poly2tri/testbed/main.cc

549 lines
15 KiB
C++
Raw Normal View History

/*
* Poly2Tri Copyright (c) 2009-2022, Poly2Tri Contributors
2018-09-11 12:53:31 +02:00
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <poly2tri/poly2tri.h>
2014-08-12 22:14:01 +02:00
#include <GLFW/glfw3.h>
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <ctime>
#include <exception>
#include <fstream>
#include <iostream>
#include <iterator>
2022-04-24 17:36:35 +02:00
#include <limits>
#include <list>
#include <numeric>
#include <sstream>
#include <string>
2022-04-24 17:36:35 +02:00
#include <utility>
#include <vector>
using namespace std;
using namespace p2t;
bool ParseFile(string filename, vector<Point*>& out_polyline, vector<vector<Point*>>& out_holes,
vector<Point*>& out_steiner);
2022-04-24 17:36:35 +02:00
std::pair<Point, Point> BoundingBox(const std::vector<Point*>& polyline);
void GenerateRandomPointDistribution(size_t num_points, double min, double max,
vector<Point*>& out_polyline,
vector<vector<Point*>>& out_holes,
vector<Point*>& out_steiner);
void Init(int window_width, int window_height);
void ShutDown(int return_code);
void MainLoop(const double zoom);
void Draw(const double zoom);
void DrawMap(const double zoom);
void ConstrainedColor(bool constrain);
double StringToDouble(const std::string& s);
double Random(double (*fun)(double), double xmin, double xmax);
double Fun(double x);
2020-11-11 19:57:54 +01:00
double rotate_y = 0.0,
rotate_z = 0.0;
const double rotations_per_tick = 0.2;
/// Default window size
constexpr int default_window_width = 800;
constexpr int default_window_height = 600;
2022-04-24 17:36:35 +02:00
/// Autozoom border (percentage)
const double autozoom_border = 0.05;
/// Screen center x
double cx = 0.0;
/// Screen center y
double cy = 0.0;
/// Constrained triangles
vector<Triangle*> triangles;
/// Triangle map
list<Triangle*> map;
/// Polylines
vector<Point*> polyline;
vector<vector<Point*>> holes;
vector<Point*> steiner;
/// Draw the entire triangle map?
bool draw_map = false;
/// Create a random distribution of points?
bool random_distribution = false;
2014-08-12 22:14:01 +02:00
GLFWwindow* window = NULL;
template <class C> void FreeClear(C& cntr)
{
for (typename C::iterator it = cntr.begin(); it != cntr.end(); ++it) {
delete *it;
}
cntr.clear();
}
int main(int argc, char* argv[])
{
string filename;
2020-11-11 19:57:54 +01:00
size_t num_points = 0u;
double max, min;
double zoom;
2022-04-24 17:36:35 +02:00
if (argc != 2 && argc != 5) {
cout << "-== USAGE ==-" << endl;
2022-04-24 16:36:26 +02:00
cout << "Load Data File: p2t <filename> <center_x> <center_y> <zoom>" << endl;
cout << " Example: build/testbed/p2t testbed/data/dude.dat 350 500 3" << endl;
2022-04-24 17:36:35 +02:00
cout << "Load Data File with Auto-Zoom: p2t <filename>" << endl;
cout << " Example: build/testbed/p2t testbed/data/nazca_monkey.dat" << endl;
2022-04-24 16:36:26 +02:00
cout << "Generate Random Polygon: p2t random <num_points> <box_radius> <zoom>" << endl;
cout << " Example: build/testbed/p2t random 100 1 500" << endl;
return 1;
}
2022-04-24 17:36:35 +02:00
// If true, adjust the zoom settings to fit the input geometry to the window
const bool autozoom = (argc == 2);
if (!autozoom && string(argv[1]) == "random") {
num_points = atoi(argv[2]);
random_distribution = true;
char* pEnd;
max = strtod(argv[3], &pEnd);
min = -max;
cx = cy = 0.0;
zoom = atof(argv[4]);
} else {
filename = string(argv[1]);
2022-04-24 17:36:35 +02:00
if (!autozoom) {
cx = atof(argv[2]);
cy = atof(argv[3]);
zoom = atof(argv[4]);
}
}
if (random_distribution) {
GenerateRandomPointDistribution(num_points, min, max, polyline, holes, steiner);
} else {
// Load pointset from file
if (!ParseFile(filename, polyline, holes, steiner)) {
return 2;
}
}
2022-04-24 17:36:35 +02:00
if (autozoom) {
assert(0.0 <= autozoom_border && autozoom_border < 1.0);
const auto bbox = BoundingBox(polyline);
Point center = bbox.first + bbox.second;
center *= 0.5;
cx = center.x;
cy = center.y;
Point sides = bbox.second - bbox.first;
zoom = 2.0 * (1.0 - autozoom_border) * std::min((double)default_window_width / sides.x, (double)default_window_height / sides.y);
std::cout << "center_x = " << cx << std::endl;
std::cout << "center_y = " << cy << std::endl;
std::cout << "zoom = " << zoom << std::endl;
}
Init(default_window_width, default_window_height);
/*
* Perform triangulation!
*/
double init_time = glfwGetTime();
/*
* STEP 1: Create CDT and add primary polyline
* NOTE: polyline must be a simple polygon. The polyline's points
* constitute constrained edges. No repeat points!!!
*/
CDT* cdt = new CDT(polyline);
/*
* STEP 2: Add holes or Steiner points
*/
for (const auto& hole : holes) {
assert(!hole.empty());
cdt->AddHole(hole);
}
for (const auto& s : steiner) {
cdt->AddPoint(s);
}
/*
* STEP 3: Triangulate!
*/
cdt->Triangulate();
double dt = glfwGetTime() - init_time;
triangles = cdt->GetTriangles();
map = cdt->GetMap();
const size_t points_in_holes =
std::accumulate(holes.cbegin(), holes.cend(), size_t(0),
[](size_t cumul, const vector<Point*>& hole) { return cumul + hole.size(); });
cout << "Number of primary constrained edges = " << polyline.size() << endl;
cout << "Number of holes = " << holes.size() << endl;
cout << "Number of constrained edges in holes = " << points_in_holes << endl;
cout << "Number of Steiner points = " << steiner.size() << endl;
cout << "Total number of points = " << (polyline.size() + points_in_holes + steiner.size())
<< endl;
cout << "Number of triangles = " << triangles.size() << endl;
cout << "Is Delaunay = " << (IsDelaunay(triangles) ? "true" : "false") << endl;
cout << "Elapsed time (ms) = " << dt * 1000.0 << endl;
MainLoop(zoom);
// Cleanup
delete cdt;
FreeClear(polyline);
for (vector<Point*>& hole : holes) {
FreeClear(hole);
}
FreeClear(steiner);
ShutDown(0);
return 0;
}
bool ParseFile(string filename, vector<Point*>& out_polyline, vector<vector<Point*>>& out_holes,
vector<Point*>& out_steiner)
{
enum ParserState {
Polyline,
Hole,
Steiner,
};
ParserState state = Polyline;
vector<Point*>* hole = nullptr;
try {
string line;
ifstream myfile(filename);
if (myfile.is_open()) {
while (!myfile.eof()) {
getline(myfile, line);
if (line.empty()) {
break;
}
istringstream iss(line);
vector<string> tokens;
copy(istream_iterator<string>(iss), istream_iterator<string>(), back_inserter(tokens));
if (tokens.empty()) {
break;
} else if (tokens.size() == 1u) {
const auto token = tokens[0];
if (token == "HOLE") {
state = Hole;
out_holes.emplace_back();
hole = &out_holes.back();
} else if (token == "STEINER") {
state = Steiner;
} else {
throw runtime_error("Invalid token [" + token + "]");
}
} else {
double x = StringToDouble(tokens[0]);
double y = StringToDouble(tokens[1]);
switch (state) {
case Polyline:
out_polyline.push_back(new Point(x, y));
break;
case Hole:
assert(hole != nullptr);
hole->push_back(new Point(x, y));
break;
case Steiner:
out_steiner.push_back(new Point(x, y));
break;
default:
assert(0);
}
}
}
} else {
throw runtime_error("File not opened");
}
} catch (exception& e) {
cerr << "Error parsing file: " << e.what() << endl;
return false;
}
return true;
}
2022-04-24 17:36:35 +02:00
std::pair<Point, Point> BoundingBox(const std::vector<Point*>& polyline)
{
assert(polyline.size() > 0);
using Scalar = decltype(p2t::Point::x);
Point min(std::numeric_limits<Scalar>::max(), std::numeric_limits<Scalar>::max());
Point max(std::numeric_limits<Scalar>::min(), std::numeric_limits<Scalar>::min());
for (const Point* point : polyline) {
min.x = std::min(min.x, point->x);
min.y = std::min(min.y, point->y);
max.x = std::max(max.x, point->x);
max.y = std::max(max.y, point->y);
}
return std::make_pair(min, max);
}
void GenerateRandomPointDistribution(size_t num_points, double min, double max,
vector<Point*>& out_polyline,
vector<vector<Point*>>& out_holes, vector<Point*>& out_steiner)
{
out_polyline.push_back(new Point(min, min));
out_polyline.push_back(new Point(min, max));
out_polyline.push_back(new Point(max, max));
out_polyline.push_back(new Point(max, min));
max -= (1e-4);
min += (1e-4);
for (int i = 0; i < num_points; i++) {
double x = Random(Fun, min, max);
double y = Random(Fun, min, max);
out_steiner.push_back(new Point(x, y));
}
}
void Init(int window_width, int window_height)
{
if (glfwInit() != GL_TRUE)
ShutDown(1);
// width x height, 16 bit color, no depth, alpha or stencil buffers, windowed
2014-08-12 22:14:01 +02:00
window = glfwCreateWindow(window_width, window_height, "Poly2Tri - C++", NULL, NULL);
if (!window)
ShutDown(1);
2014-08-12 22:14:01 +02:00
glfwMakeContextCurrent(window);
glfwSwapInterval(1);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glClearColor(0.0, 0.0, 0.0, 0.0);
glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
}
void ShutDown(int return_code)
{
glfwTerminate();
exit(return_code);
}
void MainLoop(const double zoom)
{
// the time of the previous frame
double old_time = glfwGetTime();
// this just loops as long as the program runs
bool running = true;
while (running) {
2014-08-12 22:14:01 +02:00
glfwPollEvents();
// calculate time elapsed, and the amount by which stuff rotates
double current_time = glfwGetTime(),
2020-11-11 19:57:54 +01:00
delta_rotate = (current_time - old_time) * rotations_per_tick * 360.0;
old_time = current_time;
// escape to quit, arrow keys to rotate view
// Check if ESC key was pressed or window was closed
2014-08-12 22:14:01 +02:00
running = !glfwGetKey(window, GLFW_KEY_ESCAPE) && !glfwWindowShouldClose(window);
2014-08-12 22:14:01 +02:00
if (glfwGetKey(window, GLFW_KEY_LEFT) == GLFW_PRESS)
rotate_y += delta_rotate;
2014-08-12 22:14:01 +02:00
if (glfwGetKey(window, GLFW_KEY_RIGHT) == GLFW_PRESS)
rotate_y -= delta_rotate;
// z axis always rotates
rotate_z += delta_rotate;
// Draw the scene
if (draw_map) {
DrawMap(zoom);
} else {
Draw(zoom);
}
// swap back and front buffers
2014-08-12 22:14:01 +02:00
glfwSwapBuffers(window);
}
}
void ResetZoom(double zoom, double cx, double cy, double width, double height)
{
double left = -width / zoom;
double right = width / zoom;
double bottom = -height / zoom;
double top = height / zoom;
// Reset viewport
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// Reset ortho view
2020-11-11 19:57:54 +01:00
glOrtho(left, right, bottom, top, 1.0, -1.0);
glTranslated(-cx, -cy, 0.0);
glMatrixMode(GL_MODELVIEW);
glDisable(GL_DEPTH_TEST);
glLoadIdentity();
// Clear the screen
glClear(GL_COLOR_BUFFER_BIT);
}
void Draw(const double zoom)
{
// reset zoom
Point center = Point(cx, cy);
ResetZoom(zoom, center.x, center.y, (double)default_window_width, (double)default_window_height);
for (int i = 0; i < triangles.size(); i++) {
Triangle& t = *triangles[i];
Point& a = *t.GetPoint(0);
Point& b = *t.GetPoint(1);
Point& c = *t.GetPoint(2);
// Red
glColor3f(1, 0, 0);
glBegin(GL_LINE_LOOP);
2020-11-11 19:57:54 +01:00
glVertex2d(a.x, a.y);
glVertex2d(b.x, b.y);
glVertex2d(c.x, c.y);
glEnd();
}
// green
glColor3f(0, 1, 0);
vector<vector<Point*>*> polylines;
polylines.push_back(&polyline);
for (vector<Point*>& hole : holes) {
polylines.push_back(&hole);
}
for(int i = 0; i < polylines.size(); i++) {
const vector<Point*>& poly = *polylines[i];
glBegin(GL_LINE_LOOP);
for(int j = 0; j < poly.size(); j++) {
2020-11-11 19:57:54 +01:00
glVertex2d(poly[j]->x, poly[j]->y);
}
glEnd();
}
}
void DrawMap(const double zoom)
{
// reset zoom
Point center = Point(cx, cy);
ResetZoom(zoom, center.x, center.y, (double)default_window_width, (double)default_window_height);
list<Triangle*>::iterator it;
for (it = map.begin(); it != map.end(); it++) {
Triangle& t = **it;
Point& a = *t.GetPoint(0);
Point& b = *t.GetPoint(1);
Point& c = *t.GetPoint(2);
ConstrainedColor(t.constrained_edge[2]);
glBegin(GL_LINES);
2020-11-11 19:57:54 +01:00
glVertex2d(a.x, a.y);
glVertex2d(b.x, b.y);
glEnd( );
ConstrainedColor(t.constrained_edge[0]);
glBegin(GL_LINES);
2020-11-11 19:57:54 +01:00
glVertex2d(b.x, b.y);
glVertex2d(c.x, c.y);
glEnd( );
ConstrainedColor(t.constrained_edge[1]);
glBegin(GL_LINES);
2020-11-11 19:57:54 +01:00
glVertex2d(c.x, c.y);
glVertex2d(a.x, a.y);
glEnd( );
}
}
void ConstrainedColor(bool constrain)
{
if (constrain) {
// Green
glColor3f(0, 1, 0);
} else {
// Red
glColor3f(1, 0, 0);
}
}
double StringToDouble(const std::string& s)
{
std::istringstream i(s);
double x;
if (!(i >> x))
return 0;
return x;
}
double Fun(double x)
{
return 2.5 + sin(10 * x) / x;
}
double Random(double (*fun)(double), double xmin = 0, double xmax = 1)
{
static double (*Fun)(double) = NULL, YMin, YMax;
static bool First = true;
// Initialises random generator for first call
if (First)
{
First = false;
srand((unsigned) time(NULL));
}
// Evaluates maximum of function
if (fun != Fun)
{
Fun = fun;
YMin = 0, YMax = Fun(xmin);
for (int iX = 1; iX < RAND_MAX; iX++)
{
double X = xmin + (xmax - xmin) * iX / RAND_MAX;
double Y = Fun(X);
YMax = Y > YMax ? Y : YMax;
}
}
// Gets random values for X & Y
double X = xmin + (xmax - xmin) * rand() / RAND_MAX;
double Y = YMin + (YMax - YMin) * rand() / RAND_MAX;
// Returns if valid and try again if not valid
return Y < fun(X) ? X : Random(Fun, xmin, xmax);
2014-01-22 17:04:49 +01:00
}