6.3 KiB
Data Generators
Introduced in Catch 2.6.0.
Data generators (also known as data driven/parametrized test cases)
let you reuse the same set of assertions across different input values.
In Catch2, this means that they respect the ordering and nesting
of the TEST_CASE
and SECTION
macros, and their nested sections
are run once per each value in a generator.
This is best explained with an example:
TEST_CASE("Generators") {
auto i = GENERATE(1, 2, 3);
SECTION("one") {
auto j = GENERATE( -3, -2, -1 );
REQUIRE(j < i);
}
}
The assertion in this test case will be run 9 times, because there
are 3 possible values for i
(1, 2, and 3) and there are 3 possible
values for j
(-3, -2, and -1).
There are 2 parts to generators in Catch2, the GENERATE
macro together
with the already provided generators, and the IGenerator<T>
interface
that allows users to implement their own generators.
Provided generators
Catch2's provided generator functionality consists of three parts,
GENERATE
macro, that serves to integrate generator expression with a test case,- 2 fundamental generators
SingleValueGenerator<T>
-- contains only single elementFixedValuesGenerator<T>
-- contains multiple elements
- 5 generic generators that modify other generators
FilterGenerator<T, Predicate>
-- filters out elements from a generator for which the predicate returns "false"TakeGenerator<T>
-- takes firstn
elements from a generatorRepeatGenerator<T>
-- repeats output from a generatorn
timesMapGenerator<T, U, Func>
-- returns the result of applyingFunc
on elements from a different generatorChunkGenerator<T>
-- returns chunks (insidestd::vector
) of n elements from a generator
- 4 specific purpose generators
RandomIntegerGenerator<Integral>
-- generates random Integrals from rangeRandomFloatGenerator<Float>
-- generates random Floats from rangeRangeGenerator<T>
-- generates all values inside a specific rangeIteratorGenerator<T>
-- copies and returns values from an iterator range
ChunkGenerator<T>
,RandomIntegerGenerator<Integral>
,RandomFloatGenerator<Float>
andRangeGenerator<T>
were introduced in Catch 2.7.0.
IteratorGenerator<T>
was introduced in Catch X.Y.Z.
The generators also have associated helper functions that infer their type, making their usage much nicer. These are
value(T&&)
forSingleValueGenerator<T>
values(std::initializer_list<T>)
forFixedValuesGenerator<T>
table<Ts...>(std::initializer_list<std::tuple<Ts...>>)
forFixedValuesGenerator<std::tuple<Ts...>>
filter(predicate, GeneratorWrapper<T>&&)
forFilterGenerator<T, Predicate>
take(count, GeneratorWrapper<T>&&)
forTakeGenerator<T>
repeat(repeats, GeneratorWrapper<T>&&)
forRepeatGenerator<T>
map(func, GeneratorWrapper<T>&&)
forMapGenerator<T, U, Func>
(mapU
toT
, deduced fromFunc
)map<T>(func, GeneratorWrapper<U>&&)
forMapGenerator<T, U, Func>
(mapU
toT
)chunk(chunk-size, GeneratorWrapper<T>&&)
forChunkGenerator<T>
random(IntegerOrFloat a, IntegerOrFloat b)
forRandomIntegerGenerator
orRandomFloatGenerator
range(start, end)
forRangeGenerator<T>
with a step size of1
range(start, end, step)
forRangeGenerator<T>
with a custom step sizefrom_range(InputIterator from, InputIterator to)
forIteratorGenerator<T>
chunk()
,random()
and bothrange()
functions were introduced in Catch 2.7.0.
from_range
has been introduced in Catch X.Y.Z
And can be used as shown in the example below to create a generator that returns 100 odd random number:
TEST_CASE("Generating random ints", "[example][generator]") {
SECTION("Deducing functions") {
auto i = GENERATE(take(100, filter([](int i) { return i % 2 == 1; }, random(-100, 100))));
REQUIRE(i > -100);
REQUIRE(i < 100);
REQUIRE(i % 2 == 1);
}
}
Apart from registering generators with Catch2, the GENERATE
macro has
one more purpose, and that is to provide simple way of generating trivial
generators, as seen in the first example on this page, where we used it
as auto i = GENERATE(1, 2, 3);
. This usage converted each of the three
literals into a single SingleValueGenerator<int>
and then placed them all in
a special generator that concatenates other generators. It can also be
used with other generators as arguments, such as auto i = GENERATE(0, 2, take(100, random(300, 3000)));
. This is useful e.g. if you know that
specific inputs are problematic and want to test them separately/first.
For safety reasons, you cannot use variables inside the GENERATE
macro.
This is done because the generator expression will outlive the outside
scope and thus capturing references is dangerous. If you need to use
variables inside the generator expression, make sure you thought through
the lifetime implications and use GENERATE_COPY
or GENERATE_REF
.
GENERATE_COPY
andGENERATE_REF
were introduced in Catch 2.7.1.
You can also override the inferred type by using as<type>
as the first
argument to the macro. This can be useful when dealing with string literals,
if you want them to come out as std::string
:
TEST_CASE("type conversion", "[generators]") {
auto str = GENERATE(as<std::string>{}, "a", "bb", "ccc");
REQUIRE(str.size() > 0);
}
Generator interface
You can also implement your own generators, by deriving from the
IGenerator<T>
interface:
template<typename T>
struct IGenerator : GeneratorUntypedBase {
// via GeneratorUntypedBase:
// Attempts to move the generator to the next element.
// Returns true if successful (and thus has another element that can be read)
virtual bool next() = 0;
// Precondition:
// The generator is either freshly constructed or the last call to next() returned true
virtual T const& get() const = 0;
};
However, to be able to use your custom generator inside GENERATE
, it
will need to be wrapped inside a GeneratorWrapper<T>
.
GeneratorWrapper<T>
is a value wrapper around a
std::unique_ptr<IGenerator<T>>
.
For full example of implementing your own generator, look into Catch2's examples, specifically Generators: Create your own generator.