed << "\n"
<< ws(level+1) << "- failed: " << info.failed << "\n"
<< ws(level+1) << "- failedButOk: " << info.failedButOk << "\n";
}
// struct Totals {
// Counts assertions;
// Counts testCases;
// };
void print( std::ostream& os, int const level, std::string const& title, Catch::Totals const& info ) {
os << ws(level) << title << ":\n";
print( os, level+1, "- assertions", info.assertions );
print( os, level+1, "- testCases" , info.testCases );
}
// struct TestRunStats {
// TestRunInfo runInfo;
// Totals totals;
// bool aborting;
// };
void print( std::ostream& os, int const level, std::string const& title, Catch::TestRunStats const& info ) {
os << ws(level) << title << ":\n";
print( os, level+1 , "- runInfo", info.runInfo );
print( os, level+1 , "- totals" , info.totals );
os << ws(level+1) << "- aborting: " << info.aborting << "\n";
}
// struct Tag {
// StringRef original, lowerCased;
// };
//
//
// enum class TestCaseProperties : uint8_t {
// None = 0,
// IsHidden = 1 << 1,
// ShouldFail = 1 << 2,
// MayFail = 1 << 3,
// Throws = 1 << 4,
// NonPortable = 1 << 5,
// Benchmark = 1 << 6
// };
//
//
// struct TestCaseInfo : NonCopyable {
//
// bool isHidden() const;
// bool throws() const;
// bool okToFail() const;
// bool expectedToFail() const;
//
//
// std::string name;
// std::string className;
// std::vector<Tag> tags;
// SourceLineInfo lineInfo;
// TestCaseProperties properties = TestCaseProperties::None;
// };
void print( std::ostream& os, int const level, std::string const& title, Catch::TestCaseInfo const& info ) {
os << ws(level ) << title << ":\n"
<< ws(level+1) << "- isHidden(): " << info.isHidden() << "\n"
<< ws(level+1) << "- throws(): " << info.throws() << "\n"
<< ws(level+1) << "- okToFail(): " << info.okToFail() << "\n"
<< ws(level+1) << "- expectedToFail(): " << info.expectedToFail() << "\n"
<< ws(level+1) << "- tagsAsString(): '" << info.tagsAsString() << "'\n"
<< ws(level+1) << "- name: '" << info.name << "'\n"
<< ws(level+1) << "- className: '" << info.className << "'\n"
<< ws(level+1) << "- tags: " << info.tags << "\n";
print( os, level+1 , "- lineInfo", info.lineInfo );
os << ws(level+1) << "- properties (flags): 0x" << std::hex << static_cast<uint32_t>(info.properties) << std::dec << "\n";
}
// struct TestCaseStats {
// TestCaseInfo testInfo;
// Totals totals;
// std::string stdOut;
// std::string stdErr;
// bool aborting;
// };
void print( std::ostream& os, int const level, std::string const& title, Catch::TestCaseStats const& info ) {
os << ws(level ) << title << ":\n";
print( os, level+1 , "- testInfo", *info.testInfo );
print( os, level+1 , "- totals" , info.totals );
os << ws(level+1) << "- stdOut: " << info.stdOut << "\n"
<< ws(level+1) << "- stdErr: " << info.stdErr << "\n"
<< ws(level+1) << "- aborting: " << info.aborting << "\n";
}
// struct SectionInfo {
// std::string name;
// std::string description;
// SourceLineInfo lineInfo;
// };
void print( std::ostream& os, int const level, std::string const& title, Catch::SectionInfo const& info ) {
os << ws(level ) << title << ":\n"
<< ws(level+1) << "- name: " << info.name << "\n";
print( os, level+1 , "- lineInfo", info.lineInfo );
}
// struct SectionStats {
// SectionInfo sectionInfo;
// Counts assertions;
// double durationInSeconds;
// bool missingAssertions;
// };
void print( std::ostream& os, int const level, std::string const& title, Catch::SectionStats const& info ) {
os << ws(level ) << title << ":\n";
print( os, level+1 , "- sectionInfo", info.sectionInfo );
print( os, level+1 , "- assertions" , info.assertions );
os << ws(level+1) << "- durationInSeconds: " << info.durationInSeconds << "\n"
<< ws(level+1) << "- missingAssertions: " << info.missingAssertions << "\n";
}
// struct AssertionInfo
// {
// StringRef macroName;
// SourceLineInfo lineInfo;
// StringRef capturedExpression;
// ResultDisposition::Flags resultDisposition;
// };
void print( std::ostream& os, int const level, std::string const& title, Catch::AssertionInfo const& info ) {
os << ws(level ) << title << ":\n"
<< ws(level+1) << "- macroName: '" << info.macroName << "'\n";
print( os, level+1 , "- lineInfo" , info.lineInfo );
os << ws(level+1) << "- capturedExpression: '" << info.capturedExpression << "'\n"
<< ws(level+1) << "- resultDisposition (flags): 0x" << std::hex << info.resultDisposition << std::dec << "\n";
}
//struct AssertionResultData
//{
// std::string reconstructExpression() const;
//
// std::string message;
// mutable std::string reconstructedExpression;
// LazyExpression lazyExpression;
// ResultWas::OfType resultType;
//};
void print( std::ostream& os, int const level, std::string const& title, Catch::AssertionResultData const& info ) {
os << ws(level ) << title << ":\n"
<< ws(level+1) << "- reconstructExpression(): '" << info.reconstructExpression() << "'\n"
<< ws(level+1) << "- message: '" << info.message << "'\n"
<< ws(level+1) << "- lazyExpression: '" << "(info.lazyExpression)" << "'\n"
<< ws(level+1) << "- resultType: '" << info.resultType << "'\n";
}
//class AssertionResult {
// bool isOk() const;
// bool succeeded() const;
// ResultWas::OfType getResultType() const;
// bool hasExpression() const;
// bool hasMessage() const;
// std::string getExpression() const;
// std::string getExpressionInMacro() const;
// bool hasExpandedExpression() const;
// std::string getExpandedExpression() const;
// std::string getMessage() const;
// SourceLineInfo getSourceInfo() const;
// std::string getTestMacroName() const;
//
// AssertionInfo m_info;
// AssertionResultData m_resultData;
//};
void print( std::ostream& os, int const level, std::string const& title, Catch::AssertionResult const& info ) {
os << ws(level ) << title << ":\n"
<< ws(level+1) << "- isOk(): " << info.isOk() << "\n"
<< ws(level+1) << "- succeeded(): " << info.succeeded() << "\n"
<< ws(level+1) << "- getResultType(): " << info.getResultType() << "\n"
<< ws(level+1) << "- hasExpression(): " << info.hasExpression() << "\n"
<< ws(level+1) << "- hasMessage(): " << info.hasMessage() << "\n"
<< ws(level+1) << "- getExpression(): '" << info.getExpression() << "'\n"
<< ws(level+1) << "- getExpressionInMacro(): '" << info.getExpressionInMacro() << "'\n"
<< ws(level+1) << "- hasExpandedExpression(): " << info.hasExpandedExpression() << "\n"
<< ws(level+1) << "- getExpandedExpression(): " << info.getExpandedExpression() << "'\n"
<< ws(level+1) << "- getMessage(): '" << info.getMessage() << "'\n";
print( os, level+1 , "- getSourceInfo(): ", info.getSourceInfo() );
os << ws(level+1) << "- getTestMacroName(): '" << info.getTestMacroName() << "'\n";
print( os, level+1 , "- *** m_info (AssertionInfo)", info.m_info );
print( os, level+1 , "- *** m_resultData (AssertionResultData)", info.m_resultData );
}
// struct AssertionStats {
// AssertionResult assertionResult;
// std::vector<MessageInfo> infoMessages;
// Totals totals;
// };
void print( std::ostream& os, int const level, std::string const& title, Catch::AssertionStats const& info ) {
os << ws(level ) << title << ":\n";
print( os, level+1 , "- assertionResult", info.assertionResult );
print( os, level+1 , "- infoMessages", info.infoMessages );
print( os, level+1 , "- totals", info.totals );
}
// -----------------------------------------------------------------------
// 2. My listener and registration:
//
char const * dashed_line =
"--------------------------------------------------------------------------";
struct MyListener : Catch::EventListenerBase {
using EventListenerBase::EventListenerBase; // inherit constructor
// Get rid of Wweak-tables
~MyListener();
// The whole test run starting
void testRunStarting( Catch::TestRunInfo const& testRunInfo ) override {
std::cout
<< std::boolalpha
<< "\nEvent: testRunStarting:\n";
print( std::cout, 1, "- testRunInfo", testRunInfo );
}
// The whole test run ending
void testRunEnded( Catch::TestRunStats const& testRunStats ) override {
std::cout
<< dashed_line
<< "\nEvent: testRunEnded:\n";
print( std::cout, 1, "- testRunStats", testRunStats );
}
// A test is being skipped (because it is "hidden")
void skipTest( Catch::TestCaseInfo const& testInfo ) override {
std::cout
<< dashed_line
<< "\nEvent: skipTest:\n";
print( std::cout, 1, "- testInfo", testInfo );
}
// Test cases starting
void testCaseStarting( Catch::TestCaseInfo const& testInfo ) override {
std::cout
<< dashed_line
<< "\nEvent: testCaseStarting:\n";
print( std::cout, 1, "- testInfo", testInfo );
}
// Test cases ending
void testCaseEnded( Catch::TestCaseStats const& testCaseStats ) override {
std::cout << "\nEvent: testCaseEnded:\n";
print( std::cout, 1, "testCaseStats", testCaseStats );
}
// Sections starting
void sectionStarting( Catch::SectionInfo const& sectionInfo ) override {
std::cout << "\nEvent: sectionStarting:\n";
print( std::cout, 1, "- sectionInfo", sectionInfo );
}
// Sections ending
void sectionEnded( Catch::SectionStats const& sectionStats ) override {
std::cout << "\nEvent: sectionEnded:\n";
print( std::cout, 1, "- sectionStats", sectionStats );
}
// Assertions before/ after
void assertionStarting( Catch::AssertionInfo const& assertionInfo ) override {
std::cout << "\nEvent: assertionStarting:\n";
print( std::cout, 1, "- assertionInfo", assertionInfo );
}
bool assertionEnded( Catch::AssertionStats const& assertionStats ) override {
std::cout << "\nEvent: assertionEnded:\n";
print( std::cout, 1, "- assertionStats", assertionStats );
return true;
}
};
} // end anonymous namespace
CATCH_REGISTER_LISTENER( MyListener )
// Get rid of Wweak-tables
MyListener::~MyListener() {}
// -----------------------------------------------------------------------
// 3. Test cases:
//
TEST_CASE( "1: Hidden testcase", "[.hidden]" ) {
}
TEST_CASE( "2: Testcase with sections", "[tag-A][tag-B]" ) {
int i = 42;
REQUIRE( i == 42 );
SECTION("Section 1") {
INFO("Section 1");
i = 7;
SECTION("Section 1.1") {
INFO("Section 1.1");
REQUIRE( i == 42 );
}
}
SECTION("Section 2") {
INFO("Section 2");
REQUIRE( i == 42 );
}
WARN("At end of test case");
}
struct Fixture {
int fortytwo() const {
return 42;
}
};
TEST_CASE_METHOD( Fixture, "3: Testcase with class-based fixture", "[tag-C][tag-D]" ) {
REQUIRE( fortytwo() == 42 );
}
// Compile & run:
// - g++ -std=c++11 -Wall -I$(CATCH_SINGLE_INCLUDE) -o 210-Evt-EventListeners 210-Evt-EventListeners.cpp 000-CatchMain.o && 210-Evt-EventListeners --success
// - cl -EHsc -I%CATCH_SINGLE_INCLUDE% 210-Evt-EventListeners.cpp 000-CatchMain.obj && 210-Evt-EventListeners --success
// Expected compact output (all assertions):
//
// prompt> 210-Evt-EventListeners --reporter compact --success
// result omitted for brevity.

View File

@@ -1,55 +0,0 @@
// 231-Cfg-OutputStreams.cpp
// Show how to replace the streams with a simple custom made streambuf.
// Note that this reimplementation _does not_ follow `std::cerr`
// semantic, because it buffers the output. For most uses however,
// there is no important difference between having `std::cerr` buffered
// or unbuffered.
#include <catch2/catch_test_macros.hpp>
#include <sstream>
#include <cstdio>
class out_buff : public std::stringbuf {
std::FILE* m_stream;
public:
out_buff(std::FILE* stream):m_stream(stream) {}
~out_buff();
int sync() override {
int ret = 0;
for (unsigned char c : str()) {
if (putc(c, m_stream) == EOF) {
ret = -1;
break;
}
}
// Reset the buffer to avoid printing it multiple times
str("");
return ret;
}
};
out_buff::~out_buff() { pubsync(); }
#if defined(__clang__)
#pragma clang diagnostic ignored "-Wexit-time-destructors" // static variables in cout/cerr/clog
#endif
namespace Catch {
std::ostream& cout() {
static std::ostream ret(new out_buff(stdout));
return ret;
}
std::ostream& clog() {
static std::ostream ret(new out_buff(stderr));
return ret;
}
std::ostream& cerr() {
return clog();
}
}
TEST_CASE("This binary uses putc to write out output", "[compilation-only]") {
SUCCEED("Nothing to test.");
}

View File

@@ -1,69 +0,0 @@
// 300-Gen-OwnGenerator.cpp
// Shows how to define a custom generator.
// Specifically we will implement a random number generator for integers
// It will have infinite capacity and settable lower/upper bound
#include <catch2/catch_test_macros.hpp>
#include <catch2/generators/catch_generators.hpp>
#include <catch2/generators/catch_generators_adapters.hpp>
#include <random>
namespace {
// This class shows how to implement a simple generator for Catch tests
class RandomIntGenerator : public Catch::Generators::IGenerator<int> {
std::minstd_rand m_rand;
std::uniform_int_distribution<> m_dist;
int current_number;
public:
RandomIntGenerator(int low, int high):
m_rand(std::random_device{}()),
m_dist(low, high)
{
static_cast<void>(next());
}
int const& get() const override;
bool next() override {
current_number = m_dist(m_rand);
return true;
}
};
// Avoids -Wweak-vtables
int const& RandomIntGenerator::get() const {
return current_number;
}
// This helper function provides a nicer UX when instantiating the generator
// Notice that it returns an instance of GeneratorWrapper<int>, which
// is a value-wrapper around std::unique_ptr<IGenerator<int>>.
Catch::Generators::GeneratorWrapper<int> random(int low, int high) {
return Catch::Generators::GeneratorWrapper<int>(
new RandomIntGenerator(low, high)
// Another possibility:
// Catch::Detail::make_unique<RandomIntGenerator>(low, high)
);
}
} // end anonymous namespaces
// The two sections in this test case are equivalent, but the first one
// is much more readable/nicer to use
TEST_CASE("Generating random ints", "[example][generator]") {
SECTION("Nice UX") {
auto i = GENERATE(take(100, random(-100, 100)));
REQUIRE(i >= -100);
REQUIRE(i <= 100);
}
SECTION("Creating the random generator directly") {
auto i = GENERATE(take(100, GeneratorWrapper<int>(Catch::Detail::make_unique<RandomIntGenerator>(-100, 100))));
REQUIRE(i >= -100);
REQUIRE(i <= 100);
}
}
// Compiling and running this file will result in 400 successful assertions

View File

@@ -1,60 +0,0 @@
// 301-Gen-MapTypeConversion.cpp
// Shows how to use map to modify generator's return type.
// Specifically we wrap a std::string returning generator with a generator
// that converts the strings using stoi, so the returned type is actually
// an int.
#include <catch2/catch_test_macros.hpp>
#include <catch2/generators/catch_generators_adapters.hpp>
#include <string>
#include <sstream>
namespace {
// Returns a line from a stream. You could have it e.g. read lines from
// a file, but to avoid problems with paths in examples, we will use
// a fixed stringstream.
class LineGenerator : public Catch::Generators::IGenerator<std::string> {
std::string m_line;
std::stringstream m_stream;
public:
LineGenerator() {
m_stream.str("1\n2\n3\n4\n");
if (!next()) {
Catch::Generators::Detail::throw_generator_exception("Couldn't read a single line");
}
}
std::string const& get() const override;
bool next() override {
return !!std::getline(m_stream, m_line);
}
};
std::string const& LineGenerator::get() const {
return m_line;
}
// This helper function provides a nicer UX when instantiating the generator
// Notice that it returns an instance of GeneratorWrapper<std::string>, which
// is a value-wrapper around std::unique_ptr<IGenerator<std::string>>.
Catch::Generators::GeneratorWrapper<std::string> lines(std::string /* ignored for example */) {
return Catch::Generators::GeneratorWrapper<std::string>(
new LineGenerator()
);
}
} // end anonymous namespace
TEST_CASE("filter can convert types inside the generator expression", "[example][generator]") {
auto num = GENERATE(map<int>([](std::string const& line) { return std::stoi(line); },
lines("fake-file")));
REQUIRE(num > 0);
}
// Compiling and running this file will result in 4 successful assertions

View File

@@ -1,55 +0,0 @@
// 302-Gen-Table.cpp
// Shows how to use table to run a test many times with different inputs. Lifted from examples on
// issue #850.
#include <catch2/catch_test_macros.hpp>
#include <catch2/generators/catch_generators.hpp>
#include <string>
struct TestSubject {
// this is the method we are going to test. It returns the length of the
// input string.
size_t GetLength( const std::string& input ) const { return input.size(); }
};
TEST_CASE("Table allows pre-computed test inputs and outputs", "[example][generator]") {
using std::make_tuple;
// do setup here as normal
TestSubject subj;
SECTION("This section is run for each row in the table") {
std::string test_input;
size_t expected_output;
std::tie( test_input, expected_output ) =
GENERATE( table<std::string, size_t>(
{ /* In this case one of the parameters to our test case is the
* expected output, but this is not required. There could be
* multiple expected values in the table, which can have any
* (fixed) number of columns.
*/
make_tuple( "one", 3 ),
make_tuple( "two", 3 ),
make_tuple( "three", 5 ),
make_tuple( "four", 4 ) } ) );
// run the test
auto result = subj.GetLength(test_input);
// capture the input data to go with the outputs.
CAPTURE(test_input);
// check it matches the pre-calculated data
REQUIRE(result == expected_output);
} // end section
}
/* Possible simplifications where less legacy toolchain support is needed:
*
* - With libstdc++6 or newer, the make_tuple() calls can be ommitted
* (technically C++17 but does not require -std in GCC/Clang). See
* https://stackoverflow.com/questions/12436586/tuple-vector-and-initializer-list
*
* - In C++17 mode std::tie() and the preceeding variable delcarations can be
* replaced by structured bindings: auto [test_input, expected] = GENERATE(
* table<std::string, size_t>({ ...
*/
// Compiling and running this file will result in 4 successful assertions

View File

@@ -1,35 +0,0 @@
// 310-Gen-VariablesInGenerator.cpp
// Shows how to use variables when creating generators.
// Note that using variables inside generators is dangerous and should
// be done only if you know what you are doing, because the generators
// _WILL_ outlive the variables -- thus they should be either captured
// by value directly, or copied by the generators during construction.
#include <catch2/catch_test_macros.hpp>
#include <catch2/generators/catch_generators_adapters.hpp>
#include <catch2/generators/catch_generators_random.hpp>
TEST_CASE("Generate random doubles across different ranges",
"[generator][example][advanced]") {
// Workaround for old libstdc++
using record = std::tuple<double, double>;
// Set up 3 ranges to generate numbers from
auto r = GENERATE(table<double, double>({
record{3, 4},
record{-4, -3},
record{10, 1000}
}));
// This will not compile (intentionally), because it accesses a variable
// auto number = GENERATE(take(50, random(std::get<0>(r), std::get<1>(r))));
// GENERATE_COPY copies all variables mentioned inside the expression
// thus this will work.
auto number = GENERATE_COPY(take(50, random(std::get<0>(r), std::get<1>(r))));
REQUIRE(std::abs(number) > 0);
}
// Compiling and running this file will result in 150 successful assertions

View File

@@ -1,43 +0,0 @@
// 311-Gen-CustomCapture.cpp
// Shows how to provide custom capture list to the generator expression
// Note that using variables inside generators is dangerous and should
// be done only if you know what you are doing, because the generators
// _WILL_ outlive the variables. Also, even if you know what you are
// doing, you should probably use GENERATE_COPY or GENERATE_REF macros
// instead. However, if your use case requires having a
// per-variable custom capture list, this example shows how to achieve
// that.
#include <catch2/catch_test_macros.hpp>
#include <catch2/generators/catch_generators_adapters.hpp>
#include <catch2/generators/catch_generators_random.hpp>
TEST_CASE("Generate random doubles across different ranges",
"[generator][example][advanced]") {
// Workaround for old libstdc++
using record = std::tuple<double, double>;
// Set up 3 ranges to generate numbers from
auto r1 = GENERATE(table<double, double>({
record{3, 4},
record{-4, -3},
record{10, 1000}
}));
auto r2(r1);
// This will take r1 by reference and r2 by value.
// Note that there are no advantages for doing so in this example,
// it is done only for expository purposes.
auto number = Catch::Generators::generate( "custom capture generator", CATCH_INTERNAL_LINEINFO,
[&r1, r2]{
using namespace Catch::Generators;
return makeGenerators(take(50, random(std::get<0>(r1), std::get<1>(r2))));
}
);
REQUIRE(std::abs(number) > 0);
}
// Compiling and running this file will result in 150 successful assertions

View File

@@ -1,63 +0,0 @@
cmake_minimum_required( VERSION 3.5 )
project( Catch2Examples LANGUAGES CXX )
message( STATUS "Examples included" )
# Some one-offs first:
# 1) Tests and main in one file
add_executable( 010-TestCase
010-TestCase.cpp
)
# 2) Tests and main across two files
add_executable( 020-MultiFile
020-TestCase-1.cpp
020-TestCase-2.cpp
)
add_executable(231-Cfg_OutputStreams
231-Cfg-OutputStreams.cpp
)
target_link_libraries(231-Cfg_OutputStreams Catch2_buildall_interface)
target_compile_definitions(231-Cfg_OutputStreams PUBLIC CATCH_CONFIG_NOSTDOUT)
# These examples use the standard separate compilation
set( SOURCES_IDIOMATIC_EXAMPLES
030-Asn-Require-Check.cpp
100-Fix-Section.cpp
110-Fix-ClassFixture.cpp
120-Bdd-ScenarioGivenWhenThen.cpp
210-Evt-EventListeners.cpp
300-Gen-OwnGenerator.cpp
301-Gen-MapTypeConversion.cpp
302-Gen-Table.cpp
310-Gen-VariablesInGenerators.cpp
311-Gen-CustomCapture.cpp
)
string( REPLACE ".cpp" "" BASENAMES_IDIOMATIC_EXAMPLES "${SOURCES_IDIOMATIC_EXAMPLES}" )
set( TARGETS_IDIOMATIC_EXAMPLES ${BASENAMES_IDIOMATIC_EXAMPLES} )
foreach( name ${TARGETS_IDIOMATIC_EXAMPLES} )
add_executable( ${name}
${EXAMPLES_DIR}/${name}.cpp )
endforeach()
set(ALL_EXAMPLE_TARGETS
${TARGETS_IDIOMATIC_EXAMPLES}
010-TestCase
020-MultiFile
)
foreach( name ${ALL_EXAMPLE_TARGETS} )
target_link_libraries( ${name} Catch2 Catch2WithMain )
set_property(TARGET ${name} PROPERTY CXX_STANDARD 14)
set_property(TARGET ${name} PROPERTY CXX_EXTENSIONS OFF)
endforeach()
list(APPEND CATCH_WARNING_TARGETS ${ALL_EXAMPLE_TARGETS})
set(CATCH_WARNING_TARGETS ${CATCH_WARNING_TARGETS} PARENT_SCOPE)

View File

@@ -1,205 +0,0 @@
# Distributed under the OSI-approved BSD 3-Clause License. See accompanying
# file Copyright.txt or https://cmake.org/licensing for details.
#[=======================================================================[.rst:
Catch
-----
This module defines a function to help use the Catch test framework.
The :command:`catch_discover_tests` discovers tests by asking the compiled test
executable to enumerate its tests. This does not require CMake to be re-run
when tests change. However, it may not work in a cross-compiling environment,
and setting test properties is less convenient.
This command is intended to replace use of :command:`add_test` to register
tests, and will create a separate CTest test for each Catch test case. Note
that this is in some cases less efficient, as common set-up and tear-down logic
cannot be shared by multiple test cases executing in the same instance.
However, it provides more fine-grained pass/fail information to CTest, which is
usually considered as more beneficial. By default, the CTest test name is the
same as the Catch name; see also ``TEST_PREFIX`` and ``TEST_SUFFIX``.
.. command:: catch_discover_tests
Automatically add tests with CTest by querying the compiled test executable
for available tests::
catch_discover_tests(target
[TEST_SPEC arg1...]
[EXTRA_ARGS arg1...]
[WORKING_DIRECTORY dir]
[TEST_PREFIX prefix]
[TEST_SUFFIX suffix]
[PROPERTIES name1 value1...]
[TEST_LIST var]
[REPORTER reporter]
[OUTPUT_DIR dir]
[OUTPUT_PREFIX prefix}
[OUTPUT_SUFFIX suffix]
)
``catch_discover_tests`` sets up a post-build command on the test executable
that generates the list of tests by parsing the output from running the test
with the ``--list-test-names-only`` argument. This ensures that the full
list of tests is obtained. Since test discovery occurs at build time, it is
not necessary to re-run CMake when the list of tests changes.
However, it requires that :prop_tgt:`CROSSCOMPILING_EMULATOR` is properly set
in order to function in a cross-compiling environment.
Additionally, setting properties on tests is somewhat less convenient, since
the tests are not available at CMake time. Additional test properties may be
assigned to the set of tests as a whole using the ``PROPERTIES`` option. If
more fine-grained test control is needed, custom content may be provided
through an external CTest script using the :prop_dir:`TEST_INCLUDE_FILES`
directory property. The set of discovered tests is made accessible to such a
script via the ``<target>_TESTS`` variable.
The options are:
``target``
Specifies the Catch executable, which must be a known CMake executable
target. CMake will substitute the location of the built executable when
running the test.
``TEST_SPEC arg1...``
Specifies test cases, wildcarded test cases, tags and tag expressions to
pass to the Catch executable with the ``--list-test-names-only`` argument.
``EXTRA_ARGS arg1...``
Any extra arguments to pass on the command line to each test case.
``WORKING_DIRECTORY dir``
Specifies the directory in which to run the discovered test cases. If this
option is not provided, the current binary directory is used.
``TEST_PREFIX prefix``
Specifies a ``prefix`` to be prepended to the name of each discovered test
case. This can be useful when the same test executable is being used in
multiple calls to ``catch_discover_tests()`` but with different
``TEST_SPEC`` or ``EXTRA_ARGS``.
``TEST_SUFFIX suffix``
Similar to ``TEST_PREFIX`` except the ``suffix`` is appended to the name of
every discovered test case. Both ``TEST_PREFIX`` and ``TEST_SUFFIX`` may
be specified.
``PROPERTIES name1 value1...``
Specifies additional properties to be set on all tests discovered by this
invocation of ``catch_discover_tests``.
``TEST_LIST var``
Make the list of tests available in the variable ``var``, rather than the
default ``<target>_TESTS``. This can be useful when the same test
executable is being used in multiple calls to ``catch_discover_tests()``.
Note that this variable is only available in CTest.
``REPORTER reporter``
Use the specified reporter when running the test case. The reporter will
be passed to the Catch executable as ``--reporter reporter``.
``OUTPUT_DIR dir``
If specified, the parameter is passed along as
``--out dir/<test_name>`` to Catch executable. The actual file name is the
same as the test name. This should be used instead of
``EXTRA_ARGS --out foo`` to avoid race conditions writing the result output
when using parallel test execution.
``OUTPUT_PREFIX prefix``
May be used in conjunction with ``OUTPUT_DIR``.
If specified, ``prefix`` is added to each output file name, like so
``--out dir/prefix<test_name>``.
``OUTPUT_SUFFIX suffix``
May be used in conjunction with ``OUTPUT_DIR``.
If specified, ``suffix`` is added to each output file name, like so
``--out dir/<test_name>suffix``. This can be used to add a file extension to
the output e.g. ".xml".
#]=======================================================================]
#------------------------------------------------------------------------------
function(catch_discover_tests TARGET)
cmake_parse_arguments(
""
""
"TEST_PREFIX;TEST_SUFFIX;WORKING_DIRECTORY;TEST_LIST;REPORTER;OUTPUT_DIR;OUTPUT_PREFIX;OUTPUT_SUFFIX"
"TEST_SPEC;EXTRA_ARGS;PROPERTIES"
${ARGN}
)
if(NOT _WORKING_DIRECTORY)
set(_WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}")
endif()
if(NOT _TEST_LIST)
set(_TEST_LIST ${TARGET}_TESTS)
endif()
## Generate a unique name based on the extra arguments
string(SHA1 args_hash "${_TEST_SPEC} ${_EXTRA_ARGS} ${_REPORTER} ${_OUTPUT_DIR} ${_OUTPUT_PREFIX} ${_OUTPUT_SUFFIX}")
string(SUBSTRING ${args_hash} 0 7 args_hash)
# Define rule to generate test list for aforementioned test executable
set(ctest_include_file "${CMAKE_CURRENT_BINARY_DIR}/${TARGET}_include-${args_hash}.cmake")
set(ctest_tests_file "${CMAKE_CURRENT_BINARY_DIR}/${TARGET}_tests-${args_hash}.cmake")
get_property(crosscompiling_emulator
TARGET ${TARGET}
PROPERTY CROSSCOMPILING_EMULATOR
)
add_custom_command(
TARGET ${TARGET} POST_BUILD
BYPRODUCTS "${ctest_tests_file}"
COMMAND "${CMAKE_COMMAND}"
-D "TEST_TARGET=${TARGET}"
-D "TEST_EXECUTABLE=$<TARGET_FILE:${TARGET}>"
-D "TEST_EXECUTOR=${crosscompiling_emulator}"
-D "TEST_WORKING_DIR=${_WORKING_DIRECTORY}"
-D "TEST_SPEC=${_TEST_SPEC}"
-D "TEST_EXTRA_ARGS=${_EXTRA_ARGS}"
-D "TEST_PROPERTIES=${_PROPERTIES}"
-D "TEST_PREFIX=${_TEST_PREFIX}"
-D "TEST_SUFFIX=${_TEST_SUFFIX}"
-D "TEST_LIST=${_TEST_LIST}"
-D "TEST_REPORTER=${_REPORTER}"
-D "TEST_OUTPUT_DIR=${_OUTPUT_DIR}"
-D "TEST_OUTPUT_PREFIX=${_OUTPUT_PREFIX}"
-D "TEST_OUTPUT_SUFFIX=${_OUTPUT_SUFFIX}"
-D "CTEST_FILE=${ctest_tests_file}"
-P "${_CATCH_DISCOVER_TESTS_SCRIPT}"
VERBATIM
)
file(WRITE "${ctest_include_file}"
"if(EXISTS \"${ctest_tests_file}\")\n"
" include(\"${ctest_tests_file}\")\n"
"else()\n"
" add_test(${TARGET}_NOT_BUILT-${args_hash} ${TARGET}_NOT_BUILT-${args_hash})\n"
"endif()\n"
)
if(NOT ${CMAKE_VERSION} VERSION_LESS "3.10.0")
# Add discovered tests to directory TEST_INCLUDE_FILES
set_property(DIRECTORY
APPEND PROPERTY TEST_INCLUDE_FILES "${ctest_include_file}"
)
else()
# Add discovered tests as directory TEST_INCLUDE_FILE if possible
get_property(test_include_file_set DIRECTORY PROPERTY TEST_INCLUDE_FILE SET)
if (NOT ${test_include_file_set})
set_property(DIRECTORY
PROPERTY TEST_INCLUDE_FILE "${ctest_include_file}"
)
else()
message(FATAL_ERROR
"Cannot set more than one TEST_INCLUDE_FILE"
)
endif()
endif()
endfunction()
###############################################################################
set(_CATCH_DISCOVER_TESTS_SCRIPT
${CMAKE_CURRENT_LIST_DIR}/CatchAddTests.cmake
)

View File

@@ -1,127 +0,0 @@
# Distributed under the OSI-approved BSD 3-Clause License. See accompanying
# file Copyright.txt or https://cmake.org/licensing for details.
set(prefix "${TEST_PREFIX}")
set(suffix "${TEST_SUFFIX}")
set(spec ${TEST_SPEC})
set(extra_args ${TEST_EXTRA_ARGS})
set(properties ${TEST_PROPERTIES})
set(reporter ${TEST_REPORTER})
set(output_dir ${TEST_OUTPUT_DIR})
set(output_prefix ${TEST_OUTPUT_PREFIX})
set(output_suffix ${TEST_OUTPUT_SUFFIX})
set(script)
set(suite)
set(tests)
function(add_command NAME)
set(_args "")
foreach(_arg ${ARGN})
if(_arg MATCHES "[^-./:a-zA-Z0-9_]")
set(_args "${_args} [==[${_arg}]==]") # form a bracket_argument
else()
set(_args "${_args} ${_arg}")
endif()
endforeach()
set(script "${script}${NAME}(${_args})\n" PARENT_SCOPE)
endfunction()
# Run test executable to get list of available tests
if(NOT EXISTS "${TEST_EXECUTABLE}")
message(FATAL_ERROR
"Specified test executable '${TEST_EXECUTABLE}' does not exist"
)
endif()
execute_process(
COMMAND ${TEST_EXECUTOR} "${TEST_EXECUTABLE}" ${spec} --list-tests --verbosity quiet
OUTPUT_VARIABLE output
RESULT_VARIABLE result
WORKING_DIRECTORY "${TEST_WORKING_DIR}"
)
if(NOT ${result} EQUAL 0)
message(FATAL_ERROR
"Error running test executable '${TEST_EXECUTABLE}':\n"
" Result: ${result}\n"
" Output: ${output}\n"
)
endif()
string(REPLACE "\n" ";" output "${output}")
# Run test executable to get list of available reporters
execute_process(
COMMAND ${TEST_EXECUTOR} "${TEST_EXECUTABLE}" ${spec} --list-reporters
OUTPUT_VARIABLE reporters_output
RESULT_VARIABLE reporters_result
WORKING_DIRECTORY "${TEST_WORKING_DIR}"
)
if(${reporters_result} EQUAL 0)
message(WARNING
"Test executable '${TEST_EXECUTABLE}' contains no reporters!\n"
)
elseif(${reporters_result} LESS 0)
message(FATAL_ERROR
"Error running test executable '${TEST_EXECUTABLE}':\n"
" Result: ${reporters_result}\n"
" Output: ${reporters_output}\n"
)
endif()
string(FIND "${reporters_output}" "${reporter}" reporter_is_valid)
if(reporter AND ${reporter_is_valid} EQUAL -1)
message(FATAL_ERROR
"\"${reporter}\" is not a valid reporter!\n"
)
endif()
# Prepare reporter
if(reporter)
set(reporter_arg "--reporter ${reporter}")
endif()
# Prepare output dir
if(output_dir AND NOT IS_ABSOLUTE ${output_dir})
set(output_dir "${TEST_WORKING_DIR}/${output_dir}")
if(NOT EXISTS ${output_dir})
file(MAKE_DIRECTORY ${output_dir})
endif()
endif()
# Parse output
foreach(line ${output})
set(test ${line})
# Escape characters in test case names that would be parsed by Catch2
set(test_name ${test})
foreach(char , [ ])
string(REPLACE ${char} "\\${char}" test_name ${test_name})
endforeach(char)
# ...add output dir
if(output_dir)
string(REGEX REPLACE "[^A-Za-z0-9_]" "_" test_name_clean ${test_name})
set(output_dir_arg "--out ${output_dir}/${output_prefix}${test_name_clean}${output_suffix}")
endif()
# ...and add to script
add_command(add_test
"${prefix}${test}${suffix}"
${TEST_EXECUTOR}
"${TEST_EXECUTABLE}"
"${test_name}"
${extra_args}
"${reporter_arg}"
"${output_dir_arg}"
)
add_command(set_tests_properties
"${prefix}${test}${suffix}"
PROPERTIES
WORKING_DIRECTORY "${TEST_WORKING_DIR}"
${properties}
)
list(APPEND tests "${prefix}${test}${suffix}")
endforeach()
# Create a list of all discovered tests, which users may use to e.g. set
# properties on the tests
add_command(set ${TEST_LIST} ${tests})
# Write CTest script
file(WRITE "${CTEST_FILE}" "${script}")

View File

@@ -1,238 +0,0 @@
#==================================================================================================#
# supported macros #
# - TEST_CASE, #
# - TEMPLATE_TEST_CASE #
# - SCENARIO, #
# - TEST_CASE_METHOD, #
# - CATCH_TEST_CASE, #
# - CATCH_TEMPLATE_TEST_CASE #
# - CATCH_SCENARIO, #
# - CATCH_TEST_CASE_METHOD. #
# #
# Usage #
# 1. make sure this module is in the path or add this otherwise: #
# set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake.modules/") #
# 2. make sure that you've enabled testing option for the project by the call: #
# enable_testing() #
# 3. add the lines to the script for testing target (sample CMakeLists.txt): #
# project(testing_target) #
# set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake.modules/") #
# enable_testing() #
# #
# find_path(CATCH_INCLUDE_DIR "catch.hpp") #
# include_directories(${INCLUDE_DIRECTORIES} ${CATCH_INCLUDE_DIR}) #
# #
# file(GLOB SOURCE_FILES "*.cpp") #
# add_executable(${PROJECT_NAME} ${SOURCE_FILES}) #
# #
# include(ParseAndAddCatchTests) #
# ParseAndAddCatchTests(${PROJECT_NAME}) #
# #
# The following variables affect the behavior of the script: #
# #
# PARSE_CATCH_TESTS_VERBOSE (Default OFF) #
# -- enables debug messages #
# PARSE_CATCH_TESTS_NO_HIDDEN_TESTS (Default OFF) #
# -- excludes tests marked with [!hide], [.] or [.foo] tags #
# PARSE_CATCH_TESTS_ADD_FIXTURE_IN_TEST_NAME (Default ON) #
# -- adds fixture class name to the test name #
# PARSE_CATCH_TESTS_ADD_TARGET_IN_TEST_NAME (Default ON) #
# -- adds cmake target name to the test name #
# PARSE_CATCH_TESTS_ADD_TO_CONFIGURE_DEPENDS (Default OFF) #
# -- causes CMake to rerun when file with tests changes so that new tests will be discovered #
# #
# One can also set (locally) the optional variable OptionalCatchTestLauncher to precise the way #
# a test should be run. For instance to use test MPI, one can write #
# set(OptionalCatchTestLauncher ${MPIEXEC} ${MPIEXEC_NUMPROC_FLAG} ${NUMPROC}) #
# just before calling this ParseAndAddCatchTests function #
# #
# The AdditionalCatchParameters optional variable can be used to pass extra argument to the test #
# command. For example, to include successful tests in the output, one can write #
# set(AdditionalCatchParameters --success) #
# #
# After the script, the ParseAndAddCatchTests_TESTS property for the target, and for each source #
# file in the target is set, and contains the list of the tests extracted from that target, or #
# from that file. This is useful, for example to add further labels or properties to the tests. #
# #
#==================================================================================================#
if (CMAKE_MINIMUM_REQUIRED_VERSION VERSION_LESS 2.8.8)
message(FATAL_ERROR "ParseAndAddCatchTests requires CMake 2.8.8 or newer")
endif()
option(PARSE_CATCH_TESTS_VERBOSE "Print Catch to CTest parser debug messages" OFF)
option(PARSE_CATCH_TESTS_NO_HIDDEN_TESTS "Exclude tests with [!hide], [.] or [.foo] tags" OFF)
option(PARSE_CATCH_TESTS_ADD_FIXTURE_IN_TEST_NAME "Add fixture class name to the test name" ON)
option(PARSE_CATCH_TESTS_ADD_TARGET_IN_TEST_NAME "Add target name to the test name" ON)
option(PARSE_CATCH_TESTS_ADD_TO_CONFIGURE_DEPENDS "Add test file to CMAKE_CONFIGURE_DEPENDS property" OFF)
function(ParseAndAddCatchTests_PrintDebugMessage)
if(PARSE_CATCH_TESTS_VERBOSE)
message(STATUS "ParseAndAddCatchTests: ${ARGV}")
endif()
endfunction()
# This removes the contents between
# - block comments (i.e. /* ... */)
# - full line comments (i.e. // ... )
# contents have been read into '${CppCode}'.
# !keep partial line comments
function(ParseAndAddCatchTests_RemoveComments CppCode)
string(ASCII 2 CMakeBeginBlockComment)
string(ASCII 3 CMakeEndBlockComment)
string(REGEX REPLACE "/\\*" "${CMakeBeginBlockComment}" ${CppCode} "${${CppCode}}")
string(REGEX REPLACE "\\*/" "${CMakeEndBlockComment}" ${CppCode} "${${CppCode}}")
string(REGEX REPLACE "${CMakeBeginBlockComment}[^${CMakeEndBlockComment}]*${CMakeEndBlockComment}" "" ${CppCode} "${${CppCode}}")
string(REGEX REPLACE "\n[ \t]*//+[^\n]+" "\n" ${CppCode} "${${CppCode}}")
set(${CppCode} "${${CppCode}}" PARENT_SCOPE)
endfunction()
# Worker function
function(ParseAndAddCatchTests_ParseFile SourceFile TestTarget)
# If SourceFile is an object library, do not scan it (as it is not a file). Exit without giving a warning about a missing file.
if(SourceFile MATCHES "\\\$<TARGET_OBJECTS:.+>")
ParseAndAddCatchTests_PrintDebugMessage("Detected OBJECT library: ${SourceFile} this will not be scanned for tests.")
return()
endif()
# According to CMake docs EXISTS behavior is well-defined only for full paths.
get_filename_component(SourceFile ${SourceFile} ABSOLUTE)
if(NOT EXISTS ${SourceFile})
message(WARNING "Cannot find source file: ${SourceFile}")
return()
endif()
ParseAndAddCatchTests_PrintDebugMessage("parsing ${SourceFile}")
file(STRINGS ${SourceFile} Contents NEWLINE_CONSUME)
# Remove block and fullline comments
ParseAndAddCatchTests_RemoveComments(Contents)
# Find definition of test names
string(REGEX MATCHALL "[ \t]*(CATCH_)?(TEMPLATE_)?(TEST_CASE_METHOD|SCENARIO|TEST_CASE)[ \t]*\\([ \t\n]*\"[^\"]*\"[ \t\n]*,[ \t\n]*\"[^\"]*\"([^\(\)]+(\\([^\)]*\\))*)*\\)+[ \t\n]*{+[ \t]*(//[^\n]*[Tt][Ii][Mm][Ee][Oo][Uu][Tt][ \t]*[0-9]+)*" Tests "${Contents}")
if(PARSE_CATCH_TESTS_ADD_TO_CONFIGURE_DEPENDS AND Tests)
ParseAndAddCatchTests_PrintDebugMessage("Adding ${SourceFile} to CMAKE_CONFIGURE_DEPENDS property")
set_property(
DIRECTORY
APPEND
PROPERTY CMAKE_CONFIGURE_DEPENDS ${SourceFile}
)
endif()
foreach(TestName ${Tests})
# Strip newlines
string(REGEX REPLACE "\\\\\n|\n" "" TestName "${TestName}")
# Get test type and fixture if applicable
string(REGEX MATCH "(CATCH_)?(TEMPLATE_)?(TEST_CASE_METHOD|SCENARIO|TEST_CASE)[ \t]*\\([^,^\"]*" TestTypeAndFixture "${TestName}")
string(REGEX MATCH "(CATCH_)?(TEMPLATE_)?(TEST_CASE_METHOD|SCENARIO|TEST_CASE)" TestType "${TestTypeAndFixture}")
string(REGEX REPLACE "${TestType}\\([ \t]*" "" TestFixture "${TestTypeAndFixture}")
# Get string parts of test definition
string(REGEX MATCHALL "\"+([^\\^\"]|\\\\\")+\"+" TestStrings "${TestName}")
# Strip wrapping quotation marks
string(REGEX REPLACE "^\"(.*)\"$" "\\1" TestStrings "${TestStrings}")
string(REPLACE "\";\"" ";" TestStrings "${TestStrings}")
# Validate that a test name and tags have been provided
list(LENGTH TestStrings TestStringsLength)
if(TestStringsLength GREATER 2 OR TestStringsLength LESS 1)
message(FATAL_ERROR "You must provide a valid test name and tags for all tests in ${SourceFile}")
endif()
# Assign name and tags
list(GET TestStrings 0 Name)
if("${TestType}" STREQUAL "SCENARIO")
set(Name "Scenario: ${Name}")
endif()
if(PARSE_CATCH_TESTS_ADD_FIXTURE_IN_TEST_NAME AND "${TestType}" MATCHES "(CATCH_)?TEST_CASE_METHOD" AND TestFixture )
set(CTestName "${TestFixture}:${Name}")
else()
set(CTestName "${Name}")
endif()
if(PARSE_CATCH_TESTS_ADD_TARGET_IN_TEST_NAME)
set(CTestName "${TestTarget}:${CTestName}")
endif()
# add target to labels to enable running all tests added from this target
set(Labels ${TestTarget})
if(TestStringsLength EQUAL 2)
list(GET TestStrings 1 Tags)
string(TOLOWER "${Tags}" Tags)
# remove target from labels if the test is hidden
if("${Tags}" MATCHES ".*\\[!?(hide|\\.)\\].*")
list(REMOVE_ITEM Labels ${TestTarget})
endif()
string(REPLACE "]" ";" Tags "${Tags}")
string(REPLACE "[" "" Tags "${Tags}")
else()
# unset tags variable from previous loop
unset(Tags)
endif()
list(APPEND Labels ${Tags})
set(HiddenTagFound OFF)
foreach(label ${Labels})
string(REGEX MATCH "^!hide|^\\." result ${label})
if(result)
set(HiddenTagFound ON)
break()
endif(result)
endforeach(label)
if(PARSE_CATCH_TESTS_NO_HIDDEN_TESTS AND ${HiddenTagFound} AND ${CMAKE_VERSION} VERSION_LESS "3.9")
ParseAndAddCatchTests_PrintDebugMessage("Skipping test \"${CTestName}\" as it has [!hide], [.] or [.foo] label")
else()
ParseAndAddCatchTests_PrintDebugMessage("Adding test \"${CTestName}\"")
if(Labels)
ParseAndAddCatchTests_PrintDebugMessage("Setting labels to ${Labels}")
endif()
# Escape commas in the test spec
string(REPLACE "," "\\," Name ${Name})
# Work around CMake 3.18.0 change in `add_test()`, before the escaped quotes were neccessary,
# only with CMake 3.18.0 the escaped double quotes confuse the call. This change is reverted in 3.18.1
if(NOT ${CMAKE_VERSION} VERSION_EQUAL "3.18")
set(CTestName "\"${CTestName}\"")
endif()
# Handle template test cases
if("${TestTypeAndFixture}" MATCHES ".*TEMPLATE_.*")
set(Name "${Name} - *")
endif()
# Add the test and set its properties
add_test(NAME "${CTestName}" COMMAND ${OptionalCatchTestLauncher} $<TARGET_FILE:${TestTarget}> ${Name} ${AdditionalCatchParameters})
# Old CMake versions do not document VERSION_GREATER_EQUAL, so we use VERSION_GREATER with 3.8 instead
if(PARSE_CATCH_TESTS_NO_HIDDEN_TESTS AND ${HiddenTagFound} AND ${CMAKE_VERSION} VERSION_GREATER "3.8")
ParseAndAddCatchTests_PrintDebugMessage("Setting DISABLED test property")
set_tests_properties("${CTestName}" PROPERTIES DISABLED ON)
else()
set_tests_properties("${CTestName}" PROPERTIES FAIL_REGULAR_EXPRESSION "No tests ran"
LABELS "${Labels}")
endif()
set_property(
TARGET ${TestTarget}
APPEND
PROPERTY ParseAndAddCatchTests_TESTS "${CTestName}")
set_property(
SOURCE ${SourceFile}
APPEND
PROPERTY ParseAndAddCatchTests_TESTS "${CTestName}")
endif()
endforeach()
endfunction()
# entry point
function(ParseAndAddCatchTests TestTarget)
ParseAndAddCatchTests_PrintDebugMessage("Started parsing ${TestTarget}")
get_target_property(SourceFiles ${TestTarget} SOURCES)
ParseAndAddCatchTests_PrintDebugMessage("Found the following sources: ${SourceFiles}")
foreach(SourceFile ${SourceFiles})
ParseAndAddCatchTests_ParseFile(${SourceFile} ${TestTarget})
endforeach()
ParseAndAddCatchTests_PrintDebugMessage("Finished parsing ${TestTarget}")
endfunction()

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,16 +0,0 @@
#
# This file provides a way to skip stepping into Catch code when debugging with gdb.
#
# With the gdb "skip" command you can tell gdb to skip files or functions during debugging.
# see https://xaizek.github.io/2016-05-26/skipping-standard-library-in-gdb/ for an example
#
# Basically the following line tells gdb to skip all functions containing the
# regexp "Catch", which matches the complete Catch namespace.
# If you want to skip just some parts of the Catch code you can modify the
# regexp accordingly.
#
# If you want to permanently skip stepping into Catch code copy the following
# line into your ~/.gdbinit file
#
skip -rfu Catch

View File

@@ -1,16 +0,0 @@
#
# This file provides a way to skip stepping into Catch code when debugging with lldb.
#
# With the setting "target.process.thread.step-avoid-regexp" you can tell lldb
# to skip functions matching the regexp
#
# Basically the following line tells lldb to skip all functions containing the
# regexp "Catch", which matches the complete Catch namespace.
# If you want to skip just some parts of the Catch code you can modify the
# regexp accordingly.
#
# If you want to permanently skip stepping into Catch code copy the following
# line into your ~/.lldbinit file
#
settings set target.process.thread.step-avoid-regexp Catch

View File

@@ -1,20 +0,0 @@
# License: Boost 1.0
# By Paul Dreik 2020
# add a library that brings in the main() function from libfuzzer
# and has all the dependencies, so the individual fuzzers can be
# added one line each.
add_library(fuzzhelper NullOStream.h NullOStream.cpp)
target_link_libraries(fuzzhelper PUBLIC Catch2::Catch2)
# use C++17 so we can get string_view
target_compile_features(fuzzhelper PUBLIC cxx_std_17)
# This should be possible to set from the outside to be oss-fuzz compatible,
# fix later. For now, target libFuzzer only.
target_link_options(fuzzhelper PUBLIC "-fsanitize=fuzzer")
foreach(fuzzer TestSpecParser XmlWriter textflow)
add_executable(fuzz_${fuzzer} fuzz_${fuzzer}.cpp)
target_link_libraries(fuzz_${fuzzer} PRIVATE fuzzhelper)
endforeach()

View File

@@ -1,10 +0,0 @@
#include "NullOStream.h"
void NullOStream::avoidOutOfLineVirtualCompilerWarning()
{
}
int NullStreambuf::overflow(int c){
setp(dummyBuffer, dummyBuffer + sizeof(dummyBuffer));
return (c == traits_type::eof()) ? '\0' : c;
}

View File

@@ -1,20 +0,0 @@
#pragma once
#include <ostream>
#include <streambuf>
// from https://stackoverflow.com/a/8244052
class NullStreambuf : public std::streambuf {
char dummyBuffer[64];
protected:
virtual int overflow(int c) override final;
};
class NullOStream final : private NullStreambuf, public std::ostream {
public:
NullOStream() : std::ostream(this) {}
NullStreambuf *rdbuf() { return this; }
virtual void avoidOutOfLineVirtualCompilerWarning();
};

View File

@@ -1,33 +0,0 @@
#!/bin/sh
#
# Builds the fuzzers
#
# By Paul Dreik 20200923
set -exu
CATCHROOT=$(readlink -f $(dirname $0)/..)
BUILDDIR=$CATCHROOT/build-fuzzers
mkdir -p $BUILDDIR
cd $BUILDDIR
if which /usr/lib/ccache/clang++ >/dev/null 2>&1 ; then
CXX=/usr/lib/ccache/clang++
else
CXX=clang++
fi
cmake $CATCHROOT \
-DCMAKE_CXX_COMPILER=$CXX \
-DCMAKE_CXX_FLAGS="-fsanitize=fuzzer-no-link,address,undefined -O3 -g" \
-DCATCH_DEVELOPMENT_BUILD=On \
-DCATCH_BUILD_EXAMPLES=Off \
-DCATCH_BUILD_EXTRA_TESTS=Off \
-DCATCH_BUILD_TESTING=Off \
-DBUILD_TESTING=Off \
-DCATCH_ENABLE_WERROR=Off \
-DCATCH_BUILD_FUZZERS=On
cmake --build . -j $(nproc)

View File

@@ -1,16 +0,0 @@
//License: Boost 1.0
//By Paul Dreik 2020
#include <catch2/internal/catch_test_spec_parser.hpp>
#include <catch2/internal/catch_tag_alias_registry.hpp>
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
Catch::TagAliasRegistry tar;
Catch::TestSpecParser tsp(tar);
std::string buf(Data,Data+Size);
tsp.parse(buf);
return 0;
}

View File

@@ -1,16 +0,0 @@
//License: Boost 1.0
//By Paul Dreik 2020
#include <catch2/internal/catch_xmlwriter.hpp>
#include "NullOStream.h"
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
std::string buf(Data,Data+Size);
NullOStream nul;
Catch::XmlEncode encode(buf);
encode.encodeTo(nul);
return 0;
}

View File

@@ -1,47 +0,0 @@
//License: Boost 1.0
//By Paul Dreik 2020
#include <catch2/internal/catch_textflow.hpp>
#include "NullOStream.h"
#include <string>
#include <string_view>
template<class Callback>
void split(const char *Data, size_t Size, Callback callback) {
using namespace std::literals;
constexpr auto sep="\n~~~\n"sv;
std::string_view remainder(Data,Size);
for (;;) {
auto pos=remainder.find(sep);
if(pos==std::string_view::npos) {
//not found. use the remainder and exit
callback(remainder);
return;
} else {
//found. invoke callback on the first part, then proceed with the rest.
callback(remainder.substr(0,pos));
remainder=remainder.substr(pos+sep.size());
}
}
}
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
Catch::TextFlow::Columns columns;
// break the input on separator
split((const char*)Data,Size,[&](std::string_view word) {
columns+=Catch::TextFlow::Column(std::string(word));
});
NullOStream nul;
nul << columns;
return 0;
}

206
include/catch.hpp Normal file
View File

@@ -0,0 +1,206 @@
/*
* Created by Phil on 22/10/2010.
* Copyright 2010 Two Blue Cubes Ltd
*
* Distributed under the Boost Software License, Version 1.0. (See accompanying
* file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef TWOBLUECUBES_CATCH_HPP_INCLUDED
#define TWOBLUECUBES_CATCH_HPP_INCLUDED
#ifdef __clang__
# pragma clang system_header
#elif defined __GNUC__
# pragma GCC system_header
#endif
#include "internal/catch_suppress_warnings.h"
#if defined(CATCH_CONFIG_MAIN) || defined(CATCH_CONFIG_RUNNER)
# define CATCH_IMPL
#endif
#ifdef CATCH_IMPL
# ifndef CLARA_CONFIG_MAIN
# define CLARA_CONFIG_MAIN_NOT_DEFINED
# define CLARA_CONFIG_MAIN
# endif
#endif
#include "internal/catch_notimplemented_exception.h"
#include "internal/catch_test_registry.hpp"
#include "internal/catch_capture.hpp"
#include "internal/catch_section.h"
#include "internal/catch_interfaces_exception.h"
#include "internal/catch_approx.hpp"
#include "internal/catch_matchers.hpp"
#include "internal/catch_compiler_capabilities.h"
#include "internal/catch_interfaces_tag_alias_registry.h"
// These files are included here so the single_include script doesn't put them
// in the conditionally compiled sections
#include "internal/catch_test_case_info.h"
#ifdef __OBJC__
#include "internal/catch_objc.hpp"
#endif
#ifdef CATCH_IMPL
#include "internal/catch_impl.hpp"
#endif
#ifdef CATCH_CONFIG_MAIN
#include "internal/catch_default_main.hpp"
#endif
#ifdef CLARA_CONFIG_MAIN_NOT_DEFINED
# undef CLARA_CONFIG_MAIN
#endif
//////
// If this config identifier is defined then all CATCH macros are prefixed with CATCH_
#ifdef CATCH_CONFIG_PREFIX_ALL
#define CATCH_REQUIRE( expr ) INTERNAL_CATCH_TEST( expr, Catch::ResultDisposition::Normal, "CATCH_REQUIRE" )
#define CATCH_REQUIRE_FALSE( expr ) INTERNAL_CATCH_TEST( expr, Catch::ResultDisposition::Normal | Catch::ResultDisposition::FalseTest, "CATCH_REQUIRE_FALSE" )
#define CATCH_REQUIRE_THROWS( expr ) INTERNAL_CATCH_THROWS( expr, Catch::ResultDisposition::Normal, "", "CATCH_REQUIRE_THROWS" )
#define CATCH_REQUIRE_THROWS_AS( expr, exceptionType ) INTERNAL_CATCH_THROWS_AS( expr, exceptionType, Catch::ResultDisposition::Normal, "CATCH_REQUIRE_THROWS_AS" )
#define CATCH_REQUIRE_THROWS_WITH( expr, matcher ) INTERNAL_CATCH_THROWS( expr, Catch::ResultDisposition::Normal, matcher, "CATCH_REQUIRE_THROWS_WITH" )
#define CATCH_REQUIRE_NOTHROW( expr ) INTERNAL_CATCH_NO_THROW( expr, Catch::ResultDisposition::Normal, "CATCH_REQUIRE_NOTHROW" )
#define CATCH_CHECK( expr ) INTERNAL_CATCH_TEST( expr, Catch::ResultDisposition::ContinueOnFailure, "CATCH_CHECK" )
#define CATCH_CHECK_FALSE( expr ) INTERNAL_CATCH_TEST( expr, Catch::ResultDisposition::ContinueOnFailure | Catch::ResultDisposition::FalseTest, "CATCH_CHECK_FALSE" )
#define CATCH_CHECKED_IF( expr ) INTERNAL_CATCH_IF( expr, Catch::ResultDisposition::ContinueOnFailure, "CATCH_CHECKED_IF" )
#define CATCH_CHECKED_ELSE( expr ) INTERNAL_CATCH_ELSE( expr, Catch::ResultDisposition::ContinueOnFailure, "CATCH_CHECKED_ELSE" )
#define CATCH_CHECK_NOFAIL( expr ) INTERNAL_CATCH_TEST( expr, Catch::ResultDisposition::ContinueOnFailure | Catch::ResultDisposition::SuppressFail, "CATCH_CHECK_NOFAIL" )
#define CATCH_CHECK_THROWS( expr ) INTERNAL_CATCH_THROWS( expr, Catch::ResultDisposition::ContinueOnFailure, "CATCH_CHECK_THROWS" )
#define CATCH_CHECK_THROWS_AS( expr, exceptionType ) INTERNAL_CATCH_THROWS_AS( expr, exceptionType, Catch::ResultDisposition::ContinueOnFailure, "CATCH_CHECK_THROWS_AS" )
#define CATCH_CHECK_THROWS_WITH( expr, matcher ) INTERNAL_CATCH_THROWS( expr, Catch::ResultDisposition::ContinueOnFailure, matcher, "CATCH_CHECK_THROWS_WITH" )
#define CATCH_CHECK_NOTHROW( expr ) INTERNAL_CATCH_NO_THROW( expr, Catch::ResultDisposition::ContinueOnFailure, "CATCH_CHECK_NOTHROW" )
#define CHECK_THAT( arg, matcher ) INTERNAL_CHECK_THAT( arg, matcher, Catch::ResultDisposition::ContinueOnFailure, "CATCH_CHECK_THAT" )
#define CATCH_REQUIRE_THAT( arg, matcher ) INTERNAL_CHECK_THAT( arg, matcher, Catch::ResultDisposition::Normal, "CATCH_REQUIRE_THAT" )
#define CATCH_INFO( msg ) INTERNAL_CATCH_INFO( msg, "CATCH_INFO" )
#define CATCH_WARN( msg ) INTERNAL_CATCH_MSG( Catch::ResultWas::Warning, Catch::ResultDisposition::ContinueOnFailure, "CATCH_WARN", msg )
#define CATCH_SCOPED_INFO( msg ) INTERNAL_CATCH_INFO( msg, "CATCH_INFO" )
#define CATCH_CAPTURE( msg ) INTERNAL_CATCH_INFO( #msg " := " << msg, "CATCH_CAPTURE" )
#define CATCH_SCOPED_CAPTURE( msg ) INTERNAL_CATCH_INFO( #msg " := " << msg, "CATCH_CAPTURE" )
#ifdef CATCH_CONFIG_VARIADIC_MACROS
#define CATCH_TEST_CASE( ... ) INTERNAL_CATCH_TESTCASE( __VA_ARGS__ )
#define CATCH_TEST_CASE_METHOD( className, ... ) INTERNAL_CATCH_TEST_CASE_METHOD( className, __VA_ARGS__ )
#define CATCH_METHOD_AS_TEST_CASE( method, ... ) INTERNAL_CATCH_METHOD_AS_TEST_CASE( method, __VA_ARGS__ )
#define CATCH_REGISTER_TEST_CASE( ... ) INTERNAL_CATCH_REGISTER_TESTCASE( __VA_ARGS__ )
#define CATCH_SECTION( ... ) INTERNAL_CATCH_SECTION( __VA_ARGS__ )
#define CATCH_FAIL( ... ) INTERNAL_CATCH_MSG( Catch::ResultWas::ExplicitFailure, Catch::ResultDisposition::Normal, "CATCH_FAIL", __VA_ARGS__ )
#define CATCH_SUCCEED( ... ) INTERNAL_CATCH_MSG( Catch::ResultWas::Ok, Catch::ResultDisposition::ContinueOnFailure, "CATCH_SUCCEED", __VA_ARGS__ )
#else
#define CATCH_TEST_CASE( name, description ) INTERNAL_CATCH_TESTCASE( name, description )
#define CATCH_TEST_CASE_METHOD( className, name, description ) INTERNAL_CATCH_TEST_CASE_METHOD( className, name, description )
#define CATCH_METHOD_AS_TEST_CASE( method, name, description ) INTERNAL_CATCH_METHOD_AS_TEST_CASE( method, name, description )
#define CATCH_REGISTER_TEST_CASE( function, name, description ) INTERNAL_CATCH_REGISTER_TESTCASE( function, name, description )
#define CATCH_SECTION( name, description ) INTERNAL_CATCH_SECTION( name, description )
#define CATCH_FAIL( msg ) INTERNAL_CATCH_MSG( Catch::ResultWas::ExplicitFailure, Catch::ResultDisposition::Normal, "CATCH_FAIL", msg )
#define CATCH_SUCCEED( msg ) INTERNAL_CATCH_MSG( Catch::ResultWas::Ok, Catch::ResultDisposition::ContinueOnFailure, "CATCH_SUCCEED", msg )
#endif
#define CATCH_ANON_TEST_CASE() INTERNAL_CATCH_TESTCASE( "", "" )
#define CATCH_REGISTER_REPORTER( name, reporterType ) INTERNAL_CATCH_REGISTER_REPORTER( name, reporterType )
#define CATCH_REGISTER_LEGACY_REPORTER( name, reporterType ) INTERNAL_CATCH_REGISTER_LEGACY_REPORTER( name, reporterType )
// "BDD-style" convenience wrappers
#ifdef CATCH_CONFIG_VARIADIC_MACROS
#define CATCH_SCENARIO( ... ) CATCH_TEST_CASE( "Scenario: " __VA_ARGS__ )
#define CATCH_SCENARIO_METHOD( className, ... ) INTERNAL_CATCH_TEST_CASE_METHOD( className, "Scenario: " __VA_ARGS__ )
#else
#define CATCH_SCENARIO( name, tags ) CATCH_TEST_CASE( "Scenario: " name, tags )
#define CATCH_SCENARIO_METHOD( className, name, tags ) INTERNAL_CATCH_TEST_CASE_METHOD( className, "Scenario: " name, tags )
#endif
#define CATCH_GIVEN( desc ) CATCH_SECTION( std::string( "Given: ") + desc, "" )
#define CATCH_WHEN( desc ) CATCH_SECTION( std::string( " When: ") + desc, "" )
#define CATCH_AND_WHEN( desc ) CATCH_SECTION( std::string( " And: ") + desc, "" )
#define CATCH_THEN( desc ) CATCH_SECTION( std::string( " Then: ") + desc, "" )
#define CATCH_AND_THEN( desc ) CATCH_SECTION( std::string( " And: ") + desc, "" )
// If CATCH_CONFIG_PREFIX_ALL is not defined then the CATCH_ prefix is not required
#else
#define REQUIRE( expr ) INTERNAL_CATCH_TEST( expr, Catch::ResultDisposition::Normal, "REQUIRE" )
#define REQUIRE_FALSE( expr ) INTERNAL_CATCH_TEST( expr, Catch::ResultDisposition::Normal | Catch::ResultDisposition::FalseTest, "REQUIRE_FALSE" )
#define REQUIRE_THROWS( expr ) INTERNAL_CATCH_THROWS( expr, Catch::ResultDisposition::Normal, "", "REQUIRE_THROWS" )
#define REQUIRE_THROWS_AS( expr, exceptionType ) INTERNAL_CATCH_THROWS_AS( expr, exceptionType, Catch::ResultDisposition::Normal, "REQUIRE_THROWS_AS" )
#define REQUIRE_THROWS_WITH( expr, matcher ) INTERNAL_CATCH_THROWS( expr, Catch::ResultDisposition::Normal, matcher, "REQUIRE_THROWS_WITH" )
#define REQUIRE_NOTHROW( expr ) INTERNAL_CATCH_NO_THROW( expr, Catch::ResultDisposition::Normal, "REQUIRE_NOTHROW" )
#define CHECK( expr ) INTERNAL_CATCH_TEST( expr, Catch::ResultDisposition::ContinueOnFailure, "CHECK" )
#define CHECK_FALSE( expr ) INTERNAL_CATCH_TEST( expr, Catch::ResultDisposition::ContinueOnFailure | Catch::ResultDisposition::FalseTest, "CHECK_FALSE" )
#define CHECKED_IF( expr ) INTERNAL_CATCH_IF( expr, Catch::ResultDisposition::ContinueOnFailure, "CHECKED_IF" )
#define CHECKED_ELSE( expr ) INTERNAL_CATCH_ELSE( expr, Catch::ResultDisposition::ContinueOnFailure, "CHECKED_ELSE" )
#define CHECK_NOFAIL( expr ) INTERNAL_CATCH_TEST( expr, Catch::ResultDisposition::ContinueOnFailure | Catch::ResultDisposition::SuppressFail, "CHECK_NOFAIL" )
#define CHECK_THROWS( expr ) INTERNAL_CATCH_THROWS( expr, Catch::ResultDisposition::ContinueOnFailure, "", "CHECK_THROWS" )
#define CHECK_THROWS_AS( expr, exceptionType ) INTERNAL_CATCH_THROWS_AS( expr, exceptionType, Catch::ResultDisposition::ContinueOnFailure, "CHECK_THROWS_AS" )
#define CHECK_THROWS_WITH( expr, matcher ) INTERNAL_CATCH_THROWS( expr, Catch::ResultDisposition::ContinueOnFailure, matcher, "CHECK_THROWS_WITH" )
#define CHECK_NOTHROW( expr ) INTERNAL_CATCH_NO_THROW( expr, Catch::ResultDisposition::ContinueOnFailure, "CHECK_NOTHROW" )
#define CHECK_THAT( arg, matcher ) INTERNAL_CHECK_THAT( arg, matcher, Catch::ResultDisposition::ContinueOnFailure, "CHECK_THAT" )
#define REQUIRE_THAT( arg, matcher ) INTERNAL_CHECK_THAT( arg, matcher, Catch::ResultDisposition::Normal, "REQUIRE_THAT" )
#define INFO( msg ) INTERNAL_CATCH_INFO( msg, "INFO" )
#define WARN( msg ) INTERNAL_CATCH_MSG( Catch::ResultWas::Warning, Catch::ResultDisposition::ContinueOnFailure, "WARN", msg )
#define SCOPED_INFO( msg ) INTERNAL_CATCH_INFO( msg, "INFO" )
#define CAPTURE( msg ) INTERNAL_CATCH_INFO( #msg " := " << msg, "CAPTURE" )
#define SCOPED_CAPTURE( msg ) INTERNAL_CATCH_INFO( #msg " := " << msg, "CAPTURE" )
#ifdef CATCH_CONFIG_VARIADIC_MACROS
#define TEST_CASE( ... ) INTERNAL_CATCH_TESTCASE( __VA_ARGS__ )
#define TEST_CASE_METHOD( className, ... ) INTERNAL_CATCH_TEST_CASE_METHOD( className, __VA_ARGS__ )
#define METHOD_AS_TEST_CASE( method, ... ) INTERNAL_CATCH_METHOD_AS_TEST_CASE( method, __VA_ARGS__ )
#define REGISTER_TEST_CASE( ... ) INTERNAL_CATCH_REGISTER_TESTCASE( __VA_ARGS__ )
#define SECTION( ... ) INTERNAL_CATCH_SECTION( __VA_ARGS__ )
#define FAIL( ... ) INTERNAL_CATCH_MSG( Catch::ResultWas::ExplicitFailure, Catch::ResultDisposition::Normal, "FAIL", __VA_ARGS__ )
#define SUCCEED( ... ) INTERNAL_CATCH_MSG( Catch::ResultWas::Ok, Catch::ResultDisposition::ContinueOnFailure, "SUCCEED", __VA_ARGS__ )
#else
#define TEST_CASE( name, description ) INTERNAL_CATCH_TESTCASE( name, description )
#define TEST_CASE_METHOD( className, name, description ) INTERNAL_CATCH_TEST_CASE_METHOD( className, name, description )
#define METHOD_AS_TEST_CASE( method, name, description ) INTERNAL_CATCH_METHOD_AS_TEST_CASE( method, name, description )
#define REGISTER_TEST_CASE( method, name, description ) INTERNAL_CATCH_REGISTER_TESTCASE( method, name, description )
#define SECTION( name, description ) INTERNAL_CATCH_SECTION( name, description )
#define FAIL( msg ) INTERNAL_CATCH_MSG( Catch::ResultWas::ExplicitFailure, Catch::ResultDisposition::Normal, "FAIL", msg )
#define SUCCEED( msg ) INTERNAL_CATCH_MSG( Catch::ResultWas::Ok, Catch::ResultDisposition::ContinueOnFailure, "SUCCEED", msg )
#endif
#define ANON_TEST_CASE() INTERNAL_CATCH_TESTCASE( "", "" )
#define REGISTER_REPORTER( name, reporterType ) INTERNAL_CATCH_REGISTER_REPORTER( name, reporterType )
#define REGISTER_LEGACY_REPORTER( name, reporterType ) INTERNAL_CATCH_REGISTER_LEGACY_REPORTER( name, reporterType )
#endif
#define CATCH_TRANSLATE_EXCEPTION( signature ) INTERNAL_CATCH_TRANSLATE_EXCEPTION( signature )
// "BDD-style" convenience wrappers
#ifdef CATCH_CONFIG_VARIADIC_MACROS
#define SCENARIO( ... ) TEST_CASE( "Scenario: " __VA_ARGS__ )
#define SCENARIO_METHOD( className, ... ) INTERNAL_CATCH_TEST_CASE_METHOD( className, "Scenario: " __VA_ARGS__ )
#else
#define SCENARIO( name, tags ) TEST_CASE( "Scenario: " name, tags )
#define SCENARIO_METHOD( className, name, tags ) INTERNAL_CATCH_TEST_CASE_METHOD( className, "Scenario: " name, tags )
#endif
#define GIVEN( desc ) SECTION( std::string(" Given: ") + desc, "" )
#define WHEN( desc ) SECTION( std::string(" When: ") + desc, "" )
#define AND_WHEN( desc ) SECTION( std::string("And when: ") + desc, "" )
#define THEN( desc ) SECTION( std::string(" Then: ") + desc, "" )
#define AND_THEN( desc ) SECTION( std::string(" And: ") + desc, "" )
using Catch::Detail::Approx;
#include "internal/catch_reenable_warnings.h"
#endif // TWOBLUECUBES_CATCH_HPP_INCLUDED

219
include/catch_session.hpp Normal file
View File

@@ -0,0 +1,219 @@
/*
* Created by Phil on 31/10/2010.
* Copyright 2010 Two Blue Cubes Ltd. All rights reserved.
*
* Distributed under the Boost Software License, Version 1.0. (See accompanying
* file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef TWOBLUECUBES_CATCH_RUNNER_HPP_INCLUDED
#define TWOBLUECUBES_CATCH_RUNNER_HPP_INCLUDED
#include "internal/catch_commandline.hpp"
#include "internal/catch_list.hpp"
#include "internal/catch_run_context.hpp"
#include "internal/catch_test_spec.hpp"
#include "internal/catch_version.h"
#include "internal/catch_text.h"
#include <fstream>
#include <stdlib.h>
#include <limits>
namespace Catch {
Ptr<IStreamingReporter> createReporter( std::string const& reporterName, Ptr<Config> const& config ) {
Ptr<IStreamingReporter> reporter = getRegistryHub().getReporterRegistry().create( reporterName, config.get() );
if( !reporter ) {
std::ostringstream oss;
oss << "No reporter registered with name: '" << reporterName << "'";
throw std::domain_error( oss.str() );
}
return reporter;
}
Ptr<IStreamingReporter> makeReporter( Ptr<Config> const& config ) {
std::vector<std::string> reporters = config->getReporterNames();
if( reporters.empty() )
reporters.push_back( "console" );
Ptr<IStreamingReporter> reporter;
for( std::vector<std::string>::const_iterator it = reporters.begin(), itEnd = reporters.end();
it != itEnd;
++it )
reporter = addReporter( reporter, createReporter( *it, config ) );
return reporter;
}
Ptr<IStreamingReporter> addListeners( Ptr<IConfig const> const& config, Ptr<IStreamingReporter> reporters ) {
IReporterRegistry::Listeners listeners = getRegistryHub().getReporterRegistry().getListeners();
for( IReporterRegistry::Listeners::const_iterator it = listeners.begin(), itEnd = listeners.end();
it != itEnd;
++it )
reporters = addReporter(reporters, (*it)->create( ReporterConfig( config ) ) );
return reporters;
}
Totals runTests( Ptr<Config> const& config ) {
Ptr<IConfig const> iconfig = config.get();
Ptr<IStreamingReporter> reporter = makeReporter( config );
reporter = addListeners( iconfig, reporter );
RunContext context( iconfig, reporter );
Totals totals;
context.testGroupStarting( config->name(), 1, 1 );
TestSpec testSpec = config->testSpec();
if( !testSpec.hasFilters() )
testSpec = TestSpecParser( ITagAliasRegistry::get() ).parse( "~[.]" ).testSpec(); // All not hidden tests
std::vector<TestCase> const& allTestCases = getAllTestCasesSorted( *iconfig );
for( std::vector<TestCase>::const_iterator it = allTestCases.begin(), itEnd = allTestCases.end();
it != itEnd;
++it ) {
if( !context.isAborting() && matchTest( *it, testSpec, *iconfig ) )
totals += context.runTest( *it );
else
reporter->skipTest( *it );
}
context.testGroupEnded( iconfig->name(), totals, 1, 1 );
return totals;
}
void applyFilenamesAsTags( IConfig const& config ) {
std::vector<TestCase> const& tests = getAllTestCasesSorted( config );
for(std::size_t i = 0; i < tests.size(); ++i ) {
TestCase& test = const_cast<TestCase&>( tests[i] );
std::set<std::string> tags = test.tags;
std::string filename = test.lineInfo.file;
std::string::size_type lastSlash = filename.find_last_of( "\\/" );
if( lastSlash != std::string::npos )
filename = filename.substr( lastSlash+1 );
std::string::size_type lastDot = filename.find_last_of( "." );
if( lastDot != std::string::npos )
filename = filename.substr( 0, lastDot );
tags.insert( "#" + filename );
setTags( test, tags );
}
}
class Session : NonCopyable {
static bool alreadyInstantiated;
public:
struct OnUnusedOptions { enum DoWhat { Ignore, Fail }; };
Session()
: m_cli( makeCommandLineParser() ) {
if( alreadyInstantiated ) {
std::string msg = "Only one instance of Catch::Session can ever be used";
Catch::cerr() << msg << std::endl;
throw std::logic_error( msg );
}
alreadyInstantiated = true;
}
~Session() {
Catch::cleanUp();
}
void showHelp( std::string const& processName ) {
Catch::cout() << "\nCatch v" << libraryVersion << "\n";
m_cli.usage( Catch::cout(), processName );
Catch::cout() << "For more detail usage please see the project docs\n" << std::endl;
}
int applyCommandLine( int argc, char const* const argv[], OnUnusedOptions::DoWhat unusedOptionBehaviour = OnUnusedOptions::Fail ) {
try {
m_cli.setThrowOnUnrecognisedTokens( unusedOptionBehaviour == OnUnusedOptions::Fail );
m_unusedTokens = m_cli.parseInto( argc, argv, m_configData );
if( m_configData.showHelp )
showHelp( m_configData.processName );
m_config.reset();
}
catch( std::exception& ex ) {
{
Colour colourGuard( Colour::Red );
Catch::cerr()
<< "\nError(s) in input:\n"
<< Text( ex.what(), TextAttributes().setIndent(2) )
<< "\n\n";
}
m_cli.usage( Catch::cout(), m_configData.processName );
return (std::numeric_limits<int>::max)();
}
return 0;
}
void useConfigData( ConfigData const& _configData ) {
m_configData = _configData;
m_config.reset();
}
int run( int argc, char const* const argv[] ) {
int returnCode = applyCommandLine( argc, argv );
if( returnCode == 0 )
returnCode = run();
return returnCode;
}
int run() {
if( m_configData.showHelp )
return 0;
try
{
config(); // Force config to be constructed
seedRng( *m_config );
if( m_configData.filenamesAsTags )
applyFilenamesAsTags( *m_config );
// Handle list request
if( Option<std::size_t> listed = list( config() ) )
return static_cast<int>( *listed );
return static_cast<int>( runTests( m_config ).assertions.failed );
}
catch( std::exception& ex ) {
Catch::cerr() << ex.what() << std::endl;
return (std::numeric_limits<int>::max)();
}
}
Clara::CommandLine<ConfigData> const& cli() const {
return m_cli;
}
std::vector<Clara::Parser::Token> const& unusedTokens() const {
return m_unusedTokens;
}
ConfigData& configData() {
return m_configData;
}
Config& config() {
if( !m_config )
m_config = new Config( m_configData );
return *m_config;
}
private:
Clara::CommandLine<ConfigData> m_cli;
std::vector<Clara::Parser::Token> m_unusedTokens;
ConfigData m_configData;
Ptr<Config> m_config;
};
bool Session::alreadyInstantiated = false;
} // end namespace Catch
#endif // TWOBLUECUBES_CATCH_RUNNER_HPP_INCLUDED

View File

@@ -0,0 +1,15 @@
/*
* Created by Phil on 01/11/2010.
* Copyright 2010 Two Blue Cubes Ltd. All rights reserved.
*
* Distributed under the Boost Software License, Version 1.0. (See accompanying
* file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef TWOBLUECUBES_CATCH_WITH_MAIN_HPP_INCLUDED
#define TWOBLUECUBES_CATCH_WITH_MAIN_HPP_INCLUDED
#include "catch_runner.hpp"
#include "catch.hpp"
#include "internal/catch_default_main.hpp"
#endif // TWOBLUECUBES_CATCH_WITH_MAIN_HPP_INCLUDED

863
include/external/clara.h vendored Normal file
View File

@@ -0,0 +1,863 @@
/*
* Created by Phil on 25/05/2013.
* Copyright 2013 Two Blue Cubes Ltd. All rights reserved.
*
* Distributed under the Boost Software License, Version 1.0. (See accompanying
* file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
// Only use header guard if we are not using an outer namespace
#if !defined(TWOBLUECUBES_CLARA_H_INCLUDED) || defined(STITCH_CLARA_OPEN_NAMESPACE)
#ifndef STITCH_CLARA_OPEN_NAMESPACE
#define TWOBLUECUBES_CLARA_H_INCLUDED
#define STITCH_CLARA_OPEN_NAMESPACE
#define STITCH_CLARA_CLOSE_NAMESPACE
#else
#define STITCH_CLARA_CLOSE_NAMESPACE }
#endif
#define STITCH_TBC_TEXT_FORMAT_OPEN_NAMESPACE STITCH_CLARA_OPEN_NAMESPACE
// ----------- #included from tbc_text_format.h -----------
/*
* Created by Phil on 18/4/2013.
* Copyright 2013 Two Blue Cubes Ltd. All rights reserved.
*
* Distributed under the Boost Software License, Version 1.0. (See accompanying
* file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
// Only use header guard if we are not using an outer namespace
#if !defined(TBC_TEXT_FORMAT_H_INCLUDED) || defined(STITCH_TBC_TEXT_FORMAT_OUTER_NAMESPACE)
#ifndef STITCH_TBC_TEXT_FORMAT_OUTER_NAMESPACE
#define TBC_TEXT_FORMAT_H_INCLUDED
#endif
#include <string>
#include <vector>
#include <sstream>
// Use optional outer namespace
#ifdef STITCH_TBC_TEXT_FORMAT_OUTER_NAMESPACE
namespace STITCH_TBC_TEXT_FORMAT_OUTER_NAMESPACE {
#endif
namespace Tbc {
#ifdef TBC_TEXT_FORMAT_CONSOLE_WIDTH
const unsigned int consoleWidth = TBC_TEXT_FORMAT_CONSOLE_WIDTH;
#else
const unsigned int consoleWidth = 80;
#endif
struct TextAttributes {
TextAttributes()
: initialIndent( std::string::npos ),
indent( 0 ),
width( consoleWidth-1 ),
tabChar( '\t' )
{}
TextAttributes& setInitialIndent( std::size_t _value ) { initialIndent = _value; return *this; }
TextAttributes& setIndent( std::size_t _value ) { indent = _value; return *this; }
TextAttributes& setWidth( std::size_t _value ) { width = _value; return *this; }
TextAttributes& setTabChar( char _value ) { tabChar = _value; return *this; }
std::size_t initialIndent; // indent of first line, or npos
std::size_t indent; // indent of subsequent lines, or all if initialIndent is npos
std::size_t width; // maximum width of text, including indent. Longer text will wrap
char tabChar; // If this char is seen the indent is changed to current pos
};
class Text {
public:
Text( std::string const& _str, TextAttributes const& _attr = TextAttributes() )
: attr( _attr )
{
std::string wrappableChars = " [({.,/|\\-";
std::size_t indent = _attr.initialIndent != std::string::npos
? _attr.initialIndent
: _attr.indent;
std::string remainder = _str;
while( !remainder.empty() ) {
if( lines.size() >= 1000 ) {
lines.push_back( "... message truncated due to excessive size" );
return;
}
std::size_t tabPos = std::string::npos;
std::size_t width = (std::min)( remainder.size(), _attr.width - indent );
std::size_t pos = remainder.find_first_of( '\n' );
if( pos <= width ) {
width = pos;
}
pos = remainder.find_last_of( _attr.tabChar, width );
if( pos != std::string::npos ) {
tabPos = pos;
if( remainder[width] == '\n' )
width--;
remainder = remainder.substr( 0, tabPos ) + remainder.substr( tabPos+1 );
}
if( width == remainder.size() ) {
spliceLine( indent, remainder, width );
}
else if( remainder[width] == '\n' ) {
spliceLine( indent, remainder, width );
if( width <= 1 || remainder.size() != 1 )
remainder = remainder.substr( 1 );
indent = _attr.indent;
}
else {
pos = remainder.find_last_of( wrappableChars, width );
if( pos != std::string::npos && pos > 0 ) {
spliceLine( indent, remainder, pos );
if( remainder[0] == ' ' )
remainder = remainder.substr( 1 );
}
else {
spliceLine( indent, remainder, width-1 );
lines.back() += "-";
}
if( lines.size() == 1 )
indent = _attr.indent;
if( tabPos != std::string::npos )
indent += tabPos;
}
}
}
void spliceLine( std::size_t _indent, std::string& _remainder, std::size_t _pos ) {
lines.push_back( std::string( _indent, ' ' ) + _remainder.substr( 0, _pos ) );
_remainder = _remainder.substr( _pos );
}
typedef std::vector<std::string>::const_iterator const_iterator;
const_iterator begin() const { return lines.begin(); }
const_iterator end() const { return lines.end(); }
std::string const& last() const { return lines.back(); }
std::size_t size() const { return lines.size(); }
std::string const& operator[]( std::size_t _index ) const { return lines[_index]; }
std::string toString() const {
std::ostringstream oss;
oss << *this;
return oss.str();
}
inline friend std::ostream& operator << ( std::ostream& _stream, Text const& _text ) {
for( Text::const_iterator it = _text.begin(), itEnd = _text.end();
it != itEnd; ++it ) {
if( it != _text.begin() )
_stream << "\n";
_stream << *it;
}
return _stream;
}
private:
std::string str;
TextAttributes attr;
std::vector<std::string> lines;
};
} // end namespace Tbc
#ifdef STITCH_TBC_TEXT_FORMAT_OUTER_NAMESPACE
} // end outer namespace
#endif
#endif // TBC_TEXT_FORMAT_H_INCLUDED
// ----------- end of #include from tbc_text_format.h -----------
// ........... back in /Users/philnash/Dev/OSS/Clara/srcs/clara.h
#undef STITCH_TBC_TEXT_FORMAT_OPEN_NAMESPACE
#include <map>
#include <algorithm>
#include <stdexcept>
#include <memory>
// Use optional outer namespace
#ifdef STITCH_CLARA_OPEN_NAMESPACE
STITCH_CLARA_OPEN_NAMESPACE
#endif
namespace Clara {
struct UnpositionalTag {};
extern UnpositionalTag _;
#ifdef CLARA_CONFIG_MAIN
UnpositionalTag _;
#endif
namespace Detail {
#ifdef CLARA_CONSOLE_WIDTH
const unsigned int consoleWidth = CLARA_CONFIG_CONSOLE_WIDTH;
#else
const unsigned int consoleWidth = 80;
#endif
using namespace Tbc;
inline bool startsWith( std::string const& str, std::string const& prefix ) {
return str.size() >= prefix.size() && str.substr( 0, prefix.size() ) == prefix;
}
template<typename T> struct RemoveConstRef{ typedef T type; };
template<typename T> struct RemoveConstRef<T&>{ typedef T type; };
template<typename T> struct RemoveConstRef<T const&>{ typedef T type; };
template<typename T> struct RemoveConstRef<T const>{ typedef T type; };
template<typename T> struct IsBool { static const bool value = false; };
template<> struct IsBool<bool> { static const bool value = true; };
template<typename T>
void convertInto( std::string const& _source, T& _dest ) {
std::stringstream ss;
ss << _source;
ss >> _dest;
if( ss.fail() )
throw std::runtime_error( "Unable to convert " + _source + " to destination type" );
}
inline void convertInto( std::string const& _source, std::string& _dest ) {
_dest = _source;
}
inline void convertInto( std::string const& _source, bool& _dest ) {
std::string sourceLC = _source;
std::transform( sourceLC.begin(), sourceLC.end(), sourceLC.begin(), ::tolower );
if( sourceLC == "y" || sourceLC == "1" || sourceLC == "true" || sourceLC == "yes" || sourceLC == "on" )
_dest = true;
else if( sourceLC == "n" || sourceLC == "0" || sourceLC == "false" || sourceLC == "no" || sourceLC == "off" )
_dest = false;
else
throw std::runtime_error( "Expected a boolean value but did not recognise:\n '" + _source + "'" );
}
inline void convertInto( bool _source, bool& _dest ) {
_dest = _source;
}
template<typename T>
inline void convertInto( bool, T& ) {
throw std::runtime_error( "Invalid conversion" );
}
template<typename ConfigT>
struct IArgFunction {
virtual ~IArgFunction() {}
# ifdef CATCH_CONFIG_CPP11_GENERATED_METHODS
IArgFunction() = default;
IArgFunction( IArgFunction const& ) = default;
# endif
virtual void set( ConfigT& config, std::string const& value ) const = 0;
virtual void setFlag( ConfigT& config ) const = 0;
virtual bool takesArg() const = 0;
virtual IArgFunction* clone() const = 0;
};
template<typename ConfigT>
class BoundArgFunction {
public:
BoundArgFunction() : functionObj( CATCH_NULL ) {}
BoundArgFunction( IArgFunction<ConfigT>* _functionObj ) : functionObj( _functionObj ) {}
BoundArgFunction( BoundArgFunction const& other ) : functionObj( other.functionObj ? other.functionObj->clone() : CATCH_NULL ) {}
BoundArgFunction& operator = ( BoundArgFunction const& other ) {
IArgFunction<ConfigT>* newFunctionObj = other.functionObj ? other.functionObj->clone() : CATCH_NULL;
delete functionObj;
functionObj = newFunctionObj;
return *this;
}
~BoundArgFunction() { delete functionObj; }
void set( ConfigT& config, std::string const& value ) const {
functionObj->set( config, value );
}
void setFlag( ConfigT& config ) const {
functionObj->setFlag( config );
}
bool takesArg() const { return functionObj->takesArg(); }
bool isSet() const {
return functionObj != CATCH_NULL;
}
private:
IArgFunction<ConfigT>* functionObj;
};
template<typename C>
struct NullBinder : IArgFunction<C>{
virtual void set( C&, std::string const& ) const {}
virtual void setFlag( C& ) const {}
virtual bool takesArg() const { return true; }
virtual IArgFunction<C>* clone() const { return new NullBinder( *this ); }
};
template<typename C, typename M>
struct BoundDataMember : IArgFunction<C>{
BoundDataMember( M C::* _member ) : member( _member ) {}
virtual void set( C& p, std::string const& stringValue ) const {
convertInto( stringValue, p.*member );
}
virtual void setFlag( C& p ) const {
convertInto( true, p.*member );
}
virtual bool takesArg() const { return !IsBool<M>::value; }
virtual IArgFunction<C>* clone() const { return new BoundDataMember( *this ); }
M C::* member;
};
template<typename C, typename M>
struct BoundUnaryMethod : IArgFunction<C>{
BoundUnaryMethod( void (C::*_member)( M ) ) : member( _member ) {}
virtual void set( C& p, std::string const& stringValue ) const {
typename RemoveConstRef<M>::type value;
convertInto( stringValue, value );
(p.*member)( value );
}
virtual void setFlag( C& p ) const {
typename RemoveConstRef<M>::type value;
convertInto( true, value );
(p.*member)( value );
}
virtual bool takesArg() const { return !IsBool<M>::value; }
virtual IArgFunction<C>* clone() const { return new BoundUnaryMethod( *this ); }
void (C::*member)( M );
};
template<typename C>
struct BoundNullaryMethod : IArgFunction<C>{
BoundNullaryMethod( void (C::*_member)() ) : member( _member ) {}
virtual void set( C& p, std::string const& stringValue ) const {
bool value;
convertInto( stringValue, value );
if( value )
(p.*member)();
}
virtual void setFlag( C& p ) const {
(p.*member)();
}
virtual bool takesArg() const { return false; }
virtual IArgFunction<C>* clone() const { return new BoundNullaryMethod( *this ); }
void (C::*member)();
};
template<typename C>
struct BoundUnaryFunction : IArgFunction<C>{
BoundUnaryFunction( void (*_function)( C& ) ) : function( _function ) {}
virtual void set( C& obj, std::string const& stringValue ) const {
bool value;
convertInto( stringValue, value );
if( value )
function( obj );
}
virtual void setFlag( C& p ) const {
function( p );
}
virtual bool takesArg() const { return false; }
virtual IArgFunction<C>* clone() const { return new BoundUnaryFunction( *this ); }
void (*function)( C& );
};
template<typename C, typename T>
struct BoundBinaryFunction : IArgFunction<C>{
BoundBinaryFunction( void (*_function)( C&, T ) ) : function( _function ) {}
virtual void set( C& obj, std::string const& stringValue ) const {
typename RemoveConstRef<T>::type value;
convertInto( stringValue, value );
function( obj, value );
}
virtual void setFlag( C& obj ) const {
typename RemoveConstRef<T>::type value;
convertInto( true, value );
function( obj, value );
}
virtual bool takesArg() const { return !IsBool<T>::value; }
virtual IArgFunction<C>* clone() const { return new BoundBinaryFunction( *this ); }
void (*function)( C&, T );
};
} // namespace Detail
struct Parser {
Parser() : separators( " \t=:" ) {}
struct Token {
enum Type { Positional, ShortOpt, LongOpt };
Token( Type _type, std::string const& _data ) : type( _type ), data( _data ) {}
Type type;
std::string data;
};
void parseIntoTokens( int argc, char const * const * argv, std::vector<Parser::Token>& tokens ) const {
const std::string doubleDash = "--";
for( int i = 1; i < argc && argv[i] != doubleDash; ++i )
parseIntoTokens( argv[i] , tokens);
}
void parseIntoTokens( std::string arg, std::vector<Parser::Token>& tokens ) const {
while( !arg.empty() ) {
Parser::Token token( Parser::Token::Positional, arg );
arg = "";
if( token.data[0] == '-' ) {
if( token.data.size() > 1 && token.data[1] == '-' ) {
token = Parser::Token( Parser::Token::LongOpt, token.data.substr( 2 ) );
}
else {
token = Parser::Token( Parser::Token::ShortOpt, token.data.substr( 1 ) );
if( token.data.size() > 1 && separators.find( token.data[1] ) == std::string::npos ) {
arg = "-" + token.data.substr( 1 );
token.data = token.data.substr( 0, 1 );
}
}
}
if( token.type != Parser::Token::Positional ) {
std::size_t pos = token.data.find_first_of( separators );
if( pos != std::string::npos ) {
arg = token.data.substr( pos+1 );
token.data = token.data.substr( 0, pos );
}
}
tokens.push_back( token );
}
}
std::string separators;
};
template<typename ConfigT>
struct CommonArgProperties {
CommonArgProperties() {}
CommonArgProperties( Detail::BoundArgFunction<ConfigT> const& _boundField ) : boundField( _boundField ) {}
Detail::BoundArgFunction<ConfigT> boundField;
std::string description;
std::string detail;
std::string placeholder; // Only value if boundField takes an arg
bool takesArg() const {
return !placeholder.empty();
}
void validate() const {
if( !boundField.isSet() )
throw std::logic_error( "option not bound" );
}
};
struct OptionArgProperties {
std::vector<std::string> shortNames;
std::string longName;
bool hasShortName( std::string const& shortName ) const {
return std::find( shortNames.begin(), shortNames.end(), shortName ) != shortNames.end();
}
bool hasLongName( std::string const& _longName ) const {
return _longName == longName;
}
};
struct PositionalArgProperties {
PositionalArgProperties() : position( -1 ) {}
int position; // -1 means non-positional (floating)
bool isFixedPositional() const {
return position != -1;
}
};
template<typename ConfigT>
class CommandLine {
struct Arg : CommonArgProperties<ConfigT>, OptionArgProperties, PositionalArgProperties {
Arg() {}
Arg( Detail::BoundArgFunction<ConfigT> const& _boundField ) : CommonArgProperties<ConfigT>( _boundField ) {}
using CommonArgProperties<ConfigT>::placeholder; // !TBD
std::string dbgName() const {
if( !longName.empty() )
return "--" + longName;
if( !shortNames.empty() )
return "-" + shortNames[0];
return "positional args";
}
std::string commands() const {
std::ostringstream oss;
bool first = true;
std::vector<std::string>::const_iterator it = shortNames.begin(), itEnd = shortNames.end();
for(; it != itEnd; ++it ) {
if( first )
first = false;
else
oss << ", ";
oss << "-" << *it;
}
if( !longName.empty() ) {
if( !first )
oss << ", ";
oss << "--" << longName;
}
if( !placeholder.empty() )
oss << " <" << placeholder << ">";
return oss.str();
}
};
typedef CATCH_AUTO_PTR( Arg ) ArgAutoPtr;
friend void addOptName( Arg& arg, std::string const& optName )
{
if( optName.empty() )
return;
if( Detail::startsWith( optName, "--" ) ) {
if( !arg.longName.empty() )
throw std::logic_error( "Only one long opt may be specified. '"
+ arg.longName
+ "' already specified, now attempting to add '"
+ optName + "'" );
arg.longName = optName.substr( 2 );
}
else if( Detail::startsWith( optName, "-" ) )
arg.shortNames.push_back( optName.substr( 1 ) );
else
throw std::logic_error( "option must begin with - or --. Option was: '" + optName + "'" );
}
friend void setPositionalArg( Arg& arg, int position )
{
arg.position = position;
}
class ArgBuilder {
public:
ArgBuilder( Arg* arg ) : m_arg( arg ) {}
// Bind a non-boolean data member (requires placeholder string)
template<typename C, typename M>
void bind( M C::* field, std::string const& placeholder ) {
m_arg->boundField = new Detail::BoundDataMember<C,M>( field );
m_arg->placeholder = placeholder;
}
// Bind a boolean data member (no placeholder required)
template<typename C>
void bind( bool C::* field ) {
m_arg->boundField = new Detail::BoundDataMember<C,bool>( field );
}
// Bind a method taking a single, non-boolean argument (requires a placeholder string)
template<typename C, typename M>
void bind( void (C::* unaryMethod)( M ), std::string const& placeholder ) {
m_arg->boundField = new Detail::BoundUnaryMethod<C,M>( unaryMethod );
m_arg->placeholder = placeholder;
}
// Bind a method taking a single, boolean argument (no placeholder string required)
template<typename C>
void bind( void (C::* unaryMethod)( bool ) ) {
m_arg->boundField = new Detail::BoundUnaryMethod<C,bool>( unaryMethod );
}
// Bind a method that takes no arguments (will be called if opt is present)
template<typename C>
void bind( void (C::* nullaryMethod)() ) {
m_arg->boundField = new Detail::BoundNullaryMethod<C>( nullaryMethod );
}
// Bind a free function taking a single argument - the object to operate on (no placeholder string required)
template<typename C>
void bind( void (* unaryFunction)( C& ) ) {
m_arg->boundField = new Detail::BoundUnaryFunction<C>( unaryFunction );
}
// Bind a free function taking a single argument - the object to operate on (requires a placeholder string)
template<typename C, typename T>
void bind( void (* binaryFunction)( C&, T ), std::string const& placeholder ) {
m_arg->boundField = new Detail::BoundBinaryFunction<C, T>( binaryFunction );
m_arg->placeholder = placeholder;
}
ArgBuilder& describe( std::string const& description ) {
m_arg->description = description;
return *this;
}
ArgBuilder& detail( std::string const& _detail ) {
m_arg->detail = _detail;
return *this;
}
protected:
Arg* m_arg;
};
class OptBuilder : public ArgBuilder {
public:
OptBuilder( Arg* arg ) : ArgBuilder( arg ) {}
OptBuilder( OptBuilder& other ) : ArgBuilder( other ) {}
OptBuilder& operator[]( std::string const& optName ) {
addOptName( *ArgBuilder::m_arg, optName );
return *this;
}
};
public:
CommandLine()
: m_boundProcessName( new Detail::NullBinder<ConfigT>() ),
m_highestSpecifiedArgPosition( 0 ),
m_throwOnUnrecognisedTokens( false )
{}
CommandLine( CommandLine const& other )
: m_boundProcessName( other.m_boundProcessName ),
m_options ( other.m_options ),
m_positionalArgs( other.m_positionalArgs ),
m_highestSpecifiedArgPosition( other.m_highestSpecifiedArgPosition ),
m_throwOnUnrecognisedTokens( other.m_throwOnUnrecognisedTokens )
{
if( other.m_floatingArg.get() )
m_floatingArg.reset( new Arg( *other.m_floatingArg ) );
}
CommandLine& setThrowOnUnrecognisedTokens( bool shouldThrow = true ) {
m_throwOnUnrecognisedTokens = shouldThrow;
return *this;
}
OptBuilder operator[]( std::string const& optName ) {
m_options.push_back( Arg() );
addOptName( m_options.back(), optName );
OptBuilder builder( &m_options.back() );
return builder;
}
ArgBuilder operator[]( int position ) {
m_positionalArgs.insert( std::make_pair( position, Arg() ) );
if( position > m_highestSpecifiedArgPosition )
m_highestSpecifiedArgPosition = position;
setPositionalArg( m_positionalArgs[position], position );
ArgBuilder builder( &m_positionalArgs[position] );
return builder;
}
// Invoke this with the _ instance
ArgBuilder operator[]( UnpositionalTag ) {
if( m_floatingArg.get() )
throw std::logic_error( "Only one unpositional argument can be added" );
m_floatingArg.reset( new Arg() );
ArgBuilder builder( m_floatingArg.get() );
return builder;
}
template<typename C, typename M>
void bindProcessName( M C::* field ) {
m_boundProcessName = new Detail::BoundDataMember<C,M>( field );
}
template<typename C, typename M>
void bindProcessName( void (C::*_unaryMethod)( M ) ) {
m_boundProcessName = new Detail::BoundUnaryMethod<C,M>( _unaryMethod );
}
void optUsage( std::ostream& os, std::size_t indent = 0, std::size_t width = Detail::consoleWidth ) const {
typename std::vector<Arg>::const_iterator itBegin = m_options.begin(), itEnd = m_options.end(), it;
std::size_t maxWidth = 0;
for( it = itBegin; it != itEnd; ++it )
maxWidth = (std::max)( maxWidth, it->commands().size() );
for( it = itBegin; it != itEnd; ++it ) {
Detail::Text usageText( it->commands(), Detail::TextAttributes()
.setWidth( maxWidth+indent )
.setIndent( indent ) );
Detail::Text desc( it->description, Detail::TextAttributes()
.setWidth( width - maxWidth - 3 ) );
for( std::size_t i = 0; i < (std::max)( usageText.size(), desc.size() ); ++i ) {
std::string usageCol = i < usageText.size() ? usageText[i] : "";
os << usageCol;
if( i < desc.size() && !desc[i].empty() )
os << std::string( indent + 2 + maxWidth - usageCol.size(), ' ' )
<< desc[i];
os << "\n";
}
}
}
std::string optUsage() const {
std::ostringstream oss;
optUsage( oss );
return oss.str();
}
void argSynopsis( std::ostream& os ) const {
for( int i = 1; i <= m_highestSpecifiedArgPosition; ++i ) {
if( i > 1 )
os << " ";
typename std::map<int, Arg>::const_iterator it = m_positionalArgs.find( i );
if( it != m_positionalArgs.end() )
os << "<" << it->second.placeholder << ">";
else if( m_floatingArg.get() )
os << "<" << m_floatingArg->placeholder << ">";
else
throw std::logic_error( "non consecutive positional arguments with no floating args" );
}
// !TBD No indication of mandatory args
if( m_floatingArg.get() ) {
if( m_highestSpecifiedArgPosition > 1 )
os << " ";
os << "[<" << m_floatingArg->placeholder << "> ...]";
}
}
std::string argSynopsis() const {
std::ostringstream oss;
argSynopsis( oss );
return oss.str();
}
void usage( std::ostream& os, std::string const& procName ) const {
validate();
os << "usage:\n " << procName << " ";
argSynopsis( os );
if( !m_options.empty() ) {
os << " [options]\n\nwhere options are: \n";
optUsage( os, 2 );
}
os << "\n";
}
std::string usage( std::string const& procName ) const {
std::ostringstream oss;
usage( oss, procName );
return oss.str();
}
ConfigT parse( int argc, char const * const * argv ) const {
ConfigT config;
parseInto( argc, argv, config );
return config;
}
std::vector<Parser::Token> parseInto( int argc, char const * const * argv, ConfigT& config ) const {
std::string processName = argv[0];
std::size_t lastSlash = processName.find_last_of( "/\\" );
if( lastSlash != std::string::npos )
processName = processName.substr( lastSlash+1 );
m_boundProcessName.set( config, processName );
std::vector<Parser::Token> tokens;
Parser parser;
parser.parseIntoTokens( argc, argv, tokens );
return populate( tokens, config );
}
std::vector<Parser::Token> populate( std::vector<Parser::Token> const& tokens, ConfigT& config ) const {
validate();
std::vector<Parser::Token> unusedTokens = populateOptions( tokens, config );
unusedTokens = populateFixedArgs( unusedTokens, config );
unusedTokens = populateFloatingArgs( unusedTokens, config );
return unusedTokens;
}
std::vector<Parser::Token> populateOptions( std::vector<Parser::Token> const& tokens, ConfigT& config ) const {
std::vector<Parser::Token> unusedTokens;
std::vector<std::string> errors;
for( std::size_t i = 0; i < tokens.size(); ++i ) {
Parser::Token const& token = tokens[i];
typename std::vector<Arg>::const_iterator it = m_options.begin(), itEnd = m_options.end();
for(; it != itEnd; ++it ) {
Arg const& arg = *it;
try {
if( ( token.type == Parser::Token::ShortOpt && arg.hasShortName( token.data ) ) ||
( token.type == Parser::Token::LongOpt && arg.hasLongName( token.data ) ) ) {
if( arg.takesArg() ) {
if( i == tokens.size()-1 || tokens[i+1].type != Parser::Token::Positional )
errors.push_back( "Expected argument to option: " + token.data );
else
arg.boundField.set( config, tokens[++i].data );
}
else {
arg.boundField.setFlag( config );
}
break;
}
}
catch( std::exception& ex ) {
errors.push_back( std::string( ex.what() ) + "\n- while parsing: (" + arg.commands() + ")" );
}
}
if( it == itEnd ) {
if( token.type == Parser::Token::Positional || !m_throwOnUnrecognisedTokens )
unusedTokens.push_back( token );
else if( errors.empty() && m_throwOnUnrecognisedTokens )
errors.push_back( "unrecognised option: " + token.data );
}
}
if( !errors.empty() ) {
std::ostringstream oss;
for( std::vector<std::string>::const_iterator it = errors.begin(), itEnd = errors.end();
it != itEnd;
++it ) {
if( it != errors.begin() )
oss << "\n";
oss << *it;
}
throw std::runtime_error( oss.str() );
}
return unusedTokens;
}
std::vector<Parser::Token> populateFixedArgs( std::vector<Parser::Token> const& tokens, ConfigT& config ) const {
std::vector<Parser::Token> unusedTokens;
int position = 1;
for( std::size_t i = 0; i < tokens.size(); ++i ) {
Parser::Token const& token = tokens[i];
typename std::map<int, Arg>::const_iterator it = m_positionalArgs.find( position );
if( it != m_positionalArgs.end() )
it->second.boundField.set( config, token.data );
else
unusedTokens.push_back( token );
if( token.type == Parser::Token::Positional )
position++;
}
return unusedTokens;
}
std::vector<Parser::Token> populateFloatingArgs( std::vector<Parser::Token> const& tokens, ConfigT& config ) const {
if( !m_floatingArg.get() )
return tokens;
std::vector<Parser::Token> unusedTokens;
for( std::size_t i = 0; i < tokens.size(); ++i ) {
Parser::Token const& token = tokens[i];
if( token.type == Parser::Token::Positional )
m_floatingArg->boundField.set( config, token.data );
else
unusedTokens.push_back( token );
}
return unusedTokens;
}
void validate() const
{
if( m_options.empty() && m_positionalArgs.empty() && !m_floatingArg.get() )
throw std::logic_error( "No options or arguments specified" );
for( typename std::vector<Arg>::const_iterator it = m_options.begin(),
itEnd = m_options.end();
it != itEnd; ++it )
it->validate();
}
private:
Detail::BoundArgFunction<ConfigT> m_boundProcessName;
std::vector<Arg> m_options;
std::map<int, Arg> m_positionalArgs;
ArgAutoPtr m_floatingArg;
int m_highestSpecifiedArgPosition;
bool m_throwOnUnrecognisedTokens;
};
} // end namespace Clara
STITCH_CLARA_CLOSE_NAMESPACE
#undef STITCH_CLARA_OPEN_NAMESPACE
#undef STITCH_CLARA_CLOSE_NAMESPACE
#endif // TWOBLUECUBES_CLARA_H_INCLUDED

153
include/external/tbc_text_format.h vendored Normal file
View File

@@ -0,0 +1,153 @@
/*
* Created by Phil on 18/4/2013.
* Copyright 2013 Two Blue Cubes Ltd. All rights reserved.
*
* Distributed under the Boost Software License, Version 1.0. (See accompanying
* file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
// Only use header guard if we are not using an outer namespace
#ifndef CLICHE_TBC_TEXT_FORMAT_OUTER_NAMESPACE
# ifdef TWOBLUECUBES_TEXT_FORMAT_H_INCLUDED
# ifndef TWOBLUECUBES_TEXT_FORMAT_H_ALREADY_INCLUDED
# define TWOBLUECUBES_TEXT_FORMAT_H_ALREADY_INCLUDED
# endif
# else
# define TWOBLUECUBES_TEXT_FORMAT_H_INCLUDED
# endif
#endif
#ifndef TWOBLUECUBES_TEXT_FORMAT_H_ALREADY_INCLUDED
#include <string>
#include <vector>
#include <sstream>
// Use optional outer namespace
#ifdef CLICHE_TBC_TEXT_FORMAT_OUTER_NAMESPACE
namespace CLICHE_TBC_TEXT_FORMAT_OUTER_NAMESPACE {
#endif
namespace Tbc {
#ifdef TBC_TEXT_FORMAT_CONSOLE_WIDTH
const unsigned int consoleWidth = TBC_TEXT_FORMAT_CONSOLE_WIDTH;
#else
const unsigned int consoleWidth = 80;
#endif
struct TextAttributes {
TextAttributes()
: initialIndent( std::string::npos ),
indent( 0 ),
width( consoleWidth-1 ),
tabChar( '\t' )
{}
TextAttributes& setInitialIndent( std::size_t _value ) { initialIndent = _value; return *this; }
TextAttributes& setIndent( std::size_t _value ) { indent = _value; return *this; }
TextAttributes& setWidth( std::size_t _value ) { width = _value; return *this; }
TextAttributes& setTabChar( char _value ) { tabChar = _value; return *this; }
std::size_t initialIndent; // indent of first line, or npos
std::size_t indent; // indent of subsequent lines, or all if initialIndent is npos
std::size_t width; // maximum width of text, including indent. Longer text will wrap
char tabChar; // If this char is seen the indent is changed to current pos
};
class Text {
public:
Text( std::string const& _str, TextAttributes const& _attr = TextAttributes() )
: attr( _attr )
{
std::string wrappableChars = " [({.,/|\\-";
std::size_t indent = _attr.initialIndent != std::string::npos
? _attr.initialIndent
: _attr.indent;
std::string remainder = _str;
while( !remainder.empty() ) {
if( lines.size() >= 1000 ) {
lines.push_back( "... message truncated due to excessive size" );
return;
}
std::size_t tabPos = std::string::npos;
std::size_t width = (std::min)( remainder.size(), _attr.width - indent );
std::size_t pos = remainder.find_first_of( '\n' );
if( pos <= width ) {
width = pos;
}
pos = remainder.find_last_of( _attr.tabChar, width );
if( pos != std::string::npos ) {
tabPos = pos;
if( remainder[width] == '\n' )
width--;
remainder = remainder.substr( 0, tabPos ) + remainder.substr( tabPos+1 );
}
if( width == remainder.size() ) {
spliceLine( indent, remainder, width );
}
else if( remainder[width] == '\n' ) {
spliceLine( indent, remainder, width );
if( width <= 1 || remainder.size() != 1 )
remainder = remainder.substr( 1 );
indent = _attr.indent;
}
else {
pos = remainder.find_last_of( wrappableChars, width );
if( pos != std::string::npos && pos > 0 ) {
spliceLine( indent, remainder, pos );
if( remainder[0] == ' ' )
remainder = remainder.substr( 1 );
}
else {
spliceLine( indent, remainder, width-1 );
lines.back() += "-";
}
if( lines.size() == 1 )
indent = _attr.indent;
if( tabPos != std::string::npos )
indent += tabPos;
}
}
}
void spliceLine( std::size_t _indent, std::string& _remainder, std::size_t _pos ) {
lines.push_back( std::string( _indent, ' ' ) + _remainder.substr( 0, _pos ) );
_remainder = _remainder.substr( _pos );
}
typedef std::vector<std::string>::const_iterator const_iterator;
const_iterator begin() const { return lines.begin(); }
const_iterator end() const { return lines.end(); }
std::string const& last() const { return lines.back(); }
std::size_t size() const { return lines.size(); }
std::string const& operator[]( std::size_t _index ) const { return lines[_index]; }
std::string toString() const {
std::ostringstream oss;
oss << *this;
return oss.str();
}
inline friend std::ostream& operator << ( std::ostream& _stream, Text const& _text ) {
for( Text::const_iterator it = _text.begin(), itEnd = _text.end();
it != itEnd; ++it ) {
if( it != _text.begin() )
_stream << "\n";
_stream << *it;
}
return _stream;
}
private:
std::string str;
TextAttributes attr;
std::vector<std::string> lines;
};
} // end namespace Tbc
#ifdef CLICHE_TBC_TEXT_FORMAT_OUTER_NAMESPACE
} // end outer namespace
#endif
#endif // TWOBLUECUBES_TEXT_FORMAT_H_ALREADY_INCLUDED

View File

@@ -0,0 +1,91 @@
/*
* Created by Phil on 28/04/2011.
* Copyright 2010 Two Blue Cubes Ltd. All rights reserved.
*
* Distributed under the Boost Software License, Version 1.0. (See accompanying
* file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef TWOBLUECUBES_CATCH_APPROX_HPP_INCLUDED
#define TWOBLUECUBES_CATCH_APPROX_HPP_INCLUDED
#include "catch_tostring.h"
#include <cmath>
#include <limits>
namespace Catch {
namespace Detail {
class Approx {
public:
explicit Approx ( double value )
: m_epsilon( std::numeric_limits<float>::epsilon()*100 ),
m_scale( 1.0 ),
m_value( value )
{}
Approx( Approx const& other )
: m_epsilon( other.m_epsilon ),
m_scale( other.m_scale ),
m_value( other.m_value )
{}
static Approx custom() {
return Approx( 0 );
}
Approx operator()( double value ) {
Approx approx( value );
approx.epsilon( m_epsilon );
approx.scale( m_scale );
return approx;
}
friend bool operator == ( double lhs, Approx const& rhs ) {
// Thanks to Richard Harris for his help refining this formula
return fabs( lhs - rhs.m_value ) < rhs.m_epsilon * (rhs.m_scale + (std::max)( fabs(lhs), fabs(rhs.m_value) ) );
}
friend bool operator == ( Approx const& lhs, double rhs ) {
return operator==( rhs, lhs );
}
friend bool operator != ( double lhs, Approx const& rhs ) {
return !operator==( lhs, rhs );
}
friend bool operator != ( Approx const& lhs, double rhs ) {
return !operator==( rhs, lhs );
}
Approx& epsilon( double newEpsilon ) {
m_epsilon = newEpsilon;
return *this;
}
Approx& scale( double newScale ) {
m_scale = newScale;
return *this;
}
std::string toString() const {
std::ostringstream oss;
oss << "Approx( " << Catch::toString( m_value ) << " )";
return oss.str();
}
private:
double m_epsilon;
double m_scale;
double m_value;
};
}
template<>
inline std::string toString<Detail::Approx>( Detail::Approx const& value ) {
return value.toString();
}
} // end namespace Catch
#endif // TWOBLUECUBES_CATCH_APPROX_HPP_INCLUDED

View File

@@ -0,0 +1,71 @@
/*
* Created by Phil on 28/10/2010.
* Copyright 2010 Two Blue Cubes Ltd. All rights reserved.
*
* Distributed under the Boost Software License, Version 1.0. (See accompanying
* file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef TWOBLUECUBES_CATCH_ASSERTIONRESULT_H_INCLUDED
#define TWOBLUECUBES_CATCH_ASSERTIONRESULT_H_INCLUDED
#include <string>
#include "catch_result_type.h"
namespace Catch {
struct AssertionInfo
{
AssertionInfo() {}
AssertionInfo( std::string const& _macroName,
SourceLineInfo const& _lineInfo,
std::string const& _capturedExpression,
ResultDisposition::Flags _resultDisposition );
std::string macroName;
SourceLineInfo lineInfo;
std::string capturedExpression;
ResultDisposition::Flags resultDisposition;
};
struct AssertionResultData
{
AssertionResultData() : resultType( ResultWas::Unknown ) {}
std::string reconstructedExpression;
std::string message;
ResultWas::OfType resultType;
};
class AssertionResult {
public:
AssertionResult();
AssertionResult( AssertionInfo const& info, AssertionResultData const& data );
~AssertionResult();
# ifdef CATCH_CONFIG_CPP11_GENERATED_METHODS
AssertionResult( AssertionResult const& ) = default;
AssertionResult( AssertionResult && ) = default;
AssertionResult& operator = ( AssertionResult const& ) = default;
AssertionResult& operator = ( AssertionResult && ) = default;
# endif
bool isOk() const;
bool succeeded() const;
ResultWas::OfType getResultType() const;
bool hasExpression() const;
bool hasMessage() const;
std::string getExpression() const;
std::string getExpressionInMacro() const;
bool hasExpandedExpression() const;
std::string getExpandedExpression() const;
std::string getMessage() const;
SourceLineInfo getSourceInfo() const;
std::string getTestMacroName() const;
protected:
AssertionInfo m_info;
AssertionResultData m_resultData;
};
} // end namespace Catch
#endif // TWOBLUECUBES_CATCH_ASSERTIONRESULT_H_INCLUDED

View File

@@ -0,0 +1,91 @@
/*
* Created by Phil on 8/8/12
* Copyright 2012 Two Blue Cubes Ltd. All rights reserved.
*
* Distributed under the Boost Software License, Version 1.0. (See accompanying
* file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef TWOBLUECUBES_CATCH_ASSERTIONRESULT_HPP_INCLUDED
#define TWOBLUECUBES_CATCH_ASSERTIONRESULT_HPP_INCLUDED
#include "catch_assertionresult.h"
namespace Catch {
AssertionInfo::AssertionInfo( std::string const& _macroName,
SourceLineInfo const& _lineInfo,
std::string const& _capturedExpression,
ResultDisposition::Flags _resultDisposition )
: macroName( _macroName ),
lineInfo( _lineInfo ),
capturedExpression( _capturedExpression ),
resultDisposition( _resultDisposition )
{}
AssertionResult::AssertionResult() {}
AssertionResult::AssertionResult( AssertionInfo const& info, AssertionResultData const& data )
: m_info( info ),
m_resultData( data )
{}
AssertionResult::~AssertionResult() {}
// Result was a success
bool AssertionResult::succeeded() const {
return Catch::isOk( m_resultData.resultType );
}
// Result was a success, or failure is suppressed
bool AssertionResult::isOk() const {
return Catch::isOk( m_resultData.resultType ) || shouldSuppressFailure( m_info.resultDisposition );
}
ResultWas::OfType AssertionResult::getResultType() const {
return m_resultData.resultType;
}
bool AssertionResult::hasExpression() const {
return !m_info.capturedExpression.empty();
}
bool AssertionResult::hasMessage() const {
return !m_resultData.message.empty();
}
std::string AssertionResult::getExpression() const {
if( isFalseTest( m_info.resultDisposition ) )
return "!" + m_info.capturedExpression;
else
return m_info.capturedExpression;
}
std::string AssertionResult::getExpressionInMacro() const {
if( m_info.macroName.empty() )
return m_info.capturedExpression;
else
return m_info.macroName + "( " + m_info.capturedExpression + " )";
}
bool AssertionResult::hasExpandedExpression() const {
return hasExpression() && getExpandedExpression() != getExpression();
}
std::string AssertionResult::getExpandedExpression() const {
return m_resultData.reconstructedExpression;
}
std::string AssertionResult::getMessage() const {
return m_resultData.message;
}
SourceLineInfo AssertionResult::getSourceInfo() const {
return m_info.lineInfo;
}
std::string AssertionResult::getTestMacroName() const {
return m_info.macroName;
}
} // end namespace Catch
#endif // TWOBLUECUBES_CATCH_ASSERTIONRESULT_HPP_INCLUDED

Some files were not shown because too many files have changed in this diff Show More