uncrustified code

This commit is contained in:
zzzzrrr 2010-01-21 09:00:09 -05:00
parent 9202d205df
commit 732e0791e8
14 changed files with 1454 additions and 1406 deletions

View File

@ -1,4 +1,4 @@
/* /*
* Poly2Tri Copyright (c) 2009-2010, Mason Green * Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/ * http://code.google.com/p/poly2tri/
* *
@ -30,35 +30,35 @@
*/ */
#include "shapes.h" #include "shapes.h"
Triangle::Triangle(Point& a, Point& b, Point& c) { Triangle::Triangle(Point& a, Point& b, Point& c)
{
points_[0] = &a; points_[1] = &b; points_[2] = &c; points_[0] = &a; points_[1] = &b; points_[2] = &c;
neighbors_[0] = NULL; neighbors_[1] = NULL; neighbors_[2] = NULL; neighbors_[0] = NULL; neighbors_[1] = NULL; neighbors_[2] = NULL;
constrained_edge[0] = constrained_edge[1] = constrained_edge[2] = false; constrained_edge[0] = constrained_edge[1] = constrained_edge[2] = false;
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false; delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
interior_ = false; interior_ = false;
} }
// Update neighbor pointers // Update neighbor pointers
void Triangle::MarkNeighbor(Point* p1, Point* p2, Triangle* t) { void Triangle::MarkNeighbor(Point* p1, Point* p2, Triangle* t)
{
if((p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2])) if ((p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2]))
neighbors_[0] = t; neighbors_[0] = t;
else if((p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0])) else if ((p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0]))
neighbors_[1] = t; neighbors_[1] = t;
else if((p1 == points_[0] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[0])) else if ((p1 == points_[0] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[0]))
neighbors_[2] = t; neighbors_[2] = t;
else else
assert(0); assert(0);
} }
// Exhaustive search to update neighbor pointers // Exhaustive search to update neighbor pointers
void Triangle::MarkNeighbor(Triangle& t) { void Triangle::MarkNeighbor(Triangle& t)
{
if (t.Contains(points_[1], points_[2])) { if (t.Contains(points_[1], points_[2])) {
neighbors_[0] = &t; neighbors_[0] = &t;
t.MarkNeighbor(points_[1], points_[2], this); t.MarkNeighbor(points_[1], points_[2], this);
} else if(t.Contains(points_[0], points_[2])) { } else if (t.Contains(points_[0], points_[2])) {
neighbors_[1] = &t; neighbors_[1] = &t;
t.MarkNeighbor(points_[0], points_[2], this); t.MarkNeighbor(points_[0], points_[2], this);
} else if (t.Contains(points_[0], points_[1])) { } else if (t.Contains(points_[0], points_[1])) {
@ -67,39 +67,41 @@ void Triangle::MarkNeighbor(Triangle& t) {
} }
} }
void Triangle::ClearNeighbors() { void Triangle::ClearNeighbors()
{
neighbors_[0] = NULL; neighbors_[0] = NULL;
neighbors_[1] = NULL; neighbors_[1] = NULL;
neighbors_[2] = NULL; neighbors_[2] = NULL;
} }
void Triangle::ClearDelunayEdges() { void Triangle::ClearDelunayEdges()
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false; {
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
} }
Point* Triangle::OppositePoint(Triangle& t, Point& p) { Point* Triangle::OppositePoint(Triangle& t, Point& p)
{
Point *cw = t.PointCW(p); Point *cw = t.PointCW(p);
double x = cw->x; double x = cw->x;
double y = cw->y; double y = cw->y;
x = p.x; x = p.x;
y = p.y; y = p.y;
Point* ham = PointCW(*cw); Point* ham = PointCW(*cw);
return PointCW(*cw); return PointCW(*cw);
} }
// Legalized triangle by rotating clockwise around point(0) // Legalized triangle by rotating clockwise around point(0)
void Triangle::Legalize(Point& point) { void Triangle::Legalize(Point& point)
{
points_[1] = points_[0]; points_[1] = points_[0];
points_[0] = points_[2]; points_[0] = points_[2];
points_[2] = &point; points_[2] = &point;
} }
// Legalize triagnle by rotating clockwise around oPoint // Legalize triagnle by rotating clockwise around oPoint
void Triangle::Legalize(Point& opoint, Point& npoint) { void Triangle::Legalize(Point& opoint, Point& npoint)
{
if(&opoint == points_[0]) { if (&opoint == points_[0]) {
points_[1] = points_[0]; points_[1] = points_[0];
points_[0] = points_[2]; points_[0] = points_[2];
points_[2] = &npoint; points_[2] = &npoint;
@ -111,211 +113,214 @@ void Triangle::Legalize(Point& opoint, Point& npoint) {
points_[0] = points_[2]; points_[0] = points_[2];
points_[2] = points_[1]; points_[2] = points_[1];
points_[1] = &npoint; points_[1] = &npoint;
} else { } else {
assert(0); assert(0);
} }
} }
int Triangle::Index(const Point* p) { int Triangle::Index(const Point* p)
{
if(p == points_[0]) { if (p == points_[0]) {
return 0; return 0;
} else if(p == points_[1]) { } else if (p == points_[1]) {
return 1; return 1;
} else if(p == points_[2]) { } else if (p == points_[2]) {
return 2; return 2;
} }
assert(0); assert(0);
} }
int Triangle::EdgeIndex(const Point* p1, const Point* p2) { int Triangle::EdgeIndex(const Point* p1, const Point* p2)
{
if(points_[0] == p1) { if (points_[0] == p1) {
if(points_[1] == p2){ if (points_[1] == p2) {
return 2; return 2;
} else if(points_[2] == p2){ } else if (points_[2] == p2) {
return 1; return 1;
} }
} else if(points_[1] == p1) { } else if (points_[1] == p1) {
if(points_[2] == p2) { if (points_[2] == p2) {
return 0; return 0;
} else if(points_[0] == p2) { } else if (points_[0] == p2) {
return 2; return 2;
} }
} else if(points_[2] == p1) { } else if (points_[2] == p1) {
if(points_[0] == p2 ) { if (points_[0] == p2) {
return 1; return 1;
} else if(points_[1] == p2) { } else if (points_[1] == p2) {
return 0; return 0;
} }
} }
return -1; return -1;
} }
void Triangle::MarkConstrainedEdge(const int index) { void Triangle::MarkConstrainedEdge(const int index)
constrained_edge[index] = true; {
constrained_edge[index] = true;
} }
void Triangle::MarkConstrainedEdge(Edge& edge) { void Triangle::MarkConstrainedEdge(Edge& edge)
MarkConstrainedEdge(edge.p, edge.q); {
MarkConstrainedEdge(edge.p, edge.q);
} }
// Mark edge as constrained // Mark edge as constrained
void Triangle::MarkConstrainedEdge(Point* p, Point* q) { void Triangle::MarkConstrainedEdge(Point* p, Point* q)
{
if((q == points_[0] && p == points_[1] ) || (q == points_[1] && p == points_[0])) { if ((q == points_[0] && p == points_[1]) || (q == points_[1] && p == points_[0])) {
constrained_edge[2] = true; constrained_edge[2] = true;
} else if((q == points_[0] && p == points_[2] ) || (q == points_[2] && p == points_[0])) { } else if ((q == points_[0] && p == points_[2]) || (q == points_[2] && p == points_[0])) {
constrained_edge[1] = true; constrained_edge[1] = true;
} else if((q == points_[1] && p == points_[2] ) || (q == points_[2] && p == points_[1])) { } else if ((q == points_[1] && p == points_[2]) || (q == points_[2] && p == points_[1])) {
constrained_edge[0] = true; constrained_edge[0] = true;
} }
}
// The point counter-clockwise to given point
Point* Triangle::PointCW(Point& point) {
if(&point == points_[0]) {
return points_[2];
} else if(&point == points_[1]) {
return points_[0];
} else if(&point == points_[2]) {
return points_[1];
}
assert(0);
} }
// The point counter-clockwise to given point // The point counter-clockwise to given point
Point* Triangle::PointCCW(Point& point) { Point* Triangle::PointCW(Point& point)
{
if (&point == points_[0]) {
return points_[2];
} else if (&point == points_[1]) {
return points_[0];
} else if (&point == points_[2]) {
return points_[1];
}
assert(0);
}
if(&point == points_[0]) { // The point counter-clockwise to given point
return points_[1]; Point* Triangle::PointCCW(Point& point)
} else if(&point == points_[1]) { {
return points_[2]; if (&point == points_[0]) {
} else if(&point == points_[2]) { return points_[1];
return points_[0]; } else if (&point == points_[1]) {
} return points_[2];
assert(0); } else if (&point == points_[2]) {
return points_[0];
}
assert(0);
} }
// The neighbor clockwise to given point // The neighbor clockwise to given point
Triangle* Triangle::NeighborCW(Point& point) { Triangle* Triangle::NeighborCW(Point& point)
{
if(&point == points_[0]) { if (&point == points_[0]) {
return neighbors_[1]; return neighbors_[1];
} else if(&point == points_[1]) { } else if (&point == points_[1]) {
return neighbors_[2]; return neighbors_[2];
} }
return neighbors_[0]; return neighbors_[0];
} }
// The neighbor counter-clockwise to given point // The neighbor counter-clockwise to given point
Triangle* Triangle::NeighborCCW(Point& point) { Triangle* Triangle::NeighborCCW(Point& point)
{
if(&point == points_[0]) { if (&point == points_[0]) {
return neighbors_[2]; return neighbors_[2];
} else if(&point == points_[1]) { } else if (&point == points_[1]) {
return neighbors_[0]; return neighbors_[0];
} }
return neighbors_[1]; return neighbors_[1];
}
bool Triangle::GetConstrainedEdgeCCW(Point& p) {
if(&p == points_[0]) {
return constrained_edge[2];
} else if(&p == points_[1]) {
return constrained_edge[0];
}
return constrained_edge[1];
} }
bool Triangle::GetConstrainedEdgeCW(Point& p) { bool Triangle::GetConstrainedEdgeCCW(Point& p)
{
if (&p == points_[0]) {
return constrained_edge[2];
} else if (&p == points_[1]) {
return constrained_edge[0];
}
return constrained_edge[1];
}
if(&p == points_[0]) { bool Triangle::GetConstrainedEdgeCW(Point& p)
{
if (&p == points_[0]) {
return constrained_edge[1]; return constrained_edge[1];
} else if(&p == points_[1]) { } else if (&p == points_[1]) {
return constrained_edge[2]; return constrained_edge[2];
} }
return constrained_edge[0]; return constrained_edge[0];
} }
void Triangle::SetConstrainedEdgeCCW(Point& p, bool ce) { void Triangle::SetConstrainedEdgeCCW(Point& p, bool ce)
{
if(&p == points_[0]) { if (&p == points_[0]) {
constrained_edge[2] = ce; constrained_edge[2] = ce;
} else if(&p == points_[1]) { } else if (&p == points_[1]) {
constrained_edge[0] = ce; constrained_edge[0] = ce;
} else { } else {
constrained_edge[1] = ce; constrained_edge[1] = ce;
} }
} }
void Triangle::SetConstrainedEdgeCW(Point& p, bool ce) { void Triangle::SetConstrainedEdgeCW(Point& p, bool ce)
{
if(&p == points_[0]) { if (&p == points_[0]) {
constrained_edge[1] = ce; constrained_edge[1] = ce;
} else if(&p == points_[1]) { } else if (&p == points_[1]) {
constrained_edge[2] = ce; constrained_edge[2] = ce;
} else { } else {
constrained_edge[0] = ce; constrained_edge[0] = ce;
} }
}
bool Triangle::GetDelunayEdgeCCW(Point& p) {
if(&p == points_[0]){
return delaunay_edge[2];
} else if(&p == points_[1]) {
return delaunay_edge[0];
}
return delaunay_edge[1];
} }
bool Triangle::GetDelunayEdgeCW(Point& p) { bool Triangle::GetDelunayEdgeCCW(Point& p)
{
if(&p == points_[0]) { if (&p == points_[0]) {
return delaunay_edge[1]; return delaunay_edge[2];
} else if(&p == points_[1]) { } else if (&p == points_[1]) {
return delaunay_edge[2]; return delaunay_edge[0];
} }
return delaunay_edge[0]; return delaunay_edge[1];
} }
void Triangle::SetDelunayEdgeCCW(Point& p, bool e) { bool Triangle::GetDelunayEdgeCW(Point& p)
{
if(&p == points_[0]) { if (&p == points_[0]) {
delaunay_edge[2] = e; return delaunay_edge[1];
} else if(&p == points_[1]) { } else if (&p == points_[1]) {
delaunay_edge[0] = e; return delaunay_edge[2];
} else { }
delaunay_edge[1] = e; return delaunay_edge[0];
}
} }
void Triangle::SetDelunayEdgeCW(Point& p, bool e) { void Triangle::SetDelunayEdgeCCW(Point& p, bool e)
{
if (&p == points_[0]) {
delaunay_edge[2] = e;
} else if (&p == points_[1]) {
delaunay_edge[0] = e;
} else {
delaunay_edge[1] = e;
}
}
if(&p == points_[0]) { void Triangle::SetDelunayEdgeCW(Point& p, bool e)
delaunay_edge[1] = e; {
} else if(&p == points_[1]) { if (&p == points_[0]) {
delaunay_edge[2] = e; delaunay_edge[1] = e;
} else { } else if (&p == points_[1]) {
delaunay_edge[0] = e; delaunay_edge[2] = e;
} } else {
delaunay_edge[0] = e;
}
} }
// The neighbor across to given point // The neighbor across to given point
Triangle& Triangle::NeighborAcross(Point& opoint) { Triangle& Triangle::NeighborAcross(Point& opoint)
if(&opoint == points_[0]) { {
return *neighbors_[0]; if (&opoint == points_[0]) {
} else if(&opoint == points_[1]) { return *neighbors_[0];
return *neighbors_[1]; } else if (&opoint == points_[1]) {
} return *neighbors_[1];
return *neighbors_[2]; }
return *neighbors_[2];
} }
void Triangle::DebugPrint() { void Triangle::DebugPrint()
{
using namespace std; using namespace std;
cout << points_[0]->x << "," << points_[0]->y << " "; cout << points_[0]->x << "," << points_[0]->y << " ";
cout << points_[1]->x << "," << points_[1]->y << " "; cout << points_[1]->x << "," << points_[1]->y << " ";

View File

@ -1,4 +1,4 @@
/* /*
* Poly2Tri Copyright (c) 2009-2010, Mason Green * Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/ * http://code.google.com/p/poly2tri/
* *
@ -42,241 +42,271 @@
struct Node; struct Node;
struct Edge; struct Edge;
struct Point { struct Point {
double x, y; double x, y;
/// Default constructor does nothing (for performance). /// Default constructor does nothing (for performance).
Point() { x = 0.0; y = 0.0; } Point()
{
x = 0.0; y = 0.0;
}
/// The edges this point constitutes an upper ending point /// The edges this point constitutes an upper ending point
std::vector<Edge*> edge_list; std::vector<Edge*> edge_list;
/// Construct using coordinates. /// Construct using coordinates.
Point(double x, double y) : x(x), y(y) {} Point(double x, double y) : x(x), y(y)
{
}
/// Set this point to all zeros. /// Set this point to all zeros.
void set_zero() { x = 0.0f; y = 0.0f; } void set_zero()
{
x = 0.0f; y = 0.0f;
}
/// Set this point to some specified coordinates. /// Set this point to some specified coordinates.
void set(double x_, double y_) { x = x_; y = y_; } void set(double x_, double y_)
{
x = x_; y = y_;
}
/// Negate this point. /// Negate this point.
Point operator -() const { Point v; v.set(-x, -y); return v; } Point operator -() const
{
/// Add a point to this point. Point v; v.set(-x, -y); return v;
void operator += (const Point& v) { }
x += v.x; y += v.y;
} /// Add a point to this point.
void operator +=(const Point& v)
/// Subtract a point from this point. {
void operator -= (const Point& v) { x += v.x; y += v.y;
x -= v.x; y -= v.y; }
}
/// Subtract a point from this point.
void operator -=(const Point& v)
{
x -= v.x; y -= v.y;
}
/// Multiply this point by a scalar.
void operator *=(double a)
{
x *= a; y *= a;
}
/// Multiply this point by a scalar.
void operator *= (double a) {
x *= a; y *= a;
}
/// Get the length of this point (the norm). /// Get the length of this point (the norm).
double Length() const { double Length() const
{
return sqrt(x * x + y * y); return sqrt(x * x + y * y);
} }
/// Convert this point into a unit point. Returns the Length. /// Convert this point into a unit point. Returns the Length.
double Normalize() { double Normalize()
{
double len = Length(); double len = Length();
x /= len; x /= len;
y /= len; y /= len;
return len; return len;
} }
void DebugPrint() { void DebugPrint()
{
printf("%f,%f ", x, y); printf("%f,%f ", x, y);
} }
}; };
// Represents a simple polygon's edge // Represents a simple polygon's edge
struct Edge { struct Edge {
Point* p, *q; Point* p, *q;
/// Constructor /// Constructor
Edge(Point& p1, Point& p2) : p(&p1), q(&p2) { Edge(Point& p1, Point& p2) : p(&p1), q(&p2)
{
if(p1.y > p2.y) { if (p1.y > p2.y) {
q = &p1; q = &p1;
p = &p2; p = &p2;
} else if(p1.y == p2.y) { } else if (p1.y == p2.y) {
if(p1.x > p2.x) { if (p1.x > p2.x) {
q = &p1; q = &p1;
p = &p2; p = &p2;
} else if(p1.x == p2.x) { } else if (p1.x == p2.x) {
// Repeat points // Repeat points
assert(false); assert(false);
} }
} }
q->edge_list.push_back(this); q->edge_list.push_back(this);
} }
}; };
// Triangle-based data structures are know to have better performance than quad-edge structures // Triangle-based data structures are know to have better performance than quad-edge structures
// See: J. Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator" // See: J. Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
// "Triangulations in CGAL" // "Triangulations in CGAL"
class Triangle { class Triangle {
public: public:
/// Constructor /// Constructor
Triangle(Point& a, Point& b, Point& c); Triangle(Point& a, Point& b, Point& c);
/// Flags to determine if an edge is a Constrained edge /// Flags to determine if an edge is a Constrained edge
bool constrained_edge[3]; bool constrained_edge[3];
/// Flags to determine if an edge is a Delauney edge /// Flags to determine if an edge is a Delauney edge
bool delaunay_edge[3]; bool delaunay_edge[3];
Point* GetPoint(const int& index);
Point* PointCW(Point& point);
Point* PointCCW(Point& point);
Point* OppositePoint(Triangle& t, Point& p);
Triangle* GetNeighbor(const int& index);
void MarkNeighbor(Point* p1, Point* p2, Triangle* t);
void MarkNeighbor(Triangle& t);
void MarkConstrainedEdge(const int index);
void MarkConstrainedEdge(Edge& edge);
void MarkConstrainedEdge(Point* p, Point* q);
int Index(const Point* p); Point* GetPoint(const int& index);
int EdgeIndex(const Point* p1, const Point* p2); Point* PointCW(Point& point);
Point* PointCCW(Point& point);
Point* OppositePoint(Triangle& t, Point& p);
Triangle* NeighborCW(Point& point); Triangle* GetNeighbor(const int& index);
Triangle* NeighborCCW(Point& point); void MarkNeighbor(Point* p1, Point* p2, Triangle* t);
bool GetConstrainedEdgeCCW(Point& p); void MarkNeighbor(Triangle& t);
bool GetConstrainedEdgeCW(Point& p);
void SetConstrainedEdgeCCW(Point& p, bool ce); void MarkConstrainedEdge(const int index);
void SetConstrainedEdgeCW(Point& p, bool ce); void MarkConstrainedEdge(Edge& edge);
bool GetDelunayEdgeCCW(Point& p); void MarkConstrainedEdge(Point* p, Point* q);
bool GetDelunayEdgeCW(Point& p);
void SetDelunayEdgeCCW(Point& p, bool e); int Index(const Point* p);
void SetDelunayEdgeCW(Point& p, bool e); int EdgeIndex(const Point* p1, const Point* p2);
bool Contains(Point* p); Triangle* NeighborCW(Point& point);
bool Contains(const Edge& e); Triangle* NeighborCCW(Point& point);
bool Contains(Point* p, Point* q); bool GetConstrainedEdgeCCW(Point& p);
void Legalize(Point& point); bool GetConstrainedEdgeCW(Point& p);
void Legalize(Point& opoint, Point& npoint); void SetConstrainedEdgeCCW(Point& p, bool ce);
void ClearNeighbors(); void SetConstrainedEdgeCW(Point& p, bool ce);
void ClearDelunayEdges(); bool GetDelunayEdgeCCW(Point& p);
bool GetDelunayEdgeCW(Point& p);
inline bool IsInterior(); void SetDelunayEdgeCCW(Point& p, bool e);
inline void IsInterior(bool b); void SetDelunayEdgeCW(Point& p, bool e);
Triangle& NeighborAcross(Point& opoint); bool Contains(Point* p);
bool Contains(const Edge& e);
bool Contains(Point* p, Point* q);
void Legalize(Point& point);
void Legalize(Point& opoint, Point& npoint);
void ClearNeighbors();
void ClearDelunayEdges();
inline bool IsInterior();
inline void IsInterior(bool b);
Triangle& NeighborAcross(Point& opoint);
void DebugPrint();
void DebugPrint();
private: private:
/// Triangle points /// Triangle points
Point* points_[3]; Point* points_[3];
/// Neighbor list /// Neighbor list
Triangle* neighbors_[3]; Triangle* neighbors_[3];
/// Has this triangle been marked as an interior triangle? /// Has this triangle been marked as an interior triangle?
bool interior_; bool interior_;
}; };
inline bool cmp (const Point* a, const Point* b) { inline bool cmp(const Point* a, const Point* b)
{
if (a->y < b->y) { if (a->y < b->y) {
return true; return true;
} else if (a->y == b->y) { } else if (a->y == b->y) {
// Make sure q is point with greater x value // Make sure q is point with greater x value
if(a->x < b->x) { if (a->x < b->x) {
return true; return true;
} }
} }
return false; return false;
} }
/// Add two points_ component-wise. /// Add two points_ component-wise.
inline Point operator + (const Point& a, const Point& b) { inline Point operator +(const Point& a, const Point& b)
return Point(a.x + b.x, a.y + b.y); {
return Point(a.x + b.x, a.y + b.y);
} }
/// Subtract two points_ component-wise. /// Subtract two points_ component-wise.
inline Point operator - (const Point& a, const Point& b) { inline Point operator -(const Point& a, const Point& b)
return Point(a.x - b.x, a.y - b.y); {
return Point(a.x - b.x, a.y - b.y);
} }
/// Multiply point by scalar /// Multiply point by scalar
inline Point operator * (double s, const Point& a) { inline Point operator *(double s, const Point& a)
return Point(s * a.x, s * a.y); {
return Point(s * a.x, s * a.y);
} }
inline bool operator == (const Point& a, const Point& b) { inline bool operator ==(const Point& a, const Point& b)
return a.x == b.x && a.y == b.y; {
return a.x == b.x && a.y == b.y;
} }
inline bool operator != (const Point& a, const Point& b) { inline bool operator !=(const Point& a, const Point& b)
return a.x != b.x && a.y != b.y; {
return a.x != b.x && a.y != b.y;
} }
/// Peform the dot product on two vectors. /// Peform the dot product on two vectors.
inline double Dot(const Point& a, const Point& b) { inline double Dot(const Point& a, const Point& b)
return a.x * b.x + a.y * b.y; {
return a.x * b.x + a.y * b.y;
} }
/// Perform the cross product on two vectors. In 2D this produces a scalar. /// Perform the cross product on two vectors. In 2D this produces a scalar.
inline double Cross(const Point& a, const Point& b) { inline double Cross(const Point& a, const Point& b)
return a.x * b.y - a.y * b.x; {
return a.x * b.y - a.y * b.x;
} }
/// Perform the cross product on a point and a scalar. In 2D this produces /// Perform the cross product on a point and a scalar. In 2D this produces
/// a point. /// a point.
inline Point Cross(const Point& a, double s) { inline Point Cross(const Point& a, double s)
return Point(s * a.y, -s * a.x); {
return Point(s * a.y, -s * a.x);
} }
/// Perform the cross product on a scalar and a point. In 2D this produces /// Perform the cross product on a scalar and a point. In 2D this produces
/// a point. /// a point.
inline Point Cross(const double s, const Point& a) { inline Point Cross(const double s, const Point& a)
return Point(-s * a.y, s * a.x); {
return Point(-s * a.y, s * a.x);
} }
inline Point* Triangle::GetPoint(const int& index) { inline Point* Triangle::GetPoint(const int& index)
{
return points_[index]; return points_[index];
} }
inline Triangle* Triangle::GetNeighbor(const int& index) { inline Triangle* Triangle::GetNeighbor(const int& index)
{
return neighbors_[index]; return neighbors_[index];
} }
inline bool Triangle::Contains(Point* p) { inline bool Triangle::Contains(Point* p)
{
return p == points_[0] || p == points_[1] || p == points_[2]; return p == points_[0] || p == points_[1] || p == points_[2];
} }
inline bool Triangle::Contains(const Edge& e) { inline bool Triangle::Contains(const Edge& e)
{
return Contains(e.p) && Contains(e.q); return Contains(e.p) && Contains(e.q);
} }
inline bool Triangle::Contains(Point* p, Point* q) { inline bool Triangle::Contains(Point* p, Point* q)
{
return Contains(p) && Contains(q); return Contains(p) && Contains(q);
} }
inline bool Triangle::IsInterior() { inline bool Triangle::IsInterior()
{
return interior_; return interior_;
} }
inline void Triangle::IsInterior(bool b) { inline void Triangle::IsInterior(bool b)
interior_ = b; {
interior_ = b;
} }
#endif #endif

View File

@ -1,4 +1,4 @@
/* /*
* Poly2Tri Copyright (c) 2009-2010, Mason Green * Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/ * http://code.google.com/p/poly2tri/
* *
@ -35,9 +35,12 @@
#include <math.h> #include <math.h>
template<typename T, int size> template<typename T, int size>
int array_length(T(&)[size]){return size;} int array_length(T(&)[size])
{
return size;
}
const double PI_3div4 = 3*M_PI/4; const double PI_3div4 = 3 * M_PI / 4;
const double EPSILON = 1e-12; const double EPSILON = 1e-12;
enum Orientation { CW, CCW, COLLINEAR }; enum Orientation { CW, CCW, COLLINEAR };
@ -50,28 +53,27 @@ enum Orientation { CW, CCW, COLLINEAR };
* <pre> * <pre>
* A[P1,P2,P3] = (x1*y2 - y1*x2) + (x2*y3 - y2*x3) + (x3*y1 - y3*x1) * A[P1,P2,P3] = (x1*y2 - y1*x2) + (x2*y3 - y2*x3) + (x3*y1 - y3*x1)
* = (x1-x3)*(y2-y3) - (y1-y3)*(x2-x3) * = (x1-x3)*(y2-y3) - (y1-y3)*(x2-x3)
* </pre> * </pre>
*/ */
Orientation Orient2d(Point& pa, Point& pb, Point& pc ) { Orientation Orient2d(Point& pa, Point& pb, Point& pc)
{
double detleft = (pa.x - pc.x) * (pb.y - pc.y); double detleft = (pa.x - pc.x) * (pb.y - pc.y);
double detright = (pa.y - pc.y) * (pb.x - pc.x); double detright = (pa.y - pc.y) * (pb.x - pc.x);
double val = detleft - detright; double val = detleft - detright;
if( val > -EPSILON && val < EPSILON ) { if (val > -EPSILON && val < EPSILON) {
return COLLINEAR; return COLLINEAR;
} else if( val > 0 ) { } else if (val > 0) {
return CCW; return CCW;
} }
return CW; return CW;
} }
bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd) { bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd)
{
double pdx = pd.x; double pdx = pd.x;
double pdy = pd.y; double pdy = pd.y;
double adx = pa.x - pdx; double adx = pa.x - pdx;
double ady = pa.y - pdy; double ady = pa.y - pdy;
double bdx = pb.x - pdx; double bdx = pb.x - pdx;
double bdy = pb.y - pdy; double bdy = pb.y - pdy;
@ -79,7 +81,7 @@ bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd) {
double bdxady = bdx * ady; double bdxady = bdx * ady;
double oabd = adxbdy - bdxady; double oabd = adxbdy - bdxady;
if(oabd <= EPSILON) { if (oabd <= EPSILON) {
return false; return false;
} }
@ -90,12 +92,11 @@ bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd) {
double adxcdy = adx * cdy; double adxcdy = adx * cdy;
double ocad = cdxady - adxcdy; double ocad = cdxady - adxcdy;
if(ocad <= EPSILON) { if (ocad <= EPSILON) {
return false; return false;
} }
return true; return true;
} }
#endif #endif

View File

@ -1,4 +1,4 @@
/* /*
* Poly2Tri Copyright (c) 2009-2010, Mason Green * Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/ * http://code.google.com/p/poly2tri/
* *
@ -30,75 +30,78 @@
*/ */
#include "advancing_front.h" #include "advancing_front.h"
AdvancingFront::AdvancingFront() { AdvancingFront::AdvancingFront()
{
head_ = tail_ = search_node_ = NULL; head_ = tail_ = search_node_ = NULL;
} }
Node* AdvancingFront::Locate(const double& x) { Node* AdvancingFront::Locate(const double& x)
{
Node* node = search_node_; Node* node = search_node_;
if(x < node->value) { if (x < node->value) {
//printf("<: - %f,%f - %p\n", x, node->value, node->next); //printf("<: - %f,%f - %p\n", x, node->value, node->next);
while((node = node->prev) != NULL) { while ((node = node->prev) != NULL) {
if(x >= node->value) { if (x >= node->value) {
search_node_ = node; search_node_ = node;
return node; return node;
} }
} }
} else { } else {
//printf("%p - %p\n", node, node->next); //printf("%p - %p\n", node, node->next);
//printf(">: %f - %f\n", x, node->value); //printf(">: %f - %f\n", x, node->value);
while((node = node->next) != NULL) { while ((node = node->next) != NULL) {
if(x < node->value) { if (x < node->value) {
search_node_ = node->prev; search_node_ = node->prev;
return node->prev; return node->prev;
} }
} }
} }
return NULL; return NULL;
} }
Node* AdvancingFront::FindSearchNode(const double& x) { Node* AdvancingFront::FindSearchNode(const double& x)
// TODO: implement BST index {
return search_node_; // TODO: implement BST index
return search_node_;
} }
Node* AdvancingFront::LocatePoint(Point* point) {
const double px = point->x; Node* AdvancingFront::LocatePoint(Point* point)
Node* node = FindSearchNode(px); {
const double nx = node->point->x; const double px = point->x;
Node* node = FindSearchNode(px);
if(px == nx) { const double nx = node->point->x;
if(point != node->point) {
// We might have two nodes with same x value for a short time if (px == nx) {
if(point == node->prev->point) { if (point != node->point) {
node = node->prev; // We might have two nodes with same x value for a short time
} else if(point == node->next->point) { if (point == node->prev->point) {
node = node->next; node = node->prev;
} else { } else if (point == node->next->point) {
assert(0); node = node->next;
} } else {
} assert(0);
} else if(px < nx) { }
while((node = node->prev) != NULL) { }
if(point == node->point) { } else if (px < nx) {
break; while ((node = node->prev) != NULL) {
} if (point == node->point) {
} break;
} else { }
while((node = node->next) != NULL) { }
if(point == node->point) } else {
break; while ((node = node->next) != NULL) {
} if (point == node->point)
} break;
if(node) search_node_ = node; }
return node; }
if (node) search_node_ = node;
return node;
} }
AdvancingFront::~AdvancingFront() { AdvancingFront::~AdvancingFront()
delete head_; {
delete search_node_; delete head_;
delete search_node_;
delete tail_; delete tail_;
} }

View File

@ -1,4 +1,4 @@
/* /*
* Poly2Tri Copyright (c) 2009-2010, Mason Green * Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/ * http://code.google.com/p/poly2tri/
* *
@ -34,66 +34,84 @@ struct Node;
// Advancing front node // Advancing front node
struct Node { struct Node {
Point* point; Point* point;
Triangle* triangle; Triangle* triangle;
Node* next; Node* next;
Node* prev; Node* prev;
double value;
Node(Point& p) : point(&p), triangle(NULL), value(p.x), next(NULL), prev(NULL) {}
Node(Point& p, Triangle& t) : point(&p), triangle(&t), value(p.x), double value;
next(NULL), prev(NULL) {}
Node(Point& p) : point(&p), triangle(NULL), value(p.x), next(NULL), prev(NULL)
/* {
~Node() {
printf("going... ");
printf("bye node");
printf(" ... gone!\n");
} }
*/
Node(Point& p, Triangle& t) : point(&p), triangle(&t), value(p.x),
next(NULL), prev(NULL)
{
}
/*
~Node() {
printf("going... ");
printf("bye node");
printf(" ... gone!\n");
}
*/
}; };
// Advancing front // Advancing front
class AdvancingFront { class AdvancingFront {
public: public:
AdvancingFront(); AdvancingFront();
// Destructor // Destructor
~AdvancingFront(); ~AdvancingFront();
Node* head(); Node* head();
void set_head(Node* node); void set_head(Node* node);
Node* tail(); Node* tail();
void set_tail(Node* node); void set_tail(Node* node);
Node* search(); Node* search();
void set_search(Node* node); void set_search(Node* node);
/// Locate insertion point along advancing front /// Locate insertion point along advancing front
Node* Locate(const double& x); Node* Locate(const double& x);
Node* LocatePoint(Point* point); Node* LocatePoint(Point* point);
private: private:
Node* head_, *tail_, *search_node_; Node* head_, *tail_, *search_node_;
Node* FindSearchNode(const double& x); Node* FindSearchNode(const double& x);
}; };
inline Node* AdvancingFront::head() { return head_; } inline Node* AdvancingFront::head()
inline void AdvancingFront::set_head(Node* node) { head_ = node; } {
return head_;
}
inline void AdvancingFront::set_head(Node* node)
{
head_ = node;
}
inline Node* AdvancingFront::tail() { return tail_; } inline Node* AdvancingFront::tail()
inline void AdvancingFront::set_tail(Node* node) { tail_ = node; } {
return tail_;
}
inline void AdvancingFront::set_tail(Node* node)
{
tail_ = node;
}
inline Node* AdvancingFront::search() { return search_node_; } inline Node* AdvancingFront::search()
{
return search_node_;
}
inline void AdvancingFront::set_search(Node* node) { search_node_ = node; } inline void AdvancingFront::set_search(Node* node)
{
search_node_ = node;
}

View File

@ -1,4 +1,4 @@
/* /*
* Poly2Tri Copyright (c) 2009-2010, Mason Green * Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/ * http://code.google.com/p/poly2tri/
* *
@ -30,29 +30,34 @@
*/ */
#include "cdt.h" #include "cdt.h"
CDT::CDT(Point** polyline, const int& point_count) { CDT::CDT(Point** polyline, const int& point_count)
sweep_context_ = new SweepContext(polyline, point_count); {
sweep_ = new Sweep; sweep_context_ = new SweepContext(polyline, point_count);
sweep_ = new Sweep;
} }
void CDT::AddHole(const Point poly_line[], const int point_count) { void CDT::AddHole(const Point poly_line[], const int point_count)
{
} }
void CDT::Triangulate() { void CDT::Triangulate()
sweep_->Triangulate(*sweep_context_); {
sweep_->Triangulate(*sweep_context_);
} }
std::vector<Triangle*> CDT::GetTriangles() { std::vector<Triangle*> CDT::GetTriangles()
{
return sweep_context_->GetTriangles(); return sweep_context_->GetTriangles();
} }
std::list<Triangle*> CDT::GetMap() { std::list<Triangle*> CDT::GetMap()
{
return sweep_context_->GetMap(); return sweep_context_->GetMap();
} }
CDT::~CDT() { CDT::~CDT()
delete sweep_context_; {
delete sweep_; delete sweep_context_;
delete sweep_;
} }

View File

@ -1,4 +1,4 @@
/* /*
* Poly2Tri Copyright (c) 2009-2010, Mason Green * Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/ * http://code.google.com/p/poly2tri/
* *
@ -33,28 +33,26 @@
#include "sweep_context.h" #include "sweep_context.h"
#include "sweep.h" #include "sweep.h"
class CDT class CDT
{ {
public: public:
/// Constructor /// Constructor
CDT(Point** poly_line, const int& point_count); CDT(Point** poly_line, const int& point_count);
/// Add a hole /// Add a hole
void AddHole(const Point poly_line[], const int point_count); void AddHole(const Point poly_line[], const int point_count);
/// Triangulate points /// Triangulate points
void Triangulate(); void Triangulate();
/// Get Delaunay triangles /// Get Delaunay triangles
std::vector<Triangle*> GetTriangles(); std::vector<Triangle*> GetTriangles();
/// Get triangle map /// Get triangle map
std::list<Triangle*> CDT::GetMap(); std::list<Triangle*> CDT::GetMap();
private: private:
SweepContext* sweep_context_; SweepContext* sweep_context_;
Sweep* sweep_; Sweep* sweep_;
/// Destructor /// Destructor
~CDT(); ~CDT();
}; };

View File

@ -1,4 +1,4 @@
/* /*
* Poly2Tri Copyright (c) 2009-2010, Mason Green * Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/ * http://code.google.com/p/poly2tri/
* *
@ -34,16 +34,16 @@
// Excludes exterior triangles outside constrained edges // Excludes exterior triangles outside constrained edges
// Depth first search // Depth first search
void Mesh::clean(Triangle& triangle) void Mesh::clean(Triangle& triangle)
{ {
/* /*
if(triangle != NULL && !triangle.interior) if(triangle != NULL && !triangle.interior)
{ {
triangle.interior = true; triangle.interior = true;
triangles += triangle; triangles += triangle;
for(i <- 0 until 3) for(i <- 0 until 3)
if(!triangle.edges(i)) if(!triangle.edges(i))
clean(triangle.neighbors(i)); clean(triangle.neighbors(i));
} }
*/ */
} }

View File

@ -1,4 +1,4 @@
/* /*
* Poly2Tri Copyright (c) 2009-2010, Mason Green * Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/ * http://code.google.com/p/poly2tri/
* *
@ -33,18 +33,16 @@ using namespace std;
class Triangle; class Triangle;
class Mesh class Mesh
{ {
public: public:
/// Triangles that constitute the mesh /// Triangles that constitute the mesh
vector<Triangle> map; vector<Triangle> map;
// Debug triangles // Debug triangles
//val debug = new ArrayBuffer[Triangle] //val debug = new ArrayBuffer[Triangle]
//val triangles = new ArrayBuffer[Triangle] //val triangles = new ArrayBuffer[Triangle]
void clean(Triangle& triangle); void clean(Triangle& triangle);
}; };

File diff suppressed because it is too large Load Diff

View File

@ -1,4 +1,4 @@
/* /*
* Poly2Tri Copyright (c) 2009-2010, Mason Green * Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/ * http://code.google.com/p/poly2tri/
* *
@ -33,8 +33,8 @@
* Sweep-line, Constrained Delauney Triangulation (CDT) See: Domiter, V. and * Sweep-line, Constrained Delauney Triangulation (CDT) See: Domiter, V. and
* Zalik, B.(2008)'Sweep-line algorithm for constrained Delaunay triangulation', * Zalik, B.(2008)'Sweep-line algorithm for constrained Delaunay triangulation',
* International Journal of Geographical Information Science * International Journal of Geographical Information Science
* *
* "FlipScan" Constrained Edge Algorithm invented by Thomas Åhlén, thahlen@gmail.com * "FlipScan" Constrained Edge Algorithm invented by Thomas Åhlén, thahlen@gmail.com
*/ */
class SweepContext; class SweepContext;
@ -44,71 +44,69 @@ struct Edge;
class Triangle; class Triangle;
class Sweep { class Sweep {
public: public:
void Triangulate(SweepContext& tcx); void Triangulate(SweepContext& tcx);
private: private:
void SweepPoints(SweepContext& tcx);
Node& PointEvent(SweepContext& tcx, Point& point);
void EdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point);
Node& NewFrontTriangle(SweepContext& tcx, Point& point, Node& node); void SweepPoints(SweepContext& tcx);
void Fill(SweepContext& tcx, Node& node);
bool Legalize(SweepContext& tcx, Triangle& t);
bool Incircle(Point& pa, Point& pb, Point& pc, Point& pd);
void RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op); Node& PointEvent(SweepContext& tcx, Point& point);
void FillAdvancingFront(SweepContext& tcx, Node& n);
double HoleAngle(Node& node);
double BasinAngle(Node& node);
void FillBasin(SweepContext& tcx, Node& node);
void FillBasinReq(SweepContext& tcx, Node& node);
bool IsShallow(SweepContext& tcx, Node& node);
bool IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq);
void FillEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node); void EdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node); void EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point);
void FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node); Node& NewFrontTriangle(SweepContext& tcx, Point& point, Node& node);
void FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node); void Fill(SweepContext& tcx, Node& node);
void FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node); bool Legalize(SweepContext& tcx, Triangle& t);
void FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node); bool Incircle(Point& pa, Point& pb, Point& pc, Point& pd);
void FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& t, Point& p);
Triangle& NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op);
Point& NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op );
void FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle, Triangle& t, Point& p);
void FinalizationPolygon(SweepContext& tcx); void RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op);
void FillAdvancingFront(SweepContext& tcx, Node& n);
double HoleAngle(Node& node);
double BasinAngle(Node& node);
void FillBasin(SweepContext& tcx, Node& node);
void FillBasinReq(SweepContext& tcx, Node& node);
bool IsShallow(SweepContext& tcx, Node& node);
bool IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq);
void FillEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& t, Point& p);
Triangle& NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op);
Point& NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op);
void FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle, Triangle& t, Point& p);
void FinalizationPolygon(SweepContext& tcx);
}; };

View File

@ -4,157 +4,162 @@
#include <GL/glfw.h> #include <GL/glfw.h>
#include "advancing_front.h" #include "advancing_front.h"
SweepContext::SweepContext(Point** polyline, const int& point_count) { SweepContext::SweepContext(Point** polyline, const int& point_count)
{
basin = Basin(); basin = Basin();
edge_event = EdgeEvent(); edge_event = EdgeEvent();
points_ = polyline; points_ = polyline;
point_count_ = point_count; point_count_ = point_count;
InitEdges(points_, point_count_); InitEdges(points_, point_count_);
InitTriangulation(); InitTriangulation();
} }
std::vector<Triangle*> SweepContext::GetTriangles() { std::vector<Triangle*> SweepContext::GetTriangles()
{
return triangles_; return triangles_;
} }
std::list<Triangle*> SweepContext::GetMap() { std::list<Triangle*> SweepContext::GetMap()
{
return map_; return map_;
} }
void SweepContext::InitTriangulation() { void SweepContext::InitTriangulation()
{
double xmax(points_[0]->x), xmin(points_[0]->x); double xmax(points_[0]->x), xmin(points_[0]->x);
double ymax(points_[0]->y), ymin(points_[0]->y); double ymax(points_[0]->y), ymin(points_[0]->y);
// Calculate bounds. // Calculate bounds.
for(int i = 0; i < point_count_; i++) { for (int i = 0; i < point_count_; i++) {
Point p = *points_[i]; Point p = *points_[i];
if(p.x > xmax) if (p.x > xmax)
xmax = p.x; xmax = p.x;
if(p.x < xmin) if (p.x < xmin)
xmin = p.x; xmin = p.x;
if(p.y > ymax) if (p.y > ymax)
ymax = p.y; ymax = p.y;
if(p.y < ymin) if (p.y < ymin)
ymin = p.y; ymin = p.y;
} }
double dx = kAlpha * ( xmax - xmin ); double dx = kAlpha * (xmax - xmin);
double dy = kAlpha * ( ymax - ymin ); double dy = kAlpha * (ymax - ymin);
head_ = new Point(xmax + dx, ymin - dy); head_ = new Point(xmax + dx, ymin - dy);
tail_ = new Point(xmin - dx, ymin - dy); tail_ = new Point(xmin - dx, ymin - dy);
// Sort points along y-axis // Sort points along y-axis
double init_time = glfwGetTime(); double init_time = glfwGetTime();
std::sort(points_, points_ + point_count_, cmp); std::sort(points_, points_ + point_count_, cmp);
double dt = glfwGetTime() - init_time; double dt = glfwGetTime() - init_time;
printf("Sort time (secs) = %f\n", dt); printf("Sort time (secs) = %f\n", dt);
/*
printf("*************************\n"); printf("*************************\n");
for(int i = 0; i < point_count_; i++) { for (int i = 0; i < point_count_; i++) {
printf("%f,%f ", points_[i]->x, points_[i]->y); printf("%f,%f ", points_[i]->x, points_[i]->y);
printf("%p\n", points_[i]); printf("%p\n", points_[i]);
} }
printf("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"); /*
for(int i = 0; i < edge_list.size(); i++) { printf("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
edge_list[i]->p->DebugPrint(); edge_list[i]->q->DebugPrint(); for(int i = 0; i < edge_list.size(); i++) {
printf("%p, %p\n", edge_list[i]->p, edge_list[i]->q); edge_list[i]->p->DebugPrint(); edge_list[i]->q->DebugPrint();
} printf("%p, %p\n", edge_list[i]->p, edge_list[i]->q);
*/ }
*/
} }
void SweepContext::InitEdges(Point** polyline, const int& point_count) { void SweepContext::InitEdges(Point** polyline, const int& point_count)
{
for(int i = 0; i < point_count; i++) { for (int i = 0; i < point_count; i++) {
int j = i < point_count - 1 ? i + 1 : 0; int j = i < point_count - 1 ? i + 1 : 0;
edge_list.push_back(new Edge(*polyline[i], *polyline[j])); edge_list.push_back(new Edge(*polyline[i], *polyline[j]));
} }
/* /*
for(int i = 0; i < edge_list.size(); i++) { for(int i = 0; i < edge_list.size(); i++) {
edge_list[i]->p->DebugPrint(); edge_list[i]->q->DebugPrint(); edge_list[i]->p->DebugPrint(); edge_list[i]->q->DebugPrint();
printf("%p, %p\n", edge_list[i]->p, edge_list[i]->q); printf("%p, %p\n", edge_list[i]->p, edge_list[i]->q);
} }
*/ */
}
Point* SweepContext::GetPoint(const int& index) {
return points_[index];
} }
void SweepContext::AddToMap(Triangle* triangle ) { Point* SweepContext::GetPoint(const int& index)
{
return points_[index];
}
void SweepContext::AddToMap(Triangle* triangle)
{
map_.push_back(triangle); map_.push_back(triangle);
} }
Node& SweepContext::LocateNode(Point& point) { Node& SweepContext::LocateNode(Point& point)
// TODO implement search tree {
return *front_->Locate(point.x); // TODO implement search tree
return *front_->Locate(point.x);
} }
void SweepContext::CreateAdvancingFront() { void SweepContext::CreateAdvancingFront()
{
// Initial triangle // Initial triangle
Triangle* triangle = new Triangle(*points_[0], *tail_, *head_); Triangle* triangle = new Triangle(*points_[0], *tail_, *head_);
map_.push_back(triangle); map_.push_back(triangle);
front_ = new AdvancingFront; front_ = new AdvancingFront;
front_->set_head(new Node(*triangle->GetPoint(1))); front_->set_head(new Node(*triangle->GetPoint(1)));
front_->head()->triangle = triangle; front_->head()->triangle = triangle;
Node* middle = new Node(*triangle->GetPoint(0)); Node* middle = new Node(*triangle->GetPoint(0));
middle->triangle = triangle; middle->triangle = triangle;
front_->set_tail(new Node(*triangle->GetPoint(2))); front_->set_tail(new Node(*triangle->GetPoint(2)));
front_->set_search(middle); front_->set_search(middle);
// TODO: More intuitive if head is middles next and not previous? // TODO: More intuitive if head is middles next and not previous?
// so swap head and tail // so swap head and tail
front_->head()->next = middle; front_->head()->next = middle;
middle->next = front_->tail(); middle->next = front_->tail();
middle->prev = front_->head(); middle->prev = front_->head();
front_->tail()->prev = middle; front_->tail()->prev = middle;
} }
void SweepContext::RemoveNode(Node* node) { void SweepContext::RemoveNode(Node* node)
delete node; {
delete node;
} }
void SweepContext::MapTriangleToNodes(Triangle& t) { void SweepContext::MapTriangleToNodes(Triangle& t)
for(int i=0; i<3; i++) { {
if(t.GetNeighbor(i) == NULL) { for (int i = 0; i < 3; i++) {
if (t.GetNeighbor(i) == NULL) {
Node* n = front_->LocatePoint(t.PointCW(*t.GetPoint(i))); Node* n = front_->LocatePoint(t.PointCW(*t.GetPoint(i)));
if(n) if (n)
n->triangle = &t; n->triangle = &t;
}
}
}
void SweepContext::RemoveFromMap(Triangle* triangle) {
map_.remove(triangle);
}
void SweepContext::MeshClean(Triangle& triangle ) {
if(&triangle != NULL && !triangle.IsInterior()) {
triangle.IsInterior(true);
triangles_.push_back(&triangle);
for(int i = 0; i < 3; i++) {
if(!triangle.constrained_edge[i])
MeshClean(*triangle.GetNeighbor(i));
} }
} }
} }
SweepContext::~SweepContext() { void SweepContext::RemoveFromMap(Triangle* triangle)
{
map_.remove(triangle);
}
void SweepContext::MeshClean(Triangle& triangle)
{
if (&triangle != NULL && !triangle.IsInterior()) {
triangle.IsInterior(true);
triangles_.push_back(&triangle);
for (int i = 0; i < 3; i++) {
if (!triangle.constrained_edge[i])
MeshClean(*triangle.GetNeighbor(i));
}
}
}
SweepContext::~SweepContext()
{
delete head_; delete head_;
delete tail_; delete tail_;
delete front_; delete front_;

View File

@ -31,7 +31,7 @@
#include <list> #include <list>
#include <vector> #include <vector>
// Inital triangle factor, seed triangle will extend 30% of // Inital triangle factor, seed triangle will extend 30% of
// PointSet width to both left and right. // PointSet width to both left and right.
const double kAlpha = 0.3; const double kAlpha = 0.3;
@ -41,124 +41,141 @@ struct Node;
struct Edge; struct Edge;
class AdvancingFront; class AdvancingFront;
class SweepContext {
class SweepContext {
public: public:
// Constructor // Constructor
SweepContext(Point** polyline, const int& point_count); SweepContext(Point** polyline, const int& point_count);
// Destructor // Destructor
~SweepContext(); ~SweepContext();
//void MeshClean(Triangle& triangle);
// Get Advancing Front
//AdvancingFront front();
void set_head(Point* p1);
Point* head();
void set_tail(Point* p1 ); //void MeshClean(Triangle& triangle);
Point* tail(); // Get Advancing Front
//AdvancingFront front();
int point_count();
Node& LocateNode(Point& point);
void RemoveNode(Node* node);
void CreateAdvancingFront();
// Try to map a node to all sides of this triangle that don't have a neighbor
void MapTriangleToNodes(Triangle& t);
void AddToMap(Triangle* triangle);
Point* GetPoint(const int& index);
Point* GetPoints();
void RemoveFromMap(Triangle* triangle);
AdvancingFront* front();
void MeshClean(Triangle& triangle);
std::vector<Triangle*> GetTriangles();
std::list<Triangle*> GetMap();
std::vector<Edge*> edge_list;
struct Basin {
Node* left_node;
Node* bottom_node;
Node* right_node;
double width;
bool left_highest;
Basin() : left_node(NULL), bottom_node(NULL), right_node(NULL),
width(0.0), left_highest(false) {}
void Clear() {
left_node = NULL;
bottom_node = NULL;
right_node = NULL;
width = 0.0;
left_highest = false;
}
};
struct EdgeEvent {
Edge* constrained_edge;
bool right;
EdgeEvent() : constrained_edge(NULL), right(false) {}
};
Basin basin;
EdgeEvent edge_event;
private:
std::vector<Triangle*> triangles_; void set_head(Point* p1);
std::list<Triangle*> map_; Point* head();
Point** points_; void set_tail(Point* p1);
int point_count_; Point* tail();
// Advancing front int point_count();
AdvancingFront* front_;
// head point used with advancing front Node& LocateNode(Point& point);
Point* head_; void RemoveNode(Node* node);
// tail point used with advancing front
Point* tail_; void CreateAdvancingFront();
//EdgeEvent edgeEvent = new EdgeEvent(); // Try to map a node to all sides of this triangle that don't have a neighbor
void MapTriangleToNodes(Triangle& t);
void InitTriangulation();
void InitEdges(Point** polyline, const int& point_count); void AddToMap(Triangle* triangle);
//void MeshCleanReq(Triangle& triangle ) Point* GetPoint(const int& index);
Point* GetPoints();
/*
class EdgeEvent { void RemoveFromMap(Triangle* triangle);
Edge* constrainedEdge;
bool right; AdvancingFront* front();
};
*/ void MeshClean(Triangle& triangle);
std::vector<Triangle*> GetTriangles();
std::list<Triangle*> GetMap();
std::vector<Edge*> edge_list;
struct Basin {
Node* left_node;
Node* bottom_node;
Node* right_node;
double width;
bool left_highest;
Basin() : left_node(NULL), bottom_node(NULL), right_node(NULL),
width(0.0), left_highest(false)
{
}
void Clear()
{
left_node = NULL;
bottom_node = NULL;
right_node = NULL;
width = 0.0;
left_highest = false;
}
}; };
inline AdvancingFront* SweepContext::front() { return front_; } struct EdgeEvent {
Edge* constrained_edge;
bool right;
inline int SweepContext::point_count() { return point_count_; } EdgeEvent() : constrained_edge(NULL), right(false)
{
}
};
inline void SweepContext::set_head(Point* p1) { head_ = p1; } Basin basin;
EdgeEvent edge_event;
inline Point* SweepContext::head() { return head_; } private:
inline void SweepContext::set_tail(Point* p1) { tail_ = p1; } std::vector<Triangle*> triangles_;
std::list<Triangle*> map_;
inline Point* SweepContext::tail() { return tail_; } Point** points_;
int point_count_;
// Advancing front
AdvancingFront* front_;
// head point used with advancing front
Point* head_;
// tail point used with advancing front
Point* tail_;
//EdgeEvent edgeEvent = new EdgeEvent();
void InitTriangulation();
void InitEdges(Point** polyline, const int& point_count);
//void MeshCleanReq(Triangle& triangle )
/*
class EdgeEvent {
Edge* constrainedEdge;
bool right;
};
*/
};
inline AdvancingFront* SweepContext::front()
{
return front_;
}
inline int SweepContext::point_count()
{
return point_count_;
}
inline void SweepContext::set_head(Point* p1)
{
head_ = p1;
}
inline Point* SweepContext::head()
{
return head_;
}
inline void SweepContext::set_tail(Point* p1)
{
tail_ = p1;
}
inline Point* SweepContext::tail()
{
return tail_;
}

View File

@ -1,4 +1,4 @@
/* /*
* Poly2Tri Copyright (c) 2009-2010, Mason Green * Poly2Tri Copyright (c) 2009-2010, Mason Green
* http://code.google.com/p/poly2tri/ * http://code.google.com/p/poly2tri/
* *
@ -58,50 +58,51 @@ vector<Triangle*> triangles;
/// Triangle map /// Triangle map
list<Triangle*> map; list<Triangle*> map;
double StringToDouble(const std::string& s) { double StringToDouble(const std::string& s)
{
std::istringstream i(s); std::istringstream i(s);
double x; double x;
if (!(i >> x)) if (!(i >> x))
return 0; return 0;
return x; return x;
} }
bool draw_map = true; bool draw_map = true;
int main(int argc, char* argv[]) { int main(int argc, char* argv[])
{
if (argc != 3) { if (argc != 3) {
cout << "Usage: p2t filename zoom" << endl; cout << "Usage: p2t filename zoom" << endl;
return 1; return 1;
} }
/* /*
// initialize random seed: // initialize random seed:
srand ( time(NULL) ); srand ( time(NULL) );
int a = 0; int a = 0;
int b = 2000; int b = 2000;
for(int i = 0; i < num_points; i++) { for(int i = 0; i < num_points; i++) {
double x = rand() % (b - a - 1) + a + 1; double x = rand() % (b - a - 1) + a + 1;
double y = rand() % (b - a - 1) + a + 1; double y = rand() % (b - a - 1) + a + 1;
polyline[i] = Point(x, y); polyline[i] = Point(x, y);
} }
*/ */
string line; string line;
ifstream myfile (argv[1]); ifstream myfile(argv[1]);
vector<Point*> points; vector<Point*> points;
if (myfile.is_open()) { if (myfile.is_open()) {
while (!myfile.eof()) { while (!myfile.eof()) {
getline (myfile,line); getline(myfile, line);
if(line.size() == 0) { if (line.size() == 0) {
break; break;
} }
istringstream iss(line); istringstream iss(line);
vector<string> tokens; vector<string> tokens;
copy(istream_iterator<string>(iss), istream_iterator<string>(), copy(istream_iterator<string>(iss), istream_iterator<string>(),
back_inserter<vector<string> >(tokens)); back_inserter<vector<string> >(tokens));
double x = StringToDouble(tokens[0]); double x = StringToDouble(tokens[0]);
double y = StringToDouble(tokens[1]); double y = StringToDouble(tokens[1]);
@ -111,187 +112,179 @@ int main(int argc, char* argv[]) {
} else { } else {
cout << "File not opened" << endl; cout << "File not opened" << endl;
} }
int num_points = points.size(); int num_points = points.size();
cout << "Number of points = " << num_points << endl; cout << "Number of points = " << num_points << endl;
Point** polyline = new Point *[num_points]; Point** polyline = new Point *[num_points];
for(int i = 0; i < num_points; i++) { for (int i = 0; i < num_points; i++) {
polyline[i] = points[i]; polyline[i] = points[i];
} }
Init(); Init();
// Perform triangulation // Perform triangulation
double init_time = glfwGetTime(); double init_time = glfwGetTime();
CDT * cdt = new CDT(polyline, num_points); CDT * cdt = new CDT(polyline, num_points);
cdt->Triangulate(); cdt->Triangulate();
double dt = glfwGetTime() - init_time; double dt = glfwGetTime() - init_time;
cout << "Elapsed time (secs) = " << dt << endl; cout << "Elapsed time (secs) = " << dt << endl;
triangles = cdt->GetTriangles(); triangles = cdt->GetTriangles();
map = cdt->GetMap(); map = cdt->GetMap();
MainLoop(atof(argv[2])); MainLoop(atof(argv[2]));
delete [] polyline; delete [] polyline;
ShutDown(0); ShutDown(0);
return 0; return 0;
} }
void Init() void Init()
{ {
const int window_width = 800, const int window_width = 800,
window_height = 600; window_height = 600;
if (glfwInit() != GL_TRUE) if (glfwInit() != GL_TRUE)
ShutDown(1); ShutDown(1);
// 800 x 600, 16 bit color, no depth, alpha or stencil buffers, windowed // 800 x 600, 16 bit color, no depth, alpha or stencil buffers, windowed
if (glfwOpenWindow(window_width, window_height, 5, 6, 5, 0, 0, 0, GLFW_WINDOW) != GL_TRUE) if (glfwOpenWindow(window_width, window_height, 5, 6, 5, 0, 0, 0, GLFW_WINDOW) != GL_TRUE)
ShutDown(1); ShutDown(1);
glfwSetWindowTitle("Poly2Tri - C++"); glfwSetWindowTitle("Poly2Tri - C++");
glEnable(GL_BLEND); glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glClearColor(0.0, 0.0, 0.0, 0.0); glClearColor(0.0, 0.0, 0.0, 0.0);
glHint (GL_LINE_SMOOTH_HINT, GL_NICEST); glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
} }
void ShutDown(int return_code) void ShutDown(int return_code)
{ {
glfwTerminate(); glfwTerminate();
exit(return_code); exit(return_code);
} }
void MainLoop(const double zoom) void MainLoop(const double zoom)
{ {
// the time of the previous frame // the time of the previous frame
double old_time = glfwGetTime(); double old_time = glfwGetTime();
// this just loops as long as the program runs // this just loops as long as the program runs
bool running = true; bool running = true;
while(running) while (running) {
{
// calculate time elapsed, and the amount by which stuff rotates // calculate time elapsed, and the amount by which stuff rotates
double current_time = glfwGetTime(), double current_time = glfwGetTime(),
delta_rotate = (current_time - old_time) * rotations_per_tick * 360; delta_rotate = (current_time - old_time) * rotations_per_tick * 360;
old_time = current_time; old_time = current_time;
// escape to quit, arrow keys to rotate view // escape to quit, arrow keys to rotate view
// Check if ESC key was pressed or window was closed // Check if ESC key was pressed or window was closed
running = !glfwGetKey( GLFW_KEY_ESC ) && glfwGetWindowParam( GLFW_OPENED ); running = !glfwGetKey(GLFW_KEY_ESC) && glfwGetWindowParam(GLFW_OPENED);
if (glfwGetKey(GLFW_KEY_LEFT) == GLFW_PRESS) if (glfwGetKey(GLFW_KEY_LEFT) == GLFW_PRESS)
rotate_y += delta_rotate; rotate_y += delta_rotate;
if (glfwGetKey(GLFW_KEY_RIGHT) == GLFW_PRESS) if (glfwGetKey(GLFW_KEY_RIGHT) == GLFW_PRESS)
rotate_y -= delta_rotate; rotate_y -= delta_rotate;
// z axis always rotates // z axis always rotates
rotate_z += delta_rotate; rotate_z += delta_rotate;
// Draw the scene // Draw the scene
if(draw_map) { if (draw_map) {
DrawMap(zoom); DrawMap(zoom);
} else { } else {
Draw(zoom); Draw(zoom);
} }
// swap back and front buffers // swap back and front buffers
glfwSwapBuffers(); glfwSwapBuffers();
} }
} }
void ResetZoom(double zoom, double cx, double cy, double width, double height) { void ResetZoom(double zoom, double cx, double cy, double width, double height)
{
double left = -width / zoom;
double right = width / zoom;
double bottom = -height / zoom;
double top = height / zoom;
double left = -width / zoom; // Reset viewport
double right = width / zoom; glLoadIdentity();
double bottom = -height / zoom; glMatrixMode(GL_PROJECTION);
double top = height / zoom; glLoadIdentity();
// Reset viewport // Reset ortho view
glLoadIdentity(); glOrtho(left, right, bottom, top, 1, -1);
glMatrixMode(GL_PROJECTION); glTranslatef(-cx, -cy, 0);
glLoadIdentity(); glMatrixMode(GL_MODELVIEW);
glDisable(GL_DEPTH_TEST);
// Reset ortho view glLoadIdentity();
glOrtho(left, right, bottom, top, 1, -1);
glTranslatef(-cx, -cy, 0); // Clear the screen
glMatrixMode(GL_MODELVIEW); glClear(GL_COLOR_BUFFER_BIT);
glDisable(GL_DEPTH_TEST);
glLoadIdentity();
// Clear the screen
glClear(GL_COLOR_BUFFER_BIT);
} }
void Draw(const double zoom) {
void Draw(const double zoom)
{
// reset zoom // reset zoom
Point center = Point(0, 0); Point center = Point(0, 0);
ResetZoom(zoom, center.x, center.y, 800, 600); ResetZoom(zoom, center.x, center.y, 800, 600);
for (int i = 0; i < triangles.size(); i++) { for (int i = 0; i < triangles.size(); i++) {
Triangle& t = *triangles[i]; Triangle& t = *triangles[i];
Point& a = *t.GetPoint(0); Point& a = *t.GetPoint(0);
Point& b = *t.GetPoint(1); Point& b = *t.GetPoint(1);
Point& c = *t.GetPoint(2); Point& c = *t.GetPoint(2);
// Red // Red
glColor3f(1, 0, 0); glColor3f(1, 0, 0);
glBegin(GL_LINE_LOOP);
glVertex2f(a.x, a.y);
glVertex2f(b.x, b.y);
glVertex2f(c.x, c.y);
glEnd();
glBegin(GL_LINE_LOOP);
glVertex2f(a.x, a.y);
glVertex2f(b.x, b.y);
glVertex2f(c.x, c.y);
glEnd();
} }
} }
void DrawMap(const double zoom) { void DrawMap(const double zoom)
{
// reset zoom // reset zoom
Point center = Point(0, 0); Point center = Point(0, 0);
ResetZoom(zoom, center.x, center.y, 800, 600); ResetZoom(zoom, center.x, center.y, 800, 600);
list<Triangle*>::iterator it; list<Triangle*>::iterator it;
for (it = map.begin(); it != map.end(); it++) { for (it = map.begin(); it != map.end(); it++) {
Triangle& t = **it; Triangle& t = **it;
Point& a = *t.GetPoint(0); Point& a = *t.GetPoint(0);
Point& b = *t.GetPoint(1); Point& b = *t.GetPoint(1);
Point& c = *t.GetPoint(2); Point& c = *t.GetPoint(2);
ConstrainedColor(t.constrained_edge[2]); ConstrainedColor(t.constrained_edge[2]);
glBegin(GL_LINES); glBegin(GL_LINES);
glVertex2f(a.x, a.y); glVertex2f(a.x, a.y);
glVertex2f(b.x, b.y); glVertex2f(b.x, b.y);
glEnd( ); glEnd( );
ConstrainedColor(t.constrained_edge[0]); ConstrainedColor(t.constrained_edge[0]);
glBegin(GL_LINES); glBegin(GL_LINES);
glVertex2f(b.x, b.y); glVertex2f(b.x, b.y);
glVertex2f(c.x, c.y); glVertex2f(c.x, c.y);
glEnd( ); glEnd( );
ConstrainedColor(t.constrained_edge[1]); ConstrainedColor(t.constrained_edge[1]);
glBegin(GL_LINES); glBegin(GL_LINES);
glVertex2f(c.x, c.y); glVertex2f(c.x, c.y);
glVertex2f(a.x, a.y); glVertex2f(a.x, a.y);
glEnd( ); glEnd( );
} }
} }
void ConstrainedColor(bool constrain) { void ConstrainedColor(bool constrain)
if(constrain) { {
if (constrain) {
// Green // Green
glColor3f(0, 1, 0); glColor3f(0, 1, 0);
} else { } else {