reflow-oven-control-sw/stm-firmware/safety/safety-controller.c

638 lines
15 KiB
C
Raw Normal View History

/* Reflow Oven Controller
*
* Copyright (C) 2020 Mario Hüttel <mario.huettel@gmx.net>
*
* This file is part of the Reflow Oven Controller Project.
*
* The reflow oven controller is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* The Reflow Oven Control Firmware is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the reflow oven controller project.
* If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @addtogroup safety-controller
* @{
*/
#include <reflow-controller/safety/safety-controller.h>
#include <reflow-controller/safety/safety-config.h>
#include <reflow-controller/safety/watchdog.h>
2020-07-09 22:31:42 +02:00
#include <reflow-controller/safety/safety-adc.h>
2020-07-26 21:40:09 +02:00
#include <reflow-controller/stack-check.h>
2020-07-09 22:31:42 +02:00
#include <helper-macros/helper-macros.h>
#include <reflow-controller/systick.h>
2020-09-05 15:15:31 +02:00
#include <reflow-controller/safety/fault.h>
2020-08-18 20:47:08 +02:00
#include <stm32/stm32f4xx.h>
#include <cmsis/core_cm4.h>
#include <stddef.h>
#include <string.h>
2020-09-05 15:15:31 +02:00
#include <reflow-controller/safety/safety-memory.h>
#include <helper-macros/helper-macros.h>
struct error_flag {
const char *name;
enum safety_flag flag;
bool error_state;
bool error_state_inv;
bool persistent;
2020-07-27 21:29:15 +02:00
uint32_t key;
};
struct timing_mon {
const char *name;
enum timing_monitor monitor;
2020-07-09 22:31:42 +02:00
enum safety_flag associated_flag;
uint64_t min_delta;
uint64_t max_delta;
uint64_t last;
uint64_t calculated_delta;
bool enabled;
};
struct analog_mon {
const char *name;
enum analog_value_monitor monitor;
2020-07-09 22:31:42 +02:00
enum safety_flag associated_flag;
float min;
float max;
float value;
bool valid;
uint64_t timestamp;
};
#ifdef COUNT_OF
#undef COUNT_OF
#endif
#define COUNT_OF(x) ((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x])))))
#define ERR_FLAG_ENTRY(errflag, persistency) {.name=#errflag, .flag = (errflag), .error_state = false, .error_state_inv = true, .persistent = (persistency), .key = 0UL}
2020-07-09 22:31:42 +02:00
#define TIM_MON_ENTRY(mon, min, max, flag) {.name=#mon, .monitor = (mon), .associated_flag=(flag), .min_delta = (min), .max_delta = (max), .last = 0ULL, .enabled= false}
#define ANA_MON_ENTRY(mon, min_value, max_value, flag) {.name=#mon, .monitor = (mon), .associated_flag=(flag), .min = (min_value), .max = (max_value), .value = 0.0f, .valid = false}
static volatile struct error_flag IN_SECTION(.ccm.data) flags[] = {
ERR_FLAG_ENTRY(ERR_FLAG_MEAS_ADC_OFF, false),
ERR_FLAG_ENTRY(ERR_FLAG_MEAS_ADC_WATCHDOG, false),
ERR_FLAG_ENTRY(ERR_FLAG_MEAS_ADC_UNSTABLE, false),
ERR_FLAG_ENTRY(ERR_FLAG_MEAS_ADC_OVERFLOW, true),
ERR_FLAG_ENTRY(ERR_FLAG_TIMING_MEAS_ADC, false),
ERR_FLAG_ENTRY(ERR_FLAG_TIMING_PID, false),
ERR_FLAG_ENTRY(ERR_FLAG_AMON_UC_TEMP, true),
ERR_FLAG_ENTRY(ERR_FLAG_AMON_VREF, false),
ERR_FLAG_ENTRY(ERR_FLAG_STACK, true),
2020-07-26 21:40:09 +02:00
ERR_FLAG_ENTRY(ERR_FLAG_SAFETY_ADC, true),
ERR_FLAG_ENTRY(ERR_FLAG_SYSTICK, true),
2020-07-27 21:29:15 +02:00
ERR_FLAG_ENTRY(ERR_FLAG_WTCHDG_FIRED, true),
ERR_FLAG_ENTRY(ERR_FLAG_UNCAL, false),
2020-07-28 23:29:35 +02:00
ERR_FLAG_ENTRY(ERR_FLAG_DEBUG, true),
ERR_FLAG_ENTRY(ERR_FLAG_TIMING_MAIN_LOOP, false),
ERR_FLAG_ENTRY(ERR_FLAG_SAFETY_MEM_CORRUPT, true),
};
static volatile struct timing_mon IN_SECTION(.ccm.data) timings[] = {
TIM_MON_ENTRY(ERR_TIMING_PID, 2, 1000, ERR_FLAG_TIMING_PID),
TIM_MON_ENTRY(ERR_TIMING_MEAS_ADC, 0, 50, ERR_FLAG_TIMING_MEAS_ADC),
TIM_MON_ENTRY(ERR_TIMING_SAFETY_ADC, 10, SAFETY_CONTROLLER_ADC_DELAY_MS + 1000, ERR_FLAG_SAFETY_ADC),
TIM_MON_ENTRY(ERR_TIMING_MAIN_LOOP, 0, 1000, ERR_FLAG_TIMING_MAIN_LOOP),
};
static volatile struct analog_mon IN_SECTION(.ccm.data) analog_mons[] = {
2020-07-26 21:40:09 +02:00
ANA_MON_ENTRY(ERR_AMON_VREF, SAFETY_ADC_VREF_MVOLT - SAFETY_ADC_VREF_TOL_MVOLT,
SAFETY_ADC_VREF_MVOLT + SAFETY_ADC_VREF_TOL_MVOLT, ERR_FLAG_AMON_VREF),
ANA_MON_ENTRY(ERR_AMON_UC_TEMP, SAFETY_ADC_TEMP_LOW_LIM, SAFETY_ADC_TEMP_HIGH_LIM,
ERR_FLAG_AMON_UC_TEMP),
};
static bool error_flag_get_status(const volatile struct error_flag *flag)
{
if (flag->error_state == flag->error_state_inv) {
return true;
} else {
return flag->error_state;
}
}
2020-07-27 21:32:25 +02:00
static volatile struct analog_mon *find_analog_mon(enum analog_value_monitor mon)
2020-07-09 22:31:42 +02:00
{
uint32_t i;
2020-07-27 21:32:25 +02:00
volatile struct analog_mon *ret = NULL;
2020-07-09 22:31:42 +02:00
for (i = 0; i < COUNT_OF(analog_mons); i++) {
if (analog_mons[i].monitor == mon)
ret = &analog_mons[i];
}
return ret;
}
2020-07-27 21:32:25 +02:00
static volatile struct timing_mon *find_timing_mon(enum timing_monitor mon)
2020-07-09 22:31:42 +02:00
{
uint32_t i;
2020-07-27 21:32:25 +02:00
volatile struct timing_mon *ret = NULL;
2020-07-09 22:31:42 +02:00
for (i = 0; i < COUNT_OF(timings); i++) {
if (timings[i].monitor == mon)
ret = &timings[i];
}
return ret;
}
2020-07-27 21:32:25 +02:00
static volatile struct error_flag *find_error_flag(enum safety_flag flag)
2020-07-09 22:31:42 +02:00
{
uint32_t i;
2020-07-27 21:32:25 +02:00
volatile struct error_flag *ret = NULL;
2020-07-09 22:31:42 +02:00
for (i = 0; i < COUNT_OF(flags); i++) {
if (flags[i].flag == flag)
ret = &flags[i];
}
return ret;
}
2020-07-26 21:40:09 +02:00
static void safety_controller_process_active_timing_mons()
{
uint32_t i;
2020-07-27 21:32:25 +02:00
volatile struct timing_mon *current_mon;
2020-08-18 20:47:08 +02:00
uint64_t last;
2020-07-26 21:40:09 +02:00
for (i = 0; i < COUNT_OF(timings); i++) {
current_mon = &timings[i];
if (current_mon->enabled) {
2020-08-18 20:47:08 +02:00
__disable_irq();
last = current_mon->last;
__enable_irq();
if (systick_ticks_have_passed(last, current_mon->max_delta))
2020-07-26 21:40:09 +02:00
safety_controller_report_error(current_mon->associated_flag);
}
}
}
2020-07-09 22:31:42 +02:00
static void safety_controller_process_checks()
{
2020-07-26 21:40:09 +02:00
static bool startup_completed = false;
enum analog_monitor_status amon_state;
float amon_value;
if (!startup_completed && systick_get_global_tick() >= 1000)
2020-07-26 21:40:09 +02:00
startup_completed = true;
2020-07-26 21:40:09 +02:00
if (startup_completed) {
amon_state = safety_controller_get_analog_mon_value(ERR_AMON_VREF, &amon_value);
if (amon_state != ANALOG_MONITOR_OK)
safety_controller_report_error(ERR_FLAG_AMON_VREF);
amon_state = safety_controller_get_analog_mon_value(ERR_AMON_UC_TEMP, &amon_value);
if (amon_state != ANALOG_MONITOR_OK)
safety_controller_report_error(ERR_FLAG_AMON_UC_TEMP);
}
safety_controller_process_active_timing_mons();
2020-07-09 22:31:42 +02:00
}
int safety_controller_report_error(enum safety_flag flag)
{
return safety_controller_report_error_with_key(flag, 0x0UL);
}
int safety_controller_report_error_with_key(enum safety_flag flag, uint32_t key)
{
uint32_t i;
int ret = -1;
for (i = 0; i < COUNT_OF(flags); i++) {
if (flags[i].flag & flag) {
flags[i].error_state = true;
flags[i].error_state_inv = !flags[i].error_state;
flags[i].key = key;
ret = 0;
}
}
return ret;
}
void safety_controller_report_timing(enum timing_monitor monitor)
{
2020-07-27 21:32:25 +02:00
volatile struct timing_mon *tim;
uint64_t timestamp;
timestamp = systick_get_global_tick();
2020-07-09 22:31:42 +02:00
tim = find_timing_mon(monitor);
if (tim) {
2020-07-26 21:40:09 +02:00
if (tim->enabled) {
if (!systick_ticks_have_passed(tim->last, tim->min_delta) && tim->min_delta > 0U) {
2020-07-26 21:40:09 +02:00
safety_controller_report_error(tim->associated_flag);
}
}
tim->calculated_delta = timestamp - tim->last;
2020-07-09 22:31:42 +02:00
tim->last = timestamp;
tim->enabled = true;
}
}
void safety_controller_report_analog_value(enum analog_value_monitor monitor, float value)
{
2020-07-27 21:32:25 +02:00
volatile struct analog_mon *ana;
2020-07-09 22:31:42 +02:00
/* Return if not a power of two */
if (!is_power_of_two(monitor))
return;
ana = find_analog_mon(monitor);
if (ana) {
ana->valid = true;
ana->value = value;
ana->timestamp = systick_get_global_tick();
}
2020-07-09 22:31:42 +02:00
}
void safety_controller_init()
{
2020-09-05 15:15:31 +02:00
enum safety_memory_state found_memory_state;
/* Init the safety memory */
if (safety_memory_init(&found_memory_state)) {
/* Trigger panic mode! */
panic_mode();
}
if (found_memory_state == SAFETY_MEMORY_INIT_CORRUPTED)
safety_controller_report_error(ERR_FLAG_SAFETY_MEM_CORRUPT);
/* Init default flag states */
safety_controller_report_error_with_key(ERR_FLAG_MEAS_ADC_OFF | ERR_FLAG_MEAS_ADC_UNSTABLE,
MEAS_ADC_SAFETY_FLAG_KEY);
2020-07-09 22:31:42 +02:00
safety_adc_init();
watchdog_setup(WATCHDOG_PRESCALER);
if (watchdog_check_reset_source())
safety_controller_report_error(ERR_FLAG_WTCHDG_FIRED);
2020-07-28 23:29:35 +02:00
#ifdef DEBUGBUILD
safety_controller_report_error(ERR_FLAG_DEBUG);
#endif
}
2020-07-26 21:40:09 +02:00
static void safety_controller_check_stack()
{
int32_t free_stack;
free_stack = stack_check_get_free();
if (free_stack < SAFETY_MIN_STACK_FREE)
safety_controller_report_error(ERR_FLAG_STACK);
}
static void safety_controller_handle_safety_adc()
{
static enum safety_adc_meas_channel current_channel = SAFETY_ADC_MEAS_TEMP;
static uint64_t last_result_timestamp = 0;
2020-07-26 21:40:09 +02:00
int poll_result;
uint16_t result;
float analog_value;
poll_result = safety_adc_poll_result(&result);
if (!systick_ticks_have_passed(last_result_timestamp, SAFETY_CONTROLLER_ADC_DELAY_MS) && poll_result != 1)
return;
2020-07-26 21:40:09 +02:00
if (poll_result) {
if (poll_result == -1) {
switch (current_channel) {
case SAFETY_ADC_MEAS_TEMP:
current_channel = SAFETY_ADC_MEAS_VREF;
break;
case SAFETY_ADC_MEAS_VREF:
/* Expected fallthru */
default:
current_channel = SAFETY_ADC_MEAS_TEMP;
break;
}
safety_adc_trigger_meas(current_channel);
} else if (poll_result == 1) {
last_result_timestamp = systick_get_global_tick();
2020-07-26 21:40:09 +02:00
analog_value = safety_adc_convert_channel(current_channel, result);
safety_controller_report_timing(ERR_TIMING_SAFETY_ADC);
switch (current_channel) {
case SAFETY_ADC_MEAS_TEMP:
safety_controller_report_analog_value(ERR_AMON_UC_TEMP, analog_value);
break;
case SAFETY_ADC_MEAS_VREF:
safety_controller_report_analog_value(ERR_AMON_VREF, analog_value);
break;
default:
safety_controller_report_error(ERR_FLAG_SAFETY_ADC);
break;
}
}
}
}
static void safety_controller_handle_safety_memory_check(void)
{
static uint64_t ts = 0;
enum safety_memory_state found_state;
if (systick_ticks_have_passed(ts, 5000)) {
ts = systick_get_global_tick();
if (safety_memory_check()) {
safety_memory_reinit(&found_state);
if (found_state != SAFETY_MEMORY_INIT_VALID_MEMORY) {
safety_controller_report_error(ERR_FLAG_SAFETY_MEM_CORRUPT);
}
}
}
}
int safety_controller_handle()
{
static uint64_t last_systick;
static uint32_t same_systick_cnt = 0UL;
uint64_t systick;
2020-07-09 22:31:42 +02:00
int ret = 0;
2020-07-26 21:40:09 +02:00
safety_controller_check_stack();
safety_controller_handle_safety_adc();
safety_controller_handle_safety_memory_check();
2020-07-26 21:40:09 +02:00
systick = systick_get_global_tick();
if (systick == last_systick) {
same_systick_cnt++;
if (same_systick_cnt > 1000)
safety_controller_report_error(ERR_FLAG_SYSTICK);
} else {
same_systick_cnt = 0UL;
}
last_systick = systick;
safety_controller_process_checks();
/* TODO: Check flags for PID and HALT */
ret |= watchdog_ack(WATCHDOG_MAGIC_KEY);
return (ret ? -1 : 0);
}
int safety_controller_enable_timing_mon(enum timing_monitor monitor, bool enable)
{
2020-07-27 21:32:25 +02:00
volatile struct timing_mon *tim;
if (enable) {
safety_controller_report_timing(monitor);
} else {
2020-07-09 22:31:42 +02:00
tim = find_timing_mon(monitor);
if (!tim)
return -1;
tim->enabled = false;
}
return 0;
}
2020-07-09 22:31:42 +02:00
enum analog_monitor_status safety_controller_get_analog_mon_value(enum analog_value_monitor monitor, float *value)
{
2020-07-27 21:32:25 +02:00
volatile struct analog_mon *mon;
2020-07-09 22:31:42 +02:00
int ret = ANALOG_MONITOR_ERROR;
if (!is_power_of_two(monitor))
goto go_out;
if (!value)
goto go_out;
mon = find_analog_mon(monitor);
if (mon) {
if (!mon->valid) {
ret = ANALOG_MONITOR_INACTIVE;
goto go_out;
}
*value = mon->value;
if (mon->value < mon->min)
ret = ANALOG_MONITOR_UNDER;
else if (mon->value > mon->max)
ret = ANALOG_MONITOR_OVER;
else
ret = ANALOG_MONITOR_OK;
}
go_out:
return ret;
}
2020-07-26 21:40:09 +02:00
int safety_controller_get_flag(enum safety_flag flag, bool *status, bool try_ack)
{
2020-07-27 21:32:25 +02:00
volatile struct error_flag *found_flag;
2020-07-26 21:40:09 +02:00
int ret = -1;
if (!status)
return -1002;
if (!is_power_of_two(flag))
return -1001;
found_flag = find_error_flag(flag);
if (found_flag) {
*status = error_flag_get_status(found_flag);
2020-07-27 21:29:15 +02:00
if (try_ack && !found_flag->persistent) {
/* Flag is generally non persistent
* If key is set, this function cannot remove the flag
*/
if (found_flag->key == 0UL) {
2020-07-27 21:29:15 +02:00
found_flag->error_state = false;
found_flag->error_state_inv = !found_flag->error_state;
}
2020-07-27 21:29:15 +02:00
}
2020-07-26 21:40:09 +02:00
}
return ret;
}
int safety_controller_ack_flag(enum safety_flag flag)
2020-07-27 21:29:15 +02:00
{
return safety_controller_ack_flag_with_key(flag, 0UL);
}
int safety_controller_ack_flag_with_key(enum safety_flag flag, uint32_t key)
2020-07-26 21:40:09 +02:00
{
int ret = -1;
2020-07-27 21:32:25 +02:00
volatile struct error_flag *found_flag;
2020-07-26 21:40:09 +02:00
if (!is_power_of_two(flag)) {
return -1001;
}
found_flag = find_error_flag(flag);
if (found_flag) {
if (!found_flag->persistent && (found_flag->key == key || !key)) {
2020-07-26 21:40:09 +02:00
found_flag->error_state = false;
found_flag->error_state_inv = true;
2020-07-26 21:40:09 +02:00
ret = 0;
} else {
ret = -2;
}
}
return ret;
}
bool safety_controller_get_flags_by_mask(enum safety_flag mask)
{
uint32_t i;
bool ret = false;
for (i = 0; i < COUNT_OF(flags); i++) {
if ((flags[i].flag & mask) && error_flag_get_status(&flags[i])) {
ret = true;
break;
}
}
return ret;
}
uint32_t safety_controller_get_flag_count()
{
return COUNT_OF(flags);
}
uint32_t safety_controller_get_analog_monitor_count()
{
return COUNT_OF(analog_mons);
}
uint32_t safety_controller_get_timing_monitor_count()
{
return COUNT_OF(timings);
}
int safety_controller_get_analog_mon_name_by_index(uint32_t index, char *buffer, size_t buffsize)
{
if (index >= COUNT_OF(analog_mons))
return -1;
if (buffsize == 0 || !buffer)
return -1000;
strncpy(buffer, analog_mons[index].name, buffsize);
buffer[buffsize - 1] = 0;
return 0;
}
int safety_controller_get_flag_name_by_index(uint32_t index, char *buffer, size_t buffsize)
{
if (index >= COUNT_OF(flags))
return -1;
if (buffsize == 0 || !buffer)
return -1000;
strncpy(buffer, flags[index].name, buffsize);
buffer[buffsize - 1] = 0;
return 0;
}
int safety_controller_get_timing_mon_name_by_index(uint32_t index, char *buffer, size_t buffsize)
{
if (index >= COUNT_OF(timings))
return -1;
if (buffsize == 0 || !buffer)
return -1000;
strncpy(buffer, timings[index].name, buffsize);
buffer[buffsize - 1] = 0;
return 0;
}
int safety_controller_get_flag_by_index(uint32_t index, bool *status, enum safety_flag *flag_enum)
{
int ret = -1;
if (!status && !flag_enum)
return -1000;
if (index < COUNT_OF(flags)) {
if (status)
*status = error_flag_get_status(&flags[index]);
if (flag_enum)
*flag_enum = flags[index].flag;
ret = 0;
}
return ret;
}
int safety_controller_get_analog_mon_by_index(uint32_t index, struct analog_monitor_info *info)
{
volatile struct analog_mon *mon;
if (!info)
return -1002;
if (index >= COUNT_OF(analog_mons)) {
info->status = ANALOG_MONITOR_ERROR;
return -1001;
}
mon = &analog_mons[index];
info->max = mon->max;
info->min = mon->min;
info->value = mon->value;
info->timestamp = mon->timestamp;
if (!mon->valid) {
info->status = ANALOG_MONITOR_INACTIVE;
} else {
if (mon->value > mon->max)
info->status = ANALOG_MONITOR_OVER;
else if (mon->value < mon->min)
info->status = ANALOG_MONITOR_UNDER;
else
info->status = ANALOG_MONITOR_OK;
}
return 0;
}
int safety_controller_get_timing_mon_by_index(uint32_t index, struct timing_monitor_info *info)
{
volatile struct timing_mon *mon;
if (!info)
return -1002;
if (index >= COUNT_OF(timings)) {
return -1001;
}
mon = &timings[index];
info->max = mon->max_delta;
info->min = mon->min_delta;
info->enabled = mon->enabled;
info->last_run = mon->last;
info->delta = mon->calculated_delta;
return 0;
}
2020-07-09 22:31:42 +02:00
/** @} */