mirror of
https://github.com/jhasse/poly2tri.git
synced 2025-01-06 01:43:31 +01:00
uncrustified code
This commit is contained in:
parent
9202d205df
commit
732e0791e8
@ -30,8 +30,8 @@
|
||||
*/
|
||||
#include "shapes.h"
|
||||
|
||||
Triangle::Triangle(Point& a, Point& b, Point& c) {
|
||||
|
||||
Triangle::Triangle(Point& a, Point& b, Point& c)
|
||||
{
|
||||
points_[0] = &a; points_[1] = &b; points_[2] = &c;
|
||||
neighbors_[0] = NULL; neighbors_[1] = NULL; neighbors_[2] = NULL;
|
||||
constrained_edge[0] = constrained_edge[1] = constrained_edge[2] = false;
|
||||
@ -40,25 +40,25 @@ Triangle::Triangle(Point& a, Point& b, Point& c) {
|
||||
}
|
||||
|
||||
// Update neighbor pointers
|
||||
void Triangle::MarkNeighbor(Point* p1, Point* p2, Triangle* t) {
|
||||
|
||||
if((p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2]))
|
||||
void Triangle::MarkNeighbor(Point* p1, Point* p2, Triangle* t)
|
||||
{
|
||||
if ((p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2]))
|
||||
neighbors_[0] = t;
|
||||
else if((p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0]))
|
||||
else if ((p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0]))
|
||||
neighbors_[1] = t;
|
||||
else if((p1 == points_[0] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[0]))
|
||||
else if ((p1 == points_[0] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[0]))
|
||||
neighbors_[2] = t;
|
||||
else
|
||||
assert(0);
|
||||
}
|
||||
|
||||
// Exhaustive search to update neighbor pointers
|
||||
void Triangle::MarkNeighbor(Triangle& t) {
|
||||
|
||||
void Triangle::MarkNeighbor(Triangle& t)
|
||||
{
|
||||
if (t.Contains(points_[1], points_[2])) {
|
||||
neighbors_[0] = &t;
|
||||
t.MarkNeighbor(points_[1], points_[2], this);
|
||||
} else if(t.Contains(points_[0], points_[2])) {
|
||||
} else if (t.Contains(points_[0], points_[2])) {
|
||||
neighbors_[1] = &t;
|
||||
t.MarkNeighbor(points_[0], points_[2], this);
|
||||
} else if (t.Contains(points_[0], points_[1])) {
|
||||
@ -67,18 +67,20 @@ void Triangle::MarkNeighbor(Triangle& t) {
|
||||
}
|
||||
}
|
||||
|
||||
void Triangle::ClearNeighbors() {
|
||||
void Triangle::ClearNeighbors()
|
||||
{
|
||||
neighbors_[0] = NULL;
|
||||
neighbors_[1] = NULL;
|
||||
neighbors_[2] = NULL;
|
||||
}
|
||||
|
||||
void Triangle::ClearDelunayEdges() {
|
||||
void Triangle::ClearDelunayEdges()
|
||||
{
|
||||
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
|
||||
}
|
||||
|
||||
Point* Triangle::OppositePoint(Triangle& t, Point& p) {
|
||||
|
||||
Point* Triangle::OppositePoint(Triangle& t, Point& p)
|
||||
{
|
||||
Point *cw = t.PointCW(p);
|
||||
double x = cw->x;
|
||||
double y = cw->y;
|
||||
@ -89,17 +91,17 @@ Point* Triangle::OppositePoint(Triangle& t, Point& p) {
|
||||
}
|
||||
|
||||
// Legalized triangle by rotating clockwise around point(0)
|
||||
void Triangle::Legalize(Point& point) {
|
||||
|
||||
void Triangle::Legalize(Point& point)
|
||||
{
|
||||
points_[1] = points_[0];
|
||||
points_[0] = points_[2];
|
||||
points_[2] = &point;
|
||||
}
|
||||
|
||||
// Legalize triagnle by rotating clockwise around oPoint
|
||||
void Triangle::Legalize(Point& opoint, Point& npoint) {
|
||||
|
||||
if(&opoint == points_[0]) {
|
||||
void Triangle::Legalize(Point& opoint, Point& npoint)
|
||||
{
|
||||
if (&opoint == points_[0]) {
|
||||
points_[1] = points_[0];
|
||||
points_[0] = points_[2];
|
||||
points_[2] = &npoint;
|
||||
@ -116,189 +118,190 @@ void Triangle::Legalize(Point& opoint, Point& npoint) {
|
||||
}
|
||||
}
|
||||
|
||||
int Triangle::Index(const Point* p) {
|
||||
|
||||
if(p == points_[0]) {
|
||||
int Triangle::Index(const Point* p)
|
||||
{
|
||||
if (p == points_[0]) {
|
||||
return 0;
|
||||
} else if(p == points_[1]) {
|
||||
} else if (p == points_[1]) {
|
||||
return 1;
|
||||
} else if(p == points_[2]) {
|
||||
} else if (p == points_[2]) {
|
||||
return 2;
|
||||
}
|
||||
assert(0);
|
||||
}
|
||||
|
||||
int Triangle::EdgeIndex(const Point* p1, const Point* p2) {
|
||||
|
||||
if(points_[0] == p1) {
|
||||
if(points_[1] == p2){
|
||||
int Triangle::EdgeIndex(const Point* p1, const Point* p2)
|
||||
{
|
||||
if (points_[0] == p1) {
|
||||
if (points_[1] == p2) {
|
||||
return 2;
|
||||
} else if(points_[2] == p2){
|
||||
} else if (points_[2] == p2) {
|
||||
return 1;
|
||||
}
|
||||
} else if(points_[1] == p1) {
|
||||
if(points_[2] == p2) {
|
||||
} else if (points_[1] == p1) {
|
||||
if (points_[2] == p2) {
|
||||
return 0;
|
||||
} else if(points_[0] == p2) {
|
||||
} else if (points_[0] == p2) {
|
||||
return 2;
|
||||
}
|
||||
} else if(points_[2] == p1) {
|
||||
if(points_[0] == p2 ) {
|
||||
} else if (points_[2] == p1) {
|
||||
if (points_[0] == p2) {
|
||||
return 1;
|
||||
} else if(points_[1] == p2) {
|
||||
} else if (points_[1] == p2) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
void Triangle::MarkConstrainedEdge(const int index) {
|
||||
void Triangle::MarkConstrainedEdge(const int index)
|
||||
{
|
||||
constrained_edge[index] = true;
|
||||
}
|
||||
|
||||
void Triangle::MarkConstrainedEdge(Edge& edge) {
|
||||
void Triangle::MarkConstrainedEdge(Edge& edge)
|
||||
{
|
||||
MarkConstrainedEdge(edge.p, edge.q);
|
||||
}
|
||||
|
||||
// Mark edge as constrained
|
||||
void Triangle::MarkConstrainedEdge(Point* p, Point* q) {
|
||||
|
||||
if((q == points_[0] && p == points_[1] ) || (q == points_[1] && p == points_[0])) {
|
||||
void Triangle::MarkConstrainedEdge(Point* p, Point* q)
|
||||
{
|
||||
if ((q == points_[0] && p == points_[1]) || (q == points_[1] && p == points_[0])) {
|
||||
constrained_edge[2] = true;
|
||||
} else if((q == points_[0] && p == points_[2] ) || (q == points_[2] && p == points_[0])) {
|
||||
} else if ((q == points_[0] && p == points_[2]) || (q == points_[2] && p == points_[0])) {
|
||||
constrained_edge[1] = true;
|
||||
} else if((q == points_[1] && p == points_[2] ) || (q == points_[2] && p == points_[1])) {
|
||||
} else if ((q == points_[1] && p == points_[2]) || (q == points_[2] && p == points_[1])) {
|
||||
constrained_edge[0] = true;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// The point counter-clockwise to given point
|
||||
Point* Triangle::PointCW(Point& point) {
|
||||
|
||||
if(&point == points_[0]) {
|
||||
Point* Triangle::PointCW(Point& point)
|
||||
{
|
||||
if (&point == points_[0]) {
|
||||
return points_[2];
|
||||
} else if(&point == points_[1]) {
|
||||
} else if (&point == points_[1]) {
|
||||
return points_[0];
|
||||
} else if(&point == points_[2]) {
|
||||
} else if (&point == points_[2]) {
|
||||
return points_[1];
|
||||
}
|
||||
assert(0);
|
||||
}
|
||||
|
||||
// The point counter-clockwise to given point
|
||||
Point* Triangle::PointCCW(Point& point) {
|
||||
|
||||
if(&point == points_[0]) {
|
||||
Point* Triangle::PointCCW(Point& point)
|
||||
{
|
||||
if (&point == points_[0]) {
|
||||
return points_[1];
|
||||
} else if(&point == points_[1]) {
|
||||
} else if (&point == points_[1]) {
|
||||
return points_[2];
|
||||
} else if(&point == points_[2]) {
|
||||
} else if (&point == points_[2]) {
|
||||
return points_[0];
|
||||
}
|
||||
assert(0);
|
||||
}
|
||||
|
||||
// The neighbor clockwise to given point
|
||||
Triangle* Triangle::NeighborCW(Point& point) {
|
||||
|
||||
if(&point == points_[0]) {
|
||||
Triangle* Triangle::NeighborCW(Point& point)
|
||||
{
|
||||
if (&point == points_[0]) {
|
||||
return neighbors_[1];
|
||||
} else if(&point == points_[1]) {
|
||||
} else if (&point == points_[1]) {
|
||||
return neighbors_[2];
|
||||
}
|
||||
return neighbors_[0];
|
||||
}
|
||||
|
||||
// The neighbor counter-clockwise to given point
|
||||
Triangle* Triangle::NeighborCCW(Point& point) {
|
||||
|
||||
if(&point == points_[0]) {
|
||||
Triangle* Triangle::NeighborCCW(Point& point)
|
||||
{
|
||||
if (&point == points_[0]) {
|
||||
return neighbors_[2];
|
||||
} else if(&point == points_[1]) {
|
||||
} else if (&point == points_[1]) {
|
||||
return neighbors_[0];
|
||||
}
|
||||
return neighbors_[1];
|
||||
}
|
||||
|
||||
bool Triangle::GetConstrainedEdgeCCW(Point& p) {
|
||||
|
||||
if(&p == points_[0]) {
|
||||
bool Triangle::GetConstrainedEdgeCCW(Point& p)
|
||||
{
|
||||
if (&p == points_[0]) {
|
||||
return constrained_edge[2];
|
||||
} else if(&p == points_[1]) {
|
||||
} else if (&p == points_[1]) {
|
||||
return constrained_edge[0];
|
||||
}
|
||||
return constrained_edge[1];
|
||||
}
|
||||
|
||||
bool Triangle::GetConstrainedEdgeCW(Point& p) {
|
||||
|
||||
if(&p == points_[0]) {
|
||||
bool Triangle::GetConstrainedEdgeCW(Point& p)
|
||||
{
|
||||
if (&p == points_[0]) {
|
||||
return constrained_edge[1];
|
||||
} else if(&p == points_[1]) {
|
||||
} else if (&p == points_[1]) {
|
||||
return constrained_edge[2];
|
||||
}
|
||||
return constrained_edge[0];
|
||||
}
|
||||
|
||||
void Triangle::SetConstrainedEdgeCCW(Point& p, bool ce) {
|
||||
|
||||
if(&p == points_[0]) {
|
||||
void Triangle::SetConstrainedEdgeCCW(Point& p, bool ce)
|
||||
{
|
||||
if (&p == points_[0]) {
|
||||
constrained_edge[2] = ce;
|
||||
} else if(&p == points_[1]) {
|
||||
} else if (&p == points_[1]) {
|
||||
constrained_edge[0] = ce;
|
||||
} else {
|
||||
constrained_edge[1] = ce;
|
||||
}
|
||||
}
|
||||
|
||||
void Triangle::SetConstrainedEdgeCW(Point& p, bool ce) {
|
||||
|
||||
if(&p == points_[0]) {
|
||||
void Triangle::SetConstrainedEdgeCW(Point& p, bool ce)
|
||||
{
|
||||
if (&p == points_[0]) {
|
||||
constrained_edge[1] = ce;
|
||||
} else if(&p == points_[1]) {
|
||||
} else if (&p == points_[1]) {
|
||||
constrained_edge[2] = ce;
|
||||
} else {
|
||||
constrained_edge[0] = ce;
|
||||
}
|
||||
}
|
||||
|
||||
bool Triangle::GetDelunayEdgeCCW(Point& p) {
|
||||
|
||||
if(&p == points_[0]){
|
||||
bool Triangle::GetDelunayEdgeCCW(Point& p)
|
||||
{
|
||||
if (&p == points_[0]) {
|
||||
return delaunay_edge[2];
|
||||
} else if(&p == points_[1]) {
|
||||
} else if (&p == points_[1]) {
|
||||
return delaunay_edge[0];
|
||||
}
|
||||
return delaunay_edge[1];
|
||||
}
|
||||
|
||||
bool Triangle::GetDelunayEdgeCW(Point& p) {
|
||||
|
||||
if(&p == points_[0]) {
|
||||
bool Triangle::GetDelunayEdgeCW(Point& p)
|
||||
{
|
||||
if (&p == points_[0]) {
|
||||
return delaunay_edge[1];
|
||||
} else if(&p == points_[1]) {
|
||||
} else if (&p == points_[1]) {
|
||||
return delaunay_edge[2];
|
||||
}
|
||||
return delaunay_edge[0];
|
||||
}
|
||||
|
||||
void Triangle::SetDelunayEdgeCCW(Point& p, bool e) {
|
||||
|
||||
if(&p == points_[0]) {
|
||||
void Triangle::SetDelunayEdgeCCW(Point& p, bool e)
|
||||
{
|
||||
if (&p == points_[0]) {
|
||||
delaunay_edge[2] = e;
|
||||
} else if(&p == points_[1]) {
|
||||
} else if (&p == points_[1]) {
|
||||
delaunay_edge[0] = e;
|
||||
} else {
|
||||
delaunay_edge[1] = e;
|
||||
}
|
||||
}
|
||||
|
||||
void Triangle::SetDelunayEdgeCW(Point& p, bool e) {
|
||||
|
||||
if(&p == points_[0]) {
|
||||
void Triangle::SetDelunayEdgeCW(Point& p, bool e)
|
||||
{
|
||||
if (&p == points_[0]) {
|
||||
delaunay_edge[1] = e;
|
||||
} else if(&p == points_[1]) {
|
||||
} else if (&p == points_[1]) {
|
||||
delaunay_edge[2] = e;
|
||||
} else {
|
||||
delaunay_edge[0] = e;
|
||||
@ -306,16 +309,18 @@ void Triangle::SetDelunayEdgeCW(Point& p, bool e) {
|
||||
}
|
||||
|
||||
// The neighbor across to given point
|
||||
Triangle& Triangle::NeighborAcross(Point& opoint) {
|
||||
if(&opoint == points_[0]) {
|
||||
Triangle& Triangle::NeighborAcross(Point& opoint)
|
||||
{
|
||||
if (&opoint == points_[0]) {
|
||||
return *neighbors_[0];
|
||||
} else if(&opoint == points_[1]) {
|
||||
} else if (&opoint == points_[1]) {
|
||||
return *neighbors_[1];
|
||||
}
|
||||
return *neighbors_[2];
|
||||
}
|
||||
|
||||
void Triangle::DebugPrint() {
|
||||
void Triangle::DebugPrint()
|
||||
{
|
||||
using namespace std;
|
||||
cout << points_[0]->x << "," << points_[0]->y << " ";
|
||||
cout << points_[1]->x << "," << points_[1]->y << " ";
|
||||
|
@ -43,163 +43,177 @@ struct Node;
|
||||
struct Edge;
|
||||
|
||||
struct Point {
|
||||
|
||||
double x, y;
|
||||
|
||||
/// Default constructor does nothing (for performance).
|
||||
Point() { x = 0.0; y = 0.0; }
|
||||
Point()
|
||||
{
|
||||
x = 0.0; y = 0.0;
|
||||
}
|
||||
|
||||
/// The edges this point constitutes an upper ending point
|
||||
std::vector<Edge*> edge_list;
|
||||
|
||||
/// Construct using coordinates.
|
||||
Point(double x, double y) : x(x), y(y) {}
|
||||
Point(double x, double y) : x(x), y(y)
|
||||
{
|
||||
}
|
||||
|
||||
/// Set this point to all zeros.
|
||||
void set_zero() { x = 0.0f; y = 0.0f; }
|
||||
void set_zero()
|
||||
{
|
||||
x = 0.0f; y = 0.0f;
|
||||
}
|
||||
|
||||
/// Set this point to some specified coordinates.
|
||||
void set(double x_, double y_) { x = x_; y = y_; }
|
||||
void set(double x_, double y_)
|
||||
{
|
||||
x = x_; y = y_;
|
||||
}
|
||||
|
||||
/// Negate this point.
|
||||
Point operator -() const { Point v; v.set(-x, -y); return v; }
|
||||
Point operator -() const
|
||||
{
|
||||
Point v; v.set(-x, -y); return v;
|
||||
}
|
||||
|
||||
/// Add a point to this point.
|
||||
void operator += (const Point& v) {
|
||||
void operator +=(const Point& v)
|
||||
{
|
||||
x += v.x; y += v.y;
|
||||
}
|
||||
|
||||
/// Subtract a point from this point.
|
||||
void operator -= (const Point& v) {
|
||||
void operator -=(const Point& v)
|
||||
{
|
||||
x -= v.x; y -= v.y;
|
||||
}
|
||||
|
||||
/// Multiply this point by a scalar.
|
||||
void operator *= (double a) {
|
||||
void operator *=(double a)
|
||||
{
|
||||
x *= a; y *= a;
|
||||
}
|
||||
|
||||
/// Get the length of this point (the norm).
|
||||
double Length() const {
|
||||
double Length() const
|
||||
{
|
||||
return sqrt(x * x + y * y);
|
||||
}
|
||||
|
||||
/// Convert this point into a unit point. Returns the Length.
|
||||
double Normalize() {
|
||||
double Normalize()
|
||||
{
|
||||
double len = Length();
|
||||
x /= len;
|
||||
y /= len;
|
||||
return len;
|
||||
}
|
||||
|
||||
void DebugPrint() {
|
||||
void DebugPrint()
|
||||
{
|
||||
printf("%f,%f ", x, y);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// Represents a simple polygon's edge
|
||||
struct Edge {
|
||||
|
||||
Point* p, *q;
|
||||
|
||||
/// Constructor
|
||||
Edge(Point& p1, Point& p2) : p(&p1), q(&p2) {
|
||||
|
||||
if(p1.y > p2.y) {
|
||||
Edge(Point& p1, Point& p2) : p(&p1), q(&p2)
|
||||
{
|
||||
if (p1.y > p2.y) {
|
||||
q = &p1;
|
||||
p = &p2;
|
||||
} else if(p1.y == p2.y) {
|
||||
if(p1.x > p2.x) {
|
||||
} else if (p1.y == p2.y) {
|
||||
if (p1.x > p2.x) {
|
||||
q = &p1;
|
||||
p = &p2;
|
||||
} else if(p1.x == p2.x) {
|
||||
} else if (p1.x == p2.x) {
|
||||
// Repeat points
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
q->edge_list.push_back(this);
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// Triangle-based data structures are know to have better performance than quad-edge structures
|
||||
// See: J. Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
|
||||
// "Triangulations in CGAL"
|
||||
class Triangle {
|
||||
|
||||
public:
|
||||
|
||||
/// Constructor
|
||||
Triangle(Point& a, Point& b, Point& c);
|
||||
/// Constructor
|
||||
Triangle(Point& a, Point& b, Point& c);
|
||||
|
||||
/// Flags to determine if an edge is a Constrained edge
|
||||
bool constrained_edge[3];
|
||||
/// Flags to determine if an edge is a Delauney edge
|
||||
bool delaunay_edge[3];
|
||||
/// Flags to determine if an edge is a Constrained edge
|
||||
bool constrained_edge[3];
|
||||
/// Flags to determine if an edge is a Delauney edge
|
||||
bool delaunay_edge[3];
|
||||
|
||||
Point* GetPoint(const int& index);
|
||||
Point* PointCW(Point& point);
|
||||
Point* PointCCW(Point& point);
|
||||
Point* OppositePoint(Triangle& t, Point& p);
|
||||
Point* GetPoint(const int& index);
|
||||
Point* PointCW(Point& point);
|
||||
Point* PointCCW(Point& point);
|
||||
Point* OppositePoint(Triangle& t, Point& p);
|
||||
|
||||
Triangle* GetNeighbor(const int& index);
|
||||
void MarkNeighbor(Point* p1, Point* p2, Triangle* t);
|
||||
void MarkNeighbor(Triangle& t);
|
||||
Triangle* GetNeighbor(const int& index);
|
||||
void MarkNeighbor(Point* p1, Point* p2, Triangle* t);
|
||||
void MarkNeighbor(Triangle& t);
|
||||
|
||||
void MarkConstrainedEdge(const int index);
|
||||
void MarkConstrainedEdge(Edge& edge);
|
||||
void MarkConstrainedEdge(Point* p, Point* q);
|
||||
void MarkConstrainedEdge(const int index);
|
||||
void MarkConstrainedEdge(Edge& edge);
|
||||
void MarkConstrainedEdge(Point* p, Point* q);
|
||||
|
||||
int Index(const Point* p);
|
||||
int EdgeIndex(const Point* p1, const Point* p2);
|
||||
int Index(const Point* p);
|
||||
int EdgeIndex(const Point* p1, const Point* p2);
|
||||
|
||||
Triangle* NeighborCW(Point& point);
|
||||
Triangle* NeighborCCW(Point& point);
|
||||
bool GetConstrainedEdgeCCW(Point& p);
|
||||
bool GetConstrainedEdgeCW(Point& p);
|
||||
void SetConstrainedEdgeCCW(Point& p, bool ce);
|
||||
void SetConstrainedEdgeCW(Point& p, bool ce);
|
||||
bool GetDelunayEdgeCCW(Point& p);
|
||||
bool GetDelunayEdgeCW(Point& p);
|
||||
void SetDelunayEdgeCCW(Point& p, bool e);
|
||||
void SetDelunayEdgeCW(Point& p, bool e);
|
||||
Triangle* NeighborCW(Point& point);
|
||||
Triangle* NeighborCCW(Point& point);
|
||||
bool GetConstrainedEdgeCCW(Point& p);
|
||||
bool GetConstrainedEdgeCW(Point& p);
|
||||
void SetConstrainedEdgeCCW(Point& p, bool ce);
|
||||
void SetConstrainedEdgeCW(Point& p, bool ce);
|
||||
bool GetDelunayEdgeCCW(Point& p);
|
||||
bool GetDelunayEdgeCW(Point& p);
|
||||
void SetDelunayEdgeCCW(Point& p, bool e);
|
||||
void SetDelunayEdgeCW(Point& p, bool e);
|
||||
|
||||
bool Contains(Point* p);
|
||||
bool Contains(const Edge& e);
|
||||
bool Contains(Point* p, Point* q);
|
||||
void Legalize(Point& point);
|
||||
void Legalize(Point& opoint, Point& npoint);
|
||||
void ClearNeighbors();
|
||||
void ClearDelunayEdges();
|
||||
bool Contains(Point* p);
|
||||
bool Contains(const Edge& e);
|
||||
bool Contains(Point* p, Point* q);
|
||||
void Legalize(Point& point);
|
||||
void Legalize(Point& opoint, Point& npoint);
|
||||
void ClearNeighbors();
|
||||
void ClearDelunayEdges();
|
||||
|
||||
inline bool IsInterior();
|
||||
inline void IsInterior(bool b);
|
||||
inline bool IsInterior();
|
||||
inline void IsInterior(bool b);
|
||||
|
||||
Triangle& NeighborAcross(Point& opoint);
|
||||
Triangle& NeighborAcross(Point& opoint);
|
||||
|
||||
void DebugPrint();
|
||||
void DebugPrint();
|
||||
|
||||
private:
|
||||
|
||||
/// Triangle points
|
||||
Point* points_[3];
|
||||
/// Neighbor list
|
||||
Triangle* neighbors_[3];
|
||||
|
||||
/// Has this triangle been marked as an interior triangle?
|
||||
bool interior_;
|
||||
/// Triangle points
|
||||
Point* points_[3];
|
||||
/// Neighbor list
|
||||
Triangle* neighbors_[3];
|
||||
|
||||
/// Has this triangle been marked as an interior triangle?
|
||||
bool interior_;
|
||||
};
|
||||
|
||||
inline bool cmp (const Point* a, const Point* b) {
|
||||
inline bool cmp(const Point* a, const Point* b)
|
||||
{
|
||||
if (a->y < b->y) {
|
||||
return true;
|
||||
} else if (a->y == b->y) {
|
||||
// Make sure q is point with greater x value
|
||||
if(a->x < b->x) {
|
||||
if (a->x < b->x) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
@ -207,75 +221,91 @@ inline bool cmp (const Point* a, const Point* b) {
|
||||
}
|
||||
|
||||
/// Add two points_ component-wise.
|
||||
inline Point operator + (const Point& a, const Point& b) {
|
||||
inline Point operator +(const Point& a, const Point& b)
|
||||
{
|
||||
return Point(a.x + b.x, a.y + b.y);
|
||||
}
|
||||
|
||||
/// Subtract two points_ component-wise.
|
||||
inline Point operator - (const Point& a, const Point& b) {
|
||||
inline Point operator -(const Point& a, const Point& b)
|
||||
{
|
||||
return Point(a.x - b.x, a.y - b.y);
|
||||
}
|
||||
|
||||
/// Multiply point by scalar
|
||||
inline Point operator * (double s, const Point& a) {
|
||||
inline Point operator *(double s, const Point& a)
|
||||
{
|
||||
return Point(s * a.x, s * a.y);
|
||||
}
|
||||
|
||||
inline bool operator == (const Point& a, const Point& b) {
|
||||
inline bool operator ==(const Point& a, const Point& b)
|
||||
{
|
||||
return a.x == b.x && a.y == b.y;
|
||||
}
|
||||
|
||||
inline bool operator != (const Point& a, const Point& b) {
|
||||
inline bool operator !=(const Point& a, const Point& b)
|
||||
{
|
||||
return a.x != b.x && a.y != b.y;
|
||||
}
|
||||
|
||||
/// Peform the dot product on two vectors.
|
||||
inline double Dot(const Point& a, const Point& b) {
|
||||
inline double Dot(const Point& a, const Point& b)
|
||||
{
|
||||
return a.x * b.x + a.y * b.y;
|
||||
}
|
||||
|
||||
/// Perform the cross product on two vectors. In 2D this produces a scalar.
|
||||
inline double Cross(const Point& a, const Point& b) {
|
||||
inline double Cross(const Point& a, const Point& b)
|
||||
{
|
||||
return a.x * b.y - a.y * b.x;
|
||||
}
|
||||
|
||||
/// Perform the cross product on a point and a scalar. In 2D this produces
|
||||
/// a point.
|
||||
inline Point Cross(const Point& a, double s) {
|
||||
inline Point Cross(const Point& a, double s)
|
||||
{
|
||||
return Point(s * a.y, -s * a.x);
|
||||
}
|
||||
|
||||
/// Perform the cross product on a scalar and a point. In 2D this produces
|
||||
/// a point.
|
||||
inline Point Cross(const double s, const Point& a) {
|
||||
inline Point Cross(const double s, const Point& a)
|
||||
{
|
||||
return Point(-s * a.y, s * a.x);
|
||||
}
|
||||
|
||||
inline Point* Triangle::GetPoint(const int& index) {
|
||||
inline Point* Triangle::GetPoint(const int& index)
|
||||
{
|
||||
return points_[index];
|
||||
}
|
||||
|
||||
inline Triangle* Triangle::GetNeighbor(const int& index) {
|
||||
inline Triangle* Triangle::GetNeighbor(const int& index)
|
||||
{
|
||||
return neighbors_[index];
|
||||
}
|
||||
|
||||
inline bool Triangle::Contains(Point* p) {
|
||||
inline bool Triangle::Contains(Point* p)
|
||||
{
|
||||
return p == points_[0] || p == points_[1] || p == points_[2];
|
||||
}
|
||||
|
||||
inline bool Triangle::Contains(const Edge& e) {
|
||||
inline bool Triangle::Contains(const Edge& e)
|
||||
{
|
||||
return Contains(e.p) && Contains(e.q);
|
||||
}
|
||||
|
||||
inline bool Triangle::Contains(Point* p, Point* q) {
|
||||
inline bool Triangle::Contains(Point* p, Point* q)
|
||||
{
|
||||
return Contains(p) && Contains(q);
|
||||
}
|
||||
|
||||
inline bool Triangle::IsInterior() {
|
||||
inline bool Triangle::IsInterior()
|
||||
{
|
||||
return interior_;
|
||||
}
|
||||
|
||||
inline void Triangle::IsInterior(bool b) {
|
||||
inline void Triangle::IsInterior(bool b)
|
||||
{
|
||||
interior_ = b;
|
||||
}
|
||||
|
||||
|
@ -35,9 +35,12 @@
|
||||
#include <math.h>
|
||||
|
||||
template<typename T, int size>
|
||||
int array_length(T(&)[size]){return size;}
|
||||
int array_length(T(&)[size])
|
||||
{
|
||||
return size;
|
||||
}
|
||||
|
||||
const double PI_3div4 = 3*M_PI/4;
|
||||
const double PI_3div4 = 3 * M_PI / 4;
|
||||
const double EPSILON = 1e-12;
|
||||
|
||||
enum Orientation { CW, CCW, COLLINEAR };
|
||||
@ -52,22 +55,21 @@ enum Orientation { CW, CCW, COLLINEAR };
|
||||
* = (x1-x3)*(y2-y3) - (y1-y3)*(x2-x3)
|
||||
* </pre>
|
||||
*/
|
||||
Orientation Orient2d(Point& pa, Point& pb, Point& pc ) {
|
||||
|
||||
Orientation Orient2d(Point& pa, Point& pb, Point& pc)
|
||||
{
|
||||
double detleft = (pa.x - pc.x) * (pb.y - pc.y);
|
||||
double detright = (pa.y - pc.y) * (pb.x - pc.x);
|
||||
double val = detleft - detright;
|
||||
if( val > -EPSILON && val < EPSILON ) {
|
||||
if (val > -EPSILON && val < EPSILON) {
|
||||
return COLLINEAR;
|
||||
} else if( val > 0 ) {
|
||||
} else if (val > 0) {
|
||||
return CCW;
|
||||
}
|
||||
return CW;
|
||||
|
||||
}
|
||||
|
||||
bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd) {
|
||||
|
||||
bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd)
|
||||
{
|
||||
double pdx = pd.x;
|
||||
double pdy = pd.y;
|
||||
double adx = pa.x - pdx;
|
||||
@ -79,7 +81,7 @@ bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd) {
|
||||
double bdxady = bdx * ady;
|
||||
double oabd = adxbdy - bdxady;
|
||||
|
||||
if(oabd <= EPSILON) {
|
||||
if (oabd <= EPSILON) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -90,12 +92,11 @@ bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd) {
|
||||
double adxcdy = adx * cdy;
|
||||
double ocad = cdxady - adxcdy;
|
||||
|
||||
if(ocad <= EPSILON) {
|
||||
if (ocad <= EPSILON) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -30,18 +30,19 @@
|
||||
*/
|
||||
#include "advancing_front.h"
|
||||
|
||||
AdvancingFront::AdvancingFront() {
|
||||
AdvancingFront::AdvancingFront()
|
||||
{
|
||||
head_ = tail_ = search_node_ = NULL;
|
||||
}
|
||||
|
||||
Node* AdvancingFront::Locate(const double& x) {
|
||||
|
||||
Node* AdvancingFront::Locate(const double& x)
|
||||
{
|
||||
Node* node = search_node_;
|
||||
|
||||
if(x < node->value) {
|
||||
if (x < node->value) {
|
||||
//printf("<: - %f,%f - %p\n", x, node->value, node->next);
|
||||
while((node = node->prev) != NULL) {
|
||||
if(x >= node->value) {
|
||||
while ((node = node->prev) != NULL) {
|
||||
if (x >= node->value) {
|
||||
search_node_ = node;
|
||||
return node;
|
||||
}
|
||||
@ -49,8 +50,8 @@ Node* AdvancingFront::Locate(const double& x) {
|
||||
} else {
|
||||
//printf("%p - %p\n", node, node->next);
|
||||
//printf(">: %f - %f\n", x, node->value);
|
||||
while((node = node->next) != NULL) {
|
||||
if(x < node->value) {
|
||||
while ((node = node->next) != NULL) {
|
||||
if (x < node->value) {
|
||||
search_node_ = node->prev;
|
||||
return node->prev;
|
||||
}
|
||||
@ -59,45 +60,47 @@ Node* AdvancingFront::Locate(const double& x) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
Node* AdvancingFront::FindSearchNode(const double& x) {
|
||||
Node* AdvancingFront::FindSearchNode(const double& x)
|
||||
{
|
||||
// TODO: implement BST index
|
||||
return search_node_;
|
||||
}
|
||||
|
||||
Node* AdvancingFront::LocatePoint(Point* point) {
|
||||
|
||||
Node* AdvancingFront::LocatePoint(Point* point)
|
||||
{
|
||||
const double px = point->x;
|
||||
Node* node = FindSearchNode(px);
|
||||
const double nx = node->point->x;
|
||||
|
||||
if(px == nx) {
|
||||
if(point != node->point) {
|
||||
if (px == nx) {
|
||||
if (point != node->point) {
|
||||
// We might have two nodes with same x value for a short time
|
||||
if(point == node->prev->point) {
|
||||
if (point == node->prev->point) {
|
||||
node = node->prev;
|
||||
} else if(point == node->next->point) {
|
||||
} else if (point == node->next->point) {
|
||||
node = node->next;
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
} else if(px < nx) {
|
||||
while((node = node->prev) != NULL) {
|
||||
if(point == node->point) {
|
||||
} else if (px < nx) {
|
||||
while ((node = node->prev) != NULL) {
|
||||
if (point == node->point) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
while((node = node->next) != NULL) {
|
||||
if(point == node->point)
|
||||
while ((node = node->next) != NULL) {
|
||||
if (point == node->point)
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(node) search_node_ = node;
|
||||
if (node) search_node_ = node;
|
||||
return node;
|
||||
}
|
||||
|
||||
AdvancingFront::~AdvancingFront() {
|
||||
AdvancingFront::~AdvancingFront()
|
||||
{
|
||||
delete head_;
|
||||
delete search_node_;
|
||||
delete tail_;
|
||||
|
@ -34,7 +34,6 @@ struct Node;
|
||||
|
||||
// Advancing front node
|
||||
struct Node {
|
||||
|
||||
Point* point;
|
||||
Triangle* triangle;
|
||||
|
||||
@ -43,10 +42,14 @@ struct Node {
|
||||
|
||||
double value;
|
||||
|
||||
Node(Point& p) : point(&p), triangle(NULL), value(p.x), next(NULL), prev(NULL) {}
|
||||
Node(Point& p) : point(&p), triangle(NULL), value(p.x), next(NULL), prev(NULL)
|
||||
{
|
||||
}
|
||||
|
||||
Node(Point& p, Triangle& t) : point(&p), triangle(&t), value(p.x),
|
||||
next(NULL), prev(NULL) {}
|
||||
next(NULL), prev(NULL)
|
||||
{
|
||||
}
|
||||
|
||||
/*
|
||||
~Node() {
|
||||
@ -55,45 +58,60 @@ struct Node {
|
||||
printf(" ... gone!\n");
|
||||
}
|
||||
*/
|
||||
|
||||
};
|
||||
|
||||
// Advancing front
|
||||
class AdvancingFront {
|
||||
|
||||
public:
|
||||
|
||||
AdvancingFront();
|
||||
// Destructor
|
||||
~AdvancingFront();
|
||||
AdvancingFront();
|
||||
// Destructor
|
||||
~AdvancingFront();
|
||||
|
||||
Node* head();
|
||||
void set_head(Node* node);
|
||||
Node* tail();
|
||||
void set_tail(Node* node);
|
||||
Node* search();
|
||||
void set_search(Node* node);
|
||||
Node* head();
|
||||
void set_head(Node* node);
|
||||
Node* tail();
|
||||
void set_tail(Node* node);
|
||||
Node* search();
|
||||
void set_search(Node* node);
|
||||
|
||||
/// Locate insertion point along advancing front
|
||||
Node* Locate(const double& x);
|
||||
/// Locate insertion point along advancing front
|
||||
Node* Locate(const double& x);
|
||||
|
||||
Node* LocatePoint(Point* point);
|
||||
Node* LocatePoint(Point* point);
|
||||
|
||||
private:
|
||||
|
||||
Node* head_, *tail_, *search_node_;
|
||||
|
||||
Node* FindSearchNode(const double& x);
|
||||
Node* head_, *tail_, *search_node_;
|
||||
|
||||
Node* FindSearchNode(const double& x);
|
||||
};
|
||||
|
||||
inline Node* AdvancingFront::head() { return head_; }
|
||||
inline void AdvancingFront::set_head(Node* node) { head_ = node; }
|
||||
inline Node* AdvancingFront::head()
|
||||
{
|
||||
return head_;
|
||||
}
|
||||
inline void AdvancingFront::set_head(Node* node)
|
||||
{
|
||||
head_ = node;
|
||||
}
|
||||
|
||||
inline Node* AdvancingFront::tail() { return tail_; }
|
||||
inline void AdvancingFront::set_tail(Node* node) { tail_ = node; }
|
||||
inline Node* AdvancingFront::tail()
|
||||
{
|
||||
return tail_;
|
||||
}
|
||||
inline void AdvancingFront::set_tail(Node* node)
|
||||
{
|
||||
tail_ = node;
|
||||
}
|
||||
|
||||
inline Node* AdvancingFront::search() { return search_node_; }
|
||||
inline Node* AdvancingFront::search()
|
||||
{
|
||||
return search_node_;
|
||||
}
|
||||
|
||||
inline void AdvancingFront::set_search(Node* node) { search_node_ = node; }
|
||||
inline void AdvancingFront::set_search(Node* node)
|
||||
{
|
||||
search_node_ = node;
|
||||
}
|
||||
|
||||
|
@ -30,28 +30,33 @@
|
||||
*/
|
||||
#include "cdt.h"
|
||||
|
||||
CDT::CDT(Point** polyline, const int& point_count) {
|
||||
CDT::CDT(Point** polyline, const int& point_count)
|
||||
{
|
||||
sweep_context_ = new SweepContext(polyline, point_count);
|
||||
sweep_ = new Sweep;
|
||||
}
|
||||
|
||||
void CDT::AddHole(const Point poly_line[], const int point_count) {
|
||||
|
||||
void CDT::AddHole(const Point poly_line[], const int point_count)
|
||||
{
|
||||
}
|
||||
|
||||
void CDT::Triangulate() {
|
||||
void CDT::Triangulate()
|
||||
{
|
||||
sweep_->Triangulate(*sweep_context_);
|
||||
}
|
||||
|
||||
std::vector<Triangle*> CDT::GetTriangles() {
|
||||
std::vector<Triangle*> CDT::GetTriangles()
|
||||
{
|
||||
return sweep_context_->GetTriangles();
|
||||
}
|
||||
|
||||
std::list<Triangle*> CDT::GetMap() {
|
||||
std::list<Triangle*> CDT::GetMap()
|
||||
{
|
||||
return sweep_context_->GetMap();
|
||||
}
|
||||
|
||||
CDT::~CDT() {
|
||||
CDT::~CDT()
|
||||
{
|
||||
delete sweep_context_;
|
||||
delete sweep_;
|
||||
}
|
||||
|
@ -35,26 +35,24 @@
|
||||
|
||||
class CDT
|
||||
{
|
||||
|
||||
public:
|
||||
|
||||
/// Constructor
|
||||
CDT(Point** poly_line, const int& point_count);
|
||||
/// Add a hole
|
||||
void AddHole(const Point poly_line[], const int point_count);
|
||||
/// Triangulate points
|
||||
void Triangulate();
|
||||
/// Get Delaunay triangles
|
||||
std::vector<Triangle*> GetTriangles();
|
||||
/// Get triangle map
|
||||
std::list<Triangle*> CDT::GetMap();
|
||||
/// Constructor
|
||||
CDT(Point** poly_line, const int& point_count);
|
||||
/// Add a hole
|
||||
void AddHole(const Point poly_line[], const int point_count);
|
||||
/// Triangulate points
|
||||
void Triangulate();
|
||||
/// Get Delaunay triangles
|
||||
std::vector<Triangle*> GetTriangles();
|
||||
/// Get triangle map
|
||||
std::list<Triangle*> CDT::GetMap();
|
||||
|
||||
private:
|
||||
|
||||
SweepContext* sweep_context_;
|
||||
Sweep* sweep_;
|
||||
|
||||
/// Destructor
|
||||
~CDT();
|
||||
SweepContext* sweep_context_;
|
||||
Sweep* sweep_;
|
||||
|
||||
/// Destructor
|
||||
~CDT();
|
||||
};
|
||||
|
@ -35,16 +35,14 @@ class Triangle;
|
||||
|
||||
class Mesh
|
||||
{
|
||||
|
||||
public:
|
||||
|
||||
/// Triangles that constitute the mesh
|
||||
vector<Triangle> map;
|
||||
/// Triangles that constitute the mesh
|
||||
vector<Triangle> map;
|
||||
|
||||
// Debug triangles
|
||||
//val debug = new ArrayBuffer[Triangle]
|
||||
//val triangles = new ArrayBuffer[Triangle]
|
||||
|
||||
void clean(Triangle& triangle);
|
||||
// Debug triangles
|
||||
//val debug = new ArrayBuffer[Triangle]
|
||||
//val triangles = new ArrayBuffer[Triangle]
|
||||
|
||||
void clean(Triangle& triangle);
|
||||
};
|
||||
|
@ -33,40 +33,36 @@
|
||||
#include "advancing_front.h"
|
||||
#include "../common/utils.h"
|
||||
|
||||
// Triangulate simple polygon with holes
|
||||
void Sweep::Triangulate(SweepContext& tcx) {
|
||||
|
||||
// Triangulate simple polygon with holes
|
||||
void Sweep::Triangulate(SweepContext& tcx)
|
||||
{
|
||||
tcx.CreateAdvancingFront();
|
||||
// Sweep points; build mesh
|
||||
SweepPoints(tcx);
|
||||
// Clean up
|
||||
//FinalizationPolygon(tcx);
|
||||
|
||||
}
|
||||
|
||||
void Sweep::SweepPoints(SweepContext& tcx) {
|
||||
|
||||
for(int i = 1; i < tcx.point_count(); i++ ) {
|
||||
|
||||
//printf("%i = ",i);
|
||||
void Sweep::SweepPoints(SweepContext& tcx)
|
||||
{
|
||||
for (int i = 1; i < tcx.point_count(); i++) {
|
||||
printf("%i = ", i);
|
||||
Point& point = *tcx.GetPoint(i);
|
||||
//printf("size = %i\n", point.edge_list.size());
|
||||
printf("%f,%f\n", point.x, point.y);
|
||||
Node& node = PointEvent(tcx, point);
|
||||
|
||||
for(int i = 0; i < point.edge_list.size(); i++) {
|
||||
for (int i = 0; i < point.edge_list.size(); i++) {
|
||||
EdgeEvent(tcx, point.edge_list[i], node);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Sweep::FinalizationPolygon(SweepContext& tcx) {
|
||||
|
||||
void Sweep::FinalizationPolygon(SweepContext& tcx)
|
||||
{
|
||||
// Get an Internal triangle to start with
|
||||
Triangle* t = tcx.front()->head()->next->triangle;
|
||||
Point* p = tcx.front()->head()->next->point;
|
||||
while(!t->GetConstrainedEdgeCW(*p)) {
|
||||
while (!t->GetConstrainedEdgeCW(*p)) {
|
||||
t = t->NeighborCCW(*p);
|
||||
}
|
||||
|
||||
@ -83,14 +79,14 @@ void Sweep::FinalizationPolygon(SweepContext& tcx) {
|
||||
* @param point
|
||||
* @return
|
||||
*/
|
||||
Node& Sweep::PointEvent(SweepContext& tcx, Point& point) {
|
||||
|
||||
Node& Sweep::PointEvent(SweepContext& tcx, Point& point)
|
||||
{
|
||||
Node& node = tcx.LocateNode(point);
|
||||
Node& new_node = NewFrontTriangle(tcx, point, node);
|
||||
|
||||
// Only need to check +epsilon since point never have smaller
|
||||
// x value than node due to how we fetch nodes from the front
|
||||
if(point.x <= node.point->x + EPSILON) {
|
||||
if (point.x <= node.point->x + EPSILON) {
|
||||
Fill(tcx, node);
|
||||
}
|
||||
|
||||
@ -100,12 +96,12 @@ Node& Sweep::PointEvent(SweepContext& tcx, Point& point) {
|
||||
return new_node;
|
||||
}
|
||||
|
||||
void Sweep::EdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
|
||||
|
||||
void Sweep::EdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
{
|
||||
tcx.edge_event.constrained_edge = edge;
|
||||
tcx.edge_event.right = edge->p->x > edge->q->x;
|
||||
|
||||
if(IsEdgeSideOfTriangle(*node.triangle, *edge->p, *edge->q)){
|
||||
if (IsEdgeSideOfTriangle(*node.triangle, *edge->p, *edge->q)) {
|
||||
return;
|
||||
}
|
||||
|
||||
@ -113,36 +109,35 @@ void Sweep::EdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
|
||||
// TODO: integrate with flip process might give some better performance
|
||||
// but for now this avoid the issue with cases that needs both flips and fills
|
||||
FillEdgeEvent(tcx, edge, node);
|
||||
EdgeEvent(tcx, *edge->p, *edge->q , node.triangle, *edge->q);
|
||||
|
||||
EdgeEvent(tcx, *edge->p, *edge->q, node.triangle, *edge->q);
|
||||
}
|
||||
|
||||
void Sweep::EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point) {
|
||||
|
||||
if(IsEdgeSideOfTriangle(*triangle, ep, eq)) {
|
||||
void Sweep::EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point)
|
||||
{
|
||||
if (IsEdgeSideOfTriangle(*triangle, ep, eq)) {
|
||||
return;
|
||||
}
|
||||
|
||||
Point* p1 = triangle->PointCCW(point);
|
||||
Orientation o1 = Orient2d(eq, *p1, ep);
|
||||
if(o1 == COLLINEAR) {
|
||||
if (o1 == COLLINEAR) {
|
||||
//throw new RuntimeException( "EdgeEvent - Collinear not supported" );
|
||||
assert(false);
|
||||
}
|
||||
|
||||
Point* p2 = triangle->PointCW(point);
|
||||
Orientation o2 = Orient2d(eq, *p2, ep);
|
||||
if(o2 == COLLINEAR) {
|
||||
if (o2 == COLLINEAR) {
|
||||
//throw new RuntimeException( "EdgeEvent - Collinear not supported" );
|
||||
assert(false);
|
||||
}
|
||||
|
||||
if(o1 == o2) {
|
||||
if (o1 == o2) {
|
||||
// Need to decide if we are rotating CW or CCW to get to a triangle
|
||||
// that will cross edge
|
||||
if(o1 == CW) {
|
||||
if (o1 == CW) {
|
||||
triangle = triangle->NeighborCCW(point);
|
||||
} else {
|
||||
} else{
|
||||
triangle = triangle->NeighborCW(point);
|
||||
}
|
||||
EdgeEvent(tcx, ep, eq, triangle, point);
|
||||
@ -150,17 +145,16 @@ void Sweep::EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangl
|
||||
// This triangle crosses constraint so lets flippin start!
|
||||
FlipEdgeEvent(tcx, ep, eq, *triangle, point);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
bool Sweep::IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq) {
|
||||
|
||||
bool Sweep::IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq)
|
||||
{
|
||||
int index = triangle.EdgeIndex(&ep, &eq);
|
||||
|
||||
if(index != -1) {
|
||||
if (index != -1) {
|
||||
triangle.MarkConstrainedEdge(index);
|
||||
Triangle* t = triangle.GetNeighbor(index);
|
||||
if(t){
|
||||
if (t) {
|
||||
t->MarkConstrainedEdge(&ep, &eq);
|
||||
}
|
||||
return true;
|
||||
@ -168,8 +162,8 @@ bool Sweep::IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq) {
|
||||
return false;
|
||||
}
|
||||
|
||||
Node& Sweep::NewFrontTriangle(SweepContext& tcx, Point& point, Node& node ) {
|
||||
|
||||
Node& Sweep::NewFrontTriangle(SweepContext& tcx, Point& point, Node& node)
|
||||
{
|
||||
Triangle* triangle = new Triangle(point, *node.point, *node.next->point);
|
||||
|
||||
triangle->MarkNeighbor(*node.triangle);
|
||||
@ -181,7 +175,7 @@ Node& Sweep::NewFrontTriangle(SweepContext& tcx, Point& point, Node& node ) {
|
||||
node.next->prev = new_node;
|
||||
node.next = new_node;
|
||||
|
||||
if(!Legalize(tcx, *triangle)) {
|
||||
if (!Legalize(tcx, *triangle)) {
|
||||
tcx.MapTriangleToNodes(*triangle);
|
||||
}
|
||||
|
||||
@ -193,10 +187,9 @@ Node& Sweep::NewFrontTriangle(SweepContext& tcx, Point& point, Node& node ) {
|
||||
* @param tcx
|
||||
* @param node - middle node, that is the bottom of the hole
|
||||
*/
|
||||
void Sweep::Fill(SweepContext& tcx, Node& node) {
|
||||
|
||||
Triangle* triangle = new Triangle(*node.prev->point, *node.point,
|
||||
*node.next->point);
|
||||
void Sweep::Fill(SweepContext& tcx, Node& node)
|
||||
{
|
||||
Triangle* triangle = new Triangle(*node.prev->point, *node.point, *node.next->point);
|
||||
|
||||
// TODO: should copy the constrained_edge value from neighbor triangles
|
||||
// for now constrained_edge values are copied during the legalize
|
||||
@ -210,13 +203,12 @@ void Sweep::Fill(SweepContext& tcx, Node& node) {
|
||||
node.next->prev = node.prev;
|
||||
|
||||
// If it was legalized the triangle has already been mapped
|
||||
if(!Legalize(tcx, *triangle)) {
|
||||
if (!Legalize(tcx, *triangle)) {
|
||||
tcx.MapTriangleToNodes(*triangle);
|
||||
}
|
||||
|
||||
// TODO: delete node from memory
|
||||
//tcx.RemoveNode(node);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
@ -226,14 +218,14 @@ void Sweep::Fill(SweepContext& tcx, Node& node) {
|
||||
* @param tcx
|
||||
* @param n
|
||||
*/
|
||||
void Sweep::FillAdvancingFront(SweepContext& tcx, Node& n) {
|
||||
|
||||
void Sweep::FillAdvancingFront(SweepContext& tcx, Node& n)
|
||||
{
|
||||
// Fill right holes
|
||||
Node* node = n.next;
|
||||
|
||||
while(node->next) {
|
||||
while (node->next) {
|
||||
double angle = HoleAngle(*node);
|
||||
if(angle > M_PI_2 || angle < -M_PI_2) break;
|
||||
if (angle > M_PI_2 || angle < -M_PI_2) break;
|
||||
Fill(tcx, *node);
|
||||
node = node->next;
|
||||
}
|
||||
@ -241,24 +233,24 @@ void Sweep::FillAdvancingFront(SweepContext& tcx, Node& n) {
|
||||
// Fill left holes
|
||||
node = n.prev;
|
||||
|
||||
while(node->prev) {
|
||||
while (node->prev) {
|
||||
double angle = HoleAngle(*node);
|
||||
if(angle > M_PI_2 || angle < -M_PI_2) break;
|
||||
if (angle > M_PI_2 || angle < -M_PI_2) break;
|
||||
Fill(tcx, *node);
|
||||
node = node->prev;
|
||||
}
|
||||
|
||||
// Fill right basins
|
||||
if(n.next && n.next->next) {
|
||||
if (n.next && n.next->next) {
|
||||
double angle = BasinAngle(n);
|
||||
if(angle < PI_3div4) {
|
||||
if (angle < PI_3div4) {
|
||||
FillBasin(tcx, n);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
double Sweep::BasinAngle(Node& node) {
|
||||
double Sweep::BasinAngle(Node& node)
|
||||
{
|
||||
double ax = node.point->x - node.next->next->point->x;
|
||||
double ay = node.point->y - node.next->next->point->y;
|
||||
return atan2(ay, ax);
|
||||
@ -269,8 +261,8 @@ double Sweep::BasinAngle(Node& node) {
|
||||
* @param node - middle node
|
||||
* @return the angle between 3 front nodes
|
||||
*/
|
||||
double Sweep::HoleAngle(Node& node) {
|
||||
|
||||
double Sweep::HoleAngle(Node& node)
|
||||
{
|
||||
/* Complex plane
|
||||
* ab = cosA +i*sinA
|
||||
* ab = (ax + ay*i)(bx + by*i) = (ax*bx + ay*by) + i(ax*by-ay*bx)
|
||||
@ -289,34 +281,31 @@ double Sweep::HoleAngle(Node& node) {
|
||||
/**
|
||||
* Returns true if triangle was legalized
|
||||
*/
|
||||
bool Sweep::Legalize(SweepContext& tcx, Triangle& t) {
|
||||
|
||||
bool Sweep::Legalize(SweepContext& tcx, Triangle& t)
|
||||
{
|
||||
// To legalize a triangle we start by finding if any of the three edges
|
||||
// violate the Delaunay condition
|
||||
for(int i=0; i<3; i++) {
|
||||
|
||||
if(t.delaunay_edge[i])
|
||||
for (int i = 0; i < 3; i++) {
|
||||
if (t.delaunay_edge[i])
|
||||
continue;
|
||||
|
||||
Triangle* ot = t.GetNeighbor(i);
|
||||
|
||||
if(ot) {
|
||||
|
||||
if (ot) {
|
||||
Point* p = t.GetPoint(i);
|
||||
Point* op = ot->OppositePoint(t, *p);
|
||||
int oi = ot->Index(op);
|
||||
|
||||
// If this is a Constrained Edge or a Delaunay Edge(only during recursive legalization)
|
||||
// then we should not try to legalize
|
||||
if(ot->constrained_edge[oi] || ot->delaunay_edge[oi]) {
|
||||
if (ot->constrained_edge[oi] || ot->delaunay_edge[oi]) {
|
||||
t.constrained_edge[i] = ot->constrained_edge[oi];
|
||||
continue;
|
||||
}
|
||||
|
||||
bool inside = Incircle(*p, *t.PointCCW(*p), *t.PointCW(*p), *op);
|
||||
|
||||
if(inside) {
|
||||
|
||||
if (inside) {
|
||||
// Lets mark this shared edge as Delaunay
|
||||
t.delaunay_edge[i] = true;
|
||||
ot->delaunay_edge[oi] = true;
|
||||
@ -329,12 +318,12 @@ bool Sweep::Legalize(SweepContext& tcx, Triangle& t) {
|
||||
|
||||
// Make sure that triangle to node mapping is done only one time for a specific triangle
|
||||
bool not_legalized = !Legalize(tcx, t);
|
||||
if(not_legalized) {
|
||||
if (not_legalized) {
|
||||
tcx.MapTriangleToNodes(t);
|
||||
}
|
||||
|
||||
not_legalized = !Legalize(tcx, *ot);
|
||||
if(not_legalized)
|
||||
if (not_legalized)
|
||||
tcx.MapTriangleToNodes(*ot);
|
||||
|
||||
// Reset the Delaunay edges, since they only are valid Delaunay edges
|
||||
@ -377,8 +366,8 @@ bool Sweep::Legalize(SweepContext& tcx, Triangle& t) {
|
||||
* @param d - point opposite a
|
||||
* @return true if d is inside circle, false if on circle edge
|
||||
*/
|
||||
bool Sweep::Incircle(Point& pa, Point& pb, Point& pc, Point& pd) {
|
||||
|
||||
bool Sweep::Incircle(Point& pa, Point& pb, Point& pc, Point& pd)
|
||||
{
|
||||
double adx = pa.x - pd.x;
|
||||
double ady = pa.y - pd.y;
|
||||
double bdx = pb.x - pd.x;
|
||||
@ -388,7 +377,7 @@ bool Sweep::Incircle(Point& pa, Point& pb, Point& pc, Point& pd) {
|
||||
double bdxady = bdx * ady;
|
||||
double oabd = adxbdy - bdxady;
|
||||
|
||||
if( oabd <= 0 )
|
||||
if (oabd <= 0)
|
||||
return false;
|
||||
|
||||
double cdx = pc.x - pd.x;
|
||||
@ -398,7 +387,7 @@ bool Sweep::Incircle(Point& pa, Point& pb, Point& pc, Point& pd) {
|
||||
double adxcdy = adx * cdy;
|
||||
double ocad = cdxady - adxcdy;
|
||||
|
||||
if( ocad <= 0 )
|
||||
if (ocad <= 0)
|
||||
return false;
|
||||
|
||||
double bdxcdy = bdx * cdy;
|
||||
@ -408,7 +397,7 @@ bool Sweep::Incircle(Point& pa, Point& pb, Point& pc, Point& pd) {
|
||||
double blift = bdx * bdx + bdy * bdy;
|
||||
double clift = cdx * cdx + cdy * cdy;
|
||||
|
||||
double det = alift * ( bdxcdy - cdxbdy ) + blift * ocad + clift * oabd;
|
||||
double det = alift * (bdxcdy - cdxbdy) + blift * ocad + clift * oabd;
|
||||
|
||||
return det > 0;
|
||||
}
|
||||
@ -427,21 +416,21 @@ bool Sweep::Incircle(Point& pa, Point& pb, Point& pc, Point& pd) {
|
||||
* n4 n4
|
||||
* </pre>
|
||||
*/
|
||||
void Sweep::RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op) {
|
||||
|
||||
void Sweep::RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op)
|
||||
{
|
||||
Triangle* n1, *n2, *n3, *n4;
|
||||
n1 = t.NeighborCCW(p);
|
||||
n2 = t.NeighborCW(p);
|
||||
n3 = ot.NeighborCCW(op);
|
||||
n4 = ot.NeighborCW(op);
|
||||
|
||||
bool ce1,ce2,ce3,ce4;
|
||||
bool ce1, ce2, ce3, ce4;
|
||||
ce1 = t.GetConstrainedEdgeCCW(p);
|
||||
ce2 = t.GetConstrainedEdgeCW(p);
|
||||
ce3 = ot.GetConstrainedEdgeCCW(op);
|
||||
ce4 = ot.GetConstrainedEdgeCW(op);
|
||||
|
||||
bool de1,de2,de3,de4;
|
||||
bool de1, de2, de3, de4;
|
||||
de1 = t.GetDelunayEdgeCCW(p);
|
||||
de2 = t.GetDelunayEdgeCW(p);
|
||||
de3 = ot.GetDelunayEdgeCCW(op);
|
||||
@ -469,25 +458,25 @@ void Sweep::RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op) {
|
||||
// the right side.
|
||||
t.ClearNeighbors();
|
||||
ot.ClearNeighbors();
|
||||
if(n1 != NULL) ot.MarkNeighbor(*n1);
|
||||
if(n2 != NULL) t.MarkNeighbor(*n2);
|
||||
if(n3 != NULL) t.MarkNeighbor(*n3);
|
||||
if(n4 != NULL) ot.MarkNeighbor(*n4);
|
||||
if (n1 != NULL) ot.MarkNeighbor(*n1);
|
||||
if (n2 != NULL) t.MarkNeighbor(*n2);
|
||||
if (n3 != NULL) t.MarkNeighbor(*n3);
|
||||
if (n4 != NULL) ot.MarkNeighbor(*n4);
|
||||
t.MarkNeighbor(ot);
|
||||
}
|
||||
|
||||
/**
|
||||
* Fills a basin that has formed on the Advancing Front to the right
|
||||
* of given node.<br>
|
||||
* First we decide a left,bottom and right node that forms the
|
||||
* boundaries of the basin. Then we do a reqursive fill.
|
||||
*
|
||||
* @param tcx
|
||||
* @param node - starting node, this or next node will be left node
|
||||
*/
|
||||
void Sweep::FillBasin(SweepContext& tcx, Node& node) {
|
||||
|
||||
if(Orient2d(*node.point, *node.next->point, *node.next->next->point ) == CCW) {
|
||||
* Fills a basin that has formed on the Advancing Front to the right
|
||||
* of given node.<br>
|
||||
* First we decide a left,bottom and right node that forms the
|
||||
* boundaries of the basin. Then we do a reqursive fill.
|
||||
*
|
||||
* @param tcx
|
||||
* @param node - starting node, this or next node will be left node
|
||||
*/
|
||||
void Sweep::FillBasin(SweepContext& tcx, Node& node)
|
||||
{
|
||||
if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
|
||||
tcx.basin.left_node = node.next->next;
|
||||
} else {
|
||||
tcx.basin.left_node = node.next;
|
||||
@ -495,21 +484,21 @@ void Sweep::FillBasin(SweepContext& tcx, Node& node) {
|
||||
|
||||
// Find the bottom and right node
|
||||
tcx.basin.bottom_node = tcx.basin.left_node;
|
||||
while(tcx.basin.bottom_node->next
|
||||
while (tcx.basin.bottom_node->next
|
||||
&& tcx.basin.bottom_node->point->y >= tcx.basin.bottom_node->next->point->y) {
|
||||
tcx.basin.bottom_node = tcx.basin.bottom_node->next;
|
||||
}
|
||||
if(tcx.basin.bottom_node == tcx.basin.left_node) {
|
||||
if (tcx.basin.bottom_node == tcx.basin.left_node) {
|
||||
// No valid basin
|
||||
return;
|
||||
}
|
||||
|
||||
tcx.basin.right_node = tcx.basin.bottom_node;
|
||||
while(tcx.basin.right_node->next
|
||||
while (tcx.basin.right_node->next
|
||||
&& tcx.basin.right_node->point->y < tcx.basin.right_node->next->point->y) {
|
||||
tcx.basin.right_node = tcx.basin.right_node->next;
|
||||
}
|
||||
if(tcx.basin.right_node == tcx.basin.bottom_node) {
|
||||
if (tcx.basin.right_node == tcx.basin.bottom_node) {
|
||||
// No valid basins
|
||||
return;
|
||||
}
|
||||
@ -518,42 +507,41 @@ void Sweep::FillBasin(SweepContext& tcx, Node& node) {
|
||||
tcx.basin.left_highest = tcx.basin.left_node->point->y > tcx.basin.right_node->point->y;
|
||||
|
||||
FillBasinReq(tcx, *tcx.basin.bottom_node);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Recursive algorithm to fill a Basin with triangles
|
||||
*
|
||||
* @param tcx
|
||||
* @param node - bottom_node
|
||||
* @param cnt - counter used to alternate on even and odd numbers
|
||||
*/
|
||||
void Sweep::FillBasinReq(SweepContext& tcx, Node& node) {
|
||||
|
||||
* Recursive algorithm to fill a Basin with triangles
|
||||
*
|
||||
* @param tcx
|
||||
* @param node - bottom_node
|
||||
* @param cnt - counter used to alternate on even and odd numbers
|
||||
*/
|
||||
void Sweep::FillBasinReq(SweepContext& tcx, Node& node)
|
||||
{
|
||||
// if shallow stop filling
|
||||
if(IsShallow(tcx, node)) {
|
||||
if (IsShallow(tcx, node)) {
|
||||
return;
|
||||
}
|
||||
|
||||
Fill(tcx, node);
|
||||
|
||||
if(node.prev == tcx.basin.left_node && node.next == tcx.basin.right_node) {
|
||||
if (node.prev == tcx.basin.left_node && node.next == tcx.basin.right_node) {
|
||||
return;
|
||||
} else if(node.prev == tcx.basin.left_node) {
|
||||
Orientation o = Orient2d(*node.point, *node.next->point, *node.next->next->point );
|
||||
if(o == CW) {
|
||||
} else if (node.prev == tcx.basin.left_node) {
|
||||
Orientation o = Orient2d(*node.point, *node.next->point, *node.next->next->point);
|
||||
if (o == CW) {
|
||||
return;
|
||||
}
|
||||
node = *node.next;
|
||||
} else if(node.next == tcx.basin.right_node) {
|
||||
} else if (node.next == tcx.basin.right_node) {
|
||||
Orientation o = Orient2d(*node.point, *node.prev->point, *node.prev->prev->point);
|
||||
if(o == CCW) {
|
||||
if (o == CCW) {
|
||||
return;
|
||||
}
|
||||
node = *node.prev;
|
||||
} else {
|
||||
// Continue with the neighbor node with lowest Y value
|
||||
if(node.prev->point->y < node.next->point->y) {
|
||||
if (node.prev->point->y < node.next->point->y) {
|
||||
node = *node.prev;
|
||||
} else {
|
||||
node = *node.next;
|
||||
@ -561,73 +549,69 @@ void Sweep::FillBasinReq(SweepContext& tcx, Node& node) {
|
||||
}
|
||||
|
||||
FillBasinReq(tcx, node);
|
||||
|
||||
}
|
||||
|
||||
bool Sweep::IsShallow(SweepContext& tcx, Node& node) {
|
||||
|
||||
bool Sweep::IsShallow(SweepContext& tcx, Node& node)
|
||||
{
|
||||
double height;
|
||||
|
||||
if(tcx.basin.left_highest) {
|
||||
if (tcx.basin.left_highest) {
|
||||
height = tcx.basin.left_node->point->y - node.point->y;
|
||||
} else {
|
||||
height = tcx.basin.right_node->point->y - node.point->y;
|
||||
}
|
||||
|
||||
// if shallow stop filling
|
||||
if(tcx.basin.width > height) {
|
||||
if (tcx.basin.width > height) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void Sweep::FillEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
|
||||
|
||||
if(tcx.edge_event.right) {
|
||||
void Sweep::FillEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
{
|
||||
if (tcx.edge_event.right) {
|
||||
FillRightAboveEdgeEvent(tcx, edge, node);
|
||||
} else {
|
||||
FillLeftAboveEdgeEvent(tcx, edge, node);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Sweep::FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
|
||||
|
||||
while(node.next->point->x < edge->p->x) {
|
||||
void Sweep::FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
{
|
||||
while (node.next->point->x < edge->p->x) {
|
||||
// Check if next node is below the edge
|
||||
if(Orient2d(*edge->q, *node.next->point, *edge->p) == CCW) {
|
||||
if (Orient2d(*edge->q, *node.next->point, *edge->p) == CCW) {
|
||||
FillRightBelowEdgeEvent(tcx, edge, node);
|
||||
} else {
|
||||
node = *node.next;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Sweep::FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
|
||||
|
||||
if(node.point->x < edge->p->x) {
|
||||
if(Orient2d(*node.point, *node.next->point, *node.next->next->point ) == CCW ) {
|
||||
void Sweep::FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
{
|
||||
if (node.point->x < edge->p->x) {
|
||||
if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
|
||||
// Concave
|
||||
FillRightConcaveEdgeEvent(tcx, edge, node );
|
||||
} else {
|
||||
FillRightConcaveEdgeEvent(tcx, edge, node);
|
||||
} else{
|
||||
// Convex
|
||||
FillRightConvexEdgeEvent(tcx, edge, node );
|
||||
FillRightConvexEdgeEvent(tcx, edge, node);
|
||||
// Retry this one
|
||||
FillRightBelowEdgeEvent(tcx, edge, node );
|
||||
FillRightBelowEdgeEvent(tcx, edge, node);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Sweep::FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
|
||||
|
||||
void Sweep::FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
{
|
||||
Fill(tcx, *node.next);
|
||||
if(node.next->point != edge->p) {
|
||||
if (node.next->point != edge->p) {
|
||||
// Next above or below edge?
|
||||
if(Orient2d(*edge->q, *node.next->point, *edge->p) == CCW) {
|
||||
if (Orient2d(*edge->q, *node.next->point, *edge->p) == CCW) {
|
||||
// Below
|
||||
if(Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
|
||||
if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
|
||||
// Next is concave
|
||||
FillRightConcaveEdgeEvent(tcx, edge, node);
|
||||
} else {
|
||||
@ -635,45 +619,42 @@ void Sweep::FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Sweep::FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
|
||||
|
||||
void Sweep::FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
{
|
||||
// Next concave or convex?
|
||||
if(Orient2d(*node.next->point, *node.next->next->point, *node.next->next->next->point ) == CCW) {
|
||||
if (Orient2d(*node.next->point, *node.next->next->point, *node.next->next->next->point) == CCW) {
|
||||
// Concave
|
||||
FillRightConcaveEdgeEvent(tcx, edge, *node.next);
|
||||
} else{
|
||||
// Convex
|
||||
// Next above or below edge?
|
||||
if(Orient2d(*edge->q, *node.next->next->point, *edge->p) == CCW) {
|
||||
if (Orient2d(*edge->q, *node.next->next->point, *edge->p) == CCW) {
|
||||
// Below
|
||||
FillRightConvexEdgeEvent(tcx, edge, *node.next);
|
||||
} else{
|
||||
// Above
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Sweep::FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
|
||||
|
||||
while(node.prev->point->x > edge->p->x) {
|
||||
void Sweep::FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
{
|
||||
while (node.prev->point->x > edge->p->x) {
|
||||
// Check if next node is below the edge
|
||||
if(Orient2d(*edge->q, *node.prev->point, *edge->p) == CW) {
|
||||
if (Orient2d(*edge->q, *node.prev->point, *edge->p) == CW) {
|
||||
FillLeftBelowEdgeEvent(tcx, edge, node);
|
||||
} else {
|
||||
node = *node.prev;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Sweep::FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
|
||||
|
||||
if( node.point->x > edge->p->x) {
|
||||
if(Orient2d(*node.point, *node.prev->point, *node.prev->prev->point) == CW ) {
|
||||
void Sweep::FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
{
|
||||
if (node.point->x > edge->p->x) {
|
||||
if (Orient2d(*node.point, *node.prev->point, *node.prev->prev->point) == CW) {
|
||||
// Concave
|
||||
FillLeftConcaveEdgeEvent(tcx, edge, node);
|
||||
} else {
|
||||
@ -682,66 +663,64 @@ void Sweep::FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
|
||||
// Retry this one
|
||||
FillLeftBelowEdgeEvent(tcx, edge, node);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void Sweep::FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
|
||||
|
||||
void Sweep::FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
{
|
||||
// Next concave or convex?
|
||||
if(Orient2d(*node.prev->point, *node.prev->prev->point, *node.prev->prev->prev->point) == CW) {
|
||||
if (Orient2d(*node.prev->point, *node.prev->prev->point, *node.prev->prev->prev->point) == CW) {
|
||||
// Concave
|
||||
FillLeftConcaveEdgeEvent(tcx, edge, *node.prev);
|
||||
} else {
|
||||
} else{
|
||||
// Convex
|
||||
// Next above or below edge?
|
||||
if(Orient2d(*edge->q, *node.prev->prev->point, *edge->p) == CW) {
|
||||
if (Orient2d(*edge->q, *node.prev->prev->point, *edge->p) == CW) {
|
||||
// Below
|
||||
FillLeftConvexEdgeEvent(tcx, edge, *node.prev);
|
||||
} else {
|
||||
} else{
|
||||
// Above
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Sweep::FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node) {
|
||||
|
||||
void Sweep::FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
|
||||
{
|
||||
Fill(tcx, *node.prev);
|
||||
if(node.prev->point != edge->p) {
|
||||
if (node.prev->point != edge->p) {
|
||||
// Next above or below edge?
|
||||
if(Orient2d(*edge->q, *node.prev->point, *edge->p) == CW) {
|
||||
if (Orient2d(*edge->q, *node.prev->point, *edge->p) == CW) {
|
||||
// Below
|
||||
if(Orient2d(*node.point, *node.prev->point, *node.prev->prev->point) == CW) {
|
||||
if (Orient2d(*node.point, *node.prev->point, *node.prev->prev->point) == CW) {
|
||||
// Next is concave
|
||||
FillLeftConcaveEdgeEvent(tcx, edge, node);
|
||||
} else {
|
||||
} else{
|
||||
// Next is convex
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Sweep::FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& t, Point& p) {
|
||||
|
||||
void Sweep::FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& t, Point& p)
|
||||
{
|
||||
Triangle& ot = t.NeighborAcross(p);
|
||||
Point& op = *ot.OppositePoint(t, p);
|
||||
|
||||
if(&t.NeighborAcross(p) == NULL) {
|
||||
if (&t.NeighborAcross(p) == NULL) {
|
||||
// If we want to integrate the fillEdgeEvent do it here
|
||||
// With current implementation we should never get here
|
||||
//throw new RuntimeException( "[BUG:FIXME] FLIP failed due to missing triangle");
|
||||
assert(0);
|
||||
}
|
||||
|
||||
if(InScanArea(p, *t.PointCCW(p), *t.PointCW(p), op)) {
|
||||
if (InScanArea(p, *t.PointCCW(p), *t.PointCW(p), op)) {
|
||||
// Lets rotate shared edge one vertex CW
|
||||
RotateTrianglePair(t, p, ot, op);
|
||||
tcx.MapTriangleToNodes(t);
|
||||
tcx.MapTriangleToNodes(ot);
|
||||
|
||||
if( p == eq && op == ep ) {
|
||||
if(eq == *tcx.edge_event.constrained_edge->q && ep == *tcx.edge_event.constrained_edge->p) {
|
||||
if (p == eq && op == ep) {
|
||||
if (eq == *tcx.edge_event.constrained_edge->q && ep == *tcx.edge_event.constrained_edge->p) {
|
||||
t.MarkConstrainedEdge(&ep, &eq);
|
||||
ot.MarkConstrainedEdge(&ep, &eq);
|
||||
Legalize(tcx, t);
|
||||
@ -751,19 +730,19 @@ void Sweep::FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& t,
|
||||
}
|
||||
} else {
|
||||
Orientation o = Orient2d(eq, op, ep);
|
||||
t = NextFlipTriangle(tcx, (int) o, t, ot, p, op);
|
||||
t = NextFlipTriangle(tcx, (int)o, t, ot, p, op);
|
||||
FlipEdgeEvent(tcx, ep, eq, t, p);
|
||||
}
|
||||
} else {
|
||||
Point& newP = NextFlipPoint( ep, eq, ot, op);
|
||||
Point& newP = NextFlipPoint(ep, eq, ot, op);
|
||||
FlipScanEdgeEvent(tcx, ep, eq, t, ot, newP);
|
||||
EdgeEvent(tcx, ep, eq, &t, p);
|
||||
}
|
||||
}
|
||||
|
||||
Triangle& Sweep::NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op) {
|
||||
|
||||
if(o == CCW) {
|
||||
Triangle& Sweep::NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op)
|
||||
{
|
||||
if (o == CCW) {
|
||||
// ot is not crossing edge after flip
|
||||
int edge_index = ot.EdgeIndex(&p, &op);
|
||||
ot.delaunay_edge[edge_index] = true;
|
||||
@ -780,36 +759,35 @@ Triangle& Sweep::NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triang
|
||||
return ot;
|
||||
}
|
||||
|
||||
Point& Sweep::NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op) {
|
||||
|
||||
Point& Sweep::NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op)
|
||||
{
|
||||
Orientation o2d = Orient2d(eq, op, ep);
|
||||
if(o2d == CW) {
|
||||
if (o2d == CW) {
|
||||
// Right
|
||||
return *ot.PointCCW(op);
|
||||
} else if(o2d == CCW) {
|
||||
} else if (o2d == CCW) {
|
||||
// Left
|
||||
return *ot.PointCW(op);
|
||||
} else {
|
||||
} else{
|
||||
//throw new RuntimeException("[Unsupported] Opposing point on constrained edge");
|
||||
assert(0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Sweep::FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle,
|
||||
Triangle& t, Point& p ) {
|
||||
|
||||
Triangle& t, Point& p)
|
||||
{
|
||||
Triangle& ot = t.NeighborAcross(p);
|
||||
Point& op = *ot.OppositePoint(t, p);
|
||||
|
||||
if(&t.NeighborAcross(p) == NULL) {
|
||||
if (&t.NeighborAcross(p) == NULL) {
|
||||
// If we want to integrate the fillEdgeEvent do it here
|
||||
// With current implementation we should never get here
|
||||
//throw new RuntimeException( "[BUG:FIXME] FLIP failed due to missing triangle");
|
||||
assert(0);
|
||||
}
|
||||
|
||||
if(InScanArea(eq, *flip_triangle.PointCCW(eq), *flip_triangle.PointCW( eq ), op)) {
|
||||
if (InScanArea(eq, *flip_triangle.PointCCW(eq), *flip_triangle.PointCW(eq), op)) {
|
||||
// flip with new edge op->eq
|
||||
FlipEdgeEvent(tcx, eq, op, ot, op);
|
||||
// TODO: Actually I just figured out that it should be possible to
|
||||
@ -819,11 +797,10 @@ void Sweep::FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle&
|
||||
// also need to set a new flip_triangle first
|
||||
// Turns out at first glance that this is somewhat complicated
|
||||
// so it will have to wait.
|
||||
} else {
|
||||
} else{
|
||||
Point& newP = NextFlipPoint(ep, eq, ot, op);
|
||||
FlipScanEdgeEvent(tcx, ep, eq, flip_triangle, ot, newP);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -44,71 +44,69 @@ struct Edge;
|
||||
class Triangle;
|
||||
|
||||
class Sweep {
|
||||
|
||||
public:
|
||||
|
||||
void Triangulate(SweepContext& tcx);
|
||||
void Triangulate(SweepContext& tcx);
|
||||
|
||||
private:
|
||||
|
||||
void SweepPoints(SweepContext& tcx);
|
||||
void SweepPoints(SweepContext& tcx);
|
||||
|
||||
Node& PointEvent(SweepContext& tcx, Point& point);
|
||||
Node& PointEvent(SweepContext& tcx, Point& point);
|
||||
|
||||
void EdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
void EdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
|
||||
void EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point);
|
||||
void EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point);
|
||||
|
||||
Node& NewFrontTriangle(SweepContext& tcx, Point& point, Node& node);
|
||||
Node& NewFrontTriangle(SweepContext& tcx, Point& point, Node& node);
|
||||
|
||||
void Fill(SweepContext& tcx, Node& node);
|
||||
void Fill(SweepContext& tcx, Node& node);
|
||||
|
||||
bool Legalize(SweepContext& tcx, Triangle& t);
|
||||
bool Legalize(SweepContext& tcx, Triangle& t);
|
||||
|
||||
bool Incircle(Point& pa, Point& pb, Point& pc, Point& pd);
|
||||
bool Incircle(Point& pa, Point& pb, Point& pc, Point& pd);
|
||||
|
||||
void RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op);
|
||||
void RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op);
|
||||
|
||||
void FillAdvancingFront(SweepContext& tcx, Node& n);
|
||||
void FillAdvancingFront(SweepContext& tcx, Node& n);
|
||||
|
||||
double HoleAngle(Node& node);
|
||||
double HoleAngle(Node& node);
|
||||
|
||||
double BasinAngle(Node& node);
|
||||
double BasinAngle(Node& node);
|
||||
|
||||
void FillBasin(SweepContext& tcx, Node& node);
|
||||
void FillBasin(SweepContext& tcx, Node& node);
|
||||
|
||||
void FillBasinReq(SweepContext& tcx, Node& node);
|
||||
void FillBasinReq(SweepContext& tcx, Node& node);
|
||||
|
||||
bool IsShallow(SweepContext& tcx, Node& node);
|
||||
bool IsShallow(SweepContext& tcx, Node& node);
|
||||
|
||||
bool IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq);
|
||||
bool IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq);
|
||||
|
||||
void FillEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
void FillEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
|
||||
void FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
void FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
|
||||
void FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
void FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
|
||||
void FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
void FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
|
||||
void FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
void FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
|
||||
void FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
void FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
|
||||
void FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
void FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
|
||||
void FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
void FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
|
||||
void FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
void FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
|
||||
|
||||
void FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& t, Point& p);
|
||||
void FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& t, Point& p);
|
||||
|
||||
Triangle& NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op);
|
||||
Triangle& NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op);
|
||||
|
||||
Point& NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op );
|
||||
Point& NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op);
|
||||
|
||||
void FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle, Triangle& t, Point& p);
|
||||
|
||||
void FinalizationPolygon(SweepContext& tcx);
|
||||
void FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle, Triangle& t, Point& p);
|
||||
|
||||
void FinalizationPolygon(SweepContext& tcx);
|
||||
};
|
||||
|
@ -4,8 +4,8 @@
|
||||
#include <GL/glfw.h>
|
||||
#include "advancing_front.h"
|
||||
|
||||
SweepContext::SweepContext(Point** polyline, const int& point_count) {
|
||||
|
||||
SweepContext::SweepContext(Point** polyline, const int& point_count)
|
||||
{
|
||||
basin = Basin();
|
||||
edge_event = EdgeEvent();
|
||||
|
||||
@ -14,37 +14,38 @@ SweepContext::SweepContext(Point** polyline, const int& point_count) {
|
||||
|
||||
InitEdges(points_, point_count_);
|
||||
InitTriangulation();
|
||||
|
||||
}
|
||||
|
||||
std::vector<Triangle*> SweepContext::GetTriangles() {
|
||||
std::vector<Triangle*> SweepContext::GetTriangles()
|
||||
{
|
||||
return triangles_;
|
||||
}
|
||||
|
||||
std::list<Triangle*> SweepContext::GetMap() {
|
||||
std::list<Triangle*> SweepContext::GetMap()
|
||||
{
|
||||
return map_;
|
||||
}
|
||||
|
||||
void SweepContext::InitTriangulation() {
|
||||
|
||||
void SweepContext::InitTriangulation()
|
||||
{
|
||||
double xmax(points_[0]->x), xmin(points_[0]->x);
|
||||
double ymax(points_[0]->y), ymin(points_[0]->y);
|
||||
|
||||
// Calculate bounds.
|
||||
for(int i = 0; i < point_count_; i++) {
|
||||
for (int i = 0; i < point_count_; i++) {
|
||||
Point p = *points_[i];
|
||||
if(p.x > xmax)
|
||||
if (p.x > xmax)
|
||||
xmax = p.x;
|
||||
if(p.x < xmin)
|
||||
if (p.x < xmin)
|
||||
xmin = p.x;
|
||||
if(p.y > ymax)
|
||||
if (p.y > ymax)
|
||||
ymax = p.y;
|
||||
if(p.y < ymin)
|
||||
if (p.y < ymin)
|
||||
ymin = p.y;
|
||||
}
|
||||
|
||||
double dx = kAlpha * ( xmax - xmin );
|
||||
double dy = kAlpha * ( ymax - ymin );
|
||||
double dx = kAlpha * (xmax - xmin);
|
||||
double dy = kAlpha * (ymax - ymin);
|
||||
head_ = new Point(xmax + dx, ymin - dy);
|
||||
tail_ = new Point(xmin - dx, ymin - dy);
|
||||
|
||||
@ -54,25 +55,24 @@ void SweepContext::InitTriangulation() {
|
||||
double dt = glfwGetTime() - init_time;
|
||||
printf("Sort time (secs) = %f\n", dt);
|
||||
|
||||
/*
|
||||
printf("*************************\n");
|
||||
for(int i = 0; i < point_count_; i++) {
|
||||
for (int i = 0; i < point_count_; i++) {
|
||||
printf("%f,%f ", points_[i]->x, points_[i]->y);
|
||||
printf("%p\n", points_[i]);
|
||||
}
|
||||
|
||||
/*
|
||||
printf("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
|
||||
for(int i = 0; i < edge_list.size(); i++) {
|
||||
edge_list[i]->p->DebugPrint(); edge_list[i]->q->DebugPrint();
|
||||
printf("%p, %p\n", edge_list[i]->p, edge_list[i]->q);
|
||||
}
|
||||
*/
|
||||
|
||||
}
|
||||
|
||||
void SweepContext::InitEdges(Point** polyline, const int& point_count) {
|
||||
|
||||
for(int i = 0; i < point_count; i++) {
|
||||
void SweepContext::InitEdges(Point** polyline, const int& point_count)
|
||||
{
|
||||
for (int i = 0; i < point_count; i++) {
|
||||
int j = i < point_count - 1 ? i + 1 : 0;
|
||||
edge_list.push_back(new Edge(*polyline[i], *polyline[j]));
|
||||
}
|
||||
@ -83,24 +83,26 @@ void SweepContext::InitEdges(Point** polyline, const int& point_count) {
|
||||
printf("%p, %p\n", edge_list[i]->p, edge_list[i]->q);
|
||||
}
|
||||
*/
|
||||
|
||||
}
|
||||
|
||||
Point* SweepContext::GetPoint(const int& index) {
|
||||
Point* SweepContext::GetPoint(const int& index)
|
||||
{
|
||||
return points_[index];
|
||||
}
|
||||
|
||||
void SweepContext::AddToMap(Triangle* triangle ) {
|
||||
void SweepContext::AddToMap(Triangle* triangle)
|
||||
{
|
||||
map_.push_back(triangle);
|
||||
}
|
||||
|
||||
Node& SweepContext::LocateNode(Point& point) {
|
||||
Node& SweepContext::LocateNode(Point& point)
|
||||
{
|
||||
// TODO implement search tree
|
||||
return *front_->Locate(point.x);
|
||||
}
|
||||
|
||||
void SweepContext::CreateAdvancingFront() {
|
||||
|
||||
void SweepContext::CreateAdvancingFront()
|
||||
{
|
||||
// Initial triangle
|
||||
Triangle* triangle = new Triangle(*points_[0], *tail_, *head_);
|
||||
|
||||
@ -121,40 +123,43 @@ void SweepContext::CreateAdvancingFront() {
|
||||
middle->next = front_->tail();
|
||||
middle->prev = front_->head();
|
||||
front_->tail()->prev = middle;
|
||||
|
||||
}
|
||||
|
||||
void SweepContext::RemoveNode(Node* node) {
|
||||
void SweepContext::RemoveNode(Node* node)
|
||||
{
|
||||
delete node;
|
||||
}
|
||||
|
||||
void SweepContext::MapTriangleToNodes(Triangle& t) {
|
||||
for(int i=0; i<3; i++) {
|
||||
if(t.GetNeighbor(i) == NULL) {
|
||||
void SweepContext::MapTriangleToNodes(Triangle& t)
|
||||
{
|
||||
for (int i = 0; i < 3; i++) {
|
||||
if (t.GetNeighbor(i) == NULL) {
|
||||
Node* n = front_->LocatePoint(t.PointCW(*t.GetPoint(i)));
|
||||
if(n)
|
||||
if (n)
|
||||
n->triangle = &t;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SweepContext::RemoveFromMap(Triangle* triangle) {
|
||||
void SweepContext::RemoveFromMap(Triangle* triangle)
|
||||
{
|
||||
map_.remove(triangle);
|
||||
}
|
||||
|
||||
void SweepContext::MeshClean(Triangle& triangle ) {
|
||||
|
||||
if(&triangle != NULL && !triangle.IsInterior()) {
|
||||
void SweepContext::MeshClean(Triangle& triangle)
|
||||
{
|
||||
if (&triangle != NULL && !triangle.IsInterior()) {
|
||||
triangle.IsInterior(true);
|
||||
triangles_.push_back(&triangle);
|
||||
for(int i = 0; i < 3; i++) {
|
||||
if(!triangle.constrained_edge[i])
|
||||
for (int i = 0; i < 3; i++) {
|
||||
if (!triangle.constrained_edge[i])
|
||||
MeshClean(*triangle.GetNeighbor(i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SweepContext::~SweepContext() {
|
||||
SweepContext::~SweepContext()
|
||||
{
|
||||
delete head_;
|
||||
delete tail_;
|
||||
delete front_;
|
||||
|
@ -43,52 +43,50 @@ class AdvancingFront;
|
||||
|
||||
|
||||
class SweepContext {
|
||||
|
||||
public:
|
||||
|
||||
// Constructor
|
||||
SweepContext(Point** polyline, const int& point_count);
|
||||
// Destructor
|
||||
~SweepContext();
|
||||
// Constructor
|
||||
SweepContext(Point** polyline, const int& point_count);
|
||||
// Destructor
|
||||
~SweepContext();
|
||||
|
||||
//void MeshClean(Triangle& triangle);
|
||||
// Get Advancing Front
|
||||
//AdvancingFront front();
|
||||
//void MeshClean(Triangle& triangle);
|
||||
// Get Advancing Front
|
||||
//AdvancingFront front();
|
||||
|
||||
void set_head(Point* p1);
|
||||
Point* head();
|
||||
void set_head(Point* p1);
|
||||
Point* head();
|
||||
|
||||
void set_tail(Point* p1 );
|
||||
Point* tail();
|
||||
void set_tail(Point* p1);
|
||||
Point* tail();
|
||||
|
||||
int point_count();
|
||||
int point_count();
|
||||
|
||||
Node& LocateNode(Point& point);
|
||||
void RemoveNode(Node* node);
|
||||
Node& LocateNode(Point& point);
|
||||
void RemoveNode(Node* node);
|
||||
|
||||
void CreateAdvancingFront();
|
||||
void CreateAdvancingFront();
|
||||
|
||||
// Try to map a node to all sides of this triangle that don't have a neighbor
|
||||
void MapTriangleToNodes(Triangle& t);
|
||||
// Try to map a node to all sides of this triangle that don't have a neighbor
|
||||
void MapTriangleToNodes(Triangle& t);
|
||||
|
||||
void AddToMap(Triangle* triangle);
|
||||
void AddToMap(Triangle* triangle);
|
||||
|
||||
Point* GetPoint(const int& index);
|
||||
Point* GetPoints();
|
||||
Point* GetPoint(const int& index);
|
||||
Point* GetPoints();
|
||||
|
||||
void RemoveFromMap(Triangle* triangle);
|
||||
void RemoveFromMap(Triangle* triangle);
|
||||
|
||||
AdvancingFront* front();
|
||||
AdvancingFront* front();
|
||||
|
||||
void MeshClean(Triangle& triangle);
|
||||
void MeshClean(Triangle& triangle);
|
||||
|
||||
std::vector<Triangle*> GetTriangles();
|
||||
std::list<Triangle*> GetMap();
|
||||
std::vector<Triangle*> GetTriangles();
|
||||
std::list<Triangle*> GetMap();
|
||||
|
||||
std::vector<Edge*> edge_list;
|
||||
|
||||
struct Basin {
|
||||
std::vector<Edge*> edge_list;
|
||||
|
||||
struct Basin {
|
||||
Node* left_node;
|
||||
Node* bottom_node;
|
||||
Node* right_node;
|
||||
@ -96,69 +94,88 @@ public:
|
||||
bool left_highest;
|
||||
|
||||
Basin() : left_node(NULL), bottom_node(NULL), right_node(NULL),
|
||||
width(0.0), left_highest(false) {}
|
||||
width(0.0), left_highest(false)
|
||||
{
|
||||
}
|
||||
|
||||
void Clear() {
|
||||
void Clear()
|
||||
{
|
||||
left_node = NULL;
|
||||
bottom_node = NULL;
|
||||
right_node = NULL;
|
||||
width = 0.0;
|
||||
left_highest = false;
|
||||
}
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
struct EdgeEvent {
|
||||
|
||||
struct EdgeEvent {
|
||||
Edge* constrained_edge;
|
||||
bool right;
|
||||
|
||||
EdgeEvent() : constrained_edge(NULL), right(false) {}
|
||||
EdgeEvent() : constrained_edge(NULL), right(false)
|
||||
{
|
||||
}
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
Basin basin;
|
||||
EdgeEvent edge_event;
|
||||
Basin basin;
|
||||
EdgeEvent edge_event;
|
||||
|
||||
private:
|
||||
|
||||
std::vector<Triangle*> triangles_;
|
||||
std::list<Triangle*> map_;
|
||||
std::vector<Triangle*> triangles_;
|
||||
std::list<Triangle*> map_;
|
||||
|
||||
Point** points_;
|
||||
int point_count_;
|
||||
Point** points_;
|
||||
int point_count_;
|
||||
|
||||
// Advancing front
|
||||
AdvancingFront* front_;
|
||||
// head point used with advancing front
|
||||
Point* head_;
|
||||
// tail point used with advancing front
|
||||
Point* tail_;
|
||||
// Advancing front
|
||||
AdvancingFront* front_;
|
||||
// head point used with advancing front
|
||||
Point* head_;
|
||||
// tail point used with advancing front
|
||||
Point* tail_;
|
||||
|
||||
//EdgeEvent edgeEvent = new EdgeEvent();
|
||||
//EdgeEvent edgeEvent = new EdgeEvent();
|
||||
|
||||
void InitTriangulation();
|
||||
void InitEdges(Point** polyline, const int& point_count);
|
||||
void InitTriangulation();
|
||||
void InitEdges(Point** polyline, const int& point_count);
|
||||
|
||||
//void MeshCleanReq(Triangle& triangle )
|
||||
//void MeshCleanReq(Triangle& triangle )
|
||||
|
||||
/*
|
||||
/*
|
||||
class EdgeEvent {
|
||||
Edge* constrainedEdge;
|
||||
bool right;
|
||||
};
|
||||
*/
|
||||
|
||||
};
|
||||
|
||||
inline AdvancingFront* SweepContext::front() { return front_; }
|
||||
inline AdvancingFront* SweepContext::front()
|
||||
{
|
||||
return front_;
|
||||
}
|
||||
|
||||
inline int SweepContext::point_count() { return point_count_; }
|
||||
inline int SweepContext::point_count()
|
||||
{
|
||||
return point_count_;
|
||||
}
|
||||
|
||||
inline void SweepContext::set_head(Point* p1) { head_ = p1; }
|
||||
inline void SweepContext::set_head(Point* p1)
|
||||
{
|
||||
head_ = p1;
|
||||
}
|
||||
|
||||
inline Point* SweepContext::head() { return head_; }
|
||||
inline Point* SweepContext::head()
|
||||
{
|
||||
return head_;
|
||||
}
|
||||
|
||||
inline void SweepContext::set_tail(Point* p1) { tail_ = p1; }
|
||||
inline void SweepContext::set_tail(Point* p1)
|
||||
{
|
||||
tail_ = p1;
|
||||
}
|
||||
|
||||
inline Point* SweepContext::tail() { return tail_; }
|
||||
inline Point* SweepContext::tail()
|
||||
{
|
||||
return tail_;
|
||||
}
|
||||
|
@ -58,7 +58,8 @@ vector<Triangle*> triangles;
|
||||
/// Triangle map
|
||||
list<Triangle*> map;
|
||||
|
||||
double StringToDouble(const std::string& s) {
|
||||
double StringToDouble(const std::string& s)
|
||||
{
|
||||
std::istringstream i(s);
|
||||
double x;
|
||||
if (!(i >> x))
|
||||
@ -68,8 +69,8 @@ double StringToDouble(const std::string& s) {
|
||||
|
||||
bool draw_map = true;
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
if (argc != 3) {
|
||||
cout << "Usage: p2t filename zoom" << endl;
|
||||
return 1;
|
||||
@ -91,12 +92,12 @@ int main(int argc, char* argv[]) {
|
||||
*/
|
||||
|
||||
string line;
|
||||
ifstream myfile (argv[1]);
|
||||
ifstream myfile(argv[1]);
|
||||
vector<Point*> points;
|
||||
if (myfile.is_open()) {
|
||||
while (!myfile.eof()) {
|
||||
getline (myfile,line);
|
||||
if(line.size() == 0) {
|
||||
getline(myfile, line);
|
||||
if (line.size() == 0) {
|
||||
break;
|
||||
}
|
||||
istringstream iss(line);
|
||||
@ -116,7 +117,7 @@ int main(int argc, char* argv[]) {
|
||||
cout << "Number of points = " << num_points << endl;
|
||||
|
||||
Point** polyline = new Point *[num_points];
|
||||
for(int i = 0; i < num_points; i++) {
|
||||
for (int i = 0; i < num_points; i++) {
|
||||
polyline[i] = points[i];
|
||||
}
|
||||
|
||||
@ -155,8 +156,7 @@ void Init()
|
||||
glEnable(GL_BLEND);
|
||||
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
||||
glClearColor(0.0, 0.0, 0.0, 0.0);
|
||||
glHint (GL_LINE_SMOOTH_HINT, GL_NICEST);
|
||||
|
||||
glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
|
||||
}
|
||||
|
||||
void ShutDown(int return_code)
|
||||
@ -172,8 +172,7 @@ void MainLoop(const double zoom)
|
||||
// this just loops as long as the program runs
|
||||
bool running = true;
|
||||
|
||||
while(running)
|
||||
{
|
||||
while (running) {
|
||||
// calculate time elapsed, and the amount by which stuff rotates
|
||||
double current_time = glfwGetTime(),
|
||||
delta_rotate = (current_time - old_time) * rotations_per_tick * 360;
|
||||
@ -181,7 +180,7 @@ void MainLoop(const double zoom)
|
||||
|
||||
// escape to quit, arrow keys to rotate view
|
||||
// Check if ESC key was pressed or window was closed
|
||||
running = !glfwGetKey( GLFW_KEY_ESC ) && glfwGetWindowParam( GLFW_OPENED );
|
||||
running = !glfwGetKey(GLFW_KEY_ESC) && glfwGetWindowParam(GLFW_OPENED);
|
||||
|
||||
if (glfwGetKey(GLFW_KEY_LEFT) == GLFW_PRESS)
|
||||
rotate_y += delta_rotate;
|
||||
@ -191,7 +190,7 @@ void MainLoop(const double zoom)
|
||||
rotate_z += delta_rotate;
|
||||
|
||||
// Draw the scene
|
||||
if(draw_map) {
|
||||
if (draw_map) {
|
||||
DrawMap(zoom);
|
||||
} else {
|
||||
Draw(zoom);
|
||||
@ -202,8 +201,8 @@ void MainLoop(const double zoom)
|
||||
}
|
||||
}
|
||||
|
||||
void ResetZoom(double zoom, double cx, double cy, double width, double height) {
|
||||
|
||||
void ResetZoom(double zoom, double cx, double cy, double width, double height)
|
||||
{
|
||||
double left = -width / zoom;
|
||||
double right = width / zoom;
|
||||
double bottom = -height / zoom;
|
||||
@ -223,18 +222,16 @@ void ResetZoom(double zoom, double cx, double cy, double width, double height) {
|
||||
|
||||
// Clear the screen
|
||||
glClear(GL_COLOR_BUFFER_BIT);
|
||||
|
||||
}
|
||||
|
||||
void Draw(const double zoom) {
|
||||
|
||||
void Draw(const double zoom)
|
||||
{
|
||||
// reset zoom
|
||||
Point center = Point(0, 0);
|
||||
|
||||
ResetZoom(zoom, center.x, center.y, 800, 600);
|
||||
|
||||
for (int i = 0; i < triangles.size(); i++) {
|
||||
|
||||
Triangle& t = *triangles[i];
|
||||
Point& a = *t.GetPoint(0);
|
||||
Point& b = *t.GetPoint(1);
|
||||
@ -248,13 +245,11 @@ void Draw(const double zoom) {
|
||||
glVertex2f(b.x, b.y);
|
||||
glVertex2f(c.x, c.y);
|
||||
glEnd();
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void DrawMap(const double zoom) {
|
||||
|
||||
void DrawMap(const double zoom)
|
||||
{
|
||||
// reset zoom
|
||||
Point center = Point(0, 0);
|
||||
|
||||
@ -262,7 +257,6 @@ void DrawMap(const double zoom) {
|
||||
|
||||
list<Triangle*>::iterator it;
|
||||
for (it = map.begin(); it != map.end(); it++) {
|
||||
|
||||
Triangle& t = **it;
|
||||
Point& a = *t.GetPoint(0);
|
||||
Point& b = *t.GetPoint(1);
|
||||
@ -285,13 +279,12 @@ void DrawMap(const double zoom) {
|
||||
glVertex2f(c.x, c.y);
|
||||
glVertex2f(a.x, a.y);
|
||||
glEnd( );
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void ConstrainedColor(bool constrain) {
|
||||
if(constrain) {
|
||||
void ConstrainedColor(bool constrain)
|
||||
{
|
||||
if (constrain) {
|
||||
// Green
|
||||
glColor3f(0, 1, 0);
|
||||
} else {
|
||||
|
Loading…
Reference in New Issue
Block a user