reflow-oven-control-sw/stm-firmware/safety/safety-controller.c

904 lines
22 KiB
C

/* Reflow Oven Controller
*
* Copyright (C) 2020 Mario Hüttel <mario.huettel@gmx.net>
*
* This file is part of the Reflow Oven Controller Project.
*
* The reflow oven controller is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* The Reflow Oven Control Firmware is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the reflow oven controller project.
* If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @addtogroup safety-controller
* @{
*/
#include <reflow-controller/safety/safety-controller.h>
#include <reflow-controller/safety/safety-config.h>
#include <reflow-controller/safety/watchdog.h>
#include <reflow-controller/safety/safety-adc.h>
#include <reflow-controller/safety/stack-check.h>
#include <helper-macros/helper-macros.h>
#include <stm-periph/crc-unit.h>
#include <reflow-controller/systick.h>
#include <reflow-controller/safety/fault.h>
#include <stm32/stm32f4xx.h>
#include <cmsis/core_cm4.h>
#include <stddef.h>
#include <string.h>
#include <reflow-controller/safety/safety-memory.h>
#include <reflow-controller/oven-driver.h>
#include <helper-macros/helper-macros.h>
#define check_flag_persistent(flag) ((flag)->persistency && (flag)->persistency->persistency)
#define get_flag_weight(flag) ((flag)->weight ? (flag->weight->weight) : SAFETY_FLAG_CONFIG_WEIGHT_NONE)
struct safety_weight {
uint32_t start_dummy;
enum config_weight weight;
enum safety_flag flag;
volatile struct error_flag *flag_ptr;
uint32_t end_dummy;
};
struct safety_persistency {
uint32_t start_dummy;
bool persistency;
enum safety_flag flag;
volatile struct error_flag *flag_ptr;
uint32_t end_dummy;
};
struct error_flag {
const char *name;
enum safety_flag flag;
bool error_state;
bool error_state_inv;
volatile struct safety_persistency *persistency;
volatile struct safety_weight *weight;
uint32_t key;
};
struct timing_mon {
const char *name;
enum timing_monitor monitor;
enum safety_flag associated_flag;
uint64_t min_delta;
uint64_t max_delta;
uint64_t last;
uint64_t calculated_delta;
bool enabled;
};
struct analog_mon {
const char *name;
enum analog_value_monitor monitor;
enum safety_flag associated_flag;
float min;
float max;
float value;
bool valid;
uint64_t timestamp;
};
static volatile struct error_flag IN_SECTION(.ccm.data) flags[] = {
ERR_FLAG_ENTRY(ERR_FLAG_MEAS_ADC_OFF),
ERR_FLAG_ENTRY(ERR_FLAG_MEAS_ADC_WATCHDOG),
ERR_FLAG_ENTRY(ERR_FLAG_MEAS_ADC_UNSTABLE),
ERR_FLAG_ENTRY(ERR_FLAG_MEAS_ADC_OVERFLOW),
ERR_FLAG_ENTRY(ERR_FLAG_TIMING_MEAS_ADC),
ERR_FLAG_ENTRY(ERR_FLAG_TIMING_PID),
ERR_FLAG_ENTRY(ERR_FLAG_AMON_UC_TEMP),
ERR_FLAG_ENTRY(ERR_FLAG_AMON_VREF),
ERR_FLAG_ENTRY(ERR_FLAG_STACK),
ERR_FLAG_ENTRY(ERR_FLAG_SAFETY_ADC),
ERR_FLAG_ENTRY(ERR_FLAG_SYSTICK),
ERR_FLAG_ENTRY(ERR_FLAG_WTCHDG_FIRED),
ERR_FLAG_ENTRY(ERR_FLAG_UNCAL),
ERR_FLAG_ENTRY(ERR_FLAG_DEBUG),
ERR_FLAG_ENTRY(ERR_FLAG_TIMING_MAIN_LOOP),
ERR_FLAG_ENTRY(ERR_FLAG_SAFETY_MEM_CORRUPT),
ERR_FLAG_ENTRY(ERR_FLAG_SAFETY_TAB_CORRUPT),
};
static volatile struct timing_mon IN_SECTION(.ccm.data) timings[] = {
TIM_MON_ENTRY(ERR_TIMING_PID, 2, 1000, ERR_FLAG_TIMING_PID),
TIM_MON_ENTRY(ERR_TIMING_MEAS_ADC, 0, 50, ERR_FLAG_TIMING_MEAS_ADC),
TIM_MON_ENTRY(ERR_TIMING_SAFETY_ADC, 10, SAFETY_CONTROLLER_ADC_DELAY_MS + 1000, ERR_FLAG_SAFETY_ADC),
TIM_MON_ENTRY(ERR_TIMING_MAIN_LOOP, 0, 1000, ERR_FLAG_TIMING_MAIN_LOOP),
};
static volatile struct analog_mon IN_SECTION(.ccm.data) analog_mons[] = {
ANA_MON_ENTRY(ERR_AMON_VREF, SAFETY_ADC_VREF_MVOLT - SAFETY_ADC_VREF_TOL_MVOLT,
SAFETY_ADC_VREF_MVOLT + SAFETY_ADC_VREF_TOL_MVOLT, ERR_FLAG_AMON_VREF),
ANA_MON_ENTRY(ERR_AMON_UC_TEMP, SAFETY_ADC_TEMP_LOW_LIM, SAFETY_ADC_TEMP_HIGH_LIM,
ERR_FLAG_AMON_UC_TEMP),
};
static const struct safety_weight default_flag_weights[] = { SAFETY_CONFIG_DEFAULT_WEIGHTS };
static const struct safety_persistency default_flag_persistencies[] = {SAFETY_CONFIG_DEFAULT_PERSIST};
static volatile struct safety_persistency IN_SECTION(.ccm.bss) flag_persistencies[COUNT_OF(default_flag_persistencies)];
static uint32_t IN_SECTION(.ccm.bss) flag_persistencies_crc;
static volatile struct safety_weight IN_SECTION(.ccm.bss) flag_weights[COUNT_OF(default_flag_weights)];
static uint32_t IN_SECTION(.ccm.bss) flag_weight_crc;
static uint8_t flag_enum_to_flag_no(enum safety_flag flag)
{
uint32_t flag_mask;
uint8_t i;
if (!is_power_of_two(flag))
return 0xFF;
flag_mask = (uint32_t)flag;
for (i = 0; i < 32; i++) {
if ((flag_mask >> i) & 0x1U)
break;
}
return i;
}
static enum safety_flag flag_no_to_flag_enum(uint8_t no)
{
if (no >= COUNT_OF(flags))
return ERR_FLAG_NO_FLAG;
return (1U << no);
}
static int flag_weight_table_crc_check(void)
{
/* Check the flag weight table */
crc_unit_reset();
crc_unit_input_array((uint32_t *)flag_weights, wordsize_of(flag_weights));
if (crc_unit_get_crc() != flag_weight_crc)
return -1;
return 0;
}
static int flag_persistency_table_crc_check(void)
{
crc_unit_reset();
crc_unit_input_array((uint32_t*)flag_persistencies, wordsize_of(flag_persistencies));
if (crc_unit_get_crc() != flag_persistencies_crc)
return -1;
return 0;
}
static volatile struct error_flag *find_error_flag(enum safety_flag flag)
{
uint32_t i;
volatile struct error_flag *ret = NULL;
for (i = 0; i < COUNT_OF(flags); i++) {
if (flags[i].flag == flag)
ret = &flags[i];
}
return ret;
}
/**
* @brief This function copies the safety weigths from flash ro RAM and computes the CRC
*/
static void init_safety_flag_weight_table_from_default(void)
{
uint32_t index;
volatile struct safety_weight *current_weight;
/* Copy the table */
memcpy((void *)flag_weights, default_flag_weights, sizeof(flag_weights));
/* Fill in the flag pointers */
for (index = 0; index < COUNT_OF(flag_weights); index++) {
current_weight = &flag_weights[index];
current_weight->flag_ptr = find_error_flag(current_weight->flag);
if (current_weight->flag_ptr)
current_weight->flag_ptr->weight = current_weight;
}
crc_unit_reset();
crc_unit_input_array((uint32_t*)flag_weights, wordsize_of(flag_weights));
flag_weight_crc = crc_unit_get_crc();
}
static void init_safety_flag_persistencies_from_default(void)
{
uint32_t index;
volatile struct safety_persistency *current_persistency;
/* Copy values */
memcpy((void *)flag_persistencies, default_flag_persistencies, sizeof(flag_persistencies));
/* Fill in flag pointers */
for (index = 0; index < COUNT_OF(flag_persistencies); index++) {
current_persistency = &flag_persistencies[index];
current_persistency->flag_ptr = find_error_flag(current_persistency->flag);
if (current_persistency->flag_ptr)
current_persistency->flag_ptr->persistency = current_persistency;
}
crc_unit_reset();
crc_unit_input_array((uint32_t *)flag_persistencies, wordsize_of(flag_persistencies));
flag_persistencies_crc = crc_unit_get_crc();
}
static void apply_config_overrides(void)
{
uint32_t count;
uint32_t idx;
struct config_override override;
int res;
enum safety_flag flag_enum;
volatile struct error_flag *flag;
res = safety_memory_get_config_override_count(&count);
if (res)
return;
for (idx = 0; idx < count; idx++) {
res = safety_memory_get_config_override(idx, &override);
if (res)
continue;
switch (override.type) {
case SAFETY_MEMORY_CONFIG_OVERRIDE_WEIGHT:
flag_enum = flag_no_to_flag_enum(override.entry.weight_override.flag);
flag = find_error_flag(flag_enum);
if (flag && flag->weight) {
flag->weight->weight = override.entry.weight_override.weight;
}
break;
case SAFETY_MEMORY_CONFIG_OVERRIDE_PERSISTANCE:
flag_enum = flag_no_to_flag_enum(override.entry.persistance_override.flag);
flag = find_error_flag(flag_enum);
if (flag && flag->persistency) {
flag->persistency->persistency = override.entry.persistance_override.persistance;
}
break;
default:
continue;
}
}
/* Patch new CRCs */
crc_unit_reset();
crc_unit_input_array((uint32_t *)flag_persistencies, wordsize_of(flag_persistencies));
flag_persistencies_crc = crc_unit_get_crc();
crc_unit_reset();
crc_unit_input_array((uint32_t*)flag_weights, wordsize_of(flag_weights));
flag_weight_crc = crc_unit_get_crc();
}
static bool error_flag_get_status(const volatile struct error_flag *flag)
{
if (!flag)
return true;
if (flag->error_state == flag->error_state_inv) {
return true;
} else {
return flag->error_state;
}
}
static volatile struct analog_mon *find_analog_mon(enum analog_value_monitor mon)
{
uint32_t i;
volatile struct analog_mon *ret = NULL;
for (i = 0; i < COUNT_OF(analog_mons); i++) {
if (analog_mons[i].monitor == mon)
ret = &analog_mons[i];
}
return ret;
}
static volatile struct timing_mon *find_timing_mon(enum timing_monitor mon)
{
uint32_t i;
volatile struct timing_mon *ret = NULL;
for (i = 0; i < COUNT_OF(timings); i++) {
if (timings[i].monitor == mon)
ret = &timings[i];
}
return ret;
}
static void safety_controller_process_active_timing_mons()
{
uint32_t i;
volatile struct timing_mon *current_mon;
uint64_t last;
for (i = 0; i < COUNT_OF(timings); i++) {
current_mon = &timings[i];
if (current_mon->enabled) {
__disable_irq();
last = current_mon->last;
__enable_irq();
if (systick_ticks_have_passed(last, current_mon->max_delta))
safety_controller_report_error(current_mon->associated_flag);
}
}
}
static void safety_controller_process_monitor_checks()
{
static bool startup_completed = false;
enum analog_monitor_status amon_state;
float amon_value;
if (!startup_completed && systick_get_global_tick() >= 1000)
startup_completed = true;
if (startup_completed) {
amon_state = safety_controller_get_analog_mon_value(ERR_AMON_VREF, &amon_value);
if (amon_state != ANALOG_MONITOR_OK)
safety_controller_report_error(ERR_FLAG_AMON_VREF);
amon_state = safety_controller_get_analog_mon_value(ERR_AMON_UC_TEMP, &amon_value);
if (amon_state != ANALOG_MONITOR_OK)
safety_controller_report_error(ERR_FLAG_AMON_UC_TEMP);
}
safety_controller_process_active_timing_mons();
}
static int report_error(enum safety_flag flag, uint32_t key, bool prevent_error_mem_enty)
{
uint32_t i;
int ret = -1;
bool old_state;
int res;
struct error_memory_entry err_mem_entry;
for (i = 0; i < COUNT_OF(flags); i++) {
if (flags[i].flag & flag) {
old_state = flags[i].error_state;
flags[i].error_state = true;
flags[i].error_state_inv = !flags[i].error_state;
flags[i].key = key;
if (check_flag_persistent(&flags[i]) && !old_state && !prevent_error_mem_enty) {
err_mem_entry.counter = 1;
err_mem_entry.flag_num = flag_enum_to_flag_no(flags[i].flag);
err_mem_entry.type = SAFETY_MEMORY_ERR_ENTRY_FLAG;
res = safety_memory_insert_error_entry(&err_mem_entry);
if (res)
ret = -12;
} else {
ret = 0;
}
}
}
return ret;
}
int safety_controller_report_error(enum safety_flag flag)
{
return safety_controller_report_error_with_key(flag, 0x0UL);
}
int safety_controller_report_error_with_key(enum safety_flag flag, uint32_t key)
{
return report_error(flag, key, false);
}
void safety_controller_report_timing(enum timing_monitor monitor)
{
volatile struct timing_mon *tim;
uint64_t timestamp;
timestamp = systick_get_global_tick();
tim = find_timing_mon(monitor);
if (tim) {
if (tim->enabled) {
if (!systick_ticks_have_passed(tim->last, tim->min_delta) && tim->min_delta > 0U) {
safety_controller_report_error(tim->associated_flag);
}
}
tim->calculated_delta = timestamp - tim->last;
tim->last = timestamp;
tim->enabled = true;
}
}
void safety_controller_report_analog_value(enum analog_value_monitor monitor, float value)
{
volatile struct analog_mon *ana;
/* Return if not a power of two */
if (!is_power_of_two(monitor))
return;
ana = find_analog_mon(monitor);
if (ana) {
ana->valid = true;
ana->value = value;
ana->timestamp = systick_get_global_tick();
}
}
/**
* @brief Return the flags, which are set in the error memory
* @param flags Flags read from error memory
* @return 0 if ok, != 0 if error
*/
static enum safety_flag get_safety_flags_from_error_mem(enum safety_flag *flags)
{
uint32_t count;
uint32_t idx;
int res;
enum safety_flag return_flags = 0;
struct error_memory_entry entry;
if (!flags)
return -1001;
res = safety_memory_get_error_entry_count(&count);
if (res)
return -1;
for (idx = 0; idx < count; idx++) {
res = safety_memory_get_error_entry(idx, &entry);
if (entry.type == SAFETY_MEMORY_ERR_ENTRY_FLAG) {
return_flags |= flag_no_to_flag_enum(entry.flag_num);
}
}
*flags = return_flags;
return 0;
}
void safety_controller_init()
{
enum safety_memory_state found_memory_state;
enum safety_flag flags_in_err_mem = ERR_FLAG_NO_FLAG;
int res;
/* Init the safety memory */
if (safety_memory_init(&found_memory_state)) {
/* Trigger panic mode! */
panic_mode();
}
/* This is usually done by the safety memory already. But, since this module also uses the CRC... */
crc_unit_init();
stack_check_init_corruption_detect_area();
init_safety_flag_weight_table_from_default();
init_safety_flag_persistencies_from_default();
apply_config_overrides();
if (found_memory_state == SAFETY_MEMORY_INIT_CORRUPTED)
safety_controller_report_error(ERR_FLAG_SAFETY_MEM_CORRUPT);
else if (found_memory_state == SAFETY_MEMORY_INIT_VALID_MEMORY) {
/* restore the corrupt flag flag */
res = get_safety_flags_from_error_mem(&flags_in_err_mem);
if (res)
panic_mode();
if (flags_in_err_mem & ERR_FLAG_SAFETY_MEM_CORRUPT)
report_error(ERR_FLAG_SAFETY_MEM_CORRUPT, 0, true);
}
/* Init default flag states */
safety_controller_report_error_with_key(ERR_FLAG_MEAS_ADC_OFF | ERR_FLAG_MEAS_ADC_UNSTABLE,
MEAS_ADC_SAFETY_FLAG_KEY);
safety_adc_init();
watchdog_setup(WATCHDOG_PRESCALER);
if (watchdog_check_reset_source())
safety_controller_report_error(ERR_FLAG_WTCHDG_FIRED);
#ifdef DEBUGBUILD
safety_controller_report_error(ERR_FLAG_DEBUG);
#endif
}
static void safety_controller_check_stack()
{
int32_t free_stack;
free_stack = stack_check_get_free();
if (free_stack < SAFETY_MIN_STACK_FREE)
safety_controller_report_error(ERR_FLAG_STACK);
if (stack_check_corruption_detect_area()) {
safety_controller_report_error(ERR_FLAG_STACK);
}
}
static void safety_controller_handle_safety_adc()
{
static uint64_t last_result_timestamp = 0;
const uint16_t *channels;
int poll_result;
float analog_value;
poll_result = safety_adc_poll_result();
if (poll_result == 1) {
/* Data available */
channels = safety_adc_get_values();
analog_value = safety_adc_convert_channel(SAFETY_ADC_MEAS_TEMP, channels[0]);
safety_controller_report_analog_value(ERR_AMON_UC_TEMP, analog_value);
analog_value = safety_adc_convert_channel(SAFETY_ADC_MEAS_VREF, channels[1]);
safety_controller_report_analog_value(ERR_AMON_VREF, analog_value);
last_result_timestamp = systick_get_global_tick();
safety_controller_report_timing(ERR_TIMING_SAFETY_ADC);
}
if (systick_ticks_have_passed(last_result_timestamp, SAFETY_CONTROLLER_ADC_DELAY_MS)) {
if (poll_result != 1 && poll_result != 0)
safety_adc_trigger_meas();
}
}
/**
* @brief Check the memory structures.
*/
static void safety_controller_handle_memory_checks(void)
{
static uint64_t ts = 0;
enum safety_memory_state found_state;
if (systick_ticks_have_passed(ts, 250)) {
ts = systick_get_global_tick();
/* Check the safety memory */
if (safety_memory_check()) {
(void)safety_memory_reinit(&found_state);
if (found_state != SAFETY_MEMORY_INIT_VALID_MEMORY) {
safety_controller_report_error(ERR_FLAG_SAFETY_MEM_CORRUPT);
}
}
/* If flag weight table is broken, reinit to default and set flag */
if (flag_weight_table_crc_check()) {
safety_controller_report_error(ERR_FLAG_SAFETY_TAB_CORRUPT);
init_safety_flag_weight_table_from_default();
}
/* If persistency table is broken, reinit to default and set flag */
if(flag_persistency_table_crc_check()) {
safety_controller_report_error(ERR_FLAG_SAFETY_TAB_CORRUPT);
init_safety_flag_persistencies_from_default();
}
}
}
static void safety_controller_do_systick_checking()
{
static uint64_t last_systick;
static uint32_t same_systick_cnt = 0UL;
uint64_t systick;
systick = systick_get_global_tick();
if (systick == last_systick) {
same_systick_cnt++;
if (same_systick_cnt > 1000)
safety_controller_report_error(ERR_FLAG_SYSTICK);
} else {
same_systick_cnt = 0UL;
}
last_systick = systick;
}
static void safety_controller_handle_weighted_flags()
{
uint32_t weight_index;
volatile struct safety_weight *current_weight;
for (weight_index = 0; weight_index < COUNT_OF(flag_weights); weight_index++) {
current_weight = &flag_weights[weight_index];
if (error_flag_get_status(current_weight->flag_ptr)) {
switch (current_weight->weight) {
case SAFETY_FLAG_CONFIG_WEIGHT_NONE:
break;
case SAFETY_FLAG_CONFIG_WEIGHT_PID:
oven_pid_abort();
break;
case SAFETY_FLAG_CONFIG_WEIGHT_PANIC:
/* Expected fallthrough */
default:
oven_pid_abort();
panic_mode();
break;
}
}
}
}
int safety_controller_handle()
{
int ret = 0;
safety_controller_check_stack();
safety_controller_handle_safety_adc();
safety_controller_handle_memory_checks();
safety_controller_do_systick_checking();
safety_controller_process_monitor_checks();
safety_controller_handle_weighted_flags();
ret |= watchdog_ack(WATCHDOG_MAGIC_KEY);
return (ret ? -1 : 0);
}
int safety_controller_enable_timing_mon(enum timing_monitor monitor, bool enable)
{
volatile struct timing_mon *tim;
if (enable) {
safety_controller_report_timing(monitor);
} else {
tim = find_timing_mon(monitor);
if (!tim)
return -1;
tim->enabled = false;
}
return 0;
}
enum analog_monitor_status safety_controller_get_analog_mon_value(enum analog_value_monitor monitor, float *value)
{
volatile struct analog_mon *mon;
int ret = ANALOG_MONITOR_ERROR;
if (!is_power_of_two(monitor))
goto go_out;
if (!value)
goto go_out;
mon = find_analog_mon(monitor);
if (mon) {
if (!mon->valid) {
ret = ANALOG_MONITOR_INACTIVE;
goto go_out;
}
*value = mon->value;
if (mon->value < mon->min)
ret = ANALOG_MONITOR_UNDER;
else if (mon->value > mon->max)
ret = ANALOG_MONITOR_OVER;
else
ret = ANALOG_MONITOR_OK;
}
go_out:
return ret;
}
int safety_controller_get_flag(enum safety_flag flag, bool *status, bool try_ack)
{
volatile struct error_flag *found_flag;
int ret = -1;
if (!status)
return -1002;
if (!is_power_of_two(flag))
return -1001;
found_flag = find_error_flag(flag);
if (found_flag) {
*status = error_flag_get_status(found_flag);
if (try_ack && !check_flag_persistent(found_flag)) {
/* Flag is generally non persistent
* If key is set, this function cannot remove the flag
*/
if (found_flag->key == 0UL) {
found_flag->error_state = false;
found_flag->error_state_inv = !found_flag->error_state;
}
}
}
return ret;
}
int safety_controller_ack_flag(enum safety_flag flag)
{
return safety_controller_ack_flag_with_key(flag, 0UL);
}
int safety_controller_ack_flag_with_key(enum safety_flag flag, uint32_t key)
{
int ret = -1;
volatile struct error_flag *found_flag;
if (!is_power_of_two(flag)) {
return -1001;
}
found_flag = find_error_flag(flag);
if (found_flag) {
if (!check_flag_persistent(found_flag) && (found_flag->key == key || !found_flag->key)) {
found_flag->error_state = false;
found_flag->error_state_inv = true;
ret = 0;
} else {
ret = -2;
}
}
return ret;
}
bool safety_controller_get_flags_by_mask(enum safety_flag mask)
{
uint32_t i;
bool ret = false;
for (i = 0; i < COUNT_OF(flags); i++) {
if ((flags[i].flag & mask) && error_flag_get_status(&flags[i])) {
ret = true;
break;
}
}
return ret;
}
uint32_t safety_controller_get_flag_count()
{
return COUNT_OF(flags);
}
uint32_t safety_controller_get_analog_monitor_count()
{
return COUNT_OF(analog_mons);
}
uint32_t safety_controller_get_timing_monitor_count()
{
return COUNT_OF(timings);
}
int safety_controller_get_analog_mon_name_by_index(uint32_t index, char *buffer, size_t buffsize)
{
if (index >= COUNT_OF(analog_mons))
return -1;
if (buffsize == 0 || !buffer)
return -1000;
strncpy(buffer, analog_mons[index].name, buffsize);
buffer[buffsize - 1] = 0;
return 0;
}
int safety_controller_get_flag_name_by_index(uint32_t index, char *buffer, size_t buffsize)
{
if (index >= COUNT_OF(flags))
return -1;
if (buffsize == 0 || !buffer)
return -1000;
strncpy(buffer, flags[index].name, buffsize);
buffer[buffsize - 1] = 0;
return 0;
}
int safety_controller_get_timing_mon_name_by_index(uint32_t index, char *buffer, size_t buffsize)
{
if (index >= COUNT_OF(timings))
return -1;
if (buffsize == 0 || !buffer)
return -1000;
strncpy(buffer, timings[index].name, buffsize);
buffer[buffsize - 1] = 0;
return 0;
}
int safety_controller_get_flag_by_index(uint32_t index, bool *status, enum safety_flag *flag_enum)
{
int ret = -1;
if (!status && !flag_enum)
return -1000;
if (index < COUNT_OF(flags)) {
if (status)
*status = error_flag_get_status(&flags[index]);
if (flag_enum)
*flag_enum = flags[index].flag;
ret = 0;
}
return ret;
}
int safety_controller_get_analog_mon_by_index(uint32_t index, struct analog_monitor_info *info)
{
volatile struct analog_mon *mon;
if (!info)
return -1002;
if (index >= COUNT_OF(analog_mons)) {
info->status = ANALOG_MONITOR_ERROR;
return -1001;
}
mon = &analog_mons[index];
info->max = mon->max;
info->min = mon->min;
info->value = mon->value;
info->timestamp = mon->timestamp;
if (!mon->valid) {
info->status = ANALOG_MONITOR_INACTIVE;
} else {
if (mon->value > mon->max)
info->status = ANALOG_MONITOR_OVER;
else if (mon->value < mon->min)
info->status = ANALOG_MONITOR_UNDER;
else
info->status = ANALOG_MONITOR_OK;
}
return 0;
}
int safety_controller_get_timing_mon_by_index(uint32_t index, struct timing_monitor_info *info)
{
volatile struct timing_mon *mon;
if (!info)
return -1002;
if (index >= COUNT_OF(timings)) {
return -1001;
}
mon = &timings[index];
info->max = mon->max_delta;
info->min = mon->min_delta;
info->enabled = mon->enabled;
info->last_run = mon->last;
info->delta = mon->calculated_delta;
return 0;
}
/** @} */