mirror of
https://github.com/catchorg/Catch2.git
synced 2024-11-05 05:39:53 +01:00
220 lines
8.3 KiB
Markdown
220 lines
8.3 KiB
Markdown
<a id="top"></a>
|
|
# Data Generators
|
|
|
|
> Introduced in Catch 2.6.0.
|
|
|
|
Data generators (also known as _data driven/parametrized test cases_)
|
|
let you reuse the same set of assertions across different input values.
|
|
In Catch2, this means that they respect the ordering and nesting
|
|
of the `TEST_CASE` and `SECTION` macros, and their nested sections
|
|
are run once per each value in a generator.
|
|
|
|
This is best explained with an example:
|
|
```cpp
|
|
TEST_CASE("Generators") {
|
|
auto i = GENERATE(1, 3, 5);
|
|
REQUIRE(is_odd(i));
|
|
}
|
|
```
|
|
|
|
The "Generators" `TEST_CASE` will be entered 3 times, and the value of
|
|
`i` will be 1, 3, and 5 in turn. `GENERATE`s can also be used multiple
|
|
times at the same scope, in which case the result will be a cartesian
|
|
product of all elements in the generators. This means that in the snippet
|
|
below, the test case will be run 6 (2\*3) times.
|
|
|
|
```cpp
|
|
TEST_CASE("Generators") {
|
|
auto i = GENERATE(1, 2);
|
|
auto j = GENERATE(3, 4, 5);
|
|
}
|
|
```
|
|
|
|
There are 2 parts to generators in Catch2, the `GENERATE` macro together
|
|
with the already provided generators, and the `IGenerator<T>` interface
|
|
that allows users to implement their own generators.
|
|
|
|
|
|
## Combining `GENERATE` and `SECTION`.
|
|
|
|
`GENERATE` can be seen as an implicit `SECTION`, that goes from the place
|
|
`GENERATE` is used, to the end of the scope. This can be used for various
|
|
effects. The simplest usage is shown below, where the `SECTION` "one"
|
|
runs 4 (2\*2) times, and `SECTION` "two" is run 6 times (2\*3).
|
|
|
|
```cpp
|
|
TEST_CASE("Generators") {
|
|
auto i = GENERATE(1, 2);
|
|
SECTION("one") {
|
|
auto j = GENERATE(-3, -2);
|
|
REQUIRE(j < i);
|
|
}
|
|
SECTION("two") {
|
|
auto k = GENERATE(4, 5, 6);
|
|
REQUIRE(i != k);
|
|
}
|
|
}
|
|
```
|
|
|
|
The specific order of the `SECTION`s will be "one", "one", "two", "two",
|
|
"two", "one"...
|
|
|
|
|
|
The fact that `GENERATE` introduces a virtual `SECTION` can also be used
|
|
to make a generator replay only some `SECTION`s, without having to
|
|
explicitly add a `SECTION`. As an example, the code below reports 3
|
|
assertions, because the "first" section is run once, but the "second"
|
|
section is run twice.
|
|
|
|
```cpp
|
|
TEST_CASE("GENERATE between SECTIONs") {
|
|
SECTION("first") { REQUIRE(true); }
|
|
auto _ = GENERATE(1, 2);
|
|
SECTION("second") { REQUIRE(true); }
|
|
}
|
|
```
|
|
|
|
This can lead to surprisingly complex test flows. As an example, the test
|
|
below will report 14 assertions:
|
|
|
|
```cpp
|
|
TEST_CASE("Complex mix of sections and generates") {
|
|
auto i = GENERATE(1, 2);
|
|
SECTION("A") {
|
|
SUCCEED("A");
|
|
}
|
|
auto j = GENERATE(3, 4);
|
|
SECTION("B") {
|
|
SUCCEED("B");
|
|
}
|
|
auto k = GENERATE(5, 6);
|
|
SUCCEED();
|
|
}
|
|
```
|
|
|
|
> The ability to place `GENERATE` between two `SECTION`s was [introduced](https://github.com/catchorg/Catch2/issues/1938) in Catch 2.13.0.
|
|
|
|
## Provided generators
|
|
|
|
Catch2's provided generator functionality consists of three parts,
|
|
|
|
* `GENERATE` macro, that serves to integrate generator expression with
|
|
a test case,
|
|
* 2 fundamental generators
|
|
* `SingleValueGenerator<T>` -- contains only single element
|
|
* `FixedValuesGenerator<T>` -- contains multiple elements
|
|
* 5 generic generators that modify other generators
|
|
* `FilterGenerator<T, Predicate>` -- filters out elements from a generator
|
|
for which the predicate returns "false"
|
|
* `TakeGenerator<T>` -- takes first `n` elements from a generator
|
|
* `RepeatGenerator<T>` -- repeats output from a generator `n` times
|
|
* `MapGenerator<T, U, Func>` -- returns the result of applying `Func`
|
|
on elements from a different generator
|
|
* `ChunkGenerator<T>` -- returns chunks (inside `std::vector`) of n elements from a generator
|
|
* 4 specific purpose generators
|
|
* `RandomIntegerGenerator<Integral>` -- generates random Integrals from range
|
|
* `RandomFloatGenerator<Float>` -- generates random Floats from range
|
|
* `RangeGenerator<T>` -- generates all values inside an arithmetic range
|
|
* `IteratorGenerator<T>` -- copies and returns values from an iterator range
|
|
|
|
> `ChunkGenerator<T>`, `RandomIntegerGenerator<Integral>`, `RandomFloatGenerator<Float>` and `RangeGenerator<T>` were introduced in Catch 2.7.0.
|
|
|
|
> `IteratorGenerator<T>` was introduced in Catch 2.10.0.
|
|
|
|
The generators also have associated helper functions that infer their
|
|
type, making their usage much nicer. These are
|
|
|
|
* `value(T&&)` for `SingleValueGenerator<T>`
|
|
* `values(std::initializer_list<T>)` for `FixedValuesGenerator<T>`
|
|
* `table<Ts...>(std::initializer_list<std::tuple<Ts...>>)` for `FixedValuesGenerator<std::tuple<Ts...>>`
|
|
* `filter(predicate, GeneratorWrapper<T>&&)` for `FilterGenerator<T, Predicate>`
|
|
* `take(count, GeneratorWrapper<T>&&)` for `TakeGenerator<T>`
|
|
* `repeat(repeats, GeneratorWrapper<T>&&)` for `RepeatGenerator<T>`
|
|
* `map(func, GeneratorWrapper<T>&&)` for `MapGenerator<T, U, Func>` (map `U` to `T`, deduced from `Func`)
|
|
* `map<T>(func, GeneratorWrapper<U>&&)` for `MapGenerator<T, U, Func>` (map `U` to `T`)
|
|
* `chunk(chunk-size, GeneratorWrapper<T>&&)` for `ChunkGenerator<T>`
|
|
* `random(IntegerOrFloat a, IntegerOrFloat b)` for `RandomIntegerGenerator` or `RandomFloatGenerator`
|
|
* `range(Arithemtic start, Arithmetic end)` for `RangeGenerator<Arithmetic>` with a step size of `1`
|
|
* `range(Arithmetic start, Arithmetic end, Arithmetic step)` for `RangeGenerator<Arithmetic>` with a custom step size
|
|
* `from_range(InputIterator from, InputIterator to)` for `IteratorGenerator<T>`
|
|
* `from_range(Container const&)` for `IteratorGenerator<T>`
|
|
|
|
> `chunk()`, `random()` and both `range()` functions were introduced in Catch 2.7.0.
|
|
|
|
> `from_range` has been introduced in Catch 2.10.0
|
|
|
|
> `range()` for floating point numbers has been introduced in Catch 2.11.0
|
|
|
|
And can be used as shown in the example below to create a generator
|
|
that returns 100 odd random number:
|
|
|
|
```cpp
|
|
TEST_CASE("Generating random ints", "[example][generator]") {
|
|
SECTION("Deducing functions") {
|
|
auto i = GENERATE(take(100, filter([](int i) { return i % 2 == 1; }, random(-100, 100))));
|
|
REQUIRE(i > -100);
|
|
REQUIRE(i < 100);
|
|
REQUIRE(i % 2 == 1);
|
|
}
|
|
}
|
|
```
|
|
|
|
|
|
Apart from registering generators with Catch2, the `GENERATE` macro has
|
|
one more purpose, and that is to provide simple way of generating trivial
|
|
generators, as seen in the first example on this page, where we used it
|
|
as `auto i = GENERATE(1, 2, 3);`. This usage converted each of the three
|
|
literals into a single `SingleValueGenerator<int>` and then placed them all in
|
|
a special generator that concatenates other generators. It can also be
|
|
used with other generators as arguments, such as `auto i = GENERATE(0, 2,
|
|
take(100, random(300, 3000)));`. This is useful e.g. if you know that
|
|
specific inputs are problematic and want to test them separately/first.
|
|
|
|
**For safety reasons, you cannot use variables inside the `GENERATE` macro.
|
|
This is done because the generator expression _will_ outlive the outside
|
|
scope and thus capturing references is dangerous. If you need to use
|
|
variables inside the generator expression, make sure you thought through
|
|
the lifetime implications and use `GENERATE_COPY` or `GENERATE_REF`.**
|
|
|
|
> `GENERATE_COPY` and `GENERATE_REF` were introduced in Catch 2.7.1.
|
|
|
|
You can also override the inferred type by using `as<type>` as the first
|
|
argument to the macro. This can be useful when dealing with string literals,
|
|
if you want them to come out as `std::string`:
|
|
|
|
```cpp
|
|
TEST_CASE("type conversion", "[generators]") {
|
|
auto str = GENERATE(as<std::string>{}, "a", "bb", "ccc");
|
|
REQUIRE(str.size() > 0);
|
|
}
|
|
```
|
|
|
|
## Generator interface
|
|
|
|
You can also implement your own generators, by deriving from the
|
|
`IGenerator<T>` interface:
|
|
|
|
```cpp
|
|
template<typename T>
|
|
struct IGenerator : GeneratorUntypedBase {
|
|
// via GeneratorUntypedBase:
|
|
// Attempts to move the generator to the next element.
|
|
// Returns true if successful (and thus has another element that can be read)
|
|
virtual bool next() = 0;
|
|
|
|
// Precondition:
|
|
// The generator is either freshly constructed or the last call to next() returned true
|
|
virtual T const& get() const = 0;
|
|
};
|
|
```
|
|
|
|
However, to be able to use your custom generator inside `GENERATE`, it
|
|
will need to be wrapped inside a `GeneratorWrapper<T>`.
|
|
`GeneratorWrapper<T>` is a value wrapper around a
|
|
`std::unique_ptr<IGenerator<T>>`.
|
|
|
|
For full example of implementing your own generator, look into Catch2's
|
|
examples, specifically
|
|
[Generators: Create your own generator](../examples/300-Gen-OwnGenerator.cpp).
|
|
|